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An Advanced Uncertainty Measure Using Fuzzy Soft Sets:
Application to Decision-Making Problems

Nitin Bhardwaj� and Pallvi Sharma

Abstract: In this paper, uncertainty has been measured in the form of fuzziness which arises due to imprecise

boundaries of fuzzy sets. Uncertainty caused due to human’s cognition can be decreased by the use of fuzzy soft

sets. There are different approaches to deal with the measurement of uncertainty. The method we proposed uses

fuzzified evidence theory to calculate total degree of fuzziness of the parameters. It consists of mainly four parts.

The first part is to measure uncertainties of parameters using fuzzy soft sets and then to modulate the uncertainties

calculated. Afterward, the appropriate basic probability assignments with respect to each parameter are produced. In

the last, we use Dempster’s rule of combination to fuse independent parameters into integrated one. To validate the

proposed method, we perform an experiment and compare our outputs with grey relational analysis method. Also,

a medical diagnosis application in reference to COVID-19 has been given to show the effectiveness of advanced

method by comparing with other method.

Key words: fuzzy soft sets; Dempster–Shafer theory; grey relational analysis; entropy; belief measures and medical

diagnosis

1 Introduction

The fuzzy logics have emerged as a very important and
useful topic in past recent years. It has aroused as an
important mathematical tool to deal with uncertainties
and vagueness of data. Zadeh[1] presented the concept of
fuzzy set theory in 1965 as a transformation of classical
set theory.

It can solve the problems of decision-making and
deal with the problem of vagueness, uncertainty, and
imprecision of data. Various theories like classical
set theory[2], fuzzy set theory[1], probability theory,
possibility theory[3], and Dempster–Shafer evidence
theory[4, 5] have been given to deal with certain types
of uncertainties. Each theory has its own merits and
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demerits. Soft set theory is one of the theories initiated
by Molodstov[6] in 1999 which can give exact solutions
to various engineering and computer science problems.
Fuzzy soft theory was given by Maji et al.[7] This
theory has wider applications which can be easily
found in Refs. [8–13]. Fuzzy soft sets can solve the
problems of decision-making in real life. It deals
with uncertainties and vagueness of data. Uncertainty
refers to epistemic situations involving imperfect or
unknown information. There are different forms of
uncertainty, namely, fuzziness which arises due to
imprecise boundaries, non-specificity (imprecision),
discord and strife, etc. Measuring uncertainty is an
open issue. Many belief entropies like Deng entropy[14],
W-entropy[15], Hohel uncertainty measure[16], Dubois
and Prade measure[17], Pan and Deng[18] uncertainty
measure, etc., are introduced to deal with this open
issue. They measure the uncertainty of parameters in
different forms. Also, there are different approaches
to solve decision making problems using fuzzy soft
sets. Hou[19] made use of grey relational analysis
to take care of the issues of problems in making
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decisions. Li et al.[20] proposed grey relational analysis
with the utilization of Dempster–Shafer (D–S) evidence
hypothesis to settle on choices using fuzzy soft sets. D–S
rule of combination can combine multiple evidences to
produce an integrated one. As a result of the viability in
displaying the vulnerability and imprecision without the
earlier data, this hypothesis is broadly utilized in a ton
of regions.

In this paper, we have used fuzzified evidence
theory[21] along with D–S theory to solve the problem of
decision making. Uncertainty in the form of fuzziness
is considered to solve the problems of decision making.
Also, a medical diagnosis problem in respect of COVID-
19 has been solved which helps a doctor to take decision
on patient’s condition easily. We have also compared
our proposed method with the method proposed by Li et
al.[20] to show the effectiveness of our method.

The paper is assembled in the following way.
Section 2 introduces the prerequisites for further work.
Section 3 explains the methodology used for the
proposed method. It has four sub parts. The first part
involves the measurement of uncertainty of parameters
in the form of total degree of fuzziness, the second part
is the brief description of steps involved to solve the
decision making problem, the third part performs an
experiment (Example 3) to solve the problem, and the
fourth part is a practical application of our proposed
work to handle decision making problem in real-life
situation (medical diagnosis). Section 4 is the summary
of whole paper which briefly explains the highlights of
the paper.

2 Preliminary

2.1 Fuzzy soft set

Definition 1: Fuzzy set[1]. Let X be a non-empty set and
A � X . A fuzzy set A is determined by its membership
function �A W X ! Œ0; 1� whose value determines “the
grade of membership” of point x in A for x belongs to
X .

Definition 2: Fuzzy soft sets[1, 7]. Let X be an initial
universe set with E as the set of parameters. The pair
(F , A) is a fuzzy soft set over X where A � E and F
is a mapping defined as F W A! IX , where IX is the
power set of X (Table 1).

It is evident that every soft set can be contemplated
as a fuzzy soft set. Also, when both X and A are finite,
fuzzy soft sets are either represented by matrices or in
tabular form.

