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Inference Attacks on Genomic Data Based on
Probabilistic Graphical Models

Zaobo He* and Junxiu Zhou

Abstract: The rapid progress and plummeting costs of human-genome sequencing enable the availability of large
amount of personal biomedical information, leading to one of the most important concerns —genomic data privacy.
Since personal biomedical data are highly correlated with relatives, with the increasing availability of genomes and
personal traits online (i.e., leakage unwittingly, or after their releasing intentionally to genetic service platforms),
kin-genomic data privacy is threatened. We propose new inference attacks to predict unknown Single Nucleotide
Polymorphisms (SNPs) and human traits of individuals in a familial genomic dataset based on probabilistic graphical
models and belief propagation. With this method, the adversary can predict the unobserved genomes or traits of
targeted individuals in a family genomic dataset where some individuals’ genomes and traits are observed, relying
on SNP-trait association from Genome-Wide Association Study (GWAS), Mendel’'s Laws, and statistical relations
between SNPs. Existing genome inferences have relatively high computational complexity with the input of tens of
millions of SNPs and human traits. Then, we propose an approach to publish genomic data with differential privacy
guarantee. After finding an approximate distribution of the input genomic dataset relying on Bayesian networks, a
noisy distribution is obtained after injecting noise into the approximate distribution. Finally, synthetic genomic dataset

is sampled and it is proved that any query on synthetic dataset satisfies differential privacy guarantee.
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sanitization

1 Introduction

With the flourishing and technique advancement of
whole-genome sequencing, there are large amount of
personal genomic data available online. For instance,
increasing amount of online social networks and health-
related service providers provide Deoxyribonucleic Acid
(DNA)-sequencing services, in which users share their
DNA sequence to 23andMe!'! and OpenSNP!?!, and
share their diseases to PatientsLikeMe!*!. The increasing
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availability of genomic data has positively impacted
the research in developing new medications for genetic
diseases, through supporting the development of new
research areas that are impossible previously. Moreover,
through releasing their genomic data to data platforms or
service providers, individuals are interested in learning
about their predispositions to some genetic diseases.
Therefore, there are large amount of genomic data
available online for research or marketing purposes.
Although attractive, the growing availability of
genomic data online brings serious privacy issues.
Directly releasing genomic data may reveal private
information of an individual even though the dataset is
anonymized, since it is possible to de-anonymize it with
background knowledge!*>!. For example, membership
attacks are general methods to identify participants in
the genomic dataset by name. Hence anonymization is
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incapable for protecting membership privacy. Once a
genome sequence is de-anonymized, the identified owner
might bear the discrimination risk (for example, from
insurance companies or employers)!®!. For example, a
Genome-Wide Association Study (GWAS) releases a
group of Single Nucleotide Polymorphism (SNP)-trait
association, which reports there are 3 SNPs (rs7626795,
rs2808630, and rs8034191 on chromosomes 3, 1, and 15,
respectively) having a high correlation with an increasing
susceptibility for lung cancer.

Due to the incapability of anonymization, on one
hand, some believe that they can protect their genomic
data privacy by hiding the key part of their genomes,
and only releasing the remaining part. One the other
hand, some believe that there is nothing to protect about
their genomic data, therefore, they might determine
to release their genomes to data platforms or service
providers without any protection to support genomic
research. With the growing amount of scandals regarding
to genomic data leaking, the two thoughts above are
certainly not desirable.

Firstly, our DNA is highly correlated to our relatives’
DNA. Nowadays one can release her genomic data
online instantly without his relatives’ consent. Even
the released data are anonymized, once the owner
is identified by powerful adversaries with extensive
background knowledge, the released data might put
the relatives’ privacy at risk. A typical example is
Henrietta Lacks (who died in 1951), her DNA is
published and sequenced without her and her relatives’
consent!’!, One one hand, Lacks’ family members think
her DNA encodes the genetic information of whole
family members and the data should not be released
without the permission of all family members. On
the other hand, some researchers argue that the DNA
of current relatives has been diluted so much after
many years with the process of reproduction for gene
mixing with different people, such that nothing accurate
genetic information can be learned about current family
members.

