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Effective Density-Based Clustering Algorithms for Incomplete Data

Zhonghao Xue and Hongzhi Wang�

Abstract: Density-based clustering is an important category among clustering algorithms. In real applications, many

datasets suffer from incompleteness. Traditional imputation technologies or other techniques for handling missing

values are not suitable for density-based clustering and decrease clustering result quality. To avoid these problems,

we develop a novel density-based clustering approach for incomplete data based on Bayesian theory, which conducts

imputation and clustering concurrently and makes use of intermediate clustering results. To avoid the impact of

low-density areas inside non-convex clusters, we introduce a local imputation clustering algorithm, which aims to

impute points to high-density local areas. The performances of the proposed algorithms are evaluated using ten

synthetic datasets and five real-world datasets with induced missing values. The experimental results show the

effectiveness of the proposed algorithms.
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1 Introduction

Clustering aims to find a set of groups of similar
objects within a dataset, while keeping dissimilar objects
separated in different groups or the group of noise points.
It is an basic area of data mining and has been vastly
applied in many fields. Density-based clustering is
an important category among clustering algorithms[1],
which defines clusters as areas of higher density than
the remainder of the dataset. Objects in these sparse
areas, which are required to separate clusters, are usually
considered to be noise and border points. Density-based
clustering methods do not require the number of clusters
as the input, and clusters do not necessarily have a
convex shape, but can be arbitrarily shaped in the dataset.
The most popular density-based clustering method is
Density-Based Spatial Clustering of Applications with
Noise (DBSCAN)[2].

In real applications, many datasets suffer from
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incompleteness, i.e., a dataset can contain vectors that
are missing one or more of the attribute values, as a
result of failure in data collection, measurement errors,
missing observations, or random noise. Density-based
clustering algorithms always need to compute Euclidean
distance or some other forms of distance, which requires
all attributions to be completed. Therefore, they are not
directly applicable to such incomplete datasets.

There are mainly two strategies to handle missing
values. One is imputation, and the other is to alter the
algorithm to conduct clustering directly on the data with
missing values.

Imputation techniques aim to replace missing values
by some estimated values derived from complete data[3].
After imputation, with all data completed, we still
apply the original clustering algorithm for completed
data. Even though such approaches are suitable for
clustering approaches, such as k-means and Expectation
Maximization algorithm (EM), they could hardly be
applied on density-based clustering algorithms, since
k-means and EM consider relative distances of a point
to clusters, while density-based clustering algorithms
consider absolute distances[2, 4, 5]. We use the following
example to illustrate this point.

As shown in Fig. 1, a dataset contains three clusters:
orange, blue, and purple. Each data point has two
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Fig. 1 An example for incomplete data clustering.

dimensions: x1 and x2. " denotes the radius of the
neighborhood in the density-based clustering algorithms.
P1 and P2 indicate two incomplete data points, whose
all possible positions consist straight lines, as shown in
Fig. 1. In other words, the real position of the incomplete
datum indicated by P1 could be any position in the
straight line. And the target of imputation is to select a
position in the line to replace the incomplete datum.

For some imputation approaches, such as k-nearest-
neighbor imputation, a popular imputation approach
which imputes each missing attribute by the mean
value of its k-nearest-neighbors[6], P1 will be estimated
somewhere near the green point. This is a reasonable
imputation because the majority of its neighbors are blue
points, which means that P1 is most likely to belong to
blue cluster. Obviously, k-means and EM will tend to
assign it to the blue cluster, because it is relatively closer
to the blue cluster.

However, for density-based clustering algorithms,
such as DBSCAN, there are not any other points inside
its neighborhood, which means that the green point will
be treated as a noise point. This result is equivalent to
drop P1 directly, so the imputation of P1 is meaningless.

Some imputation methods use iterations to optimize
the quality of estimated missing values[7]. This eases
the problem of insufficient information for clusters.
However, these methods are time-costly, since they run
imputation and clustering in each iteration, and some of
them are sensitive to initial points.

Another way to handle missing values is to modify
the clustering algorithm to directly handle incomplete
data without imputation. As far as we know, only
Partial Distance Strategy (PDS) adopts such strategy
by extending the definition of distance. For data with

missing values, it computes partial distance by using
existing values, and then rescales it with the number of
missing values. However, PDS cannot solve the problem
in imputation, but even worse, it will lead to much more
serious problems to density-based algorithms. We use
an example to illustrate its drawbacks.

