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Attention-Aware Heterogeneous Graph Neural Network

Jintao Zhang and Quan Xu*

Abstract: As a powerful tool for elucidating the embedding representation of graph-structured data, Graph Neural

Networks (GNNs), which are a series of powerful tools built on homogeneous networks, have been widely used

in various data mining tasks. It is a huge challenge to apply a GNN to an embedding Heterogeneous Information

Network (HIN). The main reason for this challenge is that HINs contain many different types of nodes and different

types of relationships between nodes. HIN contains rich semantic and structural information, which requires a

specially designed graph neural network. However, the existing HIN-based graph neural network models rarely

consider the interactive information hidden between the meta-paths of HIN in the poor embedding of nodes in the

HIN. In this paper, we propose an Attention-aware Heterogeneous graph Neural Network (AHNN) model to effectively

extract useful information from HIN and use it to learn the embedding representation of nodes. Specifically, we first

use node-level attention to aggregate and update the embedding representation of nodes, and then concatenate

the embedding representation of the nodes on different meta-paths. Finally, the semantic-level neural network

is proposed to extract the feature interaction relationships on different meta-paths and learn the final embedding

of nodes. Experimental results on three widely used datasets showed that the AHNN model could significantly

outperform the state-of-the-art models.
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1 Introduction

Real data often contains structural information, for
example, graph-structured data widely exist in the fields
of chemistry[l,2] , physics[3,4] , and social science[5,6]. As
a powerful tool for embedding graph-structured data,
Graph Neural Networks (GNNs) learn the embedding
representation of nodes by aggregating and updating
the neighboring information of nodes, and are widely
used in molecules, social networks, and recommendation
systems[7, 8]. Recently, based on the pioneering work in
the development of the Graph Convolutional Network
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(GCN)[5] , researchers have improved its performance
by enhancing the aggregation update function and
have proposed many variations[9-11]. Specifically, the
introduction of the attention mechanism has greatly
improved the performance of the GCN model; this
network is named as Graph Attention neTwork (GAT)[9].
These studies demonstrate that GNNs have unique
advantages in data mining tasks based on graph­
structured data. Moreover, a GNN is built on a
Homogeneous Network (HN).

Different from an HN, the rich data in the network
often contain different types of nodes and relationships
between these nodes, that naturally constitute a
Heterogeneous Information Network (HIN)[l2, 13]. An
HIN contains not only structural information between
nodes, but also semantic relationships between
nodes[l2,14]. As shown in Fig. la, the IMDB dataset
can be regarded as an HIN, which contains three
types of nodes (i.e., users (U), movies (M), and
directors (D)) and their relationships. Moreover, each
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U: user M: movie D: director

As a powerful tool for embedding graph structure
data, GNN has been widely used in various data
mining tasks, such as classification, clustering, and
recommendation[7,8]. GNNs mainly employ a graph
convolution operator to aggregate the neighbouring
information of the target node and update its embedding.
Kipf and Welling[5] proposed a GCN to aggregate and
update the embedding of nodes through the degree
matrix between nodes. Recently, researchers have
improved the performance of GCN by enhancing the
graph convolution operator and have proposed many
variants[9-11]. For example, Xu et al.[lO] demonstrated

2 Related Work

In this paper, we propose an Attention-aware
Heterogeneous graph Neural Network (AHNN) for
embedding an HIN. Specifically, AHNN first utilizes
node-level attention to learn the embedding of nodes
on different meta-paths, and then concatenates the
embeddings on different meta-paths and employs
a semantic-level neural network to learn the final
embedding representation of the node. Intuitively, a
semantic-level neural network is better than the use
of semantic attention for extracting feature interaction
information between node embeddings on different meta­
paths to learn high-quality embedding representations.
The main contributions of this paper are summarized as
follows.

• We propose a semantic-level neural network to
extract feature interaction information hidden between
node embeddings on different meta-paths. In this way,
the comprehensive and subtle information between meta­
paths can also be fully utilized.

