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Survey on Lie Group Machine Learning

Mei Lu and Fanzhang Li�

Abstract: Lie group machine learning is recognized as the theoretical basis of brain intelligence, brain learning,

higher machine learning, and higher artificial intelligence. Sample sets of Lie group matrices are widely available in

practical applications. Lie group learning is a vibrant field of increasing importance and extraordinary potential and

thus needs to be developed further. This study aims to provide a comprehensive survey on recent advances in Lie

group machine learning. We introduce Lie group machine learning techniques in three major categories: supervised

Lie group machine learning, semisupervised Lie group machine learning, and unsupervised Lie group machine

learning. In addition, we introduce the special application of Lie group machine learning in image processing. This

work covers the following techniques: Lie group machine learning model, Lie group subspace orbit generation

learning, symplectic group learning, quantum group learning, Lie group fiber bundle learning, Lie group cover

learning, Lie group deep structure learning, Lie group semisupervised learning, Lie group kernel learning, tensor

learning, frame bundle connection learning, spectral estimation learning, Finsler geometric learning, homology

boundary learning, category representation learning, and neuromorphic synergy learning. Overall, this survey

aims to provide an insightful overview of state-of-the-art development in the field of Lie group machine learning. It

will enable researchers to comprehensively understand the state of the field, identify the most appropriate tools for

particular applications, and identify directions for future research.

Key words: Lie group machine learning; Lie group subspace orbit generation learning; quantum group learning;

symplectic group learning; Lie group fiber bundle learning

1 Introduction

Machine learning, as a branch of artificial intelligence,
has been playing an increasingly important role in
scientific research in recent years[1–4]. The development
of many disciplines, such as bioinformatics, physics,
chemistry, material analysis, and so on, requires
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intelligent methods to enrich the content of related
disciplines. These intelligent methods rely on machine
learning as the most basic and key core technology.
As a new learning method in the field of machine
learning, Lie group Machine Learning (LML) not only
inherits the advantages of machine learning but also
integrates the ideas of Lie groups to form an innovative
learning paradigm. Since LML was put forward in
2004, it has attracted wide attention in the world.
Relative to traditional machine learning methods, LML
exhibits the characteristics of differential manifolds and
groups. It provides not only a geometric representation
of data but also specific algebraic solutions. A group
preserves system completeness, i.e., the differential
provides a specific algebraic calculation method, while
a manifold provides a geometric representation method,
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which is in accordance with the cognitive model
combining qualitative representation and quantitative
representation in cognitive theory. LML follows the
research mechanism of using “cognitive science as its
foundation, mathematics for its methods, theoretical
calculation as its standard, analysing rules of data as its
goal, and computer technology as its way to construct
machine learning theory, technology, methods, and
applications”. LML realizes the cognitive view of
“solving complex problems with simple models”. It
has a unique advantage with regard to the use of
model continuity theory to solve realistic discrete data.
It is also advantageous in modeling voluminous data
with minimal data constructs and solving unstructured
data by using structured methods; nonlinear data by
using linear methods; and the two-way mechanism
of perception and cognition, the correspondence
between individuals and the environment, and the
dynamic permission relationship by using qualitative
and quantitative methods.

Especially in the rapid development of big data,
internet of things, cloud computing, cognitive science,
space science, materials science, and so on, LML breaks
the old thought that group theory only exists in the mind
and cannot be well associated with real problems; it also
truly embodies the scientific concept that “Mathematics
is not everything, but without mathematics, nothing can
be done”.[3]

This paper is organized as follows. Section 2
introduces the concepts of Lie algebras and Lie groups.
Section 3 introduces the LML model. Section 4
introduces LML algorithms, including unsupervised
LML, supervised LML, and semisupervised LML.
Section 5 introduces the application of LML in 3D
image processing. Section 6 introduces neuromorphic
synergy learning. Section 7 provides the conclusion.

2 Introduction to Lie Algebras and Lie
Groups

In this section, we collect several basic concepts of Lie
algebras and Lie groups[5–7].

Definition 1 A k-Lie algebra or Lie algebra over
k (k � R or k � C) consists of a vector space a over a
field k, together with a k-bilinear map [, ]: av�av ! av

called the Lie bracket, such that for x; y; z 2 av ,
Œx; y� D �Œy; x�; (Skew symmetry)
Œx; Œy; z��C Œy; Œx; z��C Œz; Œx; y�� D 0: (Jacobi identity)
Here k-bilinear means that for x1; x2; x; y1; y2; y 2 av

and r1; r2; r; s1; s2; s 2 k,
Œr1x1 C r2x2; y� D r1Œx1; y�C r2Œx2; y�;

Œx; s1y1 C s2y2� D s1Œx; y1�C s2Œx; y2�:

A simple conclusion exists about the general form
of Lie brackets for Lie algebra, including closure,
bilinearity, alternating, and Jacobi identity.

Closure: Œx; y� 2 avI

Bilinearity: Œax C by; z� D aŒx; z�C bŒy; z�;
Alternating: Œx; x� D 0;
Jacobi identity: Œx; Œy; z�� D Œz; Œy; x�� D Œy; Œz; x��.
To establish the definition of a Lie group, we first

define a smooth map.
Definition 2 A continuous map g: V1 ! V2, where

each Vk � Rmk is open, is smooth if it is infinitely
differentiable. A smooth bijection g is a diffeomorphism
if its inverse g�1: V2 ! V1 is also smooth.

Definition 3 Let G be a smooth manifold which is
also a topological group with multiplication map mult:
G � G ! G and inverse map inv: G ! G and view
G � G as the product manifold. Then G is a Lie group
if mult and inv are smooth maps.

Lie group theory is the fundamental representation of
a space of transformations. The three central elements
of the Lie group framework are Lie distance, intrinsic
mean, and principal geodesics. Lie distance is a
measure of the similarity of two transformations. The
intrinsic mean represents the “average” of a set of
transformations, i.e., the transformation that minimizes
the Lie distance to all transformations in the set. A
geodesic is a 1 � d subspace of transformations that
is the shortest path between two transformations. A
principal geodesic is one that accounts for the maximum
variation in a set of transformations along a path; it is
analogous to the principal component of a covariance
matrix.

The relationship between Lie groups and Lie algebras
is that the tangent space of group G at identity e, Te ,
is called the Lie algebra. The exponential map exp
is a mapping from the Lie algebra elements to the
Lie group elements. The logarithmic map log takes
group elements onto a tangent plane. The Lie group
distance between two points is defined as d.x1; x2/Dlog.x�1

1 x2/
, where k�k is the Frobenius norm of the

resulting algebra element[8, 9]. The commonly parameter
of Lie group and Lie algebras are listed in Table 1.

A set of orthogonal matrices denoted as O.n/ is
an example of a matrix Lie group[10]. Orthogonal
matrices are known to have a determinant of either
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Table 1 Parameter of Lie groups and Lie algebras.
Name Symbol Lie algebra

Euclidean space in in

General linear group GL(n, F / gl(n, F /
Special linear group SL(n, F / sl(n, F /
Orthogonal group O.n, F / o.n, F /
Special orthogonal group SO(n, F / so(n, F /
Symplectic group SP(n,F / sp(n, F /
Unitary group U.n/ u.n/

Special Unitary group SU(n/ su(n/
.p; q/ type Unitary group U.p, q/ u.p, q/
Special .p; q/ type Unitary SU(p, q/ su(p, q/

C1 or �1; however, they are not connected on a
manifold. Thus, a special subgroup of orthogonal
matrices whose determinant is equal to C1 is usually
specified. Formally, let SO .n/ be a set of n � n

orthogonal matrices defined as
SO .n/DfY 2 Rn�n: Y TY D I; det.Y / D 1g.

The additional determinant constraint (detD1)
ensures that all matrices in this group are rotation
matrices. This set of matrices is called a special
orthogonal group, which is also an example of a Lie
group.

A pictorial summary of a Lie group, Lie algebra, and
exponential and logarithmic mappings is presented in
Fig. 1. In Fig. 1, Y is an n � n matrix parametrized
by a curve f .t/ in SO.n/ such that f .0/ D I , and
f 0.0/ D �.

3 Lie Group Machine Learning Model

Xu and Li[11–14] discussed the general LML model and
established a number of common classifiers, including
the LML model, Lie group algebra machine learning
model, Lie group geometric machine learning model,
geometric learning algorithm for Dynkin graphs in
LML, linear classifier design of LML, and LML SO(3)
classifier.

As a Lie group is an analytic manifold with a group
structure and as group operations are analytic, the

SO

so

Fig. 1 Example of a special orthogonal group: mappings
between a Lie group and a Lie algebra using the exponential
and logarithmic maps.

LML norm can be used to analyze the dimensions,
compactness, connectivity, nilpotency, subgroups,
cosets, quotient groups, quantum groups, and so on.
These basic structures serve as the foundation for the
design of the LML algorithm.

Lie group machine learning[15, 16]. Let G � RD

denote the input space,M �Rd denote the output field,
andD>d . The definition of mapping ' of the left effect
of G on M is as follows:

' W G �M ! M;

g; x ! '.g; x/:

The following should hold
'.g1; '.g2; x// D '.g1g2; x/; '.e; x/ D x:

The left effect of LML is shown in Fig. 2.
Let '.g; �/D'g.�/. For any g2G, M is a

diffeomorphism exchange:
'g W M ! M;

x ! '.g; x/:

Mapping set f'g ; g 2 Gg satisfies 'g1
�'g2

D 'g1g2
,

'e D idM , where idM is an identity function idM W

M ! M .
Similarly, we can define the right effect of group G

on M :
 W M �G ! M;

x; g !  .x; g/:

satisfying . .x; g1/; g2/D .x; g1g2/, .x; e/ D x.

The right effect of LML is shown in Fig. 3.
The diffeomorphism exchange of the right effect

from G to M is easy to use:
 g W M ! M;

x !  .x; g/:

Fig. 2 Left effect model of Lie group machine learning.

