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Multimodal Adaptive Identity-Recognition Algorithm Fused
with Gait Perception

Changjie Wang, Zhihua Li�, and Benjamin Sarpong

Abstract: Identity-recognition technologies require assistive equipment, whereas they are poor in recognition

accuracy and expensive. To overcome this deficiency, this paper proposes several gait feature identification

algorithms. First, in combination with the collected gait information of individuals from triaxial accelerometers on

smartphones, the collected information is preprocessed, and multimodal fusion is used with the existing standard

datasets to yield a multimodal synthetic dataset; then, with the multimodal characteristics of the collected biological

gait information, a Convolutional Neural Network based Gait Recognition (CNN-GR) model and the related scheme

for the multimodal features are developed; at last, regarding the proposed CNN-GR model and scheme, a unimodal

gait feature identity single-gait feature identification algorithm and a multimodal gait feature fusion identity multimodal

gait information algorithm are proposed. Experimental results show that the proposed algorithms perform well in

recognition accuracy, the confusion matrix, and the kappa statistic, and they have better recognition scores and

robustness than the compared algorithms; thus, the proposed algorithm has prominent promise in practice.

Key words: gait recognition; person identification; deep learning; multimodal feature fusion

1 Introduction

Mobile internet networks are applied in fields such
as health care and smart cities. They have not only a
communal and ubiquitous nature but a social perception
function. Much physical and behavioral biometric
information can be collected through mobile smart
devices connected to a network. Using the perception
function of the mobile internet, a variety of biometric
feature information can be extracted, and this can be
used to identify individuals[1].

Gait recognition can identify people by their walking
style[2]. Compared with recognition technologies based
on faces and fingerprints, gait recognition has the
advantage of being a noncontact approach, and one’s
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gait is easy to perceive and difficult to hide and disguise.
Gait recognition research focuses on computer vision,
footwear pressure sensing, and acceleration sensing.
Computer vision methods are based on image and
video processing. Gait recognition usually relies on
surveillance cameras and other sensing devices to collect
video information, i.e., a video sequence of gaits is
obtained by tracking and monitoring a subject. Gait
features are extracted by preprocessing and analysis, and
gait recognition is performed using technologies related
to image processing[3]. These technologies are relatively
expensive, and the data are sensitive to environmental
noises, such as the installation angle and location
of surveillance cameras, which affect identification
accuracy. Preprocessing is complex and requires motion
detection, segmentation, and feature extraction on
acquired image sequences. This requirement contributes
to the complexity of data processing. The results are
susceptible to light and background noise disturbance.
Hence, there is much space for development in
application. Methods based on footwear pressure
sensing realize recognition using the collected reaction
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forces generated by the test subjects’ pressure on sensing
pads or sensing boards when standing or walking. They
require special sensing boards and have limitations in
practice. Acceleration sensing based gait recognition
technology is an emerging field. It identifies a person
by acceleration signals generated by walking. It has
the advantages of gait being difficult to disguise and
less susceptible to environmental factors[3]. It extracts
gait features while the subject is walking; hence
it can achieve continuous identity verification with
improved security. It has attracted the attention of many
researchers, but its recognition accuracy is not high.
In addition, because of the disturbance from factors,
such as jitter and white noise, gait acceleration signals
must be smoothed and filtered, which increases its cost
and complexity. Deep learning-related algorithms have
excellent capabilities for feature extraction, are less
susceptible to covariates and other factors, and are highly
efficient. Deep learning algorithms, as represented by
Convolutional Neural Networks (CNNs), are used in
mature applications of identity-recognition systems,
such as voice and facial recognition[4]. Based on these
studies, this paper proposes gait recognition algorithms
and methods based on deep learning theory.