• We propose an AHNN model to study node
embedding in HIN, which includes node-level attention
and semantic-level neural networks. As a novel method
to embedding an HIN, AHNN can effectively extract the
rich structural and semantic information in an HIN to
learn high-quality embedding representations.

• We experimentally evaluate the performance of
the AHNN model on three widely used datasets. The
experimental results show that AHNN is superior to the
state-of-the-art models.

The main task of this paper is to utilize GNN and other
related technologies to embedding an HIN. Therefore,
this section mainly introduces two aspects, that is, GNN
and HIN embeddings.

2.1 GNN

Meta-path P

+ ap

(b) Meta-path

(d) Meta-path (U-M-D-M-U)

(c) Meta-path instance based structure

U-M-U

U-M-D-M-U

Meta-path 1 Meta-path 2

(a) A toy example of HIN

meta-path in an HIN often has different semantic
information. For the two meta-paths given in Fig. 1b,
User-Movie-User (U -M-U) indicates that two users
have watched the same movie, and User-Movie-Director­
Movie-User (U -M-D-M-U) represents that two users
have watched a movie by the same director. Specifically,
when we only consider the structural information of
a meta-path, HIN becomes a homogeneous network,
as demonstrated in Fig. Id. Therefore, learning the
embedding representation of nodes from HIN requires a
specially designed graph neural network[l4].

These challenges urge researchers to design a
reasonable and effective GNN for embedding an HIN.
Recently, some HIN-based GNNs have been proposed,
most of which have been inspired by Heterogeneous
graph Attention Networks (HANs)[l4-16]. Specifically,
HAN[l4] first utilizes node-level attention (i.e., GAT)
to fuse the neighboring information of nodes on each
meta-path, and then uses semantic-level attention to
integrate node embeddings on different meta-paths to
learn the final embedding of nodes. As shown in Fig. 2,
the semantic-level attention in HAN is essentially a
weighted summation of the embedding representations
of nodes on different meta-paths. However, there are
two problems with semantic-level attention: One is that
the corresponding dimensions of node embedding on
different meta-paths may represent different aspects of
information, the other is that semantic-level attention
cannot easily capture the interactive information between
node embeddings on different meta-paths. This makes
it difficult for HAN to effectively learn high-quality
embedded representations in HAN.

Fig. 1 A toy example of an RIN.

Fig. 2 Semantic-level attention of RAN.
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the theoretical properties of GCN and its variants,
and proposed a more powerful Graph Isomorphic
Network (GIN). Moreover, Velickovie et al.[9] enhanced
the performance of GCN by introducing flexible
attention and multi-head mechanisms, namely GAT.
Zhang and Xie[17] further analyzed GAT in theory and
proposed Cardinality Preserved Attention (CPA) that can
distinctguish structures.

Moreover, the aforementioned GNN often only
uses simple weighted summation when aggregating
neighboring information, this approach ignores the
interactive information between neighbors. Therefore,
researchers also have attempted to improve the
performance of GNN by aggregating more neighboring
information. For example, Zhu et al.[11] utilized the
traditional linear aggregator and proposed a bilinear
aggregator to capture the interactive information
between neighbors. However, the above GNN models
based on a homogeneous network cannot be easily
applied to an HIN that contains rich structural and
semantic information.

2.2 HIN embedding

The ideas of early embedding technology mainly
originated from natural language processing and
produced many classic methods, such as Deepwalk[18],
and LINE[19]. As these methods mainly focus on
homogeneous networks, researchers are attempting
to improve them to adapt to HIN. For example,
Metapath2vec[20] proposed an improved HIN by taking
into account a meta-path based random walk and skip­
gram. Shi et al. [12] proposed the HERec method to first
generate random sequences through random walks based
on the guidance of meta-paths, and then transform them
into a homogeneous network by deleting different types
of nodes before finally employing DeepWalk or other
technologies to learn the embedding of nodes in an HIN.