Table 1 Representation of set (FFF;;;AAA).
Parameter/subset of X g1 g2 g3 g4

a1 0.5 0.2 0.2 0.1
a2 0.6 0.1 0.1 0.2
a3 0.4 0.3 0.2 0.1

Example 1 Let X D fg1; g2; g3; g4g be the
universal set and A D fa1; a2; a3g be the set of
parameters. Then, (F ;A/ is a fuzzy soft set over X
described as follows:

F.a1/ D g1=0:5; g2=0:2; g3=0:2; g4=0:1;
F.a2/ D g1=0:6; g2=0:1; g3=0:1; g4=0:2;
F.a3/ D g1=0:4; g2=0:3; g3=0:2; g4=0:1:

Definition 3: Fuzzy soft intersection[1, 7]. The fuzzy
soft intersection of two sets (F ;A/ and (G, B/ over a
common universe (X , E/ is the fuzzy soft set (H, C)
where C D A \ B and 8a 2 C, we conclude
�a.H;C/.x/ D minf�a.F;A/.x/; �

a
.G;B/.x/g;8x 2 X ;

where �a
.H;C/, �

a
.F;A/, and �a

.G;B/ are the membership
values for fuzzy soft sets .H; C/, .F ;A/, and .G;B/,
respectively.

2.2 Uncertainty measures

This section contains the definitions of different types of
entropies used to measure the uncertainty of information.

Definition 4[22]. An entropy measure is a sequence of
mappings En W Xn � Pn �Wn ! RC satisfying several
properties (symmetry, monotonicity, additivity, etc.).

Definition 5: Shannon entropy[23]. Shannon in 1948
introduced the concept of Shannon entropy to handle
basic probability problem.

Shannon entropy (H/ is derived as

H D �
XN

i
pi log2 pi ;

where pi is the probability of state i satisfying
XN

i
pi D

1 and N is the number of basic states in a system.
Definition 6: Deng entropy[14]. This novel belief

entropy was introduced by Deng in 2016. It also
measures the uncertainty conveyed by basic probability
assignment. Deng entropy is denoted byEd : It is defined
as

Ed D �
X

i
m.Ai / logm.Ai / =2jAi j � 1;

where m is the mass function and Ai is the hypothesis
of belief function. Deng entropy is degenerated into
Shannon entropy when the belief value is allocated to
one single element.

Definition 7: W-entropy[15]. This type of entropy
was given by Wang et al.[15] in 2019. It is the unified
form about belief entropy based on Deng entropy[14]
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which considers the scale of frame of discernment and
the relative scale of focal element with respect to Frame
Of Discernment (FOD).

W-entropy is calculated as

Ew.m/ D
X

m.A/ log2

�
m.A/

2jAj � 1
.1C �/f jX j

�
;

where � is a constant and � > 0, and f jX j is the
function determines the cardinality of X . f jX j DX

B�X ;B¤A

jA \ Bj

2jX j � 1
:

Definition 8: Fuzziness[21]. A measure of fuzziness
is a function from the set of all fuzzy subsets of X to
the set of all positive real numbers. The function f .A/
expressed the degree that the boundary of A is not sharp.

The measure of fuzziness is calculated as
f .A/ D

X
x2X

.1 � j2A.x/ � 1j/ (1)

The range of function f is Œ0; jX j�; f .A/ D 0 if A is
a crisp set; f .A/ D jX j when A.x/ D 0:58x 2 X .

Definition 9: Fuzziness in evidence theory[21]. Total
degree of fuzziness F.m/ of the body of evidence
hm;F i is calculated as follows:

F.m/ D
X

A2F
m.A/f .A/;

where f .A/ is given by Eq. (1).
Definition 10: Performance measure[24, 25]. The

performance measure of a method satisfies the optimal
criteria for resolving decision making problem. It is
denoted by YS .

Mathematically,

YSD
1Pnc

i

Pnc
j jF.ei /.Op/�F.ej /.Op/j

C

ncX
iD1

F.ei /.Op/;

here, nc is the number of choice parameters and
F.ei /.Op/ depicts the membership value of the ideal
object Op for the choice parameter ei :

If the performance measure of one method is greater
than other, then that method is much finer than other,
and vice versa.

2.3 Dempster–Shafer evidence theory

Dempster–Shafer theory is proposed by Dempster[4]

and Shafer[5]. This theory deals with the uncertain
information and is applied to uncertainty modelling[26,27],
decision making[28, 29], information fusion[30–32], etc.
This theory does not need prior information in modelling
uncertainty and also is able to fuse multiple evidences
into integrated one.

Definition 11: Frame of discernment[5]. A frame
of discernment is a finite non-empty set of mutually
exclusive and exhaustive hypotheses denoted by � D

fA1; A2; : : : ; Ang and Ai \ Aj D ∅ denoted by � and
2� represents the set of all subsets of �.

Definition 12: Basic Probability Assignment (BPA)[5].
It is also known as mass function. A mass function is a
mappingm from 2� to [0, 1] which satiates the following
situations:

m.∅/ D 0 and
X

A22�
m.A/ D 1:

If m.A/ > 0, A is called a focal element and its union is
known as the core of the mass function.

