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CircRNA-Disease Associations Prediction Based on Metapath2vec++

and Matrix Factorization

Yuchen Zhang, Xiujuan Lei*, Zenggiang Fang, and Yi Pan*

Abstract: Circular RNA (circRNA) is a novel non-coding endogenous RNAs. Evidence has shown that circRNAs
are related to many biological processes and play essential roles in different biological functions. Although
increasing numbers of circRNAs are discovered using high-throughput sequencing technologies, these techniques
are still time-consuming and costly. In this study, we propose a computational method to predict circRNA-disesae
associations which is based on metapath2vec++ and matrix factorization with integrated multiple data (called
PCD_MVMF). To construct more reliable networks, various aspects are considered. Firstly, circRNA annotation,
sequence, and functional similarity networks are established, and disease-related genes and semantics are adopted
to construct disease functional and semantic similarity networks. Secondly, metapath2vec++ is applied on an
integrated heterogeneous network to learn the embedded features and initial prediction score. Finally, we use matrix
factorization, take similarity as a constraint, and optimize it to obtain the final prediction results. Leave-one-out
cross-validation, five-fold cross-validation, and f-measure are adopted to evaluate the performance of PCD_MVMF.
These evaluation metrics verify that PCD_MVMF has better prediction performance than other methods. To further

illustrate the performance of PCD_MVMEF, case studies of common diseases are conducted. Therefore, PCD_MVMF

can be regarded as a reliable and useful circRNA-disease association prediction tool.

Key words: circular RNAs (circRNAs); circRNA-disease associations; matepath2vec++; matrix factorization

1 Introduction

Recently, circular RNA (circRNA), which is a
novel biological molecule circRNA!'!, has attracted
considerable attention. CircRNA plays essential roles
in different biological functions and controls the
expressions of genes!?!, In contrast to linear RNAs that
have the exposed 3’ caps and 5’ tails, the structure of
circRNA is a closed loop with neither 5’ to 3’ polarity nor
polyadenylated tail®!. The first circRNA was discovered
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in the plant viroids!*!. Because of its stable loop structure
and low expression level®°l, circRNAs are always
identified as molecular fragments or by-products of
transcription. However, with the development of high-
throughput sequencing techniques, increasing numbers
of circRNAs are discovered gradually. Simultaneously,
circRNA-related biological functions illustrate that
circRNAs are endogenous, abundant, conserved, and
stable in mammalian cells™”8. The accumulated
evidence shows that circRNAs can be divided into four
types, namely, exonic circRNAs, which are mainly
derived from back-spliced exons™!; intronic circRNAs,
which are predominantly generated by Groups I and
Il introns, i.e., intron lariats and excised tRNA
introns!'?!; exon-intron circRNAs!®!, which are exons
circularized with introns retained between exons; and
intergenic circRNAs!", which consist of two intronic
circRNA fragments. Evidence shows that circRNAs
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play essential roles or functions in many biological
procedures. circRNAs can be regarded as competing
endogenous RNAs or miRNAs’sponges, which has been
proven by some previous studies of circ-SRY''?!, circ-
HIPK3M3, and mm9_circ_01255914, Meanwhile, some
studies show that circRNAs can interact with RNA-
Binding Proteins (RBPs)[31. circRNAs can not only
regulate gene transcription processes!'!, but can also be
translated into proteinst7 181,