A single biometric feature is prone to environmental
limitation in multi-scene applications. Therefore, we
combine the proposed algorithm with datasets used for
real-world data mining to develop synthetic personal
gait datasets and design a multi-feature fusion person
identification algorithm. The system uses sensors on
mobile smartphones and other devices to collect personal
gait data, implements a CNN-based scheme to classify
and train the gait dataset, and creates a gait recognition
model based on deep learning. The distinction in gait
recognition results of individuals is used to determine
identities. Moreover, a clustering method is added to
the person recognition algorithm to perform a priori
classification of the gait information of the subject to
improve the recognition accuracy. Experimental results
show that the proposed model has a relatively low cost
and high recognition accuracy.

This paper has seven sections. Section 1 introduces
the research background. Section 2 describes the current
research work in the field of identity recognition. Section
3 analyzes the gait characteristics. Section 4 presents
the proposed gait recognition model based on mobile
social perception. The recognition model of the person
recognition system combined with gait and multi-feature

fusion is introduced in Section 5. Section 6 discusses
our experiment, which verifies the validity and fault
tolerance of the model. Finally, the method proposed in
this paper is summarized in Section 7.

2 Related Work

In 1994, Niyogi and Adelson[5] first proposed the use
of gait features for identity-recognition. The image
information of gait was used to identify individuals.
This method has been widely tracked by researchers
and found to have low recognition accuracy. Ailisto et
al.[6] studied the gait videos of 122 people and found the
recognition rate was only 78%. Gait recognition methods
have developed rapidly in recent years because of their
low cost and excellent robustness. They can be separated
into model-based and model-free methods. Tafazzoli and
Safabakhsh[7] created an a priori initial model of human
leg and arm movements based on anatomical proportions
and constructed the posterior model on articulated parts
of the body in motion, using active contour models
and Hough transforms. Although model-based gait
recognition methods have the advantages of angle and
scale invariance and insensitivity to background noise,
they pose strict requirements on gait quality, while
model-free methods omit a priori model construction
and pose laxer requirements on gait quality. Mogan et
al.[8] proposed a method based on temporal gradients
using temporal characteristics of gait movement, which
not only describes the contour shape of the spatial gait
movement but implicitly captures the contour changes
of gaits on the time axis. Although the two types of
gait recognition methods differ in terms of the feature-
representing method, they both extract gait features and
then perform feature-matching and movement-pattern
analysis. However, the recognition accuracy of single-
stage features still must be improved.

With the development of the perception function of
the mobile internet, the concept of information fusion
has become practical. In 1997, Bigün et al.[9] proposed
the multimodality concept based on information fusion
theory. Using mobile phones and various sensors, they
extracted the data features of information collected by
sensors and combined these to further ensure robust
identification. On the basis of the study of fusion
theory of multiple biometric features, Jain et al.[10, 11]

proposed a biometric identification technique based on
the fusion of fingerprints and facial features and proved
that the multimodal biometric identification technique
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outperforms unimodal biometric identification. Baig et
al.[12] used a Hamming distance matcher to fuse iris
and fingerprint features and selected the best fusion
feature among them for more accurate identification of
individuals. Li et al.[13] proposed an identity-recognition
method combining facial and gait information to improve
traditional single-gait recognition methods. Bazin and
Nixon[14] proposed a probabilistic fusion method of
static and dynamic gait features, which effectively
improved the complementarity of features. However,
the dynamic gait feature extraction adopts a model-
based gait feature extraction method[15] and thus is
complicated.

Mantyjarvi et al.[16] attached multiple accelerometers
to a subject’s body. Although collecting static and
dynamic gait trait data is easily accomplished, it requires
high equipment investment. To overcome the deficiency
of the aforementioned methods, we use the mobile
internet perception function for person identification.
A smartphone is used as a component node of the
perception network, and the triaxial accelerometer built
in the smartphone is used to collect the temporal
sequences of the subject’s gait information. Combining
deep learning theory and technology, a model-free gait
recognition algorithm that clusters and then recognizes
the gait time series is proposed. The proposed algorithm
improves the applicability and security of person
identification.