Secondly, even though non-sensitive genomes (i.e.,
those genomes do not have close correlation with
sensitive human traits, such as cancer) are released,
the unreleased part might be predicted through
inference attacks launched by powerful attackers with
extensive background knowledge!®!. Several research
organizations also make some research results publicly
available which might be leveraged by adversaries.
For example, GWAS catalog publishes the SNP-
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trait correlation (the statistical relationship between
SNPs (Genotypes) and human traits (Phenotypes)) for
research purpose, including at least 100 000 SNPs and
corresponding associations with possible human traits'®!.
SNP-trait associations indicate some SNPs (Genotypes)
are associated with some human traits (Phenotypes).

A typical example is Nyholt et al.l'%! the discoverer
of DNA, and Watson released his whole genomes for
genomic research, except one gene, i.e., Apolipoprotein
E (ApoE). The status of ApoE has close correlation with
the development of Alzheimer’s disease. However, later
studies show that the SNP-trait association, Mendel’s
Laws and the linkage disequilibrium!!'!! (the correlation
between one or multiple SNPs and ApoE) can be
leveraged to predict the value of ApoE, with the help of
advanced machine learning algorithms!'?!,

In this paper, to mitigate the gap, we show that
kin-genomic privacy can actually be jeopardized,
unless we perturb genomic data prior to releasing
to protect against genome inference. The proposed
approach simulating inference attacks from powerful
adversaries has linear complexity. Furthermore, a
differentially private genomic data publishing approach
is proposed, such that any query on released genomic
data satisfies differential privacy guarantee. The adopted
differential privacy!'>!*!, as gold standard, allows
unlimited background knowledge and reasoning power
of adversaries. An algorithm that provides differential
privacy guarantee such that the probability distribution
of the algorithm output does not have significant change
if the input dataset is changed to a neighboring dataset.
Two datasets are neighboring if they are same except one
entry.

Specifically, given SNP-trait associations collected
from GWAS catalog!®!, linkage disequilibrium/'!!, and
Mendel’s Laws, we propose an inference attack approach
based on probabilistic graphical model to predict
targeted unknown SNPs and traits. We model the
process of inference attacks as computing the marginal
distribution of unknown SNPs and traits. However,
the computational complexity might be very high,
considering there are tens of millions of SNPs and
possible human traits. To solve this problem, we make
use of belief propagation over probabilistic graphical
model!’>, which can compute the marginal probability
distribution of unknown SNPs and traits with linear
complexity.

We then investigate the problem of releasing
differentially private genomic data. Given an input
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genomic dataset D, we aim to release a sanitized D’ that
approximates the features of D as accurate as possible
while any query on D’ satisfies differential privacy
guarantee. In this paper, we aim to seek a synthetic
D’ by sampling D based on the differentially private
joint distribution of D. However, the process above
brings a key challenge. Previous studies!'®!”! show
that it is difficult to directly apply differential privacy
into high-dimensional data releasing. As shown in Ref.
[18], if we directly inject differential privacy noise
into the full dimensional distribution of genomic data,
two problems are raised, namely, output scalability and
signal-to-noise ratio. Output scalability means although
the input genomic dataset is unwieldy, the output is
very unwieldy and slow to utilize. Signal-to-noise
ratio means the case that injected noises dominate the
original signals of input datasets. To mitigate the gap,
we propose to make use of Bayesian networks!'”! to
model the correlations among SNPs and traits, then
approximate the distribution of genomic data with a
set of local functions and each local function takes
a small subset of variables as its arguments. Then
differential privacy noise is injected into those local
functions, hence we get a noisy distribution of dataset.
Finally, the synthetic genomic dataset is sampled from
the noisy distribution. The contributions of this work are
summarized as follows:

e An inference attack algorithm based on belief
propagation on factor graph is proposed with linear
computational complexity which outperforms traditional
algorithm with exponential complexity.

e A differentially private genomic data releasing
algorithm is proposed for generating synthetic data.

2 Preliminary

This section introduces preliminary knowledge on belief
propagation, SNP, and differential privacy. Then we
introduce the problem formulation of inference attacks
and differentially private genomic data publishing.