Moreover, circRNAs can affect diverse biological
processes, and can be associated with different complex
diseases!"?!. circRNA has some unique characteristics,
such as conservation, abundance, and tissue specificity,
which make them potential disease markers, particularly
for some tumors?”l. According to the different
expression levels of circRNAs in different tissues, we
can identify the differential expression between normal
people and the patients. Therefore, these differences can
help in the prognoses or diagnosis of diseases. Through
the use of quantitative Polymerase Chain Reaction
(qPCR) techniques, circRNA expression in lung cancer
tissues can be compared with that in neighboring normal
tissues. CircRNA ciRS-7!! can be down-regulated in
lung cancer tissues or cells, whereas both circRNA
circRNA_100876"*?! and hsa_circ_0013958[?! can be up-
regulated in lung cancer tissues, cells or plasma. Through
the microarray chip technique, some circRNAs
expression considerably differs between gastric cancer
tissues and neighboring normal tissues, which indicates
that circRNAs can be regarded as a biomarker for gastric
cancer diagnosis and progression!**!. For example, both
circRNA circPVT1?% and hsa_circ_0000096/%°1 can
affect gastric tissues or cells through the down-regulation
mechanism. Moreover, circRNAs can function as
miRNA sponges or gene regulators. For example,
circRNA hsa_circ_001569!*7 is a sponge of miRNA miR-
145, which can promote the expression of its target genes
in colorectal cancer cells.

In addition, some circRNA-related databases
are established. circBase!®®! is one of the earliest
circRNA -related databases, which provides the location
on chromosomes, base sequences, and target genes
of circRNA. CircRNADb! is also a widely used
circRNA database, which has collected a larger
number of circRNA annotations data extracted from
genomic information, exon splicing, and genome
sequences. To analyze circRNA expression in
different tissues, exoRBasel*"! is set up to provide

the circRNA, IncRNA, and mRNA information of
human blood exosomes. The CircNet*!! database
employs the circRNA expression in RNA-seq samples
to identify the circRNA regulation pathways and
tissue-specific expression profiles systematically.
Moreover, some databases provide information on
the associations between circRNAs and diseases.
Circ2Traits*?! utilizes circRNA-miRNA, miRNA-
disease, and disease-Single Nucleotide Polymorphisms
(SNPs) associations to produce circRNA-disease
associations. Recently, researchers have focused on the
associations between circRNA individuals and single
diseases. To make the disease-circRNA research more
efficient, some databases, such as circR2Disease*!
(http://bioinfo.snnu.edu.cn/CircR2Disease/), circRNA
diseasel**!, and Circ2Diseasel>!, collect the information
of scattered circRNA-disease associations manually by
extracting from thousands of literature.

Although high-throughput sequencing techniques
have already been applied to identify circRNA-
disease associations, these techniques have some
limitations. These techniques can extract circRNA-
disease associations with high accuracy, but are still
time-consuming and costly. Thus, many scholars have
investigated the use of computational methods to
identify the circRNA-disease association. Xiao et al.l*!
proposed a manifold regularization learning framework
for predicting circRNA-disease associations. Yan et
al.’7l developed a method called DWNN-RLS to
predict circRNA-disease associations based on the
regularized least squares of the Kronecker product
kernel. The matrix factorization model was also used
in this areal®®. A Graph Convolutional Network
(GCN), which combines multiple features of nodes
and networks, has also been developed!®»*’l, Iei et
al.*!l ysed the gradient boosting decision tree to
predict circRNA-disease associations. Lei et al.!*?l also
adopted the collaboration filtering recommendation
system to explore potential relationships. Fan et
al.I*}l proposed a novel method called MSFCNN for
predicting circRNA-disease association. In this study,
we propose a novel computational method to predict
circRNA-disease which is based on metapath2vec++ and
matrix factorization association with multiple biological
data sources (called PCD_MVMEF). First, the initial
circRNA-disease association data are downloaded from
circR2Diaeae!®! database. A total of 212 circRNA-
disease associations based on 42 disease individuals and
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200 circRNA individuals is screened out from the initial
dataset. On the basis of 42 disease individuals, diseases
functional and semantic similarity scores are computed
to construct disease similarity networks. The circRNA
annotation, functional, and sequence similarity scores
are computed to build circRNA similarity networks
based on 200 circRNA entries. Then, different disease
similarity networks and circRNA similarity networks are
integrated into the final circRNA and disease similarity
networks. Afterward, the metapath2vec++ model* is
adopted to learn the embedded features. Metapath2vec++
is a method of representation learning that learns the
network topology and determines embedded features
of each node. Finally, we use these embedded features
and matrix factorization to predict the circRNA-disease
associations. To evaluate the performance of our
proposed computational method, several metrics, such
as Leave-One-Out Cross-Validation (LOOCYV), 5-fold
Cross-Validation (CV), and f-measure, are applied. To
obtain more reliable evaluation results, case studies
of some common diseases are conducted. The overall
tramework of the method is shown in Fig. 1.