Fig. 3 Right effect model of Lie group machine learning.
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Algebra model of LML[4, 15, 16]. According to the
concept of LML, four different mathematical structures,
namely, Lie algebra, one-parameter subgroup, left
invariant vector field, and left invariant manifold;
they are defined as a natural correspondence, i.e.,
Lie algebras QD [left invariant vector field] QD [left
invariant flaw] QD [one-parameter subgroup]. These
mathematical structures serve as the foundation for
the study of the Lie algebra root calculation model,
decomposition model, and classification model of
LML. The algebraic model of LML is shown in Fig. 4.

Geometric model of LML[4, 15, 16]. Using some of
the geometric properties of a Lie group, we construct
the geometric model of LML to facilitate the learning
of system representation and measurement. From the
left invariance of the orthogonal vector field group,
all left translations are isometric transformations of
the Riemannian space. From the invariance of the
inner product, all right translations are isometric
transformations. Let Te.G/ be a tangent space of a
unit point, i.e., let the Lie algebra g of G, Ta.G/,
be the tangent space of any sample point a, and
let dla and dra be the linear mappings induced by
the left transformation la and the right transformation
ra respectively in the tangent space. Thus, geometric
model structure shown in Fig. 5 is obtained.

Lie group metrics. A geodesic is important in
studying manifolds in a high-dimensional space as a
means of measurement. It is the local shortest path in a
Riemann manifold. As manifolds are locally Euclidean,
the distance of a geodesic cannot be easily calculated.
The commonly used technique is to replace the small
part of a manifold with a tangent plane. For example,

in Ref. [17], the 3D nose-shaped net for a human
gender and ethnicity classification algorithm is based
on a 3D nose-shaped organizational structure. A nose
measurement method for determining the distances
between different noses is designed to construct the 3D
nose-shaped net. The shape space of the nose curves
can be regarded as M=G, M=GDfŒp�jp 2 M g, and G
is a Lie group that is acting smoothly on a manifold,
which is used to build the nose curves’ shape space
for nose similarity measurements. Gender and ethnicity
classification results are achieved in the 3D nose-shaped
net simultaneously. Boutellaa et al.[18] presented a
covariance matrix-based fall detection method that uses
multiple wearable sensors. This method employs the
covariance of the raw signals and the nearest neighbor
classifier. Instead of Euclidean metrics, Boutellaa et
al.[18] used geodesic metrics, which provide higher
fall detection accuracy. Heider et al.[19] presented the
SO(3) invariance of an informed graph-based deep
neural network for an anisotropic elastoplastic material
algorithm. In this work, the spectral form is applied
to represent tensors, and three metrics, namely, the
Euclidean distance between the Euler angles, the
distance from the identity matrix, and the geodesic
on the unit sphere in Lie algebra, are employed to
constitute the objective functions for the supervised
machine learning. Experimental results reveal that using
a loss function based on a geodesic on the unit sphere
in Lie algebra, together with an informed and directed
graph, yields more accurate rotation predictions than
other tested approaches.

The Geodesic Distance algorithm of Lie group
Machine Learning (GDoLML) is described in

Fig. 4 Algebraic model of Lie group machine learning.

a

a

Fig. 5 Geometric model of Lie group machine learning.
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Algorithm 1[4, 15].
In fact, Algorithm 1 is a general algorithm for

calculating geodesic distance. In practical applications,
the common way to calculate the geodesic distance
between two points x1 and x2 is as follows:

d.x1; x2/ D
log.x�1

1 x2/
 ;

Geometric learning algorithm for Dynkin graphs
in LML[4, 15, 16]. This algorithm shows that if the
learning problem is solvable, then the Dynkin diagram
can be drawn corresponding to the learning space.
According to the Dynkin diagram formed by the data,
the Lie group corresponding to the special unit group
can be found, and the corresponding solution can be
established. Therefore, the Lie group as the main basis
for machine learning theory can be used.

4 Lie Group Machine Learning

Similar to traditional machine learning algorithms,
LML algorithms can be divided into three broad
categories: supervised learning, semisupervised
learning, and unsupervised learning. Supervised
learning is useful in cases where a label is available for
a training set but is missing and needs to be predicted
for other instances. Semisupervised learning uses
labeled and unlabeled data to improve supervised
learning. The goal is to learn a predictor that predicts
future test data better than the predictor learned from
the labeled training data alone. The reason for this
improvement is that a large amount of unlabeled data
enable the system to model the inherent structure of
the data accurately. Unsupervised learning is useful
in cases where the challenge is to discover implicit
relationships in a given unlabeled dataset.

Algorithm 1 GDoLML
Input: Sample point a
Output: The distance between all points in the coordinate

neighborhood of a and a
1: Initialization: .X; �/ is a topological space, x 2 X .
2: Generate the neighborhood Ua of the sample point a.
3: Analyze the neighborhood information of a in the sample set

of points to take an automorphism under the invariant inner
product, and calculate the value of gi;j .a/.

4: Substitute the resulting value gi;j .a/ into D.a; b/ Ds
nP

i;j D1

gi;j .a/.ai � bi /.aj � bj / to calculate the distance

between each point in Ua and a.
5: Output all values of distance (the smaller the distance, the

closer the result to be learned)

4.1 Supervised Lie group machine learning

In this section, we analyze and summarize the
algorithms of supervised LML.

4.1.1 Classification of text based on Lie group
machine learning

In the traditional classification algorithm, the similarity
between two documents often needs to be measured;
commonly used metrics include the Euclidean distance,
vector angle cosine, and so on. However, because
manifolds are locally Euclidean, calculating the
distance of a geodesic directly in a manifold is
difficult. To address this issue, Li et al.[4] and Xu
and Li[14] proposed Lie Group Classification (LGC)
for text classification. In this method, the vector
space of a document is embedded in a differential
manifold, and each document corresponds to a point
on the manifold. Moreover, the geodesic distance
is used instead of the Euclidean distance to measure
the similarity between two documents. Experimental
results show that the recall and precision of text
categorization with the LGC algorithm are higher than
those with the Recurrent Neural Network (RNN) and
Support Vector Machine (SVM). The LGC algorithm is
described in Algorithm 2.

With regard to the metrics for text documents,
Lebanon[20] considered learning a Riemannian metric

Algorithm 2 LGC
1: The training document vector is described according to

the set of feature words. Suppose that the feature set of
document i is ti D .ti1; ti2; : : : ; tin/ and the corresponding
weight of document i is wi D .wi1; wi2; : : : ; win/. Then,
the vector representation of document i is di D .ti1; wi1I

ti2; wi2; : : : ; tin; win/. Thus, all document vectors form a
vector space, which is embedded in a differential manifold.
Each document is a point on the manifold.

2: For a new document, determine the vector representation of
the document according to the feature set.

3: Generate the coordinate neighbourhood Ua of a new
document a, i.e., the document set S , establishing its tangent
space local coordinate system, computing the geometric
distance of every document Sk and new document a in set

S . D.a; sk/ D

s
nP

i;j D1

gi;j .a/.ai � sk;i /.aj � sk;j /:

4: Compute the weight of each point in S for the classes of
document cx , W.d; cx/ D

P
sk2S D.a; sk/ � f .sk ; cx/,

where f .sk ; cx/ is the class function. Thus, if sk belongs to
class cx , its function value is 1; otherwise, it is 0.

5: Comparing the weights of the classes, the document a
belongs to the largest weight of the class.
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associated with a given differentiable manifold and a set
of points. The author chose a metric from a parametric
family that is based on maximizing the inverse volume
of a given dataset of points. This metric is related
to maximum likelihood under a model that assigns
probabilities that are inversely pro-portional to the
Riemannian volume element. A metric in a multinomial
simplex is learned as follows: the metric candidates
are pullback metrics of the Fisher information under
a Lie group of transformations. When applied to text
document classification, the resulting geodesic distance
outperforms the tf-idf cosine similarity measure.

4.1.2 Lie group subspace orbit generation learning
Chen[15] and Chen and Li[16] expanded the content
of LML and studied the learning problem of Lie
groups from a graph structure. According to the
independent division hypothesis axiom, consistency
hypothesis axioms and the basic facts of each element
in the observation space set can be described by
a set of real independent parameters, in addition
to the characteristics of the geometric model of
LML. On the basis of the LML space, the concept
of the LML subspace orbit generating a lattice is
established. Generating lattice theory and the learning
algorithm related to lattice theory, which are derived
from multiple identical dimensions or orbits and rank
subspaces, are given under the action of various typical
groups in the observation set. These groups include
the orbit generating lattice learning algorithm of the
general linear group, orbit generating lattice breadth-
first and depth-first learning algorithms, heuristic
learning algorithm, and other typical groups of learning
algorithms.

In LML, an orbit is defined as the learning path
in the learning subspace that encompasses a series of
learning operations (operators) in the learning process.
All orbits form the entire learning subspace; a state
subset and the operator used constitute an orbit, and an
orbit constitutes a partial chain.

The purpose of Lie group subspace orbit generation
learning is to find the optimal path from the initial state
to the target state. If each state is treated as a node
and each arc represents an operator, then the learning
subspace can be represented by a directed graph. The
node relationship is embodied in the specific problem
and can be understood as the sample to be learned
in the node; here, the specified operator is the best,
i.e., conducive to obtaining the optimal orbit. Figure 6
shows the relationship between learning space, learning
subspace, orbit, and target orbit.

The depth-first orbit generation algorithm is
described as Algorithm 3.