As shown in Fig. 1, the two dotted lines on each
side of P1 indicate the neighborhood of the incomplete
data P1. When we implement DBSCAN, because of
enough points inside its neighborhood, P1 will be
considered as a core point. Since all points within a
core point’s neighborhood will be assigned to the same
cluster, P1 will connect the orange (upper left) and blue
(lower) clusters together, leading to a serious decrease
of clustering result quality.

Motivated by these problems, alternatively, we choose
to conduct imputation and clustering concurrently by
locating incomplete points to high-density area. It is
inspired by Bayesian theory[8]. The theory is that a point
is located in a density area in a high probability when
its real location could be hardly determined. With this
idea, by using intermediate clustering results, we impute
proper missing values to prevent the missing values to be
a noisy point as described before. As a result, the quality
of clusters is increased. To support changing clustering
results, we use union-find sets to represent clusters to
improve efficiency of the proposed clustering algorithm.

In the proposed algorithm, we avoid low-density areas
between clusters with intermediate clustering results.
However, low-density areas inside clusters could not be
avoided for non-convex clusters. As shown in Fig. 1, the
purple cluster is annular shaped, and no data are in its
center. However, the proposed algorithm will estimate
P2 to somewhere near the yellow point. For the same
reason, among the green point, the yellow point will
be considered as a noise point, making the imputation
meaningless.

Motivated by this observation, we propose
Concurrently Imputation clustering algorithm (CI-
clustering) and Local Imputation clustering algorithm
(LI-clustering). Such approaches could successfully
exclude low-density areas inside clusters by locating
incomplete points to high-density local areas. For
example, in Fig. 1, there are two locally density areas on
the straight line with respect to P2, which are the top
and bottom areas of the purple (band shaped) cluster.
If the proposed algorithm could impute P2 into one of
these areas, P2 will be correctly assigned to the purple
cluster, rather than be treated as the noise data.
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The contributions of this paper are summarized as
follows.
� We propose density-based clustering algorithms

for incomplete data. The proposed algorithms conduct
imputation and clustering concurrently to ensure high
accuracy. To the best of our knowledge, this is the first
density-based clustering algorithms for incomplete data.
� To minimize the negative impact of incomplete

data, we estimate the location of an incomplete point
according to the idea of Bayesian theory, such that an
incomplete point is located to the relative density area.
With such strategy, the quality of clustering is increased.
For various excepted cluster shapes, we propose CI- and
LI-clustering algorithms.
� Experimental results show that both algorithms

outperform traditional clustering algorithms with
imputation and each of them has its own suitable
scenarios. CI-clustering performs better on high-
dimensional data, while it will cost more time and be
affected by non-convex clusters. LI-clustering is efficient
and robust to the shape of clusters, but its performance
on high-dimensional data is not as good as CI-clustering.

This paper is organized as follows. In Section 2,
we give some basic notations and briefly introduce
algorithm DBSCAN. In Section 3, we discuss the
motivation, method, and some implementation details
about CI-clustering. In Section 4, to avoid some
shortages of CI-clustering, we develop LI-clustering
algorithm. We discuss the experimental results in
Section 5 and draw conclusions in Section 6.

2 Preliminary

2.1 Notations

We denote a set of K-dimensional data points by
Dorig in D fpi ji D 1; 2; : : : ; ng, where n is the number
of points. To make the attributes on a similar scale, they
were meanly normalized into approximately a range of
Œ�1; 1� by

pik  
pik � �k

sk

; k D 1; 2; : : : ; K; i D 1; 2; : : : ; n;

where �k D .
Pn

iD1 pk/=n, and sk D maxifpikg �

minifpikg. We denote mean normalized set by
D D fpi ji D 1; 2; : : : ; ng, and D0 denotes complete
points. The distance of two points is defined to
be dist.pi ; pj / D .

PK
kD1 .pik � pjk/2/

1
2 . If pj is

incomplete, let dist.pi ; pj / D partial dist.pi ; pj /,
which is the distance between points with
incomplete dimensions, and partial dist .pi ; pj / D

.
P
fkjk…missAttrg .pik � pjk/2/

1
2 , which can be also

understood as considering pjk D pik , if pjk is missing.
The reason for defining partial dist( ) in this way will be
discussed in Section 4.3.