2 Material and method

2.1 CircRNA-disease associations

The circRNA-disease associations data used in our
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paper, which have been verified by experiments, are
screened out from the circR2Diseasel**! database (http://
bioinfo.snnu.edu.cn/CircR2Disease/). The initial dataset
has 725 circRNA-disease associations in the initial
dataset which includes 661 circRNA entries and 100
disease entries. To integrate other features on circRNAs
and diseases, 200 circRNA individuals and 42 disease
individuals are selected on the basis of 212 circRNA-
disease associations, which are represented by the
adjacent matrix A. If the circRNA ¢; is associated with
the disease d;, A(i, j)is equal to 1. Otherwise, A(i, j)
is equal to O.

2.2 CircRNA similarity network

2.2.1 CircRNA annotation similarity network

The circRNA annotation similarity network is
constructed using the circRNA target-gene-related
Gene Ontology (GO) terms. On the basis of the 200
circRNA entries, circRNA target-gene-GO terms data
are downloaded from the Human Protein Reference
Database (HPRD)*!. All of the matching GO terms
data are used to calculate the circRNA annotation
similarity scores, which are adopted to construct the
circRNA annotation similarity network (Cas). In the
study, an information content algorithm*®! is used
to calculate the similarity score of two circRNAs.
Specifically, the similarity score between the circRNA
¢; and ¢; is calculated as follows:
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Casli /) = : 2 x log(Pro(c; U cj)) 0

og(Pro(c;)) + log(Pro(c;))
where Cas(i, j) denotes the similarity score between
the circRNAs ¢; and ¢;. Pro(c;) (Pro(c;)) denotes the
proportion between the number of target-genes-related
GO terms of circRNA ¢;(c;) and the total number of all
the circRNAs target-gene-related GO terms. Pro(c; Uc;)
denotes the proportion of the number of the union of the
circRNAs ¢; and ¢; target-gene-related GO terms and
the total number of GO terms.

2.2.2 CircRNA sequence similarity network

To consider the circRNA sequence information, base
sequence of circRNA is adopted to calculate the circRNA
sequence similarity scores. On the basis of the matching
200 circRNA individuals, circRNA base sequence data
are extracted from the circBase!?®! database. To calculate
the circRNA sequence similarity scores, a sequence
alignment algorithm, called Smith-Waterman (SW)
pairwise alignment algorithm, is packaged using the
python tool, Biopython!*”, In this study, Css denotes
the circRNA sequence similarity network. The weight
of each edge in Cgg is normalized as follows:
Css(i, j) = SWelonty)
max (SWS (Cl', Cl'), SWS(CJ', Cj))
where SW(c;, c;) is the Smith-Waterman pairwise
alignment score between circRNAs ¢; and ¢;.

(2)

2.2.3 CircRNA functional similarity network

To calculate the functional similarity score of two
circRNAs, similar diseases that are associated with them
need to be considered. Thereby, the semantic similarity
between one disease and a group of disease is adopted
to calculate the maximum similarity score between one
disease gt and a group of disease GT, which is defined
as Spax (gt, GT) illustrated as follows:

Smax(gt, GT) = lrglagt(S (gt, GT(@))) 3

The circRNA functional similarity between two

circRNAs is calculated as follows:
Z Smax(gtil 7GTj) e Z Smax(gtjq 7GTi)

1<l<n l<g<m

Crs(i, j)= T

4)
where Cgg is the circRNA functional similarity network.
GT; and GT; denote the circRNA ¢; and c¢; related
diseases sets, respectively. gt;; and gt;, denote one
disease of the disease sets in GT; and GTj;, respectively.
Moreover, n and m denote the number of circRNASs ¢;

and c; related diseases, respectively.