In the process of generating the orbit, the key step is
how to determine the nodes to be extended. Chen[15]

and Chen and Li[16] proposed two methods, namely, the
breadth-first orbit generation algorithm and the depth-
first orbit generation algorithm. For the breadth-first
orbit generation algorithm, the given weight known
as the first-level weight can be used for a simple
calculation to create a new weight, i.e., a list of all
the weights in the second-level orbit. The process
is repeated, and the weight list of any level can be
obtained using the weights and simple calculations of
the next lower layer. For the depth-first orbit generation
algorithm, the orbit generation can be processed in a
different way. The orbit can be seen as a tree, and
according to the depth of priority for calculation, the
deeper levels of the weight of the orbit can be reached
as far as possible. A weight is stored on the basis of
certain specifications before being traced back to the
uncomputed “branch”.

To identify a learning orbit effectively, Chen and
Li[21] presented the LML subspace orbit generation
learning algorithm with heuristic information. Using
special information related to the specific field of
learning, the current study is guided in the most
promising direction. Chen and Li[16] further discussed
the LML learning subspace orbit generation lattice

Fig. 6 Diagram of learning space, learning subspace, orbit, and target orbit.
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Algorithm 3 Orbit Generation Depth-First algorithm
(OGDF)

Data structure: Levelcount: An integer array that counts for
each layer; weight-structure stack.
Each weight-structure contains:
! D .!1; : : : ; !l /: Weight vector;
level: Rank of !;
from: An integer that labels the parent value;
i : Next index to be tested.

Input: m D .m1; : : : ; ml /: Control weight
D: Dynkin matrix
l : rank of G
Max level: Calculate the maximum level of the track

Output: Weight vector list and four related integers.
The first integer indicates the position of ! in the list;
The second integer is the hierarchy of !;
The third and fourth integers indicate the weight vector and the
calculation of !;
Process: Make level = 0, levelcount[level] = 1, i= 1;
Make from = 1; // Location of paternity values
Make to = 1; //Position of the new weight, i.e., the total number
of weights computed
Output m; been learned
Put m, level, from, i into the stack;
while (The stack is nonempty) do f

Out !, level, from, i of stack;
while (i 6 l) do

if (!i> 0) then f

if (vj > 0 to i < j 6 l) then f

//Store v?
if (i D 1 6 j ) then

Out !, level, from, i+1 of stack;
level + +;
levelcount[level] + +;
Output v, level, from, i , to;
if (level > max level) then

jump out while loop;

Copy v to !;
Let i be equal to the first element in Di ; g

Otherwise i C C;
g

Otherwise i C C; g

learning algorithm under the action of the general linear
group GLn(Fn), where Fn is a finite of n elements. The
group elements formed by n-order regular matrices
can be characterized by  - parameters under certain
conditions. Then, a continuous change of  - parameters
may produce the entire manifold. For the General
Linear group on the sample dataset GLn(Fn), the
n2 elements of the matrix calibrate the points in
the n2-dimensional Euclidean space. This change in
the n2 parameters reflects the change relation from
one point in the Euclidean space to another. Thus,

GLn(Fn)’s subgroups of various  parameters can
be represented by some  -dimensional subspaces in
the n2-dimensional Euclidean space. The change of
data state in the learning system is proved by the
transformation of the parameter. Starting from any
element a, a continuous change through a parameter
produces an arc that links any pair of spaces in a group,
thereby forming the graph structure.

4.1.3 Quantum group learning
A noncommutative and non-cocommutative Hopf
algebra is called a quantum group[22]. A quantum group
is the generalized concept of the classical symmetry of
Lie groups and Lie algebras. Quantum group theory
has been widely used in many fields. For example,
Nasios and Bors[22] applied these concepts to nuclear
classification and achieved satisfactory results. Such
achievement reflects the excellent opportunities for
machine learning and provides useful examples for data
analysis based on machine learning. In Ref. [23], He
and Li proposed quantum group learning algorithms
in the Lie group machine learning framework that
apply quantum group theory to process data. They
constructed a quantum group classifier with the
operations of quantum symmetric transformation and
covariant differentiation in a nonexchange space. They
used these algorithms to deal with nonexchange and
asymmetric data, such as the coding sequence in
a gene, the position between atomic groups, and
the pharmacophore in drug molecular design. These
algorithms achieved better reality test performance than
state-of-the-art methods.

The classification algorithm of quantum group
classifiers in machine learning is described as
Algorithm 4. The data of the sample set can be
transformed into the classical quantum group that we
need[23]:

SLq(n): quantum special linear groups;

Algorithm 4 Classification algorithm of quantum group
classifier in machine learning: QGClassifier (Gq)
Input: Gq
Output: f1;�1g

1: Initialisation: Gq is a quantum group whose group elements
are fX1; X2; : : : ; Xng

2: for i D 1 to n do
3: if detqXi DD 1 then
4: return 1; //Gq is SLq(n) group//
5: else
6: return �1; //Gq is GLq(n) group//
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GLq(n): quantum general linear groups.
The construction of a specific quantum group

learning classifier is described below:
Step 1: Map the sample set to this nonempty set of

Gq.
Step 2: Construct the corresponding quantum group

structure according to Gq and test whether it is a
quantum group.

Step 3: Calculate the classical quantum group with
the established quantum group structure.

Step 4: Use the classification algorithm of quantum
group classifier (Algorithm 4) to classify and train the
appropriate classifier.

Step 5: Perform the instance test.

4.1.4 Symplectic group learning
Symplectic geometry and symplectic groups have
been successfully applied to many fields, including
the field of dynamics. For example, Wu et al.[24]

applied the symplectic geometry algorithm to the
implementation process of a Hamiltonian system,
which is an important type of dynamical system. Feng
and Qin[25] employed the symplectic algorithm in the
dynamics of a multibody system and successfully
solved the multibody system dynamics equation. Xu et
al.[26] proposed the numerical solution of a differential
strategy based on a Hamiltonian system and the
symplectic algorithm.

In their further study of LML, Li et al.[4, 27] and Fu[28]

chose a typical Lie group, i.e., the symplectic group,
to design a symplectic group classifier. They developed
three symplectic group classification methods for
different modes of data organization. For the first one,
they used the symplectic group matrix to construct
the singular value of a corresponding image in the
symplectic matrix space and then constructed the
feature subspace of the image in the symplectic
matrix space. Singular value decomposition is used
to decompose an image into a linear combination of
a base image with rank 1. They subsequently used
geodesic distance to calculate the projection length of
the identified samples in each feature subspace and
classified the samples into classes of characteristic
subspaces corresponding to the maximum projection
length. For the second one, the nearest feature line
method is extended to the matrix space, the feature
lines are constructed directly in the symplectic matrix
space by using two different face image matrices

of each category, and the ability of two samples
to characterize the respective categories is expanded.
For the last one, the nearest neighbor characteristic
line method is extended to the symplectic matrix
space. When the symplectic matrix is transformed,
the transformed symplectic matrix and several special
symplectic matrices can be compared by referring to the
transformation properties of the conformal symmetric
standard matrix. If the matrix of the other image to be
examined and the matrix obtained by the transcoding
of the source image have the same form as the
symplectic matrix, then the image to be examined and
the source image are consistent, i.e., the purpose of
recognition is achieved. This method can directly deal
with the original face image matrix and does not require
the matrix to be straightened into a high-dimension
vector. Therefore, the computational complexity of
high-dimensional vector extraction is avoided, and
the problem of face recognition is solved using the
symplectic group classifier.

The main recognition process of the symplectic group
classifier in the process of image classification is as
follows:

(1) In the training phase, perform singular value
decomposition on the i-th training sampleXj i of the j-th
class. Take the base image Aj i .m/ D um

ji .v
m
ji /

H .m D

1; 2; : : : ; k/ corresponding to the k largest singular
values. A set of base images obtained from training
samples Xj i constitute a discriminant function gj i .X/

of the j-th class:

g.X/ D

vuut kX
mD1

˛2
ji .m/ D

vuut kX
mD1

ˇ̌
hAj i .m/i

ˇ̌2
;

j D 1; 2; : : : ; C; i D 1; 2; : : : ; N;

where j̨ i .m/ D hAj i .m/;Xi is the projection value of
the m-th base image Aj i .m/ of the i-th training sample
Xj i to be recognized by the sample imageX for the j-th
class.

(2) The classifier recognition process is to input
the image X to be recognized into each discriminant
function gj i .X/ and to find the output of the
discriminant function. Put X in the corresponding
category of gj i .X/ of the maximum output. If each
class has multiple training samples, then calculate first
the maximum length for each class: hj D max

i
.gj i .X//,

.j D 1; 2; : : : ; C I i D 1; 2; : : : ; N /:

In this way, X can be classified into the c-th category.
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4.1.5 Lie group covering learning
The technique of covering is an important tool
for studying algebraic geometry, which includes
coverage in research-based transformations, model
maps, singularities, and so on. A single connected Lie
group is a differential manifold. The idea of covering
has been applied to many areas, such as data mining
and machine learning[29–35]. The concept of covering
in Lie groups can be introduced to deal with simply
connected Lie groups, which can be covered with a
differential manifold[33]. The transformation from a
simply connected Lie group to its covering group is
shown in Fig. 7.

For the simply connected Lie group G, a set of
simply connected Lie groups (such as G0

1 and G0
2 in the

graph) can be constructed to cover the unknown simply
connected Lie group G obtained after mapping the
samples in the same class. Then, space G comprising
the simply connected Lie group G0

1, G0
2; etc. is a cover

of the original simply connected Lie group G. As
the cover groups G0 and G are local isomorphic, the
properties of covering group G0 reflect the properties
of the original Lie group. The samples in the same
class belong to the same composite covering group.
If the distance between sample points is measured by
geodesic distance, then the distance of the different
composite coverage groups can be used to determine
the class of sample points.