Definition 13: Belief function[5]. It can be defined
as a mapping Bel: 2� ! Œ0; 1� satisfying following
conditions:

Bel.∅/ D 0;Bel.�/ D 1;

and Bel.A/ D
X

B�A
m.B/;8A � �:

Bel.A/ exemplifies the imprecision and uncertainty in
decision making problems. When there is single element,
then, Bel.A/ D m.A/:

Definition 14: Dempster’s rule of combination[4].
This rule computes an integrated set of combined
evidences. Supposed m1 and m2 are two independent
BPAs in �, then rule of combination is defined as

m.A/D

(
1

1�K

X
B\CDA

m1.B/m2.C /; A¤∅I
0; AD∅

(2)

K D
X

B\CD∅
m1.B/m2.C / (3)

where B 2 2� and C 2 2�; and K 2 Œ0; 1� represents
the coefficient for confliction between two BPAs.

2.4 Grey relational analysis

Li et al.[20] utilized grey relational analysis with
Dempster–Shafer theory to solve the problem of decision
making. They calculated grey relational degree and then
calculated uncertainty degree of various parameters.
Further, BPA of each independent alternative can be
obtained on the basis of this degree and used Dempster’s
rule of combination to fuse different alternatives into
collective alternative. Finally, the best alternative based
on the ranking of these fused alternatives can be
obtained.

Definition 15: Grey mean relational degree[20]. The
grey means relational degree between dij and edi which
can be computed as

rij D
min16i6s �dij C 0:5max16i6s �dij

�dij C 0:5max16i6s �dij
;

i D 1; 2; : : : ; s; j D 1; 2; : : : ; n (4)
where dij denotes the membership value of xi with
ej , edi is the mean of all parameters with respect to
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each alternatives, and �dij is the difference information
between dij and edi .
2.5 Fuzzy preference relations

Definition 16: Fuzzy preference relation[33]. Fuzzy
preference orderings can be defined as fuzzy binary
relations related to reciprocity and maximum and
minimum transitivity. Mathematically, it is denoted by

P D .pjk/n�n;

where pjk 2 Œ0; 1� represents the preference value of
alternative ej over ek .

Also, pjk C pkj D 1; pjj D 0:5; 1 6 j 6 n, and
1 6 k 6 n.

Definition 17: Consistency matrix[34]. The
consistency matrix can be developed on the basis
of fuzzy preference relation as follows:

p D .pjl/n�n D

 
1

n

nX
kD1

.pjk C 0:5pkl/

!
n�n

(5)

3 Our Proposed Methodology

Uncertainty can be exhibited in extraordinary ways.
These forms signify distinct types of uncertainty. One
of the forms of uncertainty is fuzziness. Fuzziness
(vagueness) results from imprecise boundaries of fuzzy
sets. In this section, fuzzified evidence theory along with
D–S theory and Dempster’s rule of combination has been
used. First, we measure the uncertainties (fuzziness) of
parameters taking the scale of frame of discernment
and relative scale of focal element with respect to FOD
into consideration. Next, we use the fuzzy preference

relation analysis to produce the consistency matrix. At
that point, the vulnerabilities of parameters are adjusted
and a while later, a suitable fundamental BPA in terms
of each parameter is produced. In the last, we utilize the
Dempster’s rule of combination to blend the independent
parameters into integrated one. Inevitably, the best ideal
decision can be got dependent on the positioning of
choices. The flowchart of the proposed technique has
been appeared in Fig. 1.

3.1 Measurement of uncertainty of parameters
ej ( jDDD1, 2, : : :: : :: : :, n)

Total degree of fuzziness of the parameters with respect
to alternatives can be calculated as
Fd .A/ D

X
A2f

m.A/ log2m.A/f .A/.1C �/
f jX j

(6)
where f .A/ is the degree of fuzziness and is calculated
by using Eq. (1). The factor .1 C �/jX j considers the
scale of FOD and the relative scale of focal elements
with respect to FOD. Also, � is the constant greater than
0 and an appropriate number can be given to it based on
practical example and f jX j represents the cardinality
of X defined as

f jX j D
X

B�X ;B¤A

jA \ Bj

2jX j � 1
:

Example 2 Let us suppose that the frame
of discernment is X D fa1; a2; : : : ; a5g. A body of
evidence hm;F i is listed as
m1 Wm1Dfa1; a2; a3gD0:3; m1Dfa4; a5gD0:7;

m2 Wm2Dfa1; a2; a3gD0:3;

m2Dfa1; a2; a4; a5gD0:7:

’s .

.

.

.

.

D
^

ej .

D = ( Dij )n×n

.

.

p.

.

P.

Fig. 1 Flowchart of our proposed method.
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The total degree of fuzziness of m1 and m2 is
calculated as

Fd .m1/ DX
A2f

m.m1/log2m.m1/f .m1/.1C�/

P
B�X ;B¤A

jA\Bj

2jX j�1
D

0:3�log2.0:3/�1:2�2
0
C0:7�log2.0:7/�1:2�2

0
D

� 0:625 31 � 0:432 24 D �1:057 55;

and

Fd .m2/ DX
A2f

m.m2/ log2m.m2/f .m2/.1C �/

P
B�X ;B¤A

jA\Bj

2jX j�1
D

0:3�log2.0:3/�1:2�2
2
31C0:7�log2.0:7/�1:2�2

2
31 D

� 0:65391 � 0:45201 D �1:10592:

3.2 Brief description of steps for the proposed
method

Let � D fx1; x2; : : : ; xi ; : : : ; xtg be the FOD and
B D fe1; e2; : : : ; ej ; : : : ; eng be the set of parameters.
FW B! 2� is defined as F.ej / (xi / D dij .