3 Gait Feature Analysis

Gait is biometric information that is difficult to
imitate and is highly unique and secure. Each
person’s gait is different. When more features are
considered, an individual’s gait is unique[1]. Triaxial
accelerometers are easy to carry, and they can capture
accurate and comprehensive gait information. A triaxial
accelerometer in a mobile smart terminal has unique
characteristics. For example, vertical and forward
accelerations show periodic changes in a person’s
horizontal walking motions. During the swing phase
of walking, the vertical acceleration increases in a
positive direction because the center of gravity moves
upward with one foot touching the ground. As the
person continues to move forward, the center of gravity
moves downward, the feet touch the ground, and
the acceleration shows a downward trend. Horizontal
acceleration decreases during the swing phase and
increases when taking a step forward. Studies have
shown that acceleration in the direction of gravity

reaches a minimum at the initial point when the foot
steps forward[7] and reaches a maximum when the entire
foot touches the ground. The biometric information
on three axes collected by a triaxial accelerometer is
essentially multimodal.

Usually, gait information collected by a smartphone’s
triaxial accelerometer is stored as a vector .Gx; Gy ;

Gz/
T, where Gx , Gy , and Gz are the values recorded

by the accelerometer in the horizontal, vertical, and
forward directions, respectively. When a mobile smart
terminal’s accelerometer collects gait information, the
vertical sensor is likely to yield offset with the sensor
vertical to the ground as the person moves. The actual
acceleration values corresponding to the gait data can be
expressed by Eq. (1), which are measured by the triaxial
accelerometer[1, 7],8̂<̂
:
G0xDGx sinˇ �Gy cosˇ CGz cosˇ;
G0yDGy sinˇ sin˛�Gz sinˇ cos˛CGz cosˇ sin˛;
G0zDGy sinˇ cos˛CGz sinˇ sin˛�Gz cosˇ cos˛

(1)
where ˛ is the angle between the vertical-direction
sensor and the direction of gravitational acceleration g,
and ˇ is the angle between the direction of gravitational
acceleration projected on the horizontal plane and the
person’s movement direction.

In this way,
�
G0x; G

0
y ; G

0
z

�
consists of the actual

acceleration corresponding to a person’s gait information.
Because this information contains disturbances, such
as jitter and white noise, we perform smoothing and
filtering using the methods in Refs. [17, 18].

Figure 1 is a schematic diagram of the result of
smoothing and filtering a person’s gait information. In
Fig. 1, the horizontal axis represents the measurement
time, and the vertical axis represents the acceleration
values recorded by the accelerometer in the x-, y-, and
z- dimensions.

Accelerometer-based gait identification methods
mainly use the processing methods of periodic extraction
or data segmentation. Periodic extraction is simple and
direct, and requires no data conversion, but it is prone to
error because the period cannot be accurately determined.
Therefore, we use a data segmentation method to process
gait samples. In addition, because the human body’s
gait triaxial acceleration signal exhibits periodicity with
peaks and troughs, a person’s peak-to-peak distance
is consistent[6, 7]. Troughs are correlated to the human
walking speed and the variation in the acceleration signal
caused by the weightlessness of the body during walking.
When the walking speed increases, so do the variations
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Fig. 1 Line chart of individual gait information demo.

in the waveform, and similarly, the variations decrease
with decreased walking speed. We consider the peak
interval, standard deviation, and average composition of
accelerations of a triaxial acceleration curve as gait trait
values and consider four consecutive peak intervals as
a sample. To completely remove noise, gait trait values
are normalized by the standard deviation during data
preprocessing,

F 0 D .F � Fmean / =Fs (2)
where F 0 is the final gait trait obtained after
preprocessing, F is the original gait trait value, and
Fmean and Fs are the average and the standard deviation
of the gait trait value, respectively.

After normalizing the gait data through Eq. (2), the
acceleration values are discretized, and the discretized
gait information data are obtained.

4 CNN-Based Gait Recognition Model
Training

A CNN[19] is a deep pooling infrastructure consisting of
multiple convolutional layers. It includes input, output,
fully connected, pooling, and convolutional layers.
Because gait behaviors of an individual in different
scenarios and motion status have different feature
representations, to extract and train gait information,
we design and develop a CNN-based Gait Recognition
(CNN-GR) model.