2.1 Single nucleotide polymorphism

Human beings have more than 99.9% of their genomes
in common. Thus, the genomic data analysis does
not need to concentrate on the whole DNA sequence,
but rather concentrate on the most variant part. For
human beings, the most important variations in our DNA
are SNP?Y1. The variation means a nucleotide (with
value A, T, G, or C) on a certain location on the DNA
sequence varies between different people of a specific

population. For instance, given two DNA sequences,
CAGGTCA and CAAGTCA, just one nucleotide: G and
A are different. A pair of nucleotides, C and T, or G and
A, is called alleles. A GWAS shows that the occurrence
of a specific disease has a close correlation with one
or multiple SNPs, and such data correlation is called
SNP-trait association. As aforementioned example, the
SNP-trait association released by GWAS catalog shows
that one individual with special values of three SNPs
(rs2808630, rs8034191, and rs7626795) gets a growing
susceptibility for lung cancer.

In general, two types of nucleotides are known at
a specific SNP position, namely, a major allele and a
minor allele. The major allele is defined as the the most
frequent nucleotide observed at a specific SNP position.
The minor allele is defined as the rare nucleotide at
a specific SNP position. We represent a minor allele
and major allele as b and B, respectively. The two
nucleotides at each SNP are inherited from parents (one
from mother and one from father). Then, the content of
a specific SNP can be represented as BB (there are two
major alleles), Bb (one nucleotide is a major allele and
one nucleotide is a minor allele), or bb (there are two
minor alleles).

SNP-trait association. GWAS catalog periodically
releases the SNP-trait association, which provides a
significant reference for genomic research. In the process
of identifying the SNPs correlated with human traits,
the study splits individuals’ genomic data in a given
population into two sets: case set (with targeted traits)
and control set (without targeted traits). Until now,
GWAS catalog has released the association between
SNPs and so many human traits, including height, type-2
diabetes, lung cancer, cervical cancer, Chronic kidney
disease, etc.

Linkage Disequilibrium (LD). DNA sequences are
correlated with each other and this interdependent
associations lead to genetic risk. LD measures the degree
that any two SNPs are dependent to each other. Due to
LD, the content of SNPs locus could be inferred with the
content of dependent SNPs. One of the commonly used
LD metrics is Pearson correlation coefficient r2. r? = 1
means the strongest LD correlation.

2.2 Belief propagation on factor graph

In general, belief propagation is used to compute
marginal distribution of variables, given probability
dependency among variables. A natural implementation
of belief propagation is to execute belief propagation on
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probabilistic graphical model (i.e., Bayesian networks,
factor graphs, Markov random fields, etc.). The operation
of belief propagation is generally depicted as the process
of message-passing between factor nodes and variable
nodes on factor graph, to compute marginal distribution
of unknown variables. A factor graph is an undirected,
cyclic, or acyclic graph with two different types of nodes:
variable nodes and factor nodes. An edge connects
a variable node and a factor node if and only if the
variable is an argument of the connected factor node. As
a message-passing algorithm, belief propagation passes
messages between two neighboring factor nodes and
variable nodes. The passed message is the conditional
probability of a variable node taking a specific value.
Given the initial condition, the procedure of message
passing on acyclic factor graph will converge to a stable
situation.

2.3 Differential privacy

Let D represent a private dataset to be published.
Differential privacy is an algorithm A that requests that
prior to D’s releasing, D should be added special noise
employing the randomized algorithm .4, such that any
query results on D have no significant difference if
we change the input dataset to D’, where D and D’
are two neighboring datasets, i.e., they differ in only
one entry. In other words, adversaries cannot learn
significant information about any entry in D from the
query results returned from the output of 4. Differential
privacy offers provable privacy guarantee without any
assumption of attackers’ background knowledge.

Differential privacy can be formally defined as
follows:

Difinition ¢-Differential Privacy (e-DP). A
randomized algorithm A satisfies -DP, if for any two
neighboring datasets, D and D’ that differ in only one
entry and for any possible output O of A, the following
condition holds:

Pr[A(D) = 0] < ¢° - Pr[A(D’) = O].

To satisfy differential privacy, there are two
mechanisms used extensively, i.e., the Laplace
mechanism!'* and the exponential mechanism/?!1.