(1) Evolve the matrix D D .dij /n�n by the use of
fuzzy soft set (F , B/ over � and dij is the membership
value of xi with respect to ej .

D̂ D

266666664

d11 : : : d1j : : : d1n
:::

:::
:::

:::
:::

di1 : : : dij : : : din
:::

:::
:::

:::
:::

dt1 : : : dtj : : : dtn

377777775
(7)

(2) Construct the information structure image
sequence with respect to each parameter ej using

formula edij D
dij
tP
iD1

dij

.

D̂ D

266666664

ed11 : : : ed1j : : : ed1n
:::

:::
:::

:::
:::

edi1 : : : edij : : : edin
:::

:::
:::

:::
:::

edt1 : : : edtj : : : edtn

377777775
(8)

(3) Total degree of fuzziness of the parameters may
be zero in some cases. So the proposed formula is used
to measure the uncertainty of the parameter, denoted by

V.ej / W

V.ej /D expFd .ej /D

exp
tX
iD1

dij .log2dij /f .dij /.1CE/f jX j (9)

(4) Normalize the uncertainty of the parameter ej as
follows:

V.ej / D
V.ej /
nP
hD1

V.eh/

; 1 6 j 6 n (10)

(5) Construct the fuzzy preference relation matrix
based on the variance of uncertainties of parameters.
The diagonal elements of the matrix are allocated to 0.5
according to Definition 16. When there are only two
parameters, the off-diagonal elements are allocated to
0.5 as none other parameters are there to judge which one
parameter is preferred to other. When there are more than
two parameters, n > 2, the variance for the parameter
ej .1 6 j 6 n/ is computed as

Var.ej / D

Var.f.e1/ NV .e2/; : : : ; NV .ej�1/; NV .ejC1/; : : : ; NV .en/g/
(11)

And the off-diagonal elements pjk and pkj are
calculated as follows:

pjk D
Var.ej /

Var.ej /C Var.ek/
(12)

pkj D
Var.ek/

Var.ej /C Var.ek/
(13)

where 1 6 j 6 n and 1 6 k 6 n.
(6) Based on above fuzzy preference matrix obtained,

we built the consistency matrix p utilizing Eq. (5).
(7) Based on the consistency matrix p, the credibility

value of the parameter ej is calculated as

Cred.ej / D
2

n2

nX
kD1

pjk; 1 6 j 6 n; 1 6 k 6 n

(14)

where
nX

jD1

Cred.ej / D 1; these values will be taken as

the loads to show the relative reliability preference of
parameters.

(8) On the basis of credibility values of parameters,
normalized uncertainty can be modulated as

MV.ej / D Cred.ej / � V.ej /; 1 6 j 6 n (15)

(9) Now, we normalized the modulated uncertainty of
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parameters as the final degree of fuzziness as

MV.ej / D
MV.ej /
nP
hD1

MV.ek/
; 1 6 j 6 n (16)

(10) The basic probability assignment of the
alternative xi and � with respect to ej is calculated as

mej .∅/ D 0 (17)

mej .xi / D
edij � .1 �MV.ej // (18)

mej .�/ D 1 �
Xt

iD1
mej .xi / (19)

where 1 6 j 6 t; 1 6 k 6 n, and
P
A�� mek .A/ D 1,

for j D 1; 2; : : : ; n: Hence, mej is the basic probability
assignment on �.

(11) There are independent parameters which we have
to fuse into integrated one; we make use of Dempster’s
rule of combination based on Definition 14. Then, the
final BPA of the alternative xi obtained is viewed as
alternative’s belief measure. In the end, the candidate
alternatives are positioned dependent upon the final
BPAs of the alternatives xi and the ideal one can be
acquired.

3.2.1 Experiment
Example 3 Suppose there is a decision-making problem
for which .F;D/ represents fuzzy soft set and � D
fx1; x2; x3g is the frame of discernment along withD D
fe1; e2; e3; e4; e5g as the set of parameters. Following
steps are followed to solve this experiment.

(1) Forming the matrix D D .dij /n�n brings about by
fuzzy soft set over �:

D D

264 0:85 0:73 0:26

0:56 0:82 0:76

0:84 0:55 0:82

0:32

0:64

0:53

0:75

0:43

0:47

375 :
(2) Formulate ND, the information structure image

matrix is

NDD

2640:3778 0:3476 0:1413

0:2489 0:3905 0:4130

0:3733 0:2619 0:4457

0:2148

0:4295

0:3557

0:4545

0:2606

0:2848

375:
(3) The uncertainty measurement of the parameters

ej .j D 1; 2; 3; 4; 5/ is calculated using Eq. (9) as

V.e1/ D 0:2675; V .e2/ D 0:153; V .e3/ D 0:2428;

V .e4/ D 0:0378; V .e5/ D 0:0452:

(4) Normalize the above uncertainty of the parameters
using Eq. (10): NV .e1/ D 0:3582; NV .e2/ D 0:2057;
NV .e3/ D 0:3250; NV .e4/ D 0:0507; NV .e5/ D 0:0605:

(5) Establish P D .pjk/n�n, the fuzzy preference
relation matrix is

PD

2666664
0:5

0:6169

0:5514

0:5161

0:5317

0:3831

0:5

0:4329

0:3984

0:4135

0:4486

0:5671

0:5

0:4645

0:4801

0:4839

0:6016

0:5355

0:5

0:5157

0:4683

0:5865

0:5199

0:4843

0:5

3777775 :
(6) Construct the consistency matrix p D .pjl/n�n as

pD

2666664
0:5

0:6176

0:5512

0:5159

0:5314

0:3824

0:5

0:4335

0:3983

0:4138

0:4488

0:5665

0:5

0:4647

0:4803

0:4841

0:6017

0:5353

0:5

0:5155

0:4686

0:5862

0:5197

0:4845

0:5

3777775 :
(7) Produce the credibility value of parameter ej .j D

1; 2; 3; 4; 5/ by using Eq. (14) as
Cred.e1/D0:2173; Cred.e2/D0:1702;
Cred.e3/D0:1968; Cred.e4/D0:2109;
Cred.e5/D0:2047:

(8) On the basis of consistency matrix, we modulated
the normalised uncertainty of parameter ej using
Eq. (15) (j D 1; 2; 3; 4; 5/ as

MV.e1/ D 0:077 824; MV.e2/ D 0:035 020;
MV.e3/ D 0:063 967; MV.e4/ D 0:010 689;
MV.e5/ D 0:012 370:

(9) Normalize the modulated uncertainty calculated
above as

MV.e1/ D 0:389 300; MV.e2/ D 0:175 209;
MV.e3/ D 0:320 033; MV.e4/ D 0:053 470;
MV.e5/ D 0:061 919:

(10) Now, compute the basic probability assignments
of alternatives with respect to ej using Eqs. (17) – (19)
which can be seen from Table 2.

(11) Merge the BPAs of alternatives by the use of
Formula (14) to get the fusing results which are going to
be known as the belief measures of alternatives exhibited
by Table 3 and Fig. 2.

(12) On the basis of belief values of alternatives, their
final ranking can be obtained. It has been observed that
x2>x3>x1. Hence, the maximum value showed that

Table 2 BPA of xi with respect to ej:

BPA e1 e2 e3 e4 e5

m.x1/ 0.2307 0.2867 0.0961 0.2033 0.4264
m.x2/ 0.1520 0.3221 0.2808 0.4065 0.2444
m.x3/ 0.2280 0.2160 0.3031 0.3367 0.2672
m.�/ 0.3893 0.1752 0.3200 0.0535 0.0620

Table 3 Alternatives’ belief measures in two unlike ways.
Method Bel (x1) Bel (x2) Bel (x3)

Grey relational analysis method 0.0745 0.1013 0.0990
Proposed method 0.0212 0.0325 0.0275
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Fig. 2 Interpretation of belief values for experiment.

ideal choice is x2 which can be easily seen through
Table 4. Hence, the maximum value showed that ideal
choice is x2 and it can be easily seen through Fig. 2 as
well.

Also, we compare our proposed method with the grey
relational approach by comparing the belief values of
alternatives along with the performance measure. It has
been shown in Table 4. The uncertainty’s belief measure
fell to 0.000 104 attained from suggested method. It
has also been observed that our proposed method
can reduce the uncertainty and decision-making level
as compared to grey relational method. We likewise
compute the measure of performance which indicates
that our technique is more exact and efficient than the
other method.

3.2.2 Application
As we all know, the concept of uncertainty plays an
important role in taking decisions in real-life problems. It
is very difficult for human beings to take decisions with
accuracy and efficiency in real-life problems. Fuzzy
soft sets handle this problem efficiently with more
accuracy. Hence, considering the real-life decision
making problem, it can easily be shown that the given
method is more efficient and accurate. We also compare
our experimental result with grey relational analysis
method. Fuzzy soft sets are extensively used in medical
diagnosis field. Nowadays, the whole world is suffering
from severe disease named corona virus. It becomes very

Table 4 Comparison of different methods in Example 3.

Method Ranking Optimal
value m.�/


 (Performance
measure)

Grey
relational
approach

x2>x3>x1 x2 0.0223 1.631

Proposed
method x2>x3>x1 x2 0.000 103 5 1.832

difficult for doctors to detect that which type of disease a
patient is suffering from. By using this proposed method,
the ideal choice can be made out.

Example 4 Suppose that the universal set �
consists of three types of diseases, namely, fdengue,
corona virus, cholerag represented as fx1; x2; x3g
and G D fhigh fever, cough, shortness of breath,
nausea, vomiting, watery diarrhoea, rapid heart rate,
physical examination, laboratory, restg D fg1; g2;
g3; g4; g5; g6; g7; h8; h9; h10g represents the set of
parameters.