In dealing with the multiple connectivity problem,
many papers have presented different methods[30–35]. In
Ref. [32], the exterior and interior of the domain were
conformally mapped to unit disks and circle domains
(unit disks with several inner disks removed), and a
shape distance between shape signatures was defined to
measure dissimilarities between shapes. In Ref. [30],
the neural network approach for simply connected
domains was extended to the case of multiconnected
domains, and the self-organizing map technique was

Fig. 7 Transformation from simply connected Lie group G
to its covering group G000, here G000 is the covering group of Lie
group G.

applied alternatively to the boundary and interior mesh
nodes. In the case of multiconnected domains, this
algorithm is applied to specify automatically the holes
in a fixed mesh.

Guan[31] proposed the single connected covering
algorithm of LML. The purpose of learning is to find
the optimal path from the initial state to the target
state. Each state is called a node, each arc represents
an operator, and one state can be directed to another
state. According to different problems, a specific weight
can be set for the operation operator. A path from the
initial state to the target state forms a cover. As the
two Lie groups have local isomorphism, the topological
properties of the original Lie group are maintained
(both have the same Lie algebra). Therefore, Guan[31]

proposed a simply connected covering algorithm for
LML by solving the covering map problem. However,
in many cases, the learning problem is not a one-to-
one correspondence. It has multiple input spaces and
output fields, as well as multiple inputs and outputs. To
address this issue, Guan[31] proposed a multiconnected
covering algorithm of LML by transforming the Lie
group problem into its coverage group and using the
isomorphic relation between the Lie group and the
covering group[31].

Chen et al.[33] presented a multiconnected Lie
group covering learning algorithm for image
classification. According to the connectivity of
Lie groups, they attempted to map the research objects
with different category characteristics into the space
of the multiconnected Lie group. On the basis of the
homotropy equivalence of attachments on each simply
connected Lie group, the study explored the equivalent
representation of the optimal path for each category by
covering ideas so as to present the category information
of images by employing its multivalued representation.

The multiconnected Lie group covering learning
algorithm for image classification is described as
Algorithm 5[33].

Yan and Li[34] further proposed path optimization
algorithms for covering learning. They discussed a
geodesic curve for the optimal mapping of roads
to minimize the correlation of roads from different
connected spaces and maximize the correlation of roads
within the same connected space.

Wu and Li[35] proposed a multi-Lie group kernel
covering learning algorithm. The algorithm uses the
algebraic and manifold structures of Lie groups. Data
are mapped to multiple Lie groups, and the homotopic
tracks can be covered according to the track relation
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Algorithm 5 Multiply Connected Lie Group Covering
Learning algorithm (MCLGCL)
Input: Sample set U D fu1; u2; : : : ; un 2 RDg, the number

of categories s.
Output: Covering center set Ci .i D 1; 2; : : : ; s/ of each

simply connected domain, and the geodesic set Ri .i D 1;

2; : : : ; s/ of each simply connected covering.
1: Construct point clouds based on each sample of sample set
U , and map these point clouds to SO.2/ group which realizes
the mapping from sample points to multiple connected Lie
group space, then get the sample set X D fx1; x2; : : : ; xn 2

RDg which is divided into S categories, namely X D

fX1; X2; : : : ; XS g.
2: Construct a simple connected cover in the sample set
X i .i D 1; 2; : : : ; s/. Take each sample xi

j
as the center

to construct simple connected cover and record the geodesic
radius r i

j
with each sample xi

j
as the center and the number

of samples covered N i
j

.
3: Calculate the evaluation f i

j
D N i

j
=r i

j
of each sample xi

j
,

take the best evaluation sample xi
j

as the coverage center,
add xi

j
to Ci , and add r i

j
to Ri .

4: Delete the samples covered by the selected center in X i ,
and then repeat the above steps to find the best evaluation
samples in the remaining samples ofX i until all the samples
in X i are covered. If all samples of all categories in X have
been covered by the covering groups, the algorithm ends.

of Lie group samples on the manifold. Thus, these
covering areas can present category information.

Wu and Li[35] also proposed an optimization
algorithm for the multi-Lie group covering learning
algorithm. Their previous multi-Lie group kernel
covering learning algorithm reduces the intersection of
roads and improves the correctness of classification for
multiconnected spaces. However, the performance of
the kernel learning algorithm depends on the choice of
kernel function. To address this issue, they introduced
Lie group homomorphic mapping into this algorithm.
Through this Lie group homomorphic mapping, the
original Lie group samples are mapped to the target
Lie group space. Thus, the degree of road association
is minimized in different single connected spaces in
the target Lie group space, and the degree of road
correlation in the same single connected space is
maximized to reduce road cross problems.

4.1.6 Lie group deep structure learning
Deep structure learning refers to a learning model that
involves multiple levels of nonlinear operations, such as
neural networks containing multiple hidden layers; this
learning model consists of many nonlinear layers that
are nonlinear and transformable functions[36, 37].

He and Li[38] pointed out that a complex problem
can be broken down into a number of simple questions.
Each simple problem corresponds to a layer, which
constitutes a deep structure. In a certain problem, the
deep structures of layers present specific relationships,
which are not mutually independent but involve
numerous nonlinear layers. Hong[39] proposed a face
recognition method based on singular value vector
features and proved that the singular value vector
exhibits the properties of stability, translation, rotation,
and mirror invariance. However, the singular value
of a face contains only a small amount of effective
information, thereby leading to a low face recognition
rate[40]. To effectively detect superficial structures, such
as protrusions and recesses in the face space, He and
Li[38] proposed a Lie group layered learning algorithm.
Firstly, the main features of the source image are
extracted by the singular value decomposition method,
and the deep structure based on the image eigenvalue
is constructed. Secondly, the training and test samples
are decomposed by singular value decomposition to
obtain the left and right orthogonal matrices. Thirdly,
each layer of this deep structure corresponds to the
Lie group generator of the training and test samples.
Learning from the top down, the first layer is learned
for the measured and training samples of the geodesic
distance d to retain the geodesic distance d < min for
the distance test samples. Finally, according to the n�1

layer, the test sample image is retained by finding the
n-th layer of training and test samples between the
geodesic distance dn. The result of the last layer is the
result of the required test, and the output of layer i is
the input sample of layer i C 1.

To maximize the use of the data feature to guide
the learning process, He and Li[38] put forward Lie
group deep structure heuristic learning by involving a
new selection criterion in Lie group layered learning.
The difference degree of each layer is calculated, and
the sample with the smallest difference is retained
and used as the output. Stratification can be layered
through the screening of layers to reduce the amount of
data to be tested and thereby improve the accuracy of
classification.

Yang et al.[41] proposed an algorithm for capturing the
Lie group manifold structure of visual impression. They
developed single-layer Lie group models and stacked
them to yield a deep architecture; they also solved the
learning problem of network weight by designing a Lie
group-based gradient descent algorithm.
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4.1.7 Lie group means learning
Mean calculation is one of the necessary steps in
many machine learning algorithms[42]. Given the great
application value of Lie groups, especially affine
groups, special orthogonal groups, and positive definite
symmetric groups, in solving problems, the mean
calculation of Lie groups has become an important
research topic.

In Ref. [43], Govindu defined the mean of Lie groups
with the Lie algebras of special orthogonal and special
Euclidean groups. The mean provides efficient and
accurate algorithms for fusing motion information. In
Refs. [44, 45], the linear representation of Lie group
elements in a tangent space was added to the manifold
to improve the per-formance of the mean shift algorithm
for nonlinear spaces. These existing algorithms are
used for sample clustering and for dealing with motion
segmentation in the field of computer vision. In Ref.
[46], Moakher presented precise definitions of the
properly invariant notions of mean rotation. The mean
rotation associated with the intrinsic metric in SO.3/
is the Riemannian center of mass of the given rotation
matrices; it shares many common features with the
geometric mean of positive numbers and the geometric
mean of positive Hermitian operators.

Gao and Li[47] proposed a simple classifier of
Lie groups that is based on the inner mean value,
i.e., the Internal Mean algorithm for the N-class Lie
Group Sample (IMfNcLGS), which is described as
Algorithm 6. As the inner mean is highly representative
of the commonality of a class of things, if an unknown

Algorithm 6 IMfNcLGS

Input: fxij g
j D1;:::;ni

iD1;:::;c
2 G, xij represents the j-th sample of

the i-th category, and ni represents the number of training
samples in the i-th category.

Output: �i ; i D 1; : : : ; c, i.e., the internal mean of each
category.
Procedure:
Do

i D 1

k D 0

� D xi1

Do
Del� D �=ni

Pni

j D1
log.��1xij /

� D exp.Del�/
k D k C 1

While kDel�k > � and k < Maxmum Iterations
�i D �

i D i C 1

While i 6 c

sample is closer to the inner mean of one category than
to those of other categories, then this unknown sample
is most likely to belong to that category. Therefore,
after the calculation of the geodesic distance of each
test sample to various inner mean values corresponding
to its category, the category of the sample is determined
as the category of the inner mean within the shortest
distance; that is

i� D arg
iD1;:::;C

min
log.��1

i x/
 ;

where C is the number of clusters, and �i is the
internal mean of each category. To calculate the inner
mean value, Gao et al.[42, 48] proposed two methods.
One method is based on iteration and is suitable for
a Lie group with a complex geometric structure; this
method is described as Algorithm 6. The other method
is used to solve the inner mean value by directly using
mathematical methods; it is written as

E� D exp

 
1

n

nX
iD1

log2xi

!
;

where xi is the i-th data point, and n is the number of
data points.