Laplace mechanism. Given a query function F on
D, the Laplace mechanism works on the output of F
that takes D as input and outputs numeric values. To
enable F to return differentially private results, Laplace
mechanism add i.i.d. noise to every output of F'; then F'
satisfies differential privacy:
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d
A(D) = F(D) + Lap (%) ,

where AF denotes the sensitivity of F':
AF = F(D)— F(D")||1,
max || F(D) = F(D)s

and the injected noise 7 is sampled from a Laplace
distribution Lap(n) with the probability distribution
function:

1
Pr[n = x] = 2—ne_‘x|/".

Reference [14] shows that the Laplace mechanism
enables F' to be an e-differentially private function if
n = A(F)/e.

Exponential mechanism. When F takes D as input
and outputs categorical values, rather than numeric
values, then the Laplace mechanism cannot be applied
in noise injection. The exponential mechanism returns
the output of F that takes D as input and outputs
a categorical value. To enable the output of F to
be differentially private, the exponential mechanism
samples each output from the output domain 2 of
F(D). The sampling probability of every w, w € Q
can be computed in accordance to the quality of
each output. Therefore, given a publisher-specified
quality function fs(w, D), which measures the quality
of each w as output of F(D). An w with larger
score indicates it is better to choose this w as the
output of F(D). Therefore, given a dataset D, the
exponential mechanism releases F (D) by sampling
w, o € £, with a probability proportional to

,D
exp (st2(+q)) where Ag=maxve,p,p’ | fs(w, D)

fs(w, D’)| denotes the sensitivity of the publisher-
specified score function. Reference [21] shows that
injecting noise with exponential mechanism satisfies
e-differential privacy.

3 Problem Formulation

3.1 Genomic data model

In this paper, we consider a genomic dataset D(V, X', ),
where V represents |V| individuals in D, X" represents
the set of SNPs X for each individual i € V), and )
represents the set of traits ); for each individual i € V.
Given an SNP x, x € X; on a certain location on the
DNA sequence, then the genotype of x takes value from
x € {BB,Bb,bb} (as introduced in Section 2.1). We
denote xj. as the value of SNP j (j € &) of individual
i (i € V). Likewise, we denote y,’; as the value of trait
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k (k € Y;) of individual i (i € V), where ) is the set
of traits of individual i.

Some privacy-unconcerned family members release
partial or the whole DNA sequence, or traits for genomic
research. For privacy concern, the most sensitive
genomes or traits are kept secret. We denote the set
of unknown SNPs and traits as Xy and Yy, respectively,
and known SNPs and traits as Xx and Vg, respectively.
According to the SNP-trait association released by
GWAS, given a trait y € );, we define the set of
correlated SNPs is X' (y).

3.2 Attacker model

The adversary aims to predict targeted SNPs and traits
of targeted individuals in the input dataset, namely,
Xu U Yu. A powerful adversary is considered in this
work with extensive background knowledge. In addition
to the publicly available SNPs and traits, the adversary
also collects publicly available SNP-trait associations,
Mendel’s Laws, and the linkage disequilibrium. For
example, F(xF, x jM , C) is the function denoting the
probability dependency among three family members,
i.e., father, mother, and child, which means the
probability distribution of x is highly determined by
the value of xj and xM for any SNP ;. C( x,’;)
is the function denotmg the linkage dlsequlhbnum
among two SNPs x; and x,i, which means there exists a
statistical relationship between any two SNPs j and k
for individual i because of population’s genetic history.
g(x]f. , x]i, y ;) is the function denoting the SNP-trait
associations, namely, the probability distribution of y;
in terms of x; and x;, for any individual 7.

The adversary launches an inference attack to predict
the value of targeted SNPs and traits, leveraging
his background knowledge Xr. Vi, F(xF x M C),

L(x j,xk), and g(xj , xk, yl).
3.3 Problem definition

The problem of inference attacks on genomic data is
defined as follows:

Input: (1) Publicly available SNPs Xk and traits Yx
released by family members, and SNP-trait association
G; (2) differential privacy budget ¢.

Output: (1) Inference attacks algorithm for predicting
the unknown SNPs Xy and traits Yy . (2) e-differentially
private genomic data publishing algorithms.