2.3 Disease similarity network

2.3.1 Disease semantic similarity network

To calculate the disease semantic similarity score
between two disease entries, first, the initial names of the
42 matching diseases are replaced by the corresponding
Disease Ontology ID (DOID) manually on the basis
of the disease ontology database!*¥. Afterward, an
R/conductor package named DOSE for disease
ontology semantic and enrichment analysis is adopted
to calculate the semantic similarity score between each
two disease entries. Each disease-entry-related DOID is
inputted into DOSE, which is used to set the weight of
each edge in the disease semantic similarity network. In
this study, Dsg denotes the disease semantic similarity
network.

2.3.2 Disease functional similarity network

The information on disease functional features should
also be considered, because it can provide a more
reliable similarity score of each disease pair. In this
study, disease-related genes are adopted to describe
disease functions. Thus, disease-corresponding genes are
downloaded from the DisGeNETP database which has
collected 3 815 056 gene-disease associations between
16666 genes and 13172 diseases. In this study, a
statistical algorithm, i.e., the Jaccard index, is used
to calculate the disease functional similarity score as

follows:
IDG; N DG j |

IDG; U DG j|
where Dy represents the disease functional similarity
network. Dps(i, j) is the weight of the edge between
disease d; and d;. DG; and DG; illustrate the disease
d;- and d;-related genes datasets, respectively.

Dgs(i, j) = (5)

24 Integration similarity network for circRNAs
and diseases

After all of the aforementioned circRNA and disease
similarity networks are constructed, the circRNA
annotation, sequence, and functional similarity networks,
as well as the disease semantic and functional similarity
networks are integrated into the finial circRNA and
disease similarity networks for computational modeling.
The final combination circRNA similarity network Cg
and disease similarity network Ds are calculated as
follows, respectively:

.. Cas(i, j) +Css(i, j) + Crs(i, j)

Cs(i, j) = 3
Dss(i, j) + Drs(i, j)
2

(6)
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where Cs and Ds denote the integrated circRNA and
disease similarity networks, respectively. Cs(i, j) and
Dg(i, j) are the final similarity scores between two
circRNAs and diseases, respectively.

2.5 Heterogeneous networks and node

representation

A heterogeneous network is defined as a graph G = (V,
E, Ty) by combining Cs, Ds, and A. V denotes the
nodes, E denotes the edges, and Ty denotes the types
of the nodes. To construct the metapath later, we select
an unauthorized heterogeneous network. In the circRNA
and disease similarity network, the nearest ny (= 5)
neighbors of each node are selected and retained, and
the remaining edges between the other neighbors are
discarded. For each node in the heterogeneous network,
the final goal of representation learning is to obtain their
embedded vector X € RV & « |V|. X contains the
structural relationships among them.

2.6 Metapath2vec++

Metapath2vec is a heterogeneous network representation
learning algorithm!*#. The objective of metapath2vec is
to maximize the network probability in consideration of
multiple types of nodes and edges. Metapath2vec++
further distinguishes the types of nodes in the
objective function and optimization process. Similar
to deepwalk®! and node2vecl®?, metapath2vec++ is
also based on word2vec’s skip-gram model®3!, which is
used to predict the local neighboring nodes (background
words) of the target node (given word). In contrast
to deepwalk and node2vec, metapath2vec++ uses
metapaths when generating node sequences.

2.6.1 Metapath based on random walk

In previous models, such as deepwalk®!! and
node2vecP?, random walks and bias random algorithms
are mainly used to generate node sequences. However,
this study mainly investigates the representational
relationship between heterogeneous entities. Thus,
metapaths are used as the node sequence to be generated.
A metapath scheme p is defined as a path that is denoted

in the form of V3 g Vs 52) -V 55 Vit Rt—+>1 <17,
R denotes the relationship between two types of nodes.