On the basis of the Lie mean algorithm, Gao et
al.[42, 48] proposed the first form of the Lie–Fisher
algorithm and the second form of the Lie–Fisher
algorithm. They deduced the Fisher projection direction
of the samples in the nonlinear space of the Lie group
on the basis of the Fisher projection theory and derived
the calculation formula. For the first form of the Lie–
Fisher algorithm, they mapped the sample points on
the Lie group to the corresponding Lie algebra space,
thus forming a new sample set. They then calculated
the mean of each new sample, the overall mean of the
new sample set, and the mean of the various classes.
The standard Fisher method was used to solve the
intraclass divergence and interclass divergence, and the
projection direction that can generate the Lie–Fisher
geodesic was obtained. The difference between the two
forms of the Lie–Fisher algorithm is as follows. The
process of Lie–Fisher discriminant analysis is to find
a classification geodesic on the Lie group manifold.
After all the samples are projected onto the geodesic
line, the set of projection points of the sample have
the maximum ratio between intraclass divergence and
interclass divergence. From the derivation of the two
forms of the Lie–Fisher algorithm and regardless of the
distribution characteristics of the Lie group samples, the
first form of the Lie–Fisher algorithm first maps all of
them via logarithm mapping, which involves mapping
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the Lie group samples to the Lie algebra linear space.
Then, it uses the linearity of the Lie algebra space to
calculate the mean and the direction of the projection.
The main difference between the second and first forms
of the Lie–Fisher algorithm is that the calculation of the
mean is not carried out in the Lie algebra space but in
the nonlinear space of the Lie group.

In Refs. [44, 45], the linear representation of Lie
group elements in the tangent space was added to the
manifold to improve the performance of the mean shift
algorithm of a nonlinear space. The algorithms are used
for sample clustering and for dealing with the motion
segmentation in the field of computer vision.

4.1.8 Lie group kernel learning
The kernel trick is a useful computational theory
that was originally used in SVM[49]. It is used to
map nonlinear data from low dimensions into high
dimensions in an intelligent manner[50]. With the
kernel trick, the data become linearly separable. It
is widely used in existing linear algorithms, such
as the kernel-based principal component analysis
algorithm[49], kernel-based independent component
analysis algorithm[51], and Kernel Fisher Discriminant
Analysis (KFDA) algorithm[52].

However, the traditional vector-based kernel function
cannot be used for samples of a Lie group matrix in
LML. To address this issue, Gao et al.[42, 47] proposed
the Kernel-based Fisher Linear Discriminant Analysis
(KLieDA) algorithm, which is rooted in the Lie group
kernel function. They designed a number of new kernel
functions, such as the Lie group polynomial kernel,
Radial Basis Function (RBF) kernel of the Lie group,
Lie group linear kernel, and Lie group perceptron kernel
for Lie group kernel machine learning algorithms. In
KLieDA, nonlinearly separable samples are mapped to
a high-dimensional space so that they become linearly
separable. During the classification period, the Lie
group mean accelerates the classification discrimination
of unknown samples. Relative to the traditional Kernel
Fisher Discriminant Analysis (KFDA) algorithm,
KLieDA has two innovations in maintaining the same
time and space complexity. Firstly, it uses the kernel
functions of matrix Lie groups for handling matrix
samples. Secondly, it calculates the mean of the original
sample and the projection of the mean in the F space.
When an unknown sample is mapped to the F space,
KLieDA only requires the distance from each mean
point; hence, the computational complexity is reduced.

A two-class KLieDA algorithm is described as
Algorithm 7. In this algorithm, the log-Euclidean mean
is the global mean. From a geometric viewpoint, the
log-Euclidean mean calculates the geometrical average,
which is calculated when all the group elements
are mapped to the Lie algebraic linear space. The
calculation of the log-Euclidean mean is performed
once, and the time complexity is O.n/.

To efficiently deal with the complex nonlinear
variations of face images, Xu et al.[53] proposed a Lie
group kernel to address facial analysis problems. In
this algorithm, a Linear Dynamic Model (LDM)-based
face representation method captures the appearance and
spatial information of a face image. Then, the derived
LDM can be parameterized as a specially structured
upper triangular matrix. The similarity between LDMs
for any two face images can be characterized by a Lie
group kernel.

4.1.9 Tensor learning
Tensor is a term in multiple linear algebras. In practical
applications, many types of data are high-dimensional
and involve multiple inputs while most traditional
machine learning algorithms process vectorized data.

Algorithm 7 Two-class Lie group KLieDA classification
algorithm

Input: fxij g
j D1;:::;ni

iD1;2
2 G, xij represents the j-th sample of

the i-th category, and ni represents the number of training
samples in the i-th category.

Output: Category attribution for each unknown sample.
Procedure:
(1) For each Lie group sample xij , find the means
�i .i D 1; 2/ of the two classes of Lie group samples
use Algorithm 6 for the general Lie group, and find the
log-Euclidean mean of the covariance sample using �i D

exp
�

1
ni

Pni

j D1
log2xij

�
, i D 1; 2.

(2) Choose the specific Lie group kernel functions, and then
obtain Mi D 1=ni

Pni

kD1
k.xj ; x

i
k
/ of two types Lie group

samples. Then, set M D .M1 �M2/.M1 �M2/
T.

(3) Calculate N D
P

iD1;2Ki .l � 1ni
/KT

i
, where Ki is an

n � ni matrix and .Ki /nm D K.Xn; X
i
m/.

(4) Calculate ˛ : ˛ D N�1.M1 �M2/

(5) Calculate the projection of the two classes of means �1

and �2 on the vector v in space F: Q�1 D .v � �.�1// DPc
iD1

Pni

j D1
˛ik.xij ; �1/, Q�2 D .v � �.�2// D

Pc
iD1Pni

j D1
˛ik.xij ; �2/:

(6) For unknown x, project it on the vector v in space F W Qx D

.v � �.x//D
Pc

iD1

Pni

j D1
˛ik.xij ; x/. Then, the category

attribution is obtained by i� D arg min
iD1;2

j Qx � Q�i j
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If these tensor data are forced to be vectorized,
then the “curse of dimensionality” and the “small
sample size problem” occur, and the intrinsic structure
of the data is destroyed. Therefore, the novel
machine learning methods based on multiple linear
algebras (tensors) have attracted much interest. Tensor
methods provide an effective approach to dealing
with multiple input data[54–59]. Existing tensor methods
have been applied to pattern recognition, web data
mining, textual analysis, signal processing, and so
on. Popular methods include the Generalized Low-
Rank Approximation Matrix (GLRAM)[56], Higher
Order Orthogonal Iteration (HOOI)[54], 2DPCA[55],
CubeSVD[58], Tensor Subspace Analysis (TSA)[59], and
neighborhood-embedded tensor learning.

Li[60] presented a data reduction algorithm that is
based on tensor fields. This method deals with the
reduction of data in tensor fields from the perspective
of affine transformation of tensor fields based on
the tensor decomposition technology Higher-Order
Singular Value Decomposition (HOSVD). An iterative
technique is adopted to solve the optimal problem and
thereby obtain the optimal value. As tensor data are
not confined to a single tensor and tensor order is not
confined to a second or third order, the algorithm is
more universal than the common tensor algorithms,
such as GLRAM and HOOI. However, such property
makes the algorithm increasingly complex. Li[60] also
introduced tensor fields and tensor bundle theory into
machine learning and discussed the basic concepts of
tensor clusters and tensor fields on manifolds.

To deal with noisy and corrupted data, Lu[61]

proposed a tensor low-rank subspace dictionary
learning algorithm. They jointly used low-rank
representation theory and sparse representation theory
and considered the structures and features of data.
The proposed model is robust and capable of handling
abnormal samples and is capable of improving the
power of representation and classification. Lu[61]

further proposed a novel semisupervised Support
Tensor Machine (STM). This proposed method can
achieve the highly efficient optimization of STMs, and
it can incorporate the transudative method to solve
the problem of semisupervised classification. This
method thus improves the power of classification and
minimizes the time complexity.

Image retagging aims to improve the tag quality of
social images by completing missing tags, rectifying
noise-corrupted tags, and assigning new high-quality

tags. Tang et al.[62] proposed the social anchor-unit
graph regularized tensor completion method. They
constructed an anchor-unit graph across multiple
domains instead of using the traditional anchor graph
in a single domain. The method can significantly
accelerate large-scale graph-based learning by
exploring only a small number of anchor points.
Then, a tensor completion method based on social
anchor-unit graph regularization is implemented
to refine the tags of anchor images. Tags are finally
efficiently assigned to non-anchor images by leveraging
the relationship between the non-anchor units and the
anchor units.

4.1.10 Frame bundle connection learning
Connection is a core concept that is widely used
in modern geometry. By means of connection, the
elements between two points in a geometric entity can
be compared with each other.

The manifold learning method based on tangent
bundles usually constructs a single frame for data
processing[4]. The original algorithm might lose its
efficacy for dealing with the multimanifold data. To
address this issue, Li et al.[63] proposed a connection
learning algorithm that is based on frame bundles, that
is, the multimanifold data processing model. According
to the structure of a manifold, the problem can be easily
solved using a connection operator. The frame bundle
is introduced into the connection learning framework
by constructing coordinate frames for manifolds and
combining them to form the coordinate coverage. To
decrease the influence of noise on manifold learning,
Li et al.[63] added a regularization item to a new method
called the longitudinal space connection learning model
based on frame bundles. The method separates the
noise from the original sample data by regarding it as
a new type of manifold data structure and handling
it accordingly. By analyzing the longitudinal space
connection learning model based on frame bundles, Li
et al.[63] found that the performance of the algorithm
is improved by sacrificing the computation time. To
address this issue, they proposed a horizontal space
connection learning model that is based on frame
bundles by employing the horizontal space field of a
tangent space to the algorithm. As the horizontal space
field is the tangent subspace with m dimensions while
the longitudinal space has m2, the time complexity can
be reduced by reducing the dimension of the original
dataset.
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Li et al.[63] proposed an image segmentation
algorithm that is based on invariant image features by
applying manifold affine connection theory. In this
algorithm, an image is divided into small superpixel
areas by combining local distance mapping and the
watershed algorithm. This division is performed in
a tensor space on the Riemannian manifold. The
algorithm then finds the contact factor of the inside
and outside regions between different tangent spaces
by changing the size of the closed area determined
by the level set function. The final target area is then
obtained. The specific application to medical images
shows that the proposed algorithm is promising.