During the training stage, the input includes three-
dimensional discretized gait information on the x-,
y-, and z-axis. The output layer uses the softmax
function for normalization to constrain the acceleration

signals between 0 and 1. In gait feature extraction, the
convolution kernel sequentially performs convolution
operations on different positions of the gait information
with a specified stride (e.g., four consecutive peak
intervals). Because its weight generally does not change
during convolution, a convolution kernel can only
extract local features in the gait information. To extract
gait information features more comprehensively, we
use multiple convolution kernels and set up different
convolution kernel parameters to process the gait
information. In the convolution process, to effectively
extract the feature on the edge data in the gait
information, zero padding is applied to the gait data edge.
After the gait data are convolved, the corresponding
feature maps of specific sizes and dimensions can be
obtained. The dimensionality of the gait feature maps
can be calculated,

Goutput D
Ginput C 2 � padding – kernel size

stride
C 1

(3)
where Ginput is the dimensionality of the input gait
information, “kernel size” is the size of the convolution
kernel, “stride” is the stride of the convolution kernel,
“padding” is the number of added padding values at the
edge of the input gait data, and Goutput is the dimension
of the output gait feature after one convolution operation.

The CNN-GR model includes four convolutional
layers: Conv1, Conv2, Conv3, and Conv4. The first
convolutional layer, i.e., Conv1, uses a kernel to filter the
input and extracts the shallow-layer features of the gait
data. It processes each input vector separately. Its kernel
stride is 1. To further extract the deep-layer features
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of the gait data, Conv2 uses a convolution kernel to
calculate the gait information features output by Conv1.
The kernel stride of Conv2 is 2. Deep convolutions help
to fully extract the feature of gait information. The third
and fourth layers, Conv3 and Conv4, have convolution
kernels and convolution kernel strides of 1.

Each of the four convolutional layers performs feature
extraction on gait feature data that are output by their
previous layers. However, a convolutional layer only
performs linear transformations on features, and the
multilayer convolution operation superimposes the linear
transformation of the feature data, with the result that the
final feature model is a complex linear model with weak
representation ability. Therefore, an activation function
must be used to introduce nonlinear operations to the
CNN. The CNN-GR model uses a Rectified Linear Unit
(ReLU) function as the activation function of the feature
data for post-convolution operations. The conceptual
diagram of the ReLU function is shown in Fig. 2, and
the function can be expressed as

f .x/ D max.0; x/ (4)

The ReLU function is piecewise linear. When the
input value is less than 0, its output value is negative;
and when the input value is positive, its output value
remains unchanged. Therefore, the ReLU function has
the characteristic of unilateral suppression, which can
introduce nonlinear factors to the CNN-GR model and
better mine objective features and fit training data.

Gait information features can be effectively extracted
using the four-layer convolution operation and ReLU
function. However, as the number of convolutional
layers increases, the dimensions of the obtained gait
features increase rapidly, as does redundant data. To
reduce the dimensions of the features and remove
redundant data, i.e., to prevent overfitting, pooling layers
are periodically placed between convolutional layers to

Fig. 2 ReLU function graph.

perform pooling operations on gait feature data. Similar
to a convolution operation, a pooling operation has
two parameters: the size of the pooling kernel and the
pooling stride. After the input gait feature data are
pooled, their dimensions can be calculated,

poutput D
pinput � kernel�size

stride
C 1 (5)

where pinput is the size of the gait feature data that are
input to the pooling layer, and kernel size and stride
are identical to those in Eq. (3).

To pool the data, the CNN-GR model uses max
pooling, i.e., it selects the maximum value in a
feature map region scanned by the pooling window
as the result of the pooling operation. Figure 3 is
an example in which the right subgraph is the result
of maximizing the pooling operation. Obviously, the
pooling operation on the feature data can effectively
reduce feature dimensionality, the risk of overfitting,
and the computational and time complexity of the entire
model. The CNN-GR model uses a 2 � 2 pooling kernel
and a stride of 2.