Metapath2vec++ uses heterogeneous random walk to
generate the paths of multiple types of nodes. At step
i, the transition probability tp(v' ™1 |vi, p) represents the
probability that the i -th node of the 7-th type moves to
the next point i + 1 on the metapath p. The calculation

Big Data Mining and Analytics, December 2020, 3(4): 280-291

is defined as follows:

o
tp(v' T | vy,

p) =

1 , )
m, (Ut+1,U;)€E;¢(Ul+1):t+1;
? t
0. e Bt Eirt O
0, WL o) ¢EE

where vi € V;, Nyyq1(v)) denotes the (¢ + 1)-th type
neighborhood of node vi, and ¢(v'*!) is the type
of node v'*™!. In the standard metapath2vec++, the
metapath is usually symmetrical with the same type
of nodes at the beginning and end, and often only
one path needs to be defined. However, the circRNA-
diseae association investigated in this study is a
heterogeneous relationship and the network scale is
small, i.e., we can use a different metapath of length
5. According to the combination strategy, there are
32 metapaths in total. However, some of these paths
are the inverse order of others, Thus, these paths can
be deleted. For example, “circRNA-disease-circRNA-
circRNA-circRNA” and “circRNA-circRNA-circRNA-
disease-circRNA” can be regarded as the same, thus,
“circRNA-disease-circRNA-circRNA-circRNA” can be
deleted. In the end we used 20 kinds of metapath2vec++,
as shown in Fig. 1.

2.6.2 Heterogeneous skip-gram model

Metapath2vec++ uses a heterogeneous skip-gram model
to generate node vectors. The skip-gram model was
originally used in word2vec®! to predict the context
(background) of a given center word. After being
extended into the network, the local neighbors of a
given node can be predicted. For a given node v and
its local z-th type neighboring node »;, the probability
that they appear in the sequence window at the same
time is p(b;|v). Our goal is to make the sum of such
probabilities as large as possible. Metapath2vec++’s
objective function is derived as follows:

argmax » " Y~ Y~ logp(bfv)  (9)

veV teTy breN: (v)

where N; (v) denotes v’s neighborhood with the ¢-th
type of nodes. p(b;|v) is commonly defined as a softmax
function and is adjusted to the specific type of node, i.e.,

eXb;X’ITJ
p b v) =

> eXu X,
u;eV;

(10)

where V; denotes the node set of the 7-th type nodes, X
is the embedded feature matrix, and X, X5,, and X,,,
denote the v-th, b;-th, and u-th row of X, respectively.
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When optimizing the objective function (i.e., Eq. (8)),
because the number of nodes is often very large, the
calculation cost of Eq. (9) will become abnormally
large. Thus, there are two mainstream methods, one
is to extract negative sampling method, another is
hierarchical softmax. The core purpose of both methods
is to reduce the computational size of V. According
to Predictive Text Embedding (PTE)*, the negative
sampling method was applied. For events, node b, is a
local neighbor of node v, which is regarded as a mixture
of two independent events. One is that b, and v appear
in the sequence window at the same time, and the other
is that M noise nodes do not appear in the sequence
window at the same time as node v. Therefore, we have
the following objective:

0X) =

M
1080 (Xp, X3)+ Y Eymiep,upllogo (—X,n X)) (11)