2.2 Definitions in DBSCAN

In this section, we introduce some fundamental
definitions of DBSCAN algorithm. The Eps-
neighborhood of a point p, denoted by NEps.p/,
is the set of points with the distance to p smaller
or equal to a threshold Eps and is defined as
NEps.p/ D fq 2 Djdist.p; q/ 6 Epsg. A point
p is called a core point if jNEps.p/j > MinPts, where
MinPts is a threshold for core point definition. A
point p is directly density-reachable from a point q

with respect to Eps and MinPts, if (1) p 2 NEps.q/

and (2) jNEps.q/j > MinPts (core point condition). A
point p is density-reachable from a point q with
respect to Eps and MinPts, if there is a chain of
points p1; : : : ; pn; p1 D q; pn D p, such that piC1

is directly density-reachable from pi . p and q are
density-connected if there is a point o from which
both p and q are density-reachable with respect to
Eps and MinPts. A cluster C with respect to Eps and
MinPts is a non-empty subset of D satisfying the
following conditions: (1) 8p; q, if p 2 C and q is
density-reachable from p with respect to Eps and
MinPts, then q 2 C (maximality); (2)8p; q 2 C , p is
density-connected to q with respect to Eps and MinPts
(connectivity)[2].

2.3 DBSCAN algorithm

In this section, we introduce the algorithm DBSCAN
designed to discover the cluster defined before. Firstly,
DBSCAN finds the point set with each point p satisfying
NEps.p/ > MinPts, and saves their directly density-
reachable points NEps.p/. Then, DBSCAN uses depth-
first search to discover all clusters.

2.3.1 Find Eps-neighborhood
The Eps-neighborhood of one point can be obtained with
time complexity O.kN 1�1=k/ by using k-dimensional
tree (kd-tree)[9], where k is the dimensions of data.
kd-tree is a binary tree in which each node is a k-
dimensional point[10]. Each non-leaf node generates a
hyperplane, which divides the space into two parts. The
points to the left of this hyperplane are represented by
the left subtree of that node, and the points to the right
of the hyperplane are represented by the right subtree.

To find the Eps-neighborhood with respect to a point
p, NEps.p/ is set to ∅ initially. Then the algorithm
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performs a recursive process named FindNeighbor( ),
which takes p and a node o in kd-tree as the input,
and returns NEps.p/ in the subtree with respect to o.
The process firstly sets NEps.p/  NEps.p/[fog, if
dist.p; o/6Eps. It then judges whether p is to the left or
right of the hyperplane with respect to o. In the case of left,
let NEps.p/ NEps.p/ [ FindNeighbor.p; o:left son/.
If the distance between p and the hyperplane is
greater than Eps, which means the points belonging to
NEps.p/ may exist on the right subtree, let NEps.p/ D

NEps.p/ [ FindNeighbor.p; o:right son/. By invoking
FindNeighbor.p; kd-tree.root) for all points, we obtain
all Eps-neighborhoods.

2.3.2 Find cluster
A cluster is uniquely determined by any of its points[2].
Therefore, to find a cluster, the algorithm can start with
an arbitrary point. In order to make the algorithm more
concise, it starts with an arbitrary core point p. Each
point in NEps.p/ is directly density-reachable from p.
Hence NEps.p/ � C with respect to p. If there is a
chain of core points p1; : : : ; pn; p1 D p; and pn D q,
such that piC1 2 NEps.pi /, each point in NEps.q/ is
density-reachable from p. Hence NEps.q/ � C with
respect to p.

To find the cluster with respect to p, the algorithm uses
a stack, namely stack, to record core points. Let stack 
fpg firstly. It enumerates all points q in NEps.p/ for each
point in stack. Let C  C [ fqg, and push q into stack
if q is a core point.

3 CI-Clustering

In this section, we introduce our improved DBSCAN
algorithm for clustering incomplete data. As mentioned
in Section 1, traditional imputation technologies
sometimes just impute a point relatively close to a cluster.
However, this is not enough for density-based clustering
methods, which highly rely on absolute distance, to make
them the same cluster. Instead, such kind of points will
be considered as noise points because of too few points
nearby.

To avoid such problem, we propose CI-clustering,
which makes sufficient use of intermediate clustering
results to increase the clustering quality.

Firstly, we construct a kd-tree with respect to D0 and
perform DBSCAN on it. Then, we constantly predict the
cluster of incomplete data, impute them with respect to
the cluster, insert newly completed point into the kd-tree,
and update the clustering result.