Let I1 and I2 be the two subsets of G given by
I1 D fg1; g2; g3; g4; g5; g6; g7g and I2 D fh8;h9; h10g
where .F; I1/ is the fuzzy soft set representing
“symptoms of diseases” and .F; I2/ defines “decision-
making tools”. Tables 5 and 6 represent these two fuzzy
soft sets.

Let us take an example of a patient who puts up with a
disease having two symptoms—fhigh fevers, shortening
of breatheg. A doctor needs to make the most suitable
diagnosis regarding symptoms, namely, fphysical
examination, lab investigation, historyg. To find out
the exact solution, .F; I1/ \ .F; I2/ is constructed in
Table 7. There are three diseases fx1; x2; x3g, and k1 D
.g1; h1/; k2 D .g1; h2/; k3 D .g1; h3/; k4 D .g3; h1/;

k5 D .g3; h2/; and k6 D .g3; h3/ represent pair of one
symptom and one decision-making tool. Here,� is FOD
defined by Eq. (11) and E D fk1; k2; k3; k4; k5; k6g is
the set of parameters.

Following steps are to be followed to solve this
numerical problem:

(1) Forming the matrix D D .dij /n�n bring about by
.F; I / over � as below:

Table 5 Fuzzy soft set (F; I1).
Alternative g1 g2 g3 g4 g5 g6 g7

x1 0.50 0.70 0.00 0.30 0.20 0.80 0.90
x2 0.40 0.60 0.90 0.00 0.90 0.70 0.00
x3 0.60 0.00 0.10 0.40 0.00 0.70 0.00

Table 6 Fuzzy soft set (F, I2 ).
Alternative h8 h9 h10

x1 0.40 0.70 0.50
x2 0.20 0.10 0.90
x3 0.10 0.60 0.30

Table 7 Fuzzy soft set (F, I).
Alternative k1 k2 k3 k4 k5 k6

x1 0.40 0.50 0.50 0.00 0.00 0.00
x2 0.20 0.10 0.40 0.20 0.10 0.90
x3 0.10 0.60 0.30 0.10 0.10 0.10
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D D

264 0:40

0:20

0:10

0:50

0:10

0:60

0:50

0:40

0:30

0:00

0:20

0:10

0:00

0:10

0:10

0:00

0:90

0:10

375 :
(2) Formulate ND, the information structure image

matrix is

NDD

2640:57140:2857

0:1429

0:4167

0:0833

0:5

0:4167

0:3333

0:25

0:00

0:6667

0:3333

0:00

0:5

0:5

0:00

0:90

0:10

375:
(3) The uncertainty measurement of the parameters

kj .j D 1; 2; 3; 4; 5; 6/ using Eq. (9) is as below:
V.k1/ D 0:156 38; V .k2/ D 0:078 18;

V .k3/ D 0:024 24; V .k4/ D 0:620 05;

V .k5/ D 0:766 63; V .k6/ D 0:828 95:

(4) Normalize the above uncertainty of the parameters
by using Eq. (10) as

NV .k1/ D 0:063 198; NV .k2/ D 0:031 595,
NV .k3/ D 0:009 796, NV .k4/ D 0:2505,
NV .k5/ D 0:309 821; NV .k6/ D 0:335 006:

(5) Establish P D .pjk/n�n, the fuzzy preference
relation matrix is
P D266666664

0:5

0:4754

0:4527

0:5111

0:4676

0:4385

0:5246

0:5

0:4772

0:5357

0:4922

0:4628

0:5473

0:5228

0:5

0:5583

0:5150

0:4856

0:4889

0:4643

0:4417

0:5

0:4566

0:4276

0:5324

0:5078

0:4850

0:5434

0:5

0:4706

0:5615

0:5372

0:5144

0:5724

0:5294

0:5

377777775
:

(6) Construct the consistency matrix p = .pjl/n�n as
p =266666664

0:5

0:4755

0:4528

0:5111

0:4677

0:4384

0:5245

0:5

0:4773

0:5356

0:4922

0:4629

0:5472

0:5228

0:5

0:5583

0:5149

0:4857

0:4889

0:4644

0:4417

0:5

0:4566

0:4274

0:5323

0:5078

0:4851

0:5434

0:5

0:4707

0:5616

0:5371

0:5143

0:5726

0:5293

0:5

377777775
:

(7) Produce the credibility value of parameter kj .j D
1; 2; 3; 4; 5; 6/ using Eq. (14) as under

Cred(k1/ D 0:1581; Cred.k2/ D 0:1663;
Cred(k3/ D 0:1738; Cred.k4/ D 0:1544;
Cred(k5/ D 0:1688; Cred.k6/ D 0:1786:

(8) On the basis of consistency matrix, we modulated
the normalized uncertainty of parameter kj .j D 1; 2; 3;
4; 5; 6/ by using Eq. (15) as

MV(k1/ D 0:0099, MV(k2/ D 0:005 253;
MV(k3/ D 0:017 03, MV(k4/ D 0:038 68;

MV(k5/ D 0:052 313; MV(k6/ D 0:059 834:
(9) Normalize the modulated uncertainty calculated

above as follows:
MV.k1/ D 0:059 544; MV.k2/ D 0:031 306:
MV.k3/ D 0:010 149; MV.k4/ D 0:230 59;
MV.k5/ D 0:311 793; MV.k6/ D 0:356 619.