Recently, with the rapid development of deep learning,
some HIN embedding technologies based on GNN
have emerged. For example, Hu et al. [21] introduced
an attention mechanism that depends on the node type
and edge type to avoid manual selection of meta­
paths, thereby efficiently learning node embedding.
MAGNN[22] was used to generate node embeddings by
applying node content conversion, aggregation within
meta-regions, and aggregation between meta-regions,
followed by the application of a specific type of linear
transformation to project heterogeneous node attributes
into the same latent vector space, and then the use
of an attention mechanism to apply intra-metadata

aggregation for each set of metadata. In addition, most
HIN embedding technologies based on GNN are inspired
by HAN, which is the first attempt to introduce GAT into
HIN to learn node embedding[14] . Specifically, HAN
uses hierarchical attention to learn node embedding,
that is, node-level attention and semantic-level attention.
However, the attention at the semantic-level attention
performs a weighted summation on the embeddings
of nodes on different meta-paths, making it difficult
to extract the feature interaction information hidden
between different meta-paths.

3 Definition

The main purpose of this paper is to achieve embedding
of an HIN, thus, in this section, we mainly introduce the
related concepts of an HIN.

Definition 1 (HIN) Consider a graph G == (V, E),

where V and E represent the object set and link set,
respectively. If two mapping functions, i.e., the mapping
function 8(·) denotes the node type, and the mapping
function E (-) is the edge type, could map the nodes v (E
V) and edges e(E E) to a specific type (8(v) E A,
E(e) E R), where A represents the type of nodes, and
R denotes the relation of the nodes, then this type of
network can be regarded as an information network. If
IA I + IR I > 2, then G is a heterogeneous information
network.

Definition 2 (Meta-path) A meta-path is a path in
the form Al (R I )A2 ••• AZ-I (Rz-I)Az (abbreviated as
AI A2 ••• Az)·

4 Proposed Model

In this section, we introduce in detail the proposed
model, that is AHNN. The AHNN is mainly divided
into two parts, as shown in Fig. 3. First, we use node­
level attention to fuse the neighbor nodes information of
target node under each meta-path. Next, the embedding
of target node under each meta-path is concatenated, and
a semantic-level neural network is utilized to learn the
final embedding of the target node in HIN.

4.1 Node-level attention

Because each node's original feature is a vector and each
node on each meta-path should have different features.
In order to maintain the heterogeneity of the nodes, we
utilize multiple type-specific transformation matrices to
map the original feature of the each node to different
meta-path feature spaces. Specifically, given the original
feature Xu (E R I XF) of node u, we map it to the specific
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Fig. 3 Framework of the AHNN.

(2)

meta-path feature space through a transformation matrix
McI>i (E R FXD ),

h cI>·u 1 == Xu . McI>i (1)
where F is the dimension of the original feature, D is
the transform dimension, C/Ji represents the i -th meta­
path, and h~i (E R 1XD) is the projected feature of node
u in meta-path C/Ji . Obviously, McI>i can map all nodes
to the same meta-path feature space to distinguish it
from other meta-path feature spaces. Moreover, McI>.

1

can make node-level attention aggregate different and
rich information in each meta-path feature space.

After mapping the original features to different meta­
path feature spaces, we can aggregate the neighboring
information through node-level attention to update the
node information under each meta-path. Specifically,
given the meta-path C/Ji, and node u and its project feature

cI> -cI>
hu ' the feature hu of node u is updated by aggregating
the features {hi: i == 1, ... , INcI>(u) I} of its neighbor
nodes, where NcI>(u) denotes the neighbors of node u,
and INcI> (u) I denotes the number of neighbors. Note that
NcI> (u) also includes itself. The formula is as follows:

- cI> """' cI>h u == u( Lt aui hi )

where u represents the activation function, and the
attention a~ (i == 1, ... , INcI> (u) I) denotes the attention
between nodes u and its neighbors under the meta-path
C/J. The attention a~ can be regarded as a variation of
self-attention[5], and the relevant formula is as follows:

cI> exp(u(acI> . [h u IlhiJT))
aui L exp(lT(a<t>· [h u IlhiF)) (3)

j EN</> (u)

where acI>(R 1X2D ) represents the attention weight that
is shared for all nodes under the meta-path C/J, and
II represents the concatenate operation. Note that acI>.