The fully connected layers map the gait feature data
extracted by the convolution and pooling operations
to the one-dimensional feature vector, which helps to
solve the classification or regression problem. The CNN-
GR model has two fully connected layers, Dense1 and
Dense2. For Dense1, the size of the convolution kernel
equals the feature dimension output by Conv4, the
stride is 1, and there is no padding being omitted. For
Dense2, the fully connected operation is the convolution
operation with a 1 � 1 kernel and a stride of 1. The
feature data from all nodes of the fully connected layers
are classified by a softmax function,

y .xk/ D
exp .xk/

MP
iD1

.exp .xi //

(6)

where M is the number of feature data points input on
x-, y-, and z-axis, and xk is the k-th input feature data
point.

The CNN-GR model, as shown in Fig. 4, is used to

Fig. 3 Max pooling demo.
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Fig. 4 CNN-GR infrastructure.

train individual gait behavior datasets, and it uses the
mutual exclusion of features and the softmax function
to complete the recognition and classification of gait
behavior.

5 CNN-GR-Based Identification Method

5.1 Unimodal identification algorithm

5.1.1 Unimodal identification scheme
On the basis of the CNN-GR model, we propose a
unimodal gait feature recognition scheme and an identity-
recognition algorithm. The method uses a smartphone
with a triaxial accelerometer to collect gait information
in different states and sends it to a backend server, which
trains and tests the collected gait dataset on the x-, y-,
and z-axes and extracts and preprocesses the gait feature
information, which is used to train the CNN-GR model
for the gait information of this scheme. Figure 5 shows
the flowchart of this scheme.
5.1.2 Unimodal gait-identification algorithm
In combination with the aforementioned identification
scheme based on the unimodal gait features, we propose
a Single-Gait Feature Identification (SGFI) algorithm,
as described by Algorithm 1.

On the basis of the CNN-GR model, the SGFI

Fig. 5 Unimodal gait feature recognition model.

Algorithm 1 SGFI
Require: Gait training set X
Ensure: Recognition result

Initialize MaxEpoch; == Initialize iterations
Initialization weights; == Initialize parameters
for epoch = 1 to MaxEpoch do

X Feture = Conv(X); ==Extract features on convolutional
layer
Max Pool(X Feture); ==Reduce feature vector dimension on
pooling layer
Dense(X Feture); ==Connect the feature vector to the fully
connected layer
SoftMax(X Feture); ==Calculate the actual output of the
sample
Update all weights; ==Update the ownership value in the
neural network

end for
return result ==Come to conclusion

algorithm extracts and classifies the features from
the monomodal gait feature data and conducts
biometric identification based on uniaxial acceleration
information (e.g., monomodal features). Therefore, its
time complexity is consistent with that of the CNN

model,O

 
DX

lD1

M 2
l �K

2
l � Cl�1 � Cl

!
, where D is the

number of convolutional layers of the CNN model or
the depth of the convolutional network; l is the l-th
convolutional layer; M is the edge length of the feature
maps output by each convolution kernel; K is the edge
length of each convolution kernel; and C is the number
of channels of the convolution kernels.

5.2 Multimodal adaptive identification method

5.2.1 Multimodal gait feature fusion
In Section 5.1, the CNN was trained and classified by
extracting triaxial acceleration features as gait feature
values, and a unimodal gait identification method was
based on the proposed CNN-GR model. However, in
practice, the walking style of a person can be divided
into different types based on activities, such as standing,
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jogging, walking, and sitting. The characteristics of a
person’s triaxial acceleration curves differ by type of gait
sequence. Hence, the unimodal gait feature identification
method is prone to environmental disturbance.