In this section, we firstly discuss the method and
its theoretical basis, and then briefly introduce the
implementations.

3.1 Method

Suppose that X 2 RN is an incomplete tuple with k

missing values, fxi1 ; xi2 ; : : : ; xik g denotes the set of
missing values, and fxj1

; xj2
; : : : ; xj.N �k/

g denotes the
set of existing values. The prediction of missing values
in X is equivalent to the following optimization problem:

arg max
xi1

;xi2
;:::;xik

P.xi1 ; xi2 ; : : : ; xik jxj1
; xj2

; : : : ; xj.N �k/
/

(1)
Due to the locality of DBSCAN, this optimization

problem will lead to a problem that the imputed data
may become noise data as illustrated in Section 1.
To avoid this problem, we can firstly determine the
cluster for the incomplete data, and then perform the
imputation according to points belonging to the same
cluster. Consequently, the incomplete data will be
imputed inside a cluster, and will not be considered as
noisy data.

Concretely, the determination of the cluster based
on incomplete data is equivalent to the following
optimization problem:

arg max
l

P.p 2 Cl jxj1
; xj2

; : : : ; xj.N �k/
/ (2)

where l is the number of the clusters.
For the convenience of calculation, we apply Bayesian

inference to the following optimization problem:
P.p 2 Cl jxj1

; xj2
; : : : ; xj.N �k/

/ D

P.xj1
; xj2

; : : : ; xj.N �k/
jp 2 Cl/ � P.p 2 Cl/

P.xj1
; xj2

; : : : ; xj.N �k/
/

(3)

where P.xj1
; xj2

; : : : ; xj.N �k/
/ is irrelevant to l . The

optimization problem is converted to the following
problem:

arg max
l

P.xj1
; xj2

; : : : ; xj.N �k/
jp2Cl/�P.p2Cl/ (4)

Suppose that the points of a cluster is normal
distributed in a local area. We estimate P.xj1

; xj2
;

: : : ; xj.N �k/
jp2Cl/�N .�; ˙/, where N is the normal

distribution function, � and ˙ are estimated by the set
of neighbor points fq 2 Cl jpartial dist.p; q/ 6 Epsg,
and P.p 2 Cl/ is defined as

P.p 2 Cl/ D
nk

n
(5)

where n denotes the amount of points inside the
neighborhood of p, and nk denotes the amount of points
belonging to Cl and inside the neighborhood.
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By solving this problem, we can determine the cluster
for p. Then, we need to impute the missing values
based on Cl , which could be formalized as the following
optimization problem:

arg max
xi1

;xi2
;:::;xik

P.xi1 ; xi2 ; : : : ; xikjxj1
; xj2

; : : : ; xj.N�k/;p2Cl
/

(6)
Such formula is a conditional probability. We consider

that the points in a cluster are normally distributed in a
local area, which means

P.x/ � N .�; ˙/ (7)

Therefore,
P.xi1 ; xi2 ; : : : ; xik jxj1

; xj2
; : : : ; xj.N �k/;p2Cl

/

subjects to a conditional normal distribution. Supposing
X , �, and ˙ are partitioned as follows:

X D

"
x1

x2

#
; � D

"
�1

�2

#
; ˙ D

"
˙11˙12

˙21˙22

#
(8)

Then, suppose a point misses x1 and has x2 D a, the
distribution of x1 will be N . N�; Ṅ /[11],
N� D �1 C˙12˙�1

22 .a � �2/ Ṅ D ˙11 �˙12˙�1
22 ˙21

(9)
This is also a normal distribution. Therefore, the

optimal solution is to impute xi1 ; xi2 ; : : : ; xik by N�.

3.2 Algorithm description

Based on above discussions, we use traditional
DBSCAN algorithm to cluster completed datasets. And
then we use these clusters to predict incomplete data and
insert them into completed data.