4 Inference Attack on Unknown SNPs and
Traits

The problem of predicting targeted unknown SNPs
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and traits can be modeled as computing the marginal
distribution of unknown variables, given Xk, Vk,
.7-"(ij, xM, C) E(x x};), and g(x}:,x]i, y;). The
margmal d1str1but1on of an arbitrary SNP of individual 7,
xt

j 2

Pr(x} | Xk, Vi F(xf , xM x0), L(x} x;;),g(-))=
> Pr(Xyl Xk, yK,f(xF MoxE). L0x,x}), G0))

Xu\x]

x". € Xy can be computed as

ey
is all the unknown attributes in
Xy except x;, and Pr(Xy|Xg, Vi, F(x F, jM, C)
L(x}, x;),G()) is the joint distribution of all unknown
SNPs. The computation of the marginal distribution of

where Xy \x}

unknown traits can be formulated with the same way.
However, the computational complexity of computing
the joint distribution of all unknown SNPs is very high,
considering there are tens of millions of SNPs in human
DNA sequence. Actually, the computation of Eq. (1) has
exponential complexity, due to the requirement to sum
over the items with a exponential scale. Therefore, it is
undesirable to compute joint distribution with the above
way, instead of leveraging the data correlations among
SNPs and traits. We propose to develop a probabilistic
graphical model, specifically, a factor graph, to encode
the probability dependency among different variables.
Then we execute belief propagation on the factor graph,
such that the joint distribution of all unknown variables
can be factorized into a set of local functions and
each function takes a small subset of variables as their
arguments. Since each local function just holds a small
size of SNPs and traits as variables, the computation of
Pr(Xy | Xk, Vi, Fxf , xM, x€), L(xE, xp), G() now
has linear Computatlonal complex1ty. Compared with
Eq. (1) adopted by most of existing works, the proposed
approach is efficient. Constructing a factor graph and
executing belief propagation on it are challenging since
identifying the relationship between a factor node and a
variable node is hard, given tens of millions of variables.
To mitigate the gap, we construct a factor graph by
integrating known and unknown SNPs and traits, family
relatlonshlp FxF x jM ,x¢
L(x] ,x}), and SNP-trait ass0c1at10n G(-) into a graph.
Slnce f(xF M C) L(x;

incorporate a set of varlables as arguments, they can act

), linkage disequilibrium
x]i), and G(-) inherently
as set of factor nodes, and known and unknown variable

nodes can act as variable nodes.
The factor graph can be constructed with 5 types of
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nodes: SNP variable node — a known or unknown
SNP; trait variable node — a known or unknown trait;
Sfamilial factor node — the probability distribution of
a set of SNPs derived from Mendel’s Laws; LD factor
node — the probability distribution of a pair of SNPs
derived from linkage disequilibrium; association factor
node — the probability distribution of a set of SNPs and
traits derived from the SNP-trait association released by
GWAS. Then, we can link a factor node and a variable
node in the following manners:

e Each SNP variable node xj. connects to its own
familial factor nodes fj’. Moreover, SNP variable nodes
x} and x]’? (k # i) are connect to familial factor node
.7-"1’- if k is the father or mot_her of l .

e SNP variable nodes xj’. and x;_are connected to LD
factor node E;.’k if SNP j is in linkage disequilibrium
with SNP k.

e Both SNP variable node x; and trait variable node
y,’c are connected to association factor node Q]’., > 1f the
value of trait k is highly determined by the value of
SNP ;.

For instance, a factor graph for a family with three

members (father, mother, and child) is shown in Fig. 1.

As a simple case, Fig. 1 shows that a factor graph with 1
trait and 3 SNP variables. From Fig. 1, we observe that
trait t{ (i = 1,2,3) is associated with x’i.

After the message-passing procedure by executing
belief propagation on a factor graph, the joint distribution
Pr(Xu|Xic, Vic, F(xF M, x), L, x1). G()) can
be factorized into the product of a set of local functions
and each local function takes a small subset of variables

as arguments:

(b)

Fig. 1 Factor graph representation of a family with three

members M, F, and C with 3 SNPs and 1 trait each individual.

(a) Familial relationship. (b) A factor graph integrates all
variables and data correlations.
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Pr(Xy | X, Vi, F(xf, xM, xf), L(x}, x}),G() =

[T]]/ ¢ o6h. FeF . xM x6)) | x

i€EVjeX

1
Z

l_[ l_[ l;k(xj’x,’( L’(xj-,x,i)) X
LI€V (J.k)st.Ljx#0

TTT] €. AGH.GE) )

ievjex

where Z ia a normalization factor, @(x;) represents the
set of SNP j of all family members of i, and A(x;)
represents the set of traits of individual i which are
correlated with j, according to SNP-trait association.