Ul

represents the importance of node i to node u so acI>. is, Ul

asymmetric, that is a~ #- afu, as shown in Eq. (3).
In order to vividly show the process of aggregating
neighbouring information through node-level attention,
we provide a simple explanation in Fig. 4.

Because the HIN has the property of being scale-free,
the variance of the graph data is very large. To overcome
these limitations and stabilize the process of attention
learning, we extend node-level attention to employ multi­
head attention. Specifically, on a given meta-path, we
repeatedly execute node-level attention K times and then
concatenate all the results; the relevant Equation is as
follows:

1------1-----. It (JJ
u.

Fig. 4 Node-level attention. For a given meta-path f/J and
target node u, calculate the attention between the target node
and its neighbors, and then aggregate the feature information
of the neighboring nodes through attention.



Jintao Zhang et al.: Attention-Aware Heterogeneous Graph Neural Network 237

(4)

5.2 Baselines

5 Experiment

In this section, we present the results of multiple
experiments conducted based on three widely-used
datasets to verify the performance of our AHNN model.

5.1 Datasets

(7)

classification, the relevant formula is as follows:

L == - L In(h i · C) . YT
i Eiltrain

where Dtrain represents all nodes in the training set, Yi (E
R1XNC) andhi(E R1XDf) are the ground-truth and final
embedding of node i in the training set, Nc denotes the
number of class, and C(E RDfXNC) is the parameter of
the classifier.

We chose three datasets for experimentation, namely,
DBLP, IMDB, and ACM[l4]. Among them, DBLP
contains 4057 authors, 14238 papers, 20 conferences,
8789 projects, and the relations between them. We
divided the authors into four categories (i.e., database,
data mining, machine learning, and information retrieval)
according to the fields of the authors' submission
conferences, and the feature vectors of the authors
are represented by the bag-of-words of keywords in
their papers. IMDB contains 5841 actors, 4780 movies,
and 2269 directors. We divided the movies into three
categories (i.e., action, comedy, and drama) according to
their genres, and the features of movies are represented
by the bag-of-words of the plot. ACM contains 3025
papers, 5835 authors, and 56 subjects. We divided the
papers into three categories (i.e., database, wireless
communication, and data mining) according to the
fields of the papers to which they belong. The detailed
information of the three datasets is shown in Table 1.

Because the model proposed in this paper is an
embedding model that utilizes GNN to learn node
representation in HIN, we consider the classic
representation model DeepWalk[l8] (which is based on
random walk), the meta-path-based random walk in HIN,
named HERec[l2] , the GNN-based methods GCN[5] and
GAT[9], and the graph neural learning model HAN[l4] in
HIN.

• DeepWalk[l8]: A network embedding method based
on performing a random walk in homogeneous graphs.
We ignore the heterogeneity of nodes by performing
random walks in the entire heterogeneous graph.

• HERec[l2] : A heterogeneous information network

4.2 Semantic-level neural network

Each meta-path in the heterogeneous information
network contains rich structural and semantic
information, and the useful information between
them is different. In order to mine the interactive
information hidden between them, under the assumption
that the embedding representations on any two meta­
paths are independent of each other, we perform
a semantic-level neural network to learn the final
embedding of nodes. Specifically, for a given node u,
we first concatenate its embeddings on each meta-path
after performing node-level attention, the relevant
formula is as follows:

P -€Pi
Zu==lli=lhu (5)

where P denotes the number of meta-path, and Zu (E
RIXPKD) represents the concatenation embedding. In
fact, determining how to choose an effective meta-path in
HIN and integrating it into the model is a huge challenge,
however, Eq. (5) does not need to be used because it can
flexibly concatenate the embeddings on multiple meta­
paths. Thanks to the approximate theory of MultiLayer
Perceptron (MLP), we can learn the final embedding
representation of the node u by employing

h u == u(Zu . W + b) (6)

where h u (E R 1xDf) is the final embedding of node u,
and WeE RPKDXDf) and b (E R1XDf) represent the
weight and bias of MLP, respectively, Df represents the
final embeding dimension. Note that Wand b are shared
by all nodes.