As shown in Algorithm 1, we firstly normalize both
Xcomplete and Xincomplete using the same parameters with
the function Normalize ( ). Then, based on the complete
data, we build a kd-tree, save range search results with
function KD-TREE ( ), and apply traditional DBSCAN
algorithm for clustering with function RangeSearch ( )
and getClusters ( ). For each incomplete point, we predict

Algorithm 1 DBSCAN algorithm for incomplete data
Input: Xcomplete and Xincomplete

Output: Vector y denoting the clustering result
1: Normalize.Xcomplete/

2: Normalize.Xincomplete/

3: tree KD-TREE.Xcomplete/

4: neighborhoods RangeSearch.Xcomplete; tree/

5: clusters getClusters.Xcomplete; neighborhoods/
6: for x in Xincomplete do
7: x predict.x; tree; clusters/
8: insert.tree; x/

9: update neighborhoods.neighborhoods/
10: update clusters.clusters/
11: end for

its missing values with the function predict ( ) in
Algorithm 2 and insert it into the kd-tree with function
insert ( ). Then the neighborhoods and clusters are
updated with functions update neighborhoods ( ) and
update clusters ( ).

Note that the insertion of new points may make
two clusters merge into one cluster. The reason is that
the insertion of new points may change some non-
core points to core points. That is why we should
update neighborhoods and clusters after each insertion.
However, updating operations will not consume much
time, since those points must satisfy two conditions
before the insertion: jNEpsj D MinPts � 1 and within
NEps.p/. After the insertion of point p, jNEpsj changes
to MinPts, and thus becomes core points. That is
to say, only points inside the neighborhood of p

have a possibility to become a core point, and cause
a merging operation. Therefore, while updating the
clustering result, we do not have to scan all points again.
Instead, we should only concentrate on points inside the
neighborhood.

In traditional algorithms, we give each point a label
with respect to its cluster during depth-first search. By
using labels, once we merge two clusters, we have to
change the label for all points into the same, which may
consume much time. To reduce the time of merging
operation, we use union-find sets[12] to represent cluster
rather than index, which makes the amortized time
complexity of merge operation to be H
.˛.n//, which is
extraordinarily close to constant time.

4 LI-Clustering

4.1 Problem

CI-clustering avoids low-density areas between clusters
with intermediate clustering result. However, low-

Algorithm 2 Predict algorithm
Input: x; tree; clusters
Output: xpredicted

1: neighbors find neighbor.x; tree/

2: max p 0

3: for c in fc 2 clustersj9x0 2 neighbors; x0 2 cg do
4: Xc  fx 2 neighborsjx 2 cg

5: �; ˙  estimate param.Xc ; complete attributions/
6: p P.x; �; ˙; jcj; jneighborsj/
7: if max p < p then
8: max p p

9: xpredicted  predict.�; ˙; x/

10: end if
11: end for
12: return xpredicted
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density areas inside clusters could not be avoided for
non-convex clusters.

As show in Fig. 2, blue points are completed points.
The straight line represents all possible positions of a
point p with one missing value. Blue points within
two dotted lines are the neighborhoods of p. Since we
have used the average value of a conditional normal
distribution to predict its missing values, p will be
estimated near the red point, which means that it will
be considered as noisy data. If this point is indeed
belonging to the blue cluster, estimating its position near
either orange points will avoid this problem.

Motivated by this observation, we propose LI-
clustering. Such approach could successfully exclude
low-density areas inside clusters by locating incomplete
points to high-density local areas (orange points).

4.2 Method

Supposing that the point p has a missing value, the
new method aims to maximize the number of points in
NEps.p/, since NEps.p/ can be considered as an indicator
of local density.

Firstly, we will discuss the case that the incomplete
point p has one missing attribute. In the K-dimensional
space, all of the possible positions of p form a straight
line, denoted as lp. For a point q, the ranges of points
belonging to NEps.q/ represent a sphere (including inner
space), denoted as Sq . If p belongs to NEps.q/, which
means p 2 Sq , since p 2 lp, we have lp \ Sq ¤ ∅,
which means Sq intersects into lp . Equivalently, there is
a same possibility that q belongs to NEps.p/ because of
the symmetry of distance.

Many points have possibilities to belong to NEps.p/,
so we can obtain a series of intervals.

Concretely, suppose that if pi D a or pi D b.a < b/,
p will be located on the intersections. Then, q belongs

Estimated
position

-
√2ε
---

Fig. 2 An arbitrarily shaped cluster.

to NEps.p/ if and only if pi 2 Œa; b�. Many points have
a possibility to belong to NEps.p/, so we can obtain a
series of intervals Œa; b�.