4.1.11 Finsler geometric learning
The geometry with Finsler metrics is called Finsler
geometry. Finsler metrics are simply Riemannian
metrics without quadratic restrictions; it was first
introduced by Riemann in 1854[64].

Chen et al.[65] proposed the Finsler Metric-based
KNN (FMKNN) algorithm. As the KNN algorithm is
an inert learning method, it has many shortcomings,
such as low classification speed, influence of the
weight of attributes and other factors on accuracy,
and strong dependence on the capacity of the sample
library. To address this issue, Chen et al.[65] adopted
a class of computable Finsler metrics, i.e., .˛; ˇ/
metrics in the KNN algorithm, which play a crucial
role in Finsler geometry. Experimental results show
that the classification performance of the algorithm
can be improved after introducing the Finsler metric.
FMKNN has a number of shortcomings. For example,
the projection vector of LDA is used when choosing
the Finsler metric function. Hence, the FMKNN
algorithm can only achieve satisfactory results when
used on datasets with a good LDA effect in the
calculation of the Finsler metric. To address this
issue, Chen et al.[65] introduced the Finsler metric
and proposed a geometric learning algorithm that is
based on Finsler metrics by using the class label
of samples. The algorithm is a supervised learning
algorithm that can handle multimanifold structured
data by reducing the difference within classes and
increasing the difference between classes by using the
label information of samples. Specifically, a dataset
is divided according to the classification information
of the training data. Assuming that each partition
is a single manifold structure, the existing classical
manifold learning algorithms can be used to reduce

dimensionality. Then, the Finsler distance between any
two centers is calculated to form the distance matrix,
and the low-dimensional representation of the center
point is obtained by applying the Multidimensional
Scaling (MDS) algorithm to the distance matrix.
Finally, the low-dimensional representation of each
partition set and the low-dimensional representation of
the center points are rotated and translated, and the
geometric structure relation between the partitioned
datasets is maintained. In this way, the low-dimensional
representation of the whole dataset is obtained.

To solve the problems with the k-means algorithm,
including the optimization effect of similarity measures
and criterion functions being insufficient and the
analysis performance of multidimensional manifold
data being ineffective, Xu et al.[64] proposed a k-
means algorithm that is based on Finsler geometry
by introducing a Finsler metric. Experimental results
show the feasibility and effectiveness of the proposed
algorithm.

4.1.12 Homology boundary learning
Boundary division can be split into data partition and
image division[66]. The main boundary learning
algorithms are the tangent vector quantization
algorithm[67] and Canny algorithm[68].

Xian and Li[66] analyzed homology theory and
pointed out that it is a method for edge division. On
the basis of homology theory, they proposed the
homology edge division algorithm. According
to the relation of the homotopy equivalence of
topological spaces, these spaces can be classified
with homotopy (same topological space with the
same homotopy type, different types of topological
spaces with different homotopy types, etc.). Homotopy
mapping can be divided into equivalence classes,
and each equivalence class is called a homotopy
class. In classification, the classification object
can be described by judging whether the space is
homeomorphic. As the homeomorphism space is
homotopy equivalent, the homotopy equivalence
classification of topological spaces is a generalization
of topological classification. In their classification
algorithm, the classification object is described by
judging whether the space is homeomorphic. The
algorithm then judges whether the two connected edges
are homeomorphic according to the properties of the
homology groups. If homology groups of the same
dimensions in a subdivision space are homeomorphic,
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then they are isomorphic. The homology group is
subsequently computed to determine whether the two
subdivision spaces can be homeomorphic. Finally,
whether the relationship between the two-dimensional
chains is equivalent is determined according to whether
the homological relation between q-dimensional chains
is an equivalent relation.

At present, a number of existing margin learning
algorithms cannot effectively retain the feature
structure invariability of data when solving the edge
partition problem. To address this issue, Zhao and
Li[69] presented the neighborhood homology learning
algorithm that is based on monomorphic division
theory in homology algebra. They presented a new
method for constructing the neighborhood complex
of a graph and designed a criterion for judging the
similarity between two given graphs.

4.2 Unsupervised Lie group machine learning

Fiber bundle theory is an important part of the study of
geometry[4, 70]. It describes the relationship between the
global and local properties of a differential geometry
object. A fiber bundle is a generalized product of
a manifold. In sum, let E and M be two smooth
manifolds. The mapping of E to M is smooth, the
affine space at each point on M is composed of an
n-dimensional vector set, and .E;M/ is the vector
bundle on manifold M . Intuitively, vector bundle E is
the result of the product manifold and fiber bonding.
Adhesion requires the linear relationship on the fiber to
remain unchanged. Obtaining the intrinsic information
or knowledge hidden in data, such data should be
subject to in-depth analysis. The data objects that
are actually processed can be grouped or categorized
according to their similarities. After such processing,
the data objects comprise the structure of the class or
cluster. This cluster structure is consistent with the fiber
bundle structure. Different types of high-dimensional
data in clustering analysis may correspond to different
subspaces. In fiber bundle language, every subspace
generated by higher-dimensional clustering is a fiber,
and the set of all subspaces is a bundle space.

Fiber bundle as a mathematical tool has been
successfully applied to computer vision, pattern
recognition, neural networks, and cybernetics. In
computer vision, Sochen et al.[71] used fiber bundles to
establish a framework for nonlinear diffusion. In neural
networks, Pearson[72] developed a fiber bundle for
feedforward neural network representation. In pattern

recognition, Chao and Kim[73] established a fiber
bundle model of surface shapes and realized the rapid
generation of surface shapes.

Most existing manifold learning algorithms are
based on small local neighborhoods, and obtaining
their global coordinates is sometimes unrealistic. As
many low-dimensional embedded manifold dimensions
sampled from high-dimensional data are determined
by several hidden variables, the dimensions of a
dataset can be reduced if the curl manifold in the
observing space can be effectively expanded or the
main internal hidden structures can be found. Therefore,
Zhou and Li[74] proposed a Lie group fiber bundle
learning model. The local properties of the manifold
are approximated by the tangent space of each point
on the manifold and each tangent space composed of
the tangent bundle. Hence, the fiber bundle can be
used as a tool for the further analytical processing
of the manifold structure and its tangent bundle.
The vector field dimensionality reduction algorithm
based on Tangent Local Principal Direction (VTLPD)
(i.e., tangent bundle field reduction) is described as
Algorithm 8.

Gao[75] proposed the diffusion geometry of fiber
bundles, that is, Horizontal Diffusion Map (HDM)
algorithm. This algorithm is a graph-based framework
for analyzing complex datasets with nonscalar or
functional pairwise relations, particularly datasets in
which the similarity scores between samples can
be obtained from correspondence relations between
sophisticated individual structures carried within each
sample. In this algorithm, a data object is viewed
as being approximately sampled from a smooth base
manifold, and data points are viewed as samples on
the fibers of a fiber bundle over the base manifold.

Algorithm 8 VTLPD
Input: sample set X , dimension d of the low-dimensional

embedded space;
Step 1 Find the t centers of X with the k-mean; divide X into t
blocks, each expressed as Xi D Œxi1; : : : ; xik �;
Step 2 Local principal component analysis. Calculate the
covariance matrix .Xi � xie

T/T.Xi � xie
T/ to obtain the

first principal eigenvector �i . The first principal component is
zi D .�T

i
�X/T;

Step 3 Find the coordinates zi D zi �ctri of the first principal
component vector z1 on each block, where ctri is the center of
each cluster, and the matrix Z D Œz1; z2; : : : ; zt �

Step 4 Call manifold learning algorithm dimension reduction
vector field Z.
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The data points on the same data object are assumed
to come from the same fiber. A dataset with pairwise
structural correspondences is modeled as a fiber
bundle equipped with a connection. Computing the
pairwise similarity between data objects typically
requires optimizing a certain function over the space
of admissible pairwise structural correspondences. The
optimal correspondence is then used to assign a
distance or similarity score between the two data
objects under comparison. The HDM framework aims
to mine this hidden information from pairwise structural
correspondences. The HDM algorithm provides a
two-level data representation. As the second-level
embedding for data objects leverages the rich structural
information at the level of data points, it is expected
to be semantically more meaningful than the spectral
representation obtained from standard diffusion maps,
which cannot take advantage of individual structural
information.

4.3 Category representation learning

In 1991, Asperti and Longo[76] proposed the
relation between category theory and computer
science. Morphism, as a symbol of category theory,
generalizes a function generally and provides a
unified explanation for all aspects of programming
theory. This categorization of mathematical forms is
suitable for many aspects of computer science. In 2018,
Muhiuddin[77] pointed out that category theory now
occupies a central position not only in contemporary
mathematics but also in theoretical computer science
and even in mathematical physics. It can roughly
be described as a general mathematical theory of
structures and systems of structures. It is, at the
very least, a very powerful language or conceptual
framework that allows us to see, among other things,
how structures of different kinds are related to one
another as well as the universal components of a
family of structures of a given kind. A category is an
abstract structure: a collection of objects, together
with a collection of the morphisms between them. In
2010, Zhou and Li[74] proved that machine learning
systems can be represented by categories and that
various learning algorithms can be represented in
terms of category theory. For example, decision tree
learning and the Bayes learning algorithm can be
defined as machine learning categories. They also
adopted functor category theory to study the expression
and a mapping mechanism to study the dimensionality
reduction principle. In the data reduction category, they

obtained the relation between image data objects and
the objects in the low-dimensional space. Converting
high-dimensional data objects into relatively tractable
low-dimensional data objects can reduce the complexity
of morphism between various data objects.

A linear dimensionality reduction algorithm for the
dimensionality reduction of data is shown in Fig. 8.

In Fig. 8, primitive high-dimensional data object X
is the input value and low-dimensional coordinate data
object Y is the output value.