Finally, we consider training the model through the
cross-entropy loss function for semi-supervised node

-€P K ("""' €P k €P)hu == Ilk=l U ~ ctu/ . hi
iEN<P(u)

where ct~,k represents the attention between node i
and node u under the meta-path C/J and the k-th multi­
head, K represents the number of multi-head, and
-€P
hu (E R 1XKD ) represents the embedding of node u
after performing node-level attention. Similarly, we
can perform the node-level attention operation for
node u in each meta-path for the given meta-path set
{ C/J1 , C/J2 , ... , C/Jp }. Afterward, we obtain the embedding

-€PI -€P2 -€Pp
representation hu ,hu , ... , h u of node u under each
meta-path. Moreover, all nodes adapt this strategy
to aggregate and update embedding, thus, one can

-€p.
denote h 1 (i == 1,2, ... , P)(E R NXKD ) as a matrix
composed of embeddings of all nodes on a given meta­
path, where N represents the number of nodes.
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Table 1 Statistical information of three datasets.
Dataset Relation (A-B) #A #B #A-B #Feature #Training #Validation #Test Meta-path

Paper-Author 14328 4057 19645 APA
DBLP Paper-Conference 14328 20 14328 334 800 400 2857 APCPA

Paper-Term 14327 8789 88420 APTPA
Movie-Actor 4780 5841 14340 MAM

IMDB 1232 300 300 2687
Movie-Director 4780 2269 4780 MDM
Paper-Author 3025 5835 9744

2125
MAM

ACM 1830 600 300
Paper-Subject 3025 56 3025 MDM

embedding model that performs random walk conducted
by meta-path, which only preserves the nodes with the
same type. Note that we perform HERec in each meta­
path and report the best performance.

• GCN[5]: A homogeneous network embedding
model that aggregates neighboring information by graph
convolution. Here, we perform GCN in each meta-path,
this approach only preserves nodes of the same type.

• GAT[9]: A homogeneous network embedding
model that aggregates neighboring information by graph
attention. Here, we perform GAT in each meta-path, this
approach only preserves nodes of the same type.

• HAN[14]: A heterogeneous network embedding
model by performing hierarchical attention (i.e., node­
level attention and semantic-level attention).

5.3 Implementation details

For the proposed AHNN model, we set the head to 2,
the hidden dimensions (i.e., dimension in node-level
attention) to 64 (that is, K == 2 and D == 32, see Section
5.6 in detail). Following Ref. [14], we set the final
embedding dimensions to 64 (i.e., Df == 64) for all
models, and set the multi-head and hidden dimensions
to 8 and the number of layers to 1 for GCN, GAT,
and HAN (i.e., K == 8 and D == 8). Moreover, we
set the learning rate of the GCN, GAT, HAN, and
AHNN models to 0.005, the dropout to 0.6, and the
regularization parameters to 0.0001. For GCN, GAT,
HAN, and AHNN, we set the patience to 100 so that the
training will not be stopped until the validation loss does
not decrease for 100 consecutive epochs. Furthermore,
following Refs. [12] and [14], for DeepWalk and HERec,
we set the window size to 5, the walk length to 100,
the walks per node to 40, and the number of negative
samples to 5.

5.4 Classification

For all models, when we learn the final embedding
representations of the nodes, a criterion for evaluating
its quality is its performance in downstream tasks. In
this section, following Ref. [14], we utilize the classic

KNN classifier with k == 5 to classify the embedding
of all models and report Macro-F1 and Micro-F1, as
shown in Table 2. In order to make a fair comparison,
we repeated the classification of all models ten times and
then reported the average value. From Table 2, we can
see that our AHNN model has the best performance in
most cases. Specifically, the performance of AHNN is
the best on the ACM dataset compared to other models
considered, and it is comparable to HAN and better than
other models on IMDB and DBLP. The main reason for
this result is that the number of nodes in the ACM is
small and the original feature dimension of the nodes
is larger. For IMDB and DBLP, they have a large
number of nodes but a small original feature dimension
of the nodes, making it difficult for a semantic-level
neural network of AHNN to extract abundant feature
interaction information hidden between meta-paths. The
classification results also show that the AHNN model can
extract more useful information from a larger number of
node features to improve the quality of embedding.