If we predict pi D x, jNEps.p/j will be equal to the
number of intervals containing x. Consequently, the
process of prediction is equivalent to find the value x

contained by the maximum intervals. Since the possible
value of x is not a point but an interval, intuitively, we
let x be equal to the mid-value of this interval. Actually,
this is unimportant, because as long as x is within this
interval, the neighborhood of this incomplete data will
be the same. If the intervals are not unique, we choose
the longer one, because those points with respect to the
longer interval are either closer to the incomplete point
or close to each other.

An example is shown in Fig. 3. In this example, D D

fp; q1; q2; q3; q4g, and p is an incomplete point. To
predict the position of p, we drew four circles (sphere
in 2-dimensional space) with respect to q1, q2, q3, and
q4, and obtained six intersections. Each interval has
a number to identify the number of neighbors if the
missing value is in this interval. As shown in Fig. 3, if
we let p in Œa2; b1�, there will be 2 points in NEps.p/,
which is the maximum amount.

In the case that an incomplete point p has more
than one missing attribute, we predict these attributes
successively. Suppose that p has k missing attributions
(k > 2). Different from previous cases, in the K-
dimensional space, all of the possible positions of
p represent a k-dimensional hyperplane, and the
intersection of this hyperplane with a sphere represented
by q is a (k � 1)-dimensional sphere.

Nevertheless, we can predict the position of p in a
similar way. When we predict the i-th attribute, the

1 1 102

p
q1

q2

q3

q4

a1 a2 b1 a3b2 b3

Fig. 3 Predicting 1-dimensional missing points.
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k-dimensional hyperplane represented by p must go
through the i-th axis. Because those intersections with
respect to other points are in this hyperplane, we can
project them on the i -th axis and obtain some segments.
Take these segments as intervals, then we can predict
the i-th attribute in the same way as before. After
the prediction, the hyperplane represented by p has
been changed to be (k � 1)-dimensional. After k times
iterations, p will be a complete point.

An example is shown in Fig. 4, where K D 3 and
k D 2. Three spheres intersect with the hyperplane
represented by p. By projecting these intersections on
the corresponding axis, we can obtain three intervals.
By cutting each other, these intervals are divided into 5
small intervals. To maximize NEps.p/, p should be in the
small interval Œa2; b1� (as shown in Fig. 4, NEps.p/ D 2).

4.3 Algorithm

Different from the CI-clustering algorithm, LI-clustering
algorithm only uses neighborhood information without
considering intermediate clustering results. Therefore,
in this algorithm, we firstly build a kd-tree based on
complete dataset. Then for each incomplete point, we
predict its missing values and insert it into the kd-tree.
Finally, after all points are imputed, we run traditional
DBSCAN algorithm to obtain the clustering result.

In the first step, the judgement of whether a
sphere intersecting the hyperplane is equivalent to the
computation of the distance between the hyperplane and
q, which is equivalent to find the minimum distance
between q and any point p0 in the hyperplane. Thus,

arg min
fp0

i
ji2missAttrg

dist.p0; q/ D

arg min
fp0

i
ji2missAttrg

vuut KX
kD1

.p0
k
� qk/

2
D

arg min
fp0

i
ji2missAttrg

X
k2i

.p0k � qk/
2
D

p0i  qi (10)

a1 a2 b1 a3b2 b3

p

1 1 102

Projection

Fig. 4 Predicting multi-dimensional missing points.

where missAttr denotes the set of attributes with missing
values.

This result is the same to the definition of partial dist.
Hence the distance between the hyperplane and q is
partial dist.p; q/. If and only if partial dist.p; q/ 6
Eps, the sphere intersects the hyperplane. This is the
reason why we defined partial dist.p; q/ in that way.

In the second step, supposing that q0 is a point in
the intersection with respect to q, we predict the i-th
attribute. Finding the interval is equivalent to find the
maximum and minimum value of q0i . Since q0 is on the
intersection, we have

dist2.p0; q0/C dist2.p0; q/ D Eps2 (11)
Since q0 is in the hyperplane with respect to p, we have

dist2.p0; q0/ D
X

j2missAttr

.p0j � q0j /
2 (12)

Hence,
.p0i�q0i /

2
DEps2

�dist2.p0; q/�
X

j2missAttr
j ¤i

.p0j�q0j /
2
D

Eps2
�partial dist2.p; q/�

X
j 2missAttr

j ¤i

.p0j�q0j /
2

(13)
Since .p0j � q0j /2 6 0,

minfq0ig D qi �

q
Eps2

� dist2.p0; q/ D

pi �

q
Eps2

� dist2.p0; q/ (14)

maxfq0ig Dpi C

q
Eps2

� dist2.p0; q/ (15)
In the third step, we store all the intervals in a

maximum heap, namely bound. After finding all the
intervals, we traverse the heap in the order of values.
If it is a right boundary, which means a new interval
starting, we set n D nC 1. If it is a left boundary, which
means a new interval ending, we set n D n � 1. The
small interval with the maximum n is the interval with
the maximum jNEps.p/j.