(1) Construct the associated objects M: Morphism
g is the process of constructing associated objects, g W

X ! M:

(2) Compute the eigenvalue Z and eigenvector W
of the associated objects M;h W M !Z; ' W Z!W;

and obtain the compound operation law for the data
reduction category 'hW M!W:

(3) By analyzing the characteristics and relations of
known objects in the data-reduced category C , the data
object Y of low-dimensional coordinates is obtained. A
custom operator is needed to determine the intermediate
transition object T , satisfying �W T!Y .

Xu et al.[78] proposed several basic concepts of the
category representation of machine learning methods
on the basis of category theory. By analyzing the
decision tree, SVM, principal component analysis,
and deep neural network methods with category
representation, they presented the corresponding
category representation for each algorithm. They also
put forward the corresponding theoretical proof and
feasibility analysis and confirmed the feasibility of
adopting the category representation method by using
simulation experiments.

4.4 Semisupervised Lie group machine learning

The use of a large number of unlabeled examples
not only leads to the construction of a reliable
classifier but also reduces the manpower and material

Fig. 8 Linear dimensionality reduction algorithm for the
dimensionality reduction of data.
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resources required, thereby improving the performance
of semisupervised machine learning; hence, this
approach has attracted considerable research interest in
theory and practice and is one of the most important
topics in current machine learning research[38, 61, 79–81].

4.4.1 Lie group deep structure semisupervised
learning algorithm

He and Li[38, 81] proposed the Lie group deep structure
semisupervised learning algorithm. In this algorithm,
the deep structure of a process is constructed to break
down a complex problem into a number of simple
questions and to establish an effective link between each
simple question. Thus, with the deep structure analysis
of complex data, each layer corresponds to a complex
problem decomposition of a simple problem, and each
layer has a valid index. In the output layer, the deep
structures of the hidden layer and auxiliary layer are
embedded in the supervised learning algorithm that is
based on a semisupervised Lie group. The experimental
results reveal the effect of this algorithm.

4.4.2 Semisupervised learning algorithm based on
Lie group

Xu[80] put forward a series of semisupervised
algorithms that are based on LML. Firstly, the
author proposed a semisupervised learning algorithm
that is based on a linear Lie group. This semisupervised
learning model is based on a Lie group’s algebraic
and geometric structures. It can find the special
structure of a linear Lie group, target the special
structure of the linear Lie group, and identify its
corresponding infinitesimal left and right operator
generation elements. The latter step is equivalent to
finding the base vector of the Lie algebra corresponding
to the Lie group.

Given a small amount of marked data, the model
can judge whether the other elements of the learning
system can be represented by the operator generator
of the linear Lie group according to the closure of
the group algorithm and the law of the joint. The
algorithm mainly considers the Lie group relationship
ŒX; Y � between learning object X and learning object
Y . It also makes full use of the algebraic group structure
and the geometric manifold structure of the Lie group in
considering the unlabeled example from the perspective
of the operator generating element and the translational
dimension of the manifold. Its accuracy is higher than
that of a single algorithm with algebraic or geometric
methods.

Further, Xu[80] proposed a semisupervised learning
algorithm based on parameter Lie groups. In this
algorithm, the sample data are mapped to the parameter
Lie group according to the representation of parameters.
This algorithm performs well due to the advantage
of parameter Lie group learning and semisupervised
learning.

The Semisupervised Learning Algorithm based on
Parameter Lie Groups (SSLA-PLG) is described as
Algorithm 9.

Algorithm 9 SSLA-PLG algorithm flow
Algorithm function: Use Lie group method for semisupervised
learning

Input: Sample set X D .x1; x2; : : : ; xl ; xlC1; : : : ; xlCk 2

RD/,
where x1; x2; : : : ; xl is the labelled data, i.e., there
exits the set L D f.x1; y1/; .x2; y2/; : : : ; .xl ; yl /g, where
xlC1; xlC2; : : : ; xlCk are unlabeled data (l � k).

Output: Label y of data x
Step 1 According to the input sample set X D .x1; x2; : : : ;

xl ; xlC1; : : : ; xlCk 2RD/, represent it with a parameter
separately. Determine the corresponding learning system
isomorphism (state) parameter Lie group and make full use
of the marked data, representing the object to be learned with
the parameters of Lie group. The object is required to meet the
structure of the parameter Lie group.
Step 2 According to the algebraic structure of the parameter
Lie group, the group method is used for marking. Based on
the marked data as the base point, the definition of the element
generated by the parameter Lie group is

X� D lim
˛�!0

g.0; : : : ; ˛�; : : : ; 0/ � g.0; : : : ; 0/

i˛�

which calculates the generated meta. Determine other
unlabeled data according to the group operation rule, and if
the unlabeled data can be represented by the matrix generator,
the category is marked.
Step 3 According to the geometric structure of the parameter
Lie group, the analytic manifold is used for marking. Generate
the field Ui .1 < i < l/ of all labelled sample points xi .
Analyze the neighborhood information Ui .1 < i < l/ of each
labelled sample point xi . Select each constant inner product
gi;j .xi / under the function of self-isomorphism on the unit
point in the sample set. Calculate the value of gi;j .xi /. Put
the value of gi;j .xi / into the following formula:

d.xi ; xj / D

vuut nX
i;j D1

gi;j .xi /.xii � xji /.xij � xjj /:

Calculate the distance between xi and xj in Ui .1 < i < l/.
Determine the smallest value d of each point xi corresponding
to xj , and mark xj as the marker that is the same as xi .
Step 4 Check whether the data are marked; if not, return to
Step 2 and repeat.
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4.4.3 Spectral estimation learning
As a classical mathematical analysis and algebraic
method, the spectral analysis method already has a
complete theoretical foundation. It has a wide range of
applications in machine learning. A number of spectral
estimation clustering methods based on similarity
matrix eigenvalue decomposition have also been
proposed. The spectral method defines a relation matrix
describing the similarity between pairs of data points
and calculates their eigenvalues and eigenvectors. Then,
suitable feature vectors are selected to project the low-
dimensional embedding of data. The key of the spectral
estimation method is to choose the proper kernel
function as the criterion for choosing the similarity
matrix.

The learning algorithm of spectral manifolds is
aimed at discovering a low-dimensional representation
in a high-dimensional vector space. Hence, it has
attracted great attention in recent years. Dong[82]

and Yang et al.[83] studied the spectrum learning
algorithm and proposed a series of algorithms on
spectral estimation learning. Firstly, they proposed
a Manifold Dimensionality Reduction algorithm with
Geodesic distance as the proximity measurement
(MDRG). On the basis of the spectrum technique,
they extended the MDRG method and proposed a
synchronous spectrum estimation learning algorithm.
The learning problem of the image feature manifold
can be given as a mathematical model by defining
the criterion function, i.e., the optimal division among
the subclasses of sample points is found by solving
the optimal solution of the criterion function. To
take advantage of local information, they proposed
a spectral estimation learning algorithm for the
topological invariance of image feature manifolds. In
this method, local curves are used to preserve the
nonlinear structure characteristics of manifolds. The
local tangent space is selected to reconstruct the sample
points, the local reconstruction error is minimized,
and the reconstruction error does not increase in the
global adjustment process. Thus, only the eigenvectors
corresponding to the maximal two eigenvalues of the
Laplacian operator in the manifold are used as features
according to the spectral characteristics of the manifold.
Moreover, pattern recognition and data dimension
reduction can be achieved.

Huang and Li[84] proposed the Isospectral Manifold
Learning Algorithm (IMLA). Isospectral manifold

learning is one of the main contents of spectrum
methods. Isospectral manifold learning stems from
the conclusion that if the spectra of manifolds are
the same, so are their internal structures. However,
the difficult task in the calculation of spectra is
the selection of the optimal neighborhood size and
construction of reasonable neighboring weights. To
address this issue, they proposed the isospectral
manifold learning algorithm. By modifying directly
the sparse reconstruction weight, the IMLA considers
the within-neighboring information and between-
neighboring information. This method preserves the
sparse reconstructive relationship and sufficiently
utilizes the discriminant information.

Spectral manifold learning algorithms have
undergone considerable development. However, their
computational complexity remains high. To address
this issue, Huang and Li[85] proposed a Fast learning
algorithm of Spectral Manifold (FSM). FSM applies
two technologies to reduce the high computational
complexity. Firstly, it selects p anchor points from
n data points through random selection or k-means
selection and represents the data points as the linear
combinations of these anchor points. Secondly, linear
manifold learning can be used to compute the low-
dimensional parameterizations of high-dimensional
data effectively and thereby reduce the computational
complexity of the optimal eigenvalue.

Ren et al.[86] investigated the possibility of applying
spectral methods to recover the parameters of
supervised latent Dirichlet allocation. Supervised
topic models simultaneously model the latent topic
structure of large collections of documents and the
response variable associated with each document.
Existing inference methods are based on variational
approximation or Monte Carlo sampling, which
often suffers from the local minimum defect. To
address this issue, they presented a two-stage
spectral method, which recovers the parameters of
LDA followed by a power update to recover the
regression model parameters. They further presented a
single-phase spectral algorithm to jointly recover the
topic distribution matrix and regression weights.
Experimental results demonstrate the practical
effectiveness of the spectral algorithms.

4.4.4 Semisupervised tensor learning
In the fields of machine learning, pattern recognition,
image processing, and computer vision, data are usually
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represented by tensors. The STM is an improved model
based on SVM[49, 87]. It inherits the advantages of the
solid theory of SVM in wide application fields while
maintaining the original spatial structure of data. The
STM can effectively alleviate the overfitting problem
caused by small-scale datasets and avoid the curse
of dimensionality caused by high-dimensional data.
However, the traditional STM is a supervised learning
model that cannot deal with unlabeled samples. To
address this issue, a large number of researchers have
made great improvements.