5.5 Clustering

Similar to the previous section, following Ref. [14], in
this section, we use KMeans to cluster the nodes by
embedding. The clustering results can also be used as a
criterion for judging the quality of embeddings. Because
KMeans is an unsupervised process and is affected by
the initial center, here, we repeated the experiment 10
times and reported the average result. It can be seen
from Table 3 that the performance of AHNN on ACM is
greatly improved compared to the performance of other
models. AHNN has a slight performance improvement
over HAN on DBLP, and HAN is better than other
models. For IMDB, the performance of AHNN is poorer
than HAN and better than other models. The main
reason for this result is that the ACM dataset has fewer
nodes and more features. Relatively speaking, IMDB
has many nodes, few features, and a strong correlation
between categories. The clustering results also show that
the AHNN model is suitable for datasets with strong
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Table 2 Results of the classification.
(%)

Dataset Metric Training Deepwork HERec GCN GAT HAN AHNN
20 77.25 66.17 85.22 86.70 87.35 90.47
40 80.47 70.89 86.11 87.11 87.73 90.01

Macro-Fl
82.55 72.38 87.44 88.79 88.82 89.1160

80 84.17 73.92 88.97 89.82 89.80 90.37
ACM

20 76.92 66.03 85.14 86.70 87.35 90.42
40 79.99 70.73 85.88 87.02 87.59 89.79

Micro-Fl
60 82.11 72.24 87.30 88.73 88.69 88.85
80 83.88 73.84 88.90 89.75 89.75 90.18
20 77.43 91.68 89.87 92.42 92.44 92.68
40 81.02 92.16 90.24 92.60 92.78 92.33

Macro-Fl
83.67 92.80 91.27 93.08 93.66 93.6660

80 84.81 92.34 92.99 94.69 95.33 95.72
DBLP

20 79.37 92.69 90.82 93.32 93.35 93.69
40 82.73 93.18 91.26 93.60 93.73 93.29

Micro-Fl
85.27 93.70 92.49 93.99 94.52 94.4360

80 86.26 93.27 93.94 95.27 95.89 96.23
20 40.72 41.65 38.26 43.27 45.88 44.93
40 45.19 43.86 38.36 44.28 46.40 47.39

Macro-Fl
48.13 46.27 39.35 43.59 48.81 50.5060

80 50.35 47.64 41.06 44.73 49.06 52.33
IMDB

20 46.38 45.81 41.68 46.30 49.59 48.81
40 49.99 47.59 41.27 47.04 49.73 50.92

Micro-Fl
52.21 49.88 42.13 46.31 51.84 53.3760

80 54.33 50.99 43.45 46.45 52.35 54.60

Table 3 Results of the clustering.
(%)

Dataset Metric Deepwork HERec GCN GAT HAN AHNN
NMI 41.61 40.70 55.70 55.10 56.69 62.73

ACM ARI 35.10 37.13 59.30 58.75 60.50 66.39
NMI 76.53 76.73 76.16 77.82 78.20 78.58

DBLP
ARI 81.35 80.98 81.50 82.81 84.29 84.64

IMDB NMI 1.45 1.20 3.47 6.56 9.49 8.92
ARI 2.15 1.65 3.81 8.19 8.24 7.53

independence between classes.

5.6 Parametric analysis

In this section, we mainly analyze the impact of
the number of attention heads K, the size of hidden
dimensions D, and the dimension of the final embedding
Df on the AHNN model. First, we fix the hidden
dimensions to 16 and the final embedding dimensions
to 64, and then we test the ARI and NMI of the AHNN
model under different numbers of attention heads. As
shown in Fig. 5, the optimal number of attention heads
is 2. Next, we set the number of attention heads
to 2, and the final embedding dimensions to 64, and
then test the performance of the AHNN model under

different hidden dimensions. As shown in Fig. 6, the
optimal hidden dimensions is 64. Finally, we fix the
attention heads to 2 and the hidden dimensions to 64,
and then test the performance of the AHNN model
in different final embedding dimensions, as shown in
Fig. 7. After the experimental analysis of the above three
parameters, although ARI and NMI fluctuate slightly, we
can conclude that too large or too small parameter values
will lead to poor performance of the AHNN model.