On the basis of the theory of pattern classification,
we propose an identity-recognition scheme based on
adaptive recognition of a person’s gait features, as shown
in Fig. 6. This method explores the strong generalization
ability of K-Nearest Neighbor (KNN) as a classifier
and the ability of CNN to fully learn the features of
objectives, and it adaptively classifies and learns the
gait information of different types of gait features in
preprocessed data. The scheme has three steps. Different
types of gait features in the preprocessed gait data are
classified by KNN, and the results are used as the input
data to train the CNN-GR model to extract the feature
data in different gait sequences. A softmax classifier is
used to classify the extracted gait feature data, a person’s
identity is determined based on the classification results,
and the final results are output.

KNN-based Gait Pattern Classification (KNN-GPC)
algorithm is described by Algorithm 2, whose time
complexity is O.k � n/, where k is the dimensionality of
the sample and n is the number of datasets.

5.2.2 Identity-recognition method based on
multimodal gait feature fusion

We combine the unimodal gait identification algorithm
based on CNN-GR in Section 5.1 and the gait sequence

Fig. 6 Gait feature fusion-based identity-recognition
scheme.

Algorithm 2 KNN-GPC
Require: Time series of gait data G.K/
Ensure: Gait type results

Flag Classfy = Flase;
if Flage Classfy then

Flag Classfy = True;
G0

x1
D

˚
G0

x1
.k/ j k D 1; : : : ; K

	
I ==Segment gait

sequence x-, y-, z- axis to be measured
Sim

�
G0

x1
; G0

x2

�
I ==Calculate the similarity of gait sequence

samples
T�G D TypeOf

�
G0

x2

�
I ==Mark gait type

end if
return Type Result ==Gait type results

type classification algorithm based on KNN in
Section 5.2.1 to realize an adaptive Multi-feature Gait
Information based Identification (MGII), described by
Algorithm 3.

The time complexity of MGII mainly comes from
the time to train the CNN-GR model, and can be

approximated by O
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2
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6 Experimental Analysis

6.1 Experimental data

We used two synthetic datasets in an experiment
to validate the performance of the CNN-based gait
recognition model and the proposed identity algorithms.
The first dataset, MIT-Gait, combines the MIT
reality mining dataset[19] and our collected crowd
gait information. The second dataset, Infocom06-Gait,
combines the Infocom2006 trace dataset[20] and our
collected crowd gait information. The MIT dataset
collects traces and identities of 97 MIT students and
faculty. The Infocom06 dataset collects trace and identity
information of participants of the Infocom conference.
The synthetic MIT-Gait and Infocom06-Gait datasets
yielded by data fusion are multimodal.

The Actitracker gait dataset published by WISDM is
used in the training stage of CNN-GR[21]. The ONE
simulation platform, which is widely used on the mobile
internet, is used as the experimental simulation platform.
The recognition accuracy, confusion matrix, and kappa
statistic[22] are used for performance evaluation.

A Back Propagation Neural Network (BPNN)[23, 24]

adjusts the network parameters through input-output
pairs. It is highly flexible, inductive, and capable of
nonlinear modeling, and thus is suitable for processing
personal gait information. LBNet[25] is a method that
uses CNNs to calculate GEI similarity. It uses the
convolutional layer and the additional layer to simulate
the weighted subtraction of GEI, and then uses a

Algorithm 3 MGII
Require: Gait training set X and time series of gait data G.K/
Ensure: Identification result

CNN Model = SGFI(X); ==Call Algorithm 1 to train the CNN
model
Type Result = KNN-GPC(G(K)); ==Call Algorithm 2 to get
gait type results
Type CNN = CNN Model(Type Result); ==Use CNN model
to recognize gait
return Get Out ==Identification result
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multilayer neural network to extract gait features. In the
experiment, the MGII and SGFI proposed in this paper
are compared with the methods based on BPNN and
LBNet, respectively, in terms of the ecognition accuracy,
confusion matrix, and kappa statistic.

6.2 Experimental results and analysis

Figure 7 compares the recognition accuracies of
the two synthetic fused datasets and the number of
trainings. The experimental results show that for the
two synthetic datasets, the accuracies of the proposed
identity-recognition methods are always above 70%.
As the number of CNN training iterations increases,
the recognition accuracies for all the datasets increase
accordingly. At 10 iterations, for the two multimodal
feature datasets, the recognition accuracies of the
proposed methods can exceed 80%. These experimental
results show that MGII, a CNN-based gait recognition
model, achieves relatively good recognition accuracy for
data yielded by fusing the gait information of different
persons and the multimodal information of persons
with different behaviors, and it has a relatively strong
recognition capability.