m=1
where o(x) = 1/(1 + ™ ) denotes the sigmoid
function.  P;(u,;) denotes the negative sampling
distribution.  E,m_p () 18 an expectation when u;"
obeys the distribution, where u/* is a node of the 7-
th type obtained by negative sampling. We observe
that original calculation scale was V', now it is reduced
to M, ie., M < V. To maximize Eq. (11), one node
can have two vectors, which are the vectors of the
center node and neighboring nodes. We usually use the
center node vector to represent the embedded features
of nodes. Based on this, we can obtain the initial
score (preliminary probability) of the circRNA-disease
association P = X giseaseX sorna- XeireRNA aNd X gisease
correspond to the rows of circRNA and disease in
matrix X, respectively. Figure 1 shows an eventual
representation of metapath2vec++, where each node
v is encoded as e, using one-hot, each embedded
feature / from the X matrix is multiplied the vectors of
other nodes, and then softmax calculation is performed.
Finally, occurrence probability between each node and
other nodes is determined. The relationship between
circRNA c¢3 and other circRNAs and diseases is

illustrated in Fig. 1.

2.7 Matrix factorization

Because metapath2vec++ uses an unweighted graph
when generating metapaths, the similarities between
circRNAs and diseases are not well utilized. Following
Wei and Liul*®l, after deriving the initial scoring matrix,
we continue to use matrix factorization for further

optimization. The matrix factorization objective function
in PCD_PVMF is formularized as follows:

min [P — €| + & [ €D + BIR(C" GO+

Tr(D'GpD)) (12)
where matrixes C and D are factorization factors
of P matrix, which can be expressed as feature
matrices of circRNA and disease. G¢ = I¢ — Cys and
Gp = Ip — Dy denote the graph Laplacian matrices
for the circRNA and disease similarity matrices.
I and Ip are two diagonal matrices, and the
elements in I and Ip are row sums of Cs and Dy,
respectively. « and B are regularization coefficients.
The PCD_MVMEF solved the optimization problem by
introducing Lagrange multipliers and Karush-Kuhn-
Tucker (KKT) conditions™]. The updating rules of
matrices C and D defined as follows:

Cij < Cij D +TIBCSC)U >

(e + 1DHCD'D + ,BICC)U

~___(P'C+B-DsD)y; (13)
Y((@ + )DC'C + B - IpD),;
At the beginning of the iteration, C = X yrna and
D = Xgisease. Finally, the predicted circRNA-disease
association result matrix is P* = CD'. The larger value
of the element in P*, the higher the relevance between
the corresponding circRNA and disease.

3 Result

Dij «~D

3.1 Performance metrics

To evaluate the performance of our proposed
computational method, several metrics are applied in
this study. Two main metric methods are adopted to
appraise the performance of our method. First, the
Receiver Operating Characteristic (ROC) curve is drawn
on the basis of the True Positive Rate (TPR) and False
Positive Rate (FPR). Second, the precision, recall, and
f-measure are applied to evaluate the performance of
our proposed computational method. Precision is the
ratio between the number of true positive samples that
are predicted as true samples and the number of positive
samples for prediction. Recall is the ratio between
the number of true positive samples that are predicted
as true samples and the total number of true positive
samples. F-measure is the harmonic mean score of
precision and recall, which is more reliable and valid.

3.2 Cross-validation

Each known circRNA-disease association will be
regarded as a test data during the LOOCYV process. Each
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disease related circRNA is remained as a test data in
each turn. For example, there are 212 known circRNA-
disease associations in this study. First, these 212 known
circRNA-disease associations are regarded as the test
data in turn. Therefore, 212 iterations are applied to
each known circRNA-disease association. Afterward,
we can determine the prediction scores between these
known circRNAs and diseases. In addition, an extra
iteration is adopted to predict the probability score
of the remaining circRNA-disease associations. Then,
all of the circRNA-disease associations are ranked in
descending order. The higher the ranking of the known
disease-related circRNAs, the better the performance
of our proposed computational method. Based on
the changing threshold, we can calculate different
FPRs and TPRs, which are used to draw the ROC
curve and calculate the corresponding Area Under
the Curve (AUC) value. In order to validate the
performance of PCD_MVME, other prediction methods,
KATZP®, BiRW_avel”l, SIMCCDADPS, MRLDCP!,
and NCPCDAP! are compared with PCD_MVMTF, as
shown in Fig. 2. We set the window size (neighborhood
size) to 5 in metapath2vec++. The dimension k of the
embedded feature is 64. The number of walks of per node
is 5. Batch size was set as 128. In matrix factorization,
o =0.002 and § = 0.001. The parameters of other
comparison methods are set according to the default
parameters in their literature. As shown in Fig. 2, our
method has better performance in LOOCYV than other
methods.