6 Conclusion

In this article, we proposed AHNN. Specifically,
the AHNN model first aggregates the neighboring
information of each node under different meta-paths
through node-level attention, and then concatenates the
embeddings on different meta-paths before employing
a semantic-level neural network to mine the feature
interaction information hidden between different meta­
paths and different dimensions to learn the final
embeddings of nodes. Moreover, the AHNN model
can flexibly model multiple meta-paths. The extensive
experimental results on classification and clustering
tasks all demonstrated that the AHNN model could solve
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the problem effectively. Moreover, the experimental
results also showed that the AHNN model is suitable
for embedding HIN with a large number of original
node features and strong node category independence.
Furthermore, AHNN provides an alternative method for
embedding an HIN, and its performance depends on the
characteristics of the dataset. In future work, we will
enhance AHNN to further improve its performance.

Acknowledgment

This work was supported by the Key Scientific Guiding

Project for the Central Universities Research Funds (No.
N2008005), the Major Science and Technology Project
of Liaoning Province of China (No. 2020JHI/IOI00008),
and the National Key Research and Development Program
of China (No. 2018YFBI701104).

References

[1] D. Duvenaud, D. Maclaurin, J. Aguilera-Iparraguirre, R.
G6mez-Bombarelli, T. Hirzel, A. Aspuru-Guzik, and R.
P. Adams, Convolutional networks on graphs for learning
molecular fingerprints, in Proc. 28th Int. Conf. Neural
Information Processing Systems, Montreal, Canada, 2015,



Jintao Zhang et al.: Attention-Aware Heterogeneous Graph Neural Network 241

pp. 2224-2232.
[2] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G.

E. Dahl, Neural message passing for quantum chemistry, in
Proc. 34th Int. Conf. Machine Learning, Sydney, Australia,
2017,pp.1263-1277.

[3] M. D. Cranmer, R. Xu, P. Battaglia, and S. Ho, Learning
symbolic physics with graph networks, arXiv preprint arXiv:
1909.05862,2019.

[4] A. Sanchez-Gonzalez, N. Heess, J. T. Springenberg, J.
Merel, M. Riedmiller, R. Hadsell, and P. Battaglia, Graph
networks as learnable physics engines for inference and
control, in Proc. 3Sth Int. Conf. Machine Learning,
Stockholm, Sweden, 2018, pp. 4470-4479.

[5] T. N. Kipf and M. Welling, Semi-supervised classification
with graph convolutional networks, in Proc. sthInt.
Conf. Learning Representations, Toulon, France, 2017,
https:llopenreview.net/forum?id=SJU4ayYgl.

[6] X. N. He, K. Deng, X. Wang, Y. Li, Y. D. Zhang,
and M. Wang, LightGCN: Simplifying and powering
graph convolution network for recommendation, in Proc.
43rd Int. ACM SIGIR Conf. Research and Development in
Information Retrieval, doi: 10.1145/3397271.3401063.

[7] V. P. Dwivedi, C. K. Joshi, T. Laurent, Y. Bengio, and
X. Breson, Benchmarking graph neural networks, arXiv
preprint arXiv: 2003.00982, 2020.

[8] Z. W. Zhang, P. Cui, and W. W. Zhu, Deep learning on
graphs: A survey, IEEE Transactions on Knowledge and
Data Engineering, doi: 10.1109/TKDE.2020.2981333.

[9] P. Velickovie, G. Cucurull, A. Casanova, A. Romero, P. Lio,
and Y. Bengio, Graph attention networks, in Proc. 6thInt.
Conf. Learning Representations, Vancouver, Canada, 2018,
https:llopenreview.net/forum?id=rJXMpikCZ.