As a message-passing algorithm, belief propagation
iteratively passes messages between factor nodes and
variable nodes, where the message is the “belief” of the
probability distribution of a variable node, in terms of
correlated variables. We denote the messages passed
from SNP variable nodes to factor nodes as p and the
message passed from trait variable nodes to factor nodes
as 7. The message passed from familial factor nodes to
variable nodes is defined as v, while the message passed
from LD factor nodes to variable nodes is denoted by A,
and the message passed from association factor nodes to
variable nodes is defined as S.

The message passed from SNP variable nodes to
neighboring factor nodes //,fs_,s (xj.T = J;) represents
the probability of xJ". = j; at the T-th iteration, where
Jj1 is the [-th possible value for SNP j. Likewise, the
message passed from trait variable node to neighboring
node Tg: s (y]’:T = k;) represents the probability of
y; = k; at the T-th iteration, where k; is the [-th
possible value for trait j. Furthermore, vjf_)v(xji.T =
Jj1) represents the probability of x} = j; at the
T-th iteration, given Mendel’s Laws F(-). Likewise,
)Lle_w(xj- = Jj) is the probability of xj".T = j; at the
T'-th iteration, given linkage disequilibrium £ between
any pair of SNPs. Finally, ,BQT_)U(XJ".T = Jj) is the
probability of x} = j; at the T-th iteration, given the
probability distribution of correlated traits of SNP j,
when the message sent from SNP factor nodes to trait
variable nodes. Likewise, I _,U(x;T = j;) represents
the probability of y}T = J; at the T'-th iteration, given
the probability distribution of correlated SNPs of trait j,
when the messages sent from trait factor nodes to SNP
variable nodes.
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In the procedure of message passing, a variable node
v passes messages to one of its neighbor factor nodes
s. The passed message is /LUT_)S (Z; T) by computing the
product of all messages it receives from its neighbor
factor nodes except s, where s can be F(-), L(-), and
G(), and z € {x, y}. The above computation is valid
when zji. is an unknown variable. However, when Z; €

Xk or ZJi. € Yk, for example, we observe x; = Bb,

then pvg_)s(x;.T = Bb) = 1, /LUT_)f(x}T = BB) = 0,
and ,uvT_) f(ij = bb) = 0. Furthermore, familial
factor node f sends messages to its neighbor variable
node v by computing the product of all assages from f”
neighbor variable nodes except v, and then multiplying
the factor f with the obtained results; finally sum the
messages from all the neighbors of f excluding v.
Initially, since factor nodes do not hold any
information about their neighbors, each variable node
passes messages to its neighbor factor nodes. At the
first iteration, each known variable node Z; passes the

i1 . .
message [y (zj ) = 1 for every possible SNP or trait
values, since currently there is no available information

for Zji- € Xy or Yy. However, for a known variable

with Z} = p, send message p) (Z;T = p) = 1l and
TR (z]i-T = p’) = 0 for each possible SNP or trait
value p’ except p. Until the value of all unknown SNPs
and traits is converged after several rounds of iteration
(or the content of passed massages are converged), the
iteration procedure can be stopped.

After the procedure of message passing, the marginal
distribution of unknown SNPs and traits is computed
by multiplying all passed messages to the unknown
variable.

Since the messages encode the conditional probability
distribution of SNPs and traits, we need to figure out the
content of each message. Firstly, the prevalence rate of a
trait can be collected from CDC??! as a prior knowledge.
Next we need to compute the conditional probability of
an SNP s; on its correlated traits. Therefore, we turn
to compute the probability of the nucleotide on an SNP
location, conditional on one of its correlated traits. For
a specific SNP location on the human DNA sequence,
there are two nucleotides: non-risk allele and risk allele.
For a specific human trait k, GWAS studies its properties
by dividing the volunteers into two groups: one is case
group (all volunteers carry k) and one is control group
(all volunteers do not carry k). Through comparing the
DNA sequence between case and control groups, GWAS

can identify the most common nucleotide in case group
that indicates if one individual carries this nucleotide,
there exists high probability to carry & for this individual.
Such nucleotide in DNA sequence is called risk allele of
trait k, while the other nucleotide in a specific SNP
location is called non-risk allele. Table 1 shows the
conditional probability of the risk allele and non-risk
allele of SNP j on the probability of a correlated trait k.