Afterward, we performed five-fold CV to test our
method. We randomly divide all circRNA-disease
associations into five equal parts, using four parts as

1.0

TPR

——PCD_MVMF (AUC=0.9588)
——KATZ (AUC=0.6743)
—— SIMCCDA (AUC=0.7825)
—— BiRW_avg (AUC—0.7944)
- MRLDC (AUC=0.7661)
—— NCPCDA (AUC=0.8554)

0 1 I
0.2 0.4 0.6 0.8 1.0

FPR

Fig.2 ROC curves of PCD_MVFM and other computational
methods based on LOOCY.
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the training set and one part as the test set. Finally, one-
fifth of the associations of each test is spliced into a total
prediction score matrix. Because each data segmentation
is random, each method runs five-fold CV 10 times, and
the final evaluation value is averaged. The results of the
five-fold CV are shown in Fig. 3. The results show that
our method still has good performance (AUC = 0.8539).
Notably, because of the sparseness of the network, the
AUC value decreases as a whole during the five-fold
CV. Particularly for the network-dependent algorithms,
such as BiRW_avg, the prediction results are nearly
random.

This study also evaluated PCD_MVMF and other
methods using precision, recall, and f-measure. For the
circRNAs predicted with each disease, the precisions,
recalls, and f-measures of the Top-k positions were
calculated. Each value of each position is the average
of 42 diseases as shown in Figs. 4— 6. In predicting the
circRNA-diseases from Top-5 to Top-50, the precision,
recall, and f-measure curves of the PCD_MVMEF are
always above the curves of the other methods. Thus,
PCD_MVMEF is superior to other methods.

We also analyzed every single disease, i.e., each
column in the predicted matrix. We calculated the
AUC values for each disease prediction, and displayed
distribution of 42 diseases in the form of a box
diagram in Fig. 7. The mean and median of our method
are the highest. At the same time, we detected 4
anomalies outside the 1.5 interquartile range (IQR).
This finding indicates that only four diseases are not
well predicted. The AUC value distributions of other
algorithms are scattered, and not all diseases can be
effectively predicted.

1.0

0.8

0.6

TPR

0.4

" [ PCD_MVMF (AUC=08539:0.0054)
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Fig. 3 ROC curves of PCD_MVFM and other computational
methods based on five-fold CV.
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Fig.5 Average recall of the test set at each Top-k position on
querying diseases.
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Fig. 6 Average f-measure of the test set at each Top-k
position on querying diseases.
3.3 Case studies

After measuring the performance of the method, we also
analyzed the predicted disease-circRNAs. We mainly
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Fig. 7 AUC value distribution of PCD_MVMF and other
algorithms in predicting circRNAs for each single disease.

analyzed the predicted circRNAs of colorectal cancer
and lung cancer. By screening 10 newly predicted
colorectal cancer and lung cancer circRNAs seperately,
we can identify potential research objects. These new
relationship does not appear in circR2Disease. We
verified their functions through a search of biological
literature and reports.

As shown in the Table 1, 9 of the 10 predicted
circRNAs are related to colorectal cancer. In the research
of Guo et al.l®l hsa_circ_0000069 up-regulates and
promotes cell proliferation, migration, and invasion
in colorectal cancer. The circRNA hsa_circ_0000567
can be used as a promising diagnostic biomarker
for human colorectal cancer'®!!, CircRNA_001569
regulates colorectal cancer by targeting mir-14571,
Xiong et al.l®’l investigated the expression matrices
in colorectal cancer and determined that multiple
citcRNAs are differentially expressed, such as
hsa_circ_0001824, hsa_circ_0006174, hsa_circ_0008509,
and hsa_circ_0007031.