We illustrate this method with the example in Fig. 3,
where bound D fa1; a2; a3; b1; b2; b3g. Initially, we set
n D 0,

b3 is a right boundary, let n nC 1 D 1;
a3 is a left boundary, let n n � 1 D 0;
b2 is a right boundary, let n nC 1 D 1;
b1 is a right boundary, let n nC 1 D 2;
a2 is a left boundary, let n n � 1 D 1;
a1 is a left boundary, let n n � 1 D 0:

Hence the maximum jNEps.p/j is 2, and the
corresponding interval is Œa2; b1�. We predict pi D

.a2 C b1/=2.
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5 Experiment

5.1 Setup

(1) Datasets. Experiments were conducted on 15 various
test datasets, including 10 synthetic datasets and 5 real-
world datasets.

The details of the synthetic datasets are shown in
Table 1. There are three values in the feature column,
independent, dependent, and hollow. As the shapes
of clusters shown in Fig. 5, independent clusters are
the clusters in which data are not intersecting in any
dimension, dependent clusters are the clusters that
overlap with each other in some dimensions, and hollow
clusters are those with low-density area inside.

The details of the real-world datasets are shown in
Table 2, where MinPts is the minimum number of
points required to form a dense region in DBSCAN.
RGB-D is a dataset first used in Ref. [13]. Such RGB-D
data can be converted to 3D real-world coordinates of
each depth pixel. In our experiment, we convert two
depth images into real-world coordinates, and use those
coordinates for clustering. This kind of data are most
suitable for density-based clustering. Besides, we have
also conducted experiments on Absenteeism at work[14],
BuddyMove[15], Gesture Phase Segmentation[16], and
Anuran Calls.

(2) Algorithms. Besides CI-clustering and LI-
clustering, we have also implemented an algorithm,
named Mean, which uses the average values of points in
neighborhood to impute missing values.

We have also implemented the popular K-Nearest
Neighbor (KNN) imputation, but did not show the
experiment results of this algorithm, since this algorithm
always imputes incomplete points between clusters. As a
result, different clusters are connected by these imputed
points. An illustration of cluster shapes is shown in
Fig. 6, with 10% missing values induced into synthetic

Table 1 Synthetic dataset.
ID #Points #Dimensions #Clusters Feature
1 3000 2 3 Independent
2 3000 2 3 Dependent
3 3000 2 3 Hollow
4 1000 2 3 Independent
5 10 000 2 3 Independent
6 30 000 2 3 Independent
7 3000 4 3 Independent
8 3000 6 3 Independent
9 3000 8 3 Independent
10 3000 10 3 Independent

(a) Independent clusters

(b) Dependent clusters

(c) Hollow clusters

Fig. 5 Three features of synthetic datasets.

Table 2 Real-world dataset.
Name #Points #Dimensions " MinPts

RGB-D(1) 640�480 3 0.015 4
RGB-D(2) 640�480 3 0.015 4

Absenteeism
at work 740 21 1.000 4

BuddyMove 249 7 0.180 4
Gesture Phase
Segmentation 9900 50 0.150 4

Anuran Calls 7195 22 0.200 4
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Fig. 6 KNN imputation result (KDDD3).

Dataset 2. After imputation, three clusters have been
connected as a whole cluster.

(3) Implementation. All algorithms were
implemented in C++ library Libigl[17] which has
been used in the implementation of linear algebra related
part in CI-clustering. The experiments were run on a
Windows laptop with a 3.4 GHz processor and 16 GB
main memory.

(4) Quality measures. Since our algorithms aim
to implement DBSCAN on incomplete data, their
clustering results should be as close as possible to those
on complete data. Thus, we use original DBSCAN
clustering results on the completed data as the baseline,
and then use F-measure[18] to determine how close a
result is to the baseline.