(10) Now, compute the basic probability assignments
of alternatives with respect to the parameters kj using
Eqs. (17) – (19) which can be seen from Table 8.

(11) By the use of Definition 14, we combine BPAs
of alternatives to get the fusing results which are known
as the belief measures of alternatives. This is conveyed
by Table 9 and Fig. 3.

On the basis of belief values of alternatives, their final
ranking can be obtained. It has been observed that x2 >
x3 > x1. Hence, the maximum value showed that ideal
choice is x2 which can be easily seen through Fig. 3.

Additionally, when we solved this example with grey
relational analysis given by Li et al.[20], it has been
observed that our method can decrease the uncertainty
to greater level which can be seen by comparing the
uncertainty’s belief measures through Table 10. We also
calculated the performance measure 
 for both methods.
It has been found that our method is more accurate and
efficient as compared to grey relational approach.

Table 8 BPA of xi with respect to kj.
BPA k1 k2 k3 k4 k5 k6

m.x1/ 0.5374 0.4037 0.4125 0.00 0.00 0.00
m.x2/ 0.2687 0.0807 03299 0.5130 0.3441 0.5790
m.x3/ 0.1344 0.4843 0.2475 0.2564 0.3441 0.0644
m.�/ 0.0595 0.0313 0.0101 0.2306 0.3118 0.3566

Table 9 Alternatives’ belief measures in two unlike ways.
Method Bel (x1) Bel (x2) Bel (x3)

Grey relational
analysis method 0.0295 0.1260 0.0578

Proposed method 0.004 058 0.008 227 0.004 996

B
e

lie
f 

va
lu

e

Bel (x¹) Bel ( x²) Bel (x³)
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

Fig. 3 Belief values of alternatives for the proposed method.
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Table 10 Comparison of different methods in Example 4.

Method Ranking Optimal
value m.�/ 
 (Performance

measure)
Grey

relational
approach

x2>x3>x1 x2 0.01468 1.5919

Proposed
method x2>x3>x1 x2 6.9578�10�7 2.2698

4 Conclusion

In this paper, uncertainty of the parameters is measured
in the form of total degree of fuzziness. By using this
method, a doctor can easily detect the disease according
to their respective symptoms and diagnosis. In the
given application, there are three diseases and six pairs
of symptoms and decision-making tools. It has been
shown that the belief measure of uncertainty fell to
6:9578 � 10�7 from 0.014 683 in our proposed method.
Thus, it can easily be deduced that the proposed method
was progressively productive and reduced the level
of uncertainty of the parameters and it is much more
accurate to evaluate the symptoms of corona within a
patient. The limitation of this work is that it does not
consider other types of uncertainties like non-specificity,
discord, strife, etc.

References

[1] L. A. Zadeh, Fuzzy sets, Inf. Control, vol. 8, no. 3, pp.
338–353, 1965.

[2] H. Friedman, The consistency of classical set theory relative
to a set theory with intuitionistic logic, J. Symb. Log., vol.
38, no. 2, pp. 315–319, 1973.

[3] D. Dubois, Possibility theory and statistical reasoning,
Comput. Stat. Data Anal., vol. 51, no. 1, pp. 47–69, 2006.

[4] A. P. Dempster, Upper and lower probabilities induced by a
multivalued mapping, Ann. Math. Stat., vol. 38, no. 2, pp.
325–339, 1967.

[5] G. Shafer, A Mathematical Theory of Evidence. Princeton,
NJ, USA: Princeton University Press, 1976.

[6] D. Molodtsov, Soft set theory: First results, Comp. Math.
Appl., vol. 37, nos. 4&5, pp. 19–31, 1999.

[7] P. K. Maji, R. Biswas, and A. R. Roy, Fuzzy soft sets,
J. Fuzzy Math., vol. 9, no. 3, pp. 589–602, 2001.

[8] P. Singh and G. Dhiman, A fuzzy-LP approach in
time series forecasting, presented at Int. Conf. Pattern
Recognition and Machine Intelligence, Kolkata, India,
2017, pp. 243–253.

[9] P. Singh, K. Rabadiya, and G. Dhiman, A four-way decision-
making system for the Indian summer monsoon rainfall,
Mod. Phys. Lett. B, vol. 32, no. 25, p. 1850304, 2018.

[10] G. Dhiman and V. Kumar, Spotted hyena optimizer: A novel
bio-inspired based metaheuristic technique for engineering
applications, Adv. Eng. Softw., vol. 114, pp. 48–70, 2017.

[11] P. Singh and G. Dhiman, A hybrid fuzzy time series
forecasting model based on granular computing and bio-
inspired optimization approaches, J. Comput. Sci., vol. 27,
pp. 370–385, 2018.

[12] P. Singh and G. Dhiman, Uncertainty representation using
fuzzy-entropy approach: Special application in remotely
sensed high-resolution satellite images (RSHRSIs), Appl.
Soft Comput., vol. 72, pp. 121–139, 2018.