Table 1 Top 10 new colorectal cancer-related candidate
circRNAs.

Rank circRNA name/ID Evidence

1 hsa_circ_0000069 PMID: 28003761
2 hsa_circ_0000567 PMID: 29333615
T e s
4 hsa_circ_0001824 PMID: 28656150
5  circRNA_101419/hsa_circ_0032832 -

6 hsa_circ_0006174 PMID: 28656150
7 hsa_circ_0008509 PMID: 28656150
8  hsa_circ_001988/hsa_circ_0001451 PMID: 25624062
9 hsa_circ_0007031 PMID: 28656150
10 hsa_circ_0000504 PMID: 28656150

Note: PMID means PubMed unique identifier.



288

For lung cancer, we performed the same analysis,
and the results are shown in Table 2. Five circRNAs
of the 10 predicted lung cancer circRNAs are
corroborated by the literature or database. Luo et al.[®%]
demonstrated new roles of hsa_circ_0000064 in lung
cancer. And hsa_circ_0084927 sponges miR-93-5p to
inhibit TGF-f signaling so that it affects lung cancer'%4,
In addition, circRNA hsa_circ_100395 regulates the
miR-1228/TCF21 pathway to inhibit lung cancer
progression!®!. In the circFunBase, the differential
expressions of hsa_circ_0000284 and hsa_circ_0001946
in lung cancer are also collected!®S,

4 Conclusion

In this study, we developed a computational method,
called PCD_MVME, which is based on metapath2vec++
and matrix factorization algorithm, and applied it in a
heterogeneous network.

First, various circRNA-related biological data
including circRNA sequence data, circRNA target-gene-
related GO terms, and functional data are extracted
to compute the circRNA sequence, annotation, and
functional similarity subnetworks. Disease semantic and
related genes are adopted to construct disease semantic
similarity and disease functional similarity subnetworks.
After that, we construct a heterogeneous network and use
metapath2vec++ to conduct representational learning of
the network nodes. Finally, the initial scoring matrix
is optimized by matrix factorization and the predicted
results are obtained. To evaluate the performance of
our proposed method, LOOCY, five-fold CV, precision,
recall, and f-measure are adopted to test PCD_MVMF.
By analyzing the predicted circRNA from colorectal
cancer and lung cancer, we determine that circRNAs do
have a role in these diseases. Notably, the method has a
good predictive effect and practical value.

Table 2 Top 10 new lung cancer-related candidate circRNAs.

Rank circRNA name/ID Evidence

1 hsa_circ_0000064 PMID: 29223555
2 hsa_circRNA_104953/hsa_circ_0089310 -
3 hsa_circ_0002908 -
4 circRNA_0084927/hsa_circ_0084927 PMID: 31728016
5 hsa_circRNA_101720/hsa_circ_0002078 =
6  hsa_circRNA_100914/hsa_circ_0023903 -
7
8
9

hsa_circRNA_100782/circHIPK 3/
hsa_circ_0000284

CDR1as/ciRS-7/hsa_circ_0001946 circFunBase
hsa_circRNA_100395/hsa_circ_0015278 PMID: 30176158
10 hsa_circ_0091017 =

circFunBase

Big Data Mining and Analytics, December 2020, 3(4): 280-291

Although, PCD_MVMF obtains better results than
other state-of-the-art computational methods, some
limitations could not be ignored. On one hand,
metapath2vec++ needs to learn a large number of
node sequences (metapaths). When the number of
nodes is large, even if the algorithm has corresponding
optimization measures, it takes a long time. On the
other hand, metapath2vec++ is better at learning and
representing network nodes, but not good at predicting,
thus, it usually needs to cooperate with other prediction
methods in our study. Moreover, the dataset used in this
study is small and its predictive capability is limited. In
the future, we will further optimize the algorithm while
fusing and expanding the dataset.
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