Fig. 7 Recognition rate varies with the number of trainings.

Figure 8 compares the recognition accuracy of MGII,
CNN-based, and the BPNN-based gait identification
methods. The deep learning based MGII method shows
a significant improvement in recognition accuracy over
the other methods. The BPNN-based gait recognition
method performs worst, with the lowest average
recognition scores for the two datasets. Because of the
advantages of the CNN, MGII outperforms BPNN and
CNN. Because the MGII identity-recognition method
first classifies the gait type and then relies on multimodal
features to determine a person’s identity, its identification
accuracy is better than that of CNN.

The confusion matrix and its computation
scheme[26, 27] are used to visually compare the
performance of the proposed algorithms to that of a
supervised learning identification algorithm. Figure 9
shows that the proposed identification algorithms
have the better discriminating ability for some actions,
indicating that they have a certain practicability.
Figures 9a–9d show the confusion matrices of the
four algorithms on the MIT-Gait dataset, and Figs. 9e–
9h show the results on the Infocom06-Gait dataset.
MGII discriminates various gait actions better on both
fusion datasets, and thus performs better in-person

Fig. 8 Comparison of average recognition rates.

(a) BPNN on MIT-Gain dataset (b) SGFI on MIT-Gain dataset (c) MGII on MIT-Gain dataset (d) LBNet on MIT-Gain dataset

(e) BPNN on Infocom06-Gait dataset (f) SGFI on Infocom06-Gait dataset (g) MGII on Infocom06-Gait dataset (h) LBNet on Infocom06-Gait dataset

Fig. 9 Confusion matrix comparison of different algorithms.
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identification.
On the basis of the comparison of the confusion

matrices, we summarize the kappa statistic for each
algorithm. Generally, the kappa statistic is used to
evaluate the difference between the classification results
of a classification model and the result by random
classification. The kappa value locates in the range of
[�1, 1]. The model classification result is completely
different from that of random classification when kappa
is 1; in contrast, the classification model has no effect
when kappa is 0, resulting in a model classification result
completely different from the random classification
result. When kappa is �1, the classification model is
completely inferior to random classification. Hence
the greater the kappa value is, the better a classifier
performs. Table 1, a comparison of the experimental
results pertaining to the kappa statistic, shows that for
the two multimodal synthetic fusion datasets, the kappa
statistic of MGII is closer to 1, meaning that the CNN-
GR model and the CNN-GR-based MGII identification
algorithm perform well in gait classification and identity-
recognition.

7 Conclusion

On the basis of the feature mutual exclusion of gait
feature data, we propose a gait recognition scheme and
models based on the combination of mobile internet
and a CNN. Through multimodal information fusion
and the application of a clustering method to classify
gait sequences in different contexts, we propose person
respective identification algorithms based on unimodal
gait features and their fusion. Experimental results
show that our CNN-based multimodal gait adaptive
identification method has higher recognition accuracy
than the other gait identification methods considered
herein, and the information fusion based multi-feature
identification method is more robust than a single-feature
identification method.

Table 1 Kappa indicator comparison.
Dataset Algorithm Kappa indicator

MIT-Gait

BPNN 0.792
SGFI 0.811

LBNet 0.823
MGII 0.834

Infocom06-Gait

BPNN 0.781
SGFI 0.805

LBNet 0.813
MGII 0.828

However, several limitations need to be further
studied in our future works. The CNN-GR model
is relatively complex, and the training time is
too long, resulting in difficulty in deployment on
computing power-lowering mobile smart terminals,
which affects its practicability; multimodal data based
identification directs the improvement of noncontact
identity technology. The efficient data collection that
is helpful and conducive for multimodal identification
remains difficult.
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