Fei et al.[88] proposed a Transductive Support Tensor
Machine (TSTM) algorithm to train effective classifiers
by using a large amount of unlabeled data and labeled
data. In the TSTM, the image frame, audio, and text in
video shots as data points are represented by a third-
order tensor. The algorithm also considers the manifold
structure of the tensor space from the contextual
temporal associated cooccurring multimodal media
data. The TSTM inherently preserves the intrinsic
structure of the submanifold where tensor shots are
sampled. It can also map out-of-sample data points
directly. However, the TSTM needs to resort to iterative
techniques, which are time consuming. Hence, Liu
et al.[89] proposed a low-rank approximation-based
TSTM, in which the tensor rank-one decomposition
is used to compute the inner product of the tensors.
The Concave-Convex Procedure-based (CCCP)-TSTM
provides significant performance gains in terms of test
accuracy and training speed.

Hu et al.[90] proposed a semisupervised tensor-based
graph embedding learning algorithm. In this algorithm,
two graphs are designed to characterize the intrinsic
local geometrical structure of the tensor samples of
the object and the background, and two propositions
are proved for finding the transformation matrices,
which are used to map the original tensor samples
to the tensor-based graph embedding space. Through
a transfer learning-based semisupervised strategy for
iteratively adjusting the embedding space, extensive
discriminant information in the embedding space is
encoded. They applied this algorithm to visual tracking.
Experimental results demonstrate the effectiveness of
the proposed tracking algorithm.

5 Application of Lie Group Machine
Learning to Image Processing

The human actions of understanding and analyzing
have received much research attention for multiple

areas of applications, including human–robot
interaction, surveillance, daily living, and video-based
monitoring[91]. Lie groups have played an important
role due to their properties. Vemulapalli et al.[92]

proposed human action recognition by representing
3D human skeletons as points in a Lie group. In this
algorithm, a skeletal representation is created in the
Lie group SE.3/ � SE.3/ � � � � � SE.3/, which is a
curved manifold, on the basis of the observation that
3D rigid body motions are members of the space. In
this way, human actions can be modeled as curves in
a Lie group, and these action curves are mapped as a
vector space. Public software packages for Lie group
manifolds[92] are widely available, and they are capable
of implementing 3D skeletal representations of people.
Liu et al.[93] proposed a 3D-based deep convolutional
neural network for action recognition with a depth
sequence algorithm. In this method, a 3D-based deep
convolutional neural network is constructed, and a
joint-based feature vector (JointVector) is computed
for each sequence by fusing the SVM classification
results and the JointVector results. This method can
learn feature representation, which is time invariant
and viewpoint invariant, from depth sequences. Cai et
al.[94] presented attribute mining for scalable 3D human
action recognition. The scalable skeletal human action
recognition from 3D videos can identify novel actions
without rebuilding in most applications. A potential
solution is to identify the intrinsic attributes, which are
semantic-aware and shared among known and novel
actions. Zhang et al.[95] presented a combination of
depth-skeleton feature with sparse coding for action
recognition. RGB-D human action recognition is an
active research topic in computer vision and robotics.
They also proposed an action recognition method
that combines gradient information and sparse coding.
Núñez et al.[96] presented convolutional neural networks
and long short-term memory for skeleton-based human
activity and hand gesture recognition. Demisse et al.[97]

proposed a deformation-based representation for
analyzing expressions from 3D faces. In their approach,
a point cloud of a 3D face is decomposed into an
ordered deformable set of curves that start from a fixed
point. Subsequently, a mapping function is defined
to identify the set of curves with an element of a
high-dimensional matrix Lie group, specifically the
direct product of SE.3/.

Scientists have made great efforts in developing
advanced Lie Group Classification (LGC) approaches
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for improving image classification accuracy. Von
Tycowicz et al.[98] proposed an efficient Riemannian
statistical shape model using differential coordinates
and applied it to the classification of data from the
Osteoarthritis Initiative. In this method, a differential
representation is introduced to put the local geometric
variability into focus. The differential coordinates are
modeled as elements of a Lie group, thereby endowing
the shape space with a non-Euclidean structure. A
key advantage of this method is that statistics in a
manifold shape space become numerically tractable,
thus improving performance by several orders of
magnitude over other state-of-the-art methods. Von
Tycowicz et al.[98] presented a new approach toward
the use of various types of geometry as artificial
intelligence tools in robot control: the idea of minimum
operation transformations. This approach is a new
branch of soft computing for the adaptive control
of a special class of nonlinear coupled multivariable
systems. Its uniform structures are obtained from
certain abstract geometry-related Lie groups. The
advantages are as follows: a priori known and reduced
structure size; increased lucidity; and simple, short,
and explicit algebraic procedure instead of intricate
learning. Hayat et al.[99] presented an RGB-D-based
image set classification for robust face recognition from
Kinect data. In this method, the raw Kinect data are
used for pose estimation and automatic cropping of
the face region. On the basis of the estimated poses,
the face images of a set are divided into multiple
image subsets. An efficient block-based covariance
matrix representation is applied to model images in
an image subset on a Lie group. Then, SVM models
are separately learned for each image subset on a
Lie group, and a fusion strategy for classification
is introduced to combine the results from all image
subsets. It incurs low computational cost and achieves
a high identification rate. Yin et al.[100] presented a
locally adaptive sparse representation on Riemannian
manifolds to achieve a robust classification algorithm.
In this method, the log-Euclidean kernel is used to
embed Symmetric Positive Definite (SPD) matrices
into a reproducing kernel Hilbert space, where the
meaningful linear reconstruction of SPD matrices can
be implemented. The SPD matrix manifold, which is
a Riemannian manifold, belongs to a Lie group. By
exploiting the geodesic distance between SPD matrices,
the proposed method can effectively characterize the

intrinsic local Riemannian geometry within data so
as to effectively uncover the underlying submanifold
structure. As SPD matrix manifolds, which are
Riemannian manifolds, belong to Lie groups, they
cripple many methods that rely on linear reconstruction.
Wang et al.[101] provided a video feature descriptor
that combines motion and appearance cues with length-
invariant characteristics. In this method, one video
feature descriptor that combines motion and appearance
cues is designed. This feature descriptor is of length-
invariant characteristics and is adopted to represent
a video sequence for an abnormal event detection
problem. Experiments on benchmark datasets validate
the advantages of this proposed feature descriptor.

Image registration is an important problem in image
processing, and it has attracted much attention. Dong
et al.[102] presented LieTrICP: an improvement of
the trimmed iterative closest point algorithm. This
algorithm combines the trimmed iterative closest point
algorithm and Lie group representation for registration
between two-point sets. Given two low overlapped
point sets, the method uses Lie group representation to
estimate the geometric transformation from the selected
point pairs. The experimental results demonstrate that
LieTrICP is more accurate and robust than several other
algorithms in a variety of situations, including missing
points, perturbations, and outliers. Ying et al.[103]

presented a nonlinear 2D shape registration method
via thin-plate spline and Lie group representation
algorithm. This method comprises two steps. In the
affine registration step, the Lie group parameterization
method is applied to globally align two shapes to
assume a global similarity. In the locally nonlinear
deformation step, the thin-plate spline approach is
used. By alternatively iterating these two steps, the
proposed method not only preserves the advantages of
spline methods but also overcomes the overmatching
phenomenon in shape registration.

6 Neuromorphic Synergy Learning

Neuromorphic synergy learning is an interdisciplinary
frontier of cognitive science, artificial intelligence,
brain-like intelligence, machine learning, robotics,
pattern recognition, and image processing. Moreover,
it is a key technology for big data, the internet of things,
and cloud computing[4].

Related research on human-inspired planning has
been determined as an important national strategic
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development direction in many countries, such as the
USA, Japan, the European Union, and China. Examples
of related activities include the USA’s brain project
called the brain activity map project or the Brain
Activity Map project (BAM), the European Union’s
Human Brain Project or Human Brain Project (HBP)
for the European Commission’s future and emerging
technologies, China’s brain project, and so on.

Currently, brain-like intelligence is the representative
of 21st century frontier technology, and it plays an
important role in human brain science plans launched
by many countries around the world, especially in the
fields of big data, the internet of things, and cloud
computing. Thus, brain-like intelligence has become
one of the most challenging technologies. Academic
journals, such as Science and Trends in Neuroscience,
have reported on human brain projects and neural
informatics, and they have claimed that the human brain
project, which includes an extensive context, is bigger
than the Human Genome Project. As the core of brain-
like intelligence, the neuromorphic synergy learning
algorithm is expected to play a decisive role in the field
of brain computing.

Under this background, Li et al.[4] focused on
the three core scientific problems in neuromorphic
synergy learning, i.e., the symbol grounding relation,
bidirectional mechanism, and affordance learning, and
studied neuromorphic synergy learning from four
levels, namely, proposing a new theory; exploring a
new method; initiating a new technique; and developing
a new platform that includes the Lie group cognitive
theory framework, neuromorphic synergy learning
framework, symbol grounding learning, bidirectional
synergy learning, and affordance learning.

7 Conclusion and Future Work

LML has attracted increasing attention in recent
years. This work introduces LML models and the
three major categories of LML: supervised LML,
semisupervised machine learning, and unsupervised
machine learning. In addition, neuromorphic synergy
learning is introduced. This work covers the following
techniques: LML model, Lie group subspace orbit
generation learning, symplectic group learning,
quantum group learning, Lie group fiber bundle
learning, Lie group cover learning, Lie group deep
structure learning, Lie group semisupervised learning,
Lie group kernel learning, tensor learning, frame

bundle connection learning, spectral estimation
learning, Finsler geometric learning, homology
boundary learning, category representation learning,
and neuromorphic synergy learning.

LML plays an important role in the field of machine
learning as it covers extensive research contents. In
addition to the basic contents described above, LML
covers statistical learning, deep learning, and meta
learning, all of which deserve further investigation.
We hope that this survey not only provides an
enhanced understanding of LML for researchers but
also facilitates future research activities and application
developments in this field.
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