5.2 Experimental results

Effectiveness. We use synthetic Datasets 1, 2, and
3 to verify the effectiveness of CI-clustering and LI-
clustering. Each dataset was induced 10% missing
values. Experimental results are shown in Table 3, the
numbers in which are F1-measure of the experimental
results. For independent dataset, results of three
algorithms have similar quality. This is because the
value ranges of clusters do not overlap in any dimension.
Thus, these clusters do not interact with each other. For
the dependent dataset, where three clusters overlap with
each other, the quality of the clustering result of Mean
is reduced significantly. For the hollow dataset, because

Table 3 Experiment result of synthetic Datasets 1, 2, and 3.
Feature Mean CI-clustering LI-clustering

Independent 0.989 790 0.988 110 0.991 780
Dependent 0.878 380 0.950 283 0.974 400

Hollow 0.825 039 0.739 776 0.893 936

of the blank area inside the cluster, the quality of the
clustering result of CI-clustering is reduced significantly,
while the quality of LI-clustering is reduced relative
slightly.

From above experiments, we have verified the
effectiveness of CI-clustering and LI-clustering, and
for datasets with low-density area inside clusters, LI-
clustering will reach to a better result. Then, we analyze
the algorithm from the perspective of quantity and
dimension through more experiments.

Scalability. In Figs. 7 and 8, experimental results
show that the data size does not have significant effect on
the quality of clustering result. The running time of CI-
clustering grows faster than LI-clustering, because we
need to calculate the inverse matrix while calculating the
probability density of the normal distribution. Besides,
the running time of CI-clustering is not linearly related
to missing rate. This is mainly caused by two reasons.
One is that with the growth of missing rate, there will be
many blank points with all attributes missing. The partial
distance between these points from all other points is
0. Thus, all points are inside their neighborhood. The
calculation will cost much time. The other reason is that
with too many incomplete points, there will be many
small clusters in the early stage, and the inverse matrix
need to be calculated for each cluster.

Impact of #dimensions. For dimensions, because
of the information redundancy, clustering results are
better on high-dimensional data. This conclusion is
obvious for CI-clustering. While for LI-clustering,
experimental results are fluctuating. This is because
LI-clustering imputes each missing value individually
without considering all dimensions at the same time.
Note that, for the running time of CI-clustering, the
gap between 0% loss and 10% loss is wider with the
growth of dimensions. This is because the quantity of
incomplete points is higher for high-dimension datasets
for a fixed missing rate. For example, with 10% missing
values induced, the quantity of incomplete points of
Dataset 2 will not exceed 600, while the quantity of the
Dataset 6 is always over 1900.

Real-world data. Finally, we test the effectiveness of
the algorithm through real-world data. Experimental
results in Fig. 9 show that both CI-clustering and
LI-clustering have good performance even, when the
missing rate is 30%, which is much better than Mean.
The number in the bracket in the legend of Fig. 10 shows
the number of the dataset, i.e., RDG-D(1) or RDG-D(2).
Figure 9 shows the experimental results on other real
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(a) (b)

(c) (d)

Fig. 7 Experimental results of CI-clustering with different missing rates (0%, 10%, 20%, and 30%).

(a) (b)

(c) (d)

Fig. 8 Experimental results of LI-clustering with different missing rates (0%, 10%, 20%, and 30%).
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Fig. 9 Experimental results of real-world datasets.

Fig. 10 Experimental results of RGB-D.

world datasets. When the missing rate is low, CI-
clustering and LI-clustering have much higher F1-
measure values, which means that their clustering
result are closer to the standard clustering result on the

complete data using original DBSCAN. As the missing
rate increases, different datasets are in different trends,
but the optimal result is always achieved by CI-clustering
or LI-clustering. Thus, we have verified the effectiveness
of CI-clustering and LI-clustering on real-world datasets.

6 Conclusion

In this paper, we discussed two effective density-based
clustering algorithms for incomplete data. We showed
that traditional strategies to handle missing values are
unsuitable for the density-based clustering algorithm.
Motivated by the problems occurred in traditional
imputation methods and based on Bayesian theory, we
introduced CI-clustering, which conducts imputation
and clustering concurrently with the help of intermediate
clustering results. For various excepted cluster shapes,
we propose LI-clustering. The experimental results show
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that our proposed algorithms are effective, and each of
them has its own characteristics. Our further work will
focus on the clustering for large incomplete datasets and
incomplete data stream.
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