[13] G. Dhiman and A. Kaur, A hybrid algorithm based on
particle swarm and spotted hyena optimizer for global
optimization, presented at Soft Computing for Problem
Solving, Singapore, 2019, pp. 599–615.

[14] D. Yong, Deng entropy, Chao Solitons Fractals, vol. 91, pp.
549–553, 2016.

[15] D. Wang, J. L. Gao, and D. J. Wei, A new belief entropy
based on Deng entropy, Entropy, vol. 21, no. 10, p. 987,
2019.

[16] U. Hohle, Entropy with respect to plausibility measures, in
Proc. 12th IEEE Int. Symp. Multiple Valued Logic, Paris,
France, 1982.

[17] D. Dubois and H. Prade, Properties of measures of
information in evidence and possibility theories, Fuzzy Sets
Syst., vol. 24, no. 2, pp. 161–182, 1987.

[18] L. P. Pan and Y. Deng, A new belief entropy to measure
uncertainty of basic probability assignments based on belief
function and plausibility function, Entropy, vol. 20, no. 11,
p. 842, 2018.

[19] J. C. Hou, Grey relational analysis method for multiple
attribute decision making in intuitionistic fuzzy setting, J.
Conv. Inf. Technol., vol. 5, no. 10, pp. 194–199, 2010.

[20] Z. W. Li, G. Q. Wen, and N. X. Xie, An approach to
fuzzy soft sets in decision making based on grey relational
analysis and Dempster–Shafer theory of evidence: An
application in medical diagnosis, Artif. Intell. Med., vol.
64, no. 3, pp. 161–171, 2015.

[21] R. Belohlavek, Systems, uncertainty, and information: A
legacy of George J. Klir, Int. J. Gen. Syst., vol. 46, no. 8,
pp. 792–823, 2017.

[22] J. Kacprzyk, D. Filev, and G. Beliakov, Granular, Soft and
Fuzzy Approaches for Intelligent Systems. Springer, 2017.

[23] C. E. Shannon, A mathematical theory of communication,
Bell Syst. Tech. J., vol. 27, no. 3, pp. 379–423, 1948.

[24] J. W. Wang, Y. Hu, F. Y. Xiao, X. Y. Deng, and Y. Deng,
A novel method to use fuzzy soft sets in decision making
based on ambiguity measure and Dempster–Shafer theory
of evidence: An application in medical diagnosis, Artif.
Intell. Med., vol. 69, pp. 1–11, 2016.

[25] F. Y. Xiao, A hybrid fuzzy soft sets decision making method
in medical diagnosis, IEEE Access, vol. 6, pp. 25 300–
25 312, 2018.

[26] X. D. Wang and Y. F. Song, Uncertainty measure in
evidence theory with its applications, Appl. Intell., vol. 48,
no. 7, pp. 1672–1688, 2018.

[27] P. Dutta, Modeling of variability and uncertainty in human
health risk assessment, MethodsX, vol. 4, pp. 76–85, 2017.

[28] W. Jiang, B. Y. Wei, C. H. Xie, and D. Y. Zhou, An
evidential sensor fusion method in fault diagnosis, Adv.
Mech. Eng., vol. 8, no. 3, pp. 1–7, 2016.



Nitin Bhardwaj et al.: An Advanced Uncertainty Measure using Fuzzy Soft Sets: Application : : : 103

[29] H. H. Xu and Y. Deng, Dependent evidence combination
based on decision-making trial and evaluation laboratory
method, Int. J. Intell. Syst., vol. 34, no. 7, pp. 1555–1571,
2019.

[30] F. Cuzzolin, A geometric approach to the theory of evidence,
IEEE Trans. Syst. Man Cybernet. Part C Appl. Rev., vol. 38,
no. 4, pp. 522–534, 2008.

[31] H. Seiti and A. Hafezalkotob, Developing pessimistic–
optimistic risk-based methods for multi-sensor fusion:
An interval-valued evidence theory approach, Appl. Soft
Comput., vol. 72, pp. 609–623, 2018.

[32] Y. T. Liu, N. R. Pal, A. R. Marathe, and C. T.
Lin, Weighted fuzzy Dempster–Shafer framework for
multimodal information integration, IEEE Trans. Fuzzy
Syst., vol. 26, no. 1, pp. 338–352, 2018.

[33] T. Tanino, Fuzzy preference orderings in group decision
making, Fuzzy Sets Syst., vol. 12, no. 2, pp. 117–131, 1984.

[34] L. W. Lee, Group decision making with incomplete fuzzy
preference relations based on the additive consistency and
the order consistency, Expert Syst. Appl., vol. 39, no. 14,
pp. 11 666–11 676, 2012.

Pallvi Sharma received the MS degree in
mathematics from University of Jammu,
India in 2017. She is currently pursuing
the PhD degree in mathematics, particularly
in topology (fuzzy topology) from Lovely
Professional University, Punjab, India. Her
area of interest lies in topology and fuzzy
topology.

Nitin Bhardwaj is currently working as
an associate professor and assistant dean
in Lovely Professional University, Punjab,
India. He received the PhD degree in
mathematics from NIMS University, Jaipur,
India in 2016. He has specialization in the
field of fuzzy topology.