[10] K. Xu, W. H. Hu, J. Leskovec, and S. Jegelka, How
powerful are graph neural networks? in Proc. 7th Int. Conf.
Learning Representations, New Orleans, LA, USA, 2019,
https:llopenreview.net/forum?id=ryGs6iA5Km.

[11] H. M. Zhu, F. L. Feng, X. N. He, X. Wang, Y. Li, K.
Zheng, and Y. D. Zhang, Bilinear graph neural network
with neighbor interactions, in Proc. 29th Int. Joint Conf.
Artificial Intelligence, Yokohama, Japan, 2020, pp. 1452­
1458.

[12] C. Shi, B. B. Hu, W. X. Zhao, and P. S. Yu, Heterogeneous
information network embedding for recommendation, IEEE
Transactions on Knowledge and Data Engineering, vol. 31,
no.2,pp.357-370,2019.

[13] X. Wang, M. Q. Zhu, D. Y. Bo, P. Cui, C. Shi, and J. Pei,
AM-GCN: Adaptive multi-channel graph convolutional
networks, in Proc. 26th ACM SIGKDD Int. Conf.
Knowledge Discovery and Data Mining, San Diego, CA,
USA, 2020, pp. 1243-1253.

[14] X. Wang, H. Y. Ji, C. Shi, B. Wang, Y. F. Ye, P. Cui, and P.
S. Yu, Heterogeneous graph attention network, in Proc. of
the World Wide Web Conf., San Francisco, CA, USA, 2019,
pp. 2022-2032.

[15] W. J. Chen, Y. L. Gu, Z. C. Ren, X. N. He, H. T. Xie, T.
Guo, D. W. Yin, and Y. D. Zhang, Semi-supervised user
profiling with heterogeneous graph attention networks, in
Proc. 28th Int. Joint Conf. Artificial Intelligence, Macao,
China, 2019, pp. 2116-2122.

[16] H. T. Hong, H. T. Guo, Y. C. Lin, X. Q. Yang, Z. Li,
and J. P. Ye, An attention-based graph neural network for
heterogeneous structuralleaming, in Proc. 34th AAAI Conf.
Artificial Intelligence, New York, NY, USA, 2020, pp. 4132­
4139.

[17] S. Zhang and L. Xie, Improving attention mechanism in
graph neural networks via cardinality preservation, in Proc.
29th Int. Joint Conf. Artificial Intelligence, New York, NY,
USA, 2020, pp. 1395-1402.

[18] B. Perozzi, R. AI-Rfou, and S. Skiena, DeepWalk: Online
learning of social representations, in Proc. 20th ACM
SIGKDD Int. Conf. Knowledge Discovery and Data Mining,
New York, NY, USA, 2014, pp. 701-710.

[19] J. Tang, M. Qu, M. Z. Wang, M. Zhang, J. Yan, and Q. Z.
Mei, LINE: Large-scale information network embedding,
in Proc. 24thInt. Conf. World Wide Web, Florence, Italy,
2015,pp.l067-1077.

[20] Y. X. Dong, N. V. Chawla, and A. Swami, Metapath2vec:
Scalable representation learning for heterogeneous
networks, in Proc. 23rd ACM SIGKDD Int. Conf.
Knowledge Discovery and Data Mining, Halifax, Canada,
2017, pp. 135-144.

[21] Z. N. Hu, Y. X. Dong, K. S. Wang, and Y. Z. Sun,
Heterogeneous graph transformer, in Proc. Web Conf.,
Taipei, China, 2020, pp. 2704-2710.

[22] X. Y. Fu, J. N. Zhang, Z. Q. Meng, and I. King,
MAGNN: Metapath aggregated graph neural network for
heterogeneous graph embedding, in Proc. Web Conf., Taipei,
China, 2020, pp. 2331-2341.

Quan Xu received the PhD degree from
University of Lille, France in 2011. He
is an associate professor at the State Key
Laboratory of Synthetical Automation for
Process Industries, Northeastern University,
China. His research interests include
industrial Internet, cloud services, and big
data analytics and visualization.

Jintao Zhang is an undergraduate student
at the College of Sciences, Northeastern
University, China. His current research
interests include big data analytics and
recommender systems.