Based on the conditional probability in Table 1, it is
trivial to compute the conditional probability of an SNP
on one of the correlated traits.

Table 2 shows the probability dependency between
an SNP ; and one of its correlated traits. Likewise, the
probability distribution of a trait conditioned on one of
its correlated SNP can be trivially computed from Table
2 based on the Bayesian posterior probability.

5 Differentially Private Genomic Data

Publishing

In this section, we propose an approach to publish a
genomic dataset D(V, X', )) with differential privacy
guarantee. As discussed in Ref. [18], publishing high-
dimensional dataset generally arises two key challenges:
scalability and signal-to-noise ratio. Given a genomic
dataset with tens of millions of genomes, how to achieve
a tradeoff between privacy and utility becomes a serious
problem. We study the problem above by adopting
differential privacy to sanitize the huge-dimensional
dataset. To mitigate the gaps, we make use of a Bayesian
network(?3! that is a probabilistic graphical model to
describe the conditional independence among a set of
variables. A Bayesian network is a directed acyclic
graph in which each node represents a variable and

Table 1 Probability of risk allele rf and non-risk allele o} on
the SNP’ position conditioned on one of the associated trait k
of SNPj. Here pj’.‘o and pJ’.‘a represent the risk allele frequency
in control and case group, respectively.

Allele k (with trait k) k (without trait k)
rk Ka kO
J Pj rj

Table 2 Probability of genotype of SNP j (rfr}, rfpf, and
pip) conditioned on one of its correlated traits k.

Genotype of SNP j k (with traitk)  #z (without trait k)

k..k k4 k©
A 24 24

a a o
Fof ¥ Pyt =pf)

ka
T P p; (1_Pj )

a o
o) 0§ V1-pf y1-pf
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the edge between two nodes represents the conditional
probability of one variable on the other variables.
Actually, we can transfer a factor graph to a Bayesian
network easily. Compared with private data releasing
algorithms in Ref. [24,25], generating synthetic data
with differential privacy guarantee can provide provable
privacy guarantee.

Therefore, our proposed approach works in three
steps:

(1) Construct a factor graph A over the SNPs
and traits in D(V, X, )), using an (g/2)-differentially
private approach.

(2) Develop an (g/2)-differentially private approach to
generate the conditional distributions of (a) each pair of
SNPs (from linkage disequilibrium L£); (b) set of SNPs
and their correlated traits (from SNP-trait association G),
and (c) set of SNPs (from familial relationship JF).

(3) Use the factor graph A constructed and the
set of noise conditional distributions to compute an
approximate joint distribution to sample a synthetic
genomic dataset D*.

According to Eq. (2), we define the number of familial
factor nodes fji (xJ’:, @(xji.), f(xF, ij, xjc)), LD factor
nodes / ]’ k(x5 X3 L£(x}, x)), and association factor
node g}’k (x}, A(x}).G()) as m, n, and k, respectively.
For each familial factor node fji (+), the scale of Laplace

noise injected to it is —, in order for guaranteeing
me

(e/3)-differential privacy, since the sensitivity of fji )
3 .

is —. For each LD factor node / ]’ « (), we inject Laplace
m Jo

. o 6 . .
noise to it with scale —, in order for guaranteeing
ne

(e/3)-differential privacy, since the sensitivity of g}_m )
2
is —. Likewise, for each connection factor node
. no .
g;. k(x5 A(x5), G(+)), we inject Laplace noise to it with
scale e in order for guaranteeing (g/3)-differential
€
‘ 2
privacy, since the sensitivity of g, (-) is = According
to the compensability property of differential privacy,
our method satisfies e-differential privacy.

6 Conclusion

In this paper, we propose an SNP and trait inference
model to predict the value of unknown SNPs and
traits based on probabilistic graphical models and belief
propagation. Our approach has linear computation
complexity by integrating SNP-trait associations,
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linkage disequilibrium, and Mendel’s Laws into a
factor graph then executing belief propagation on it
to compute the marginal probability distribution of
unknown SNPs or traits. We also propose an approach to
publish high-dimensional genomic data with differential
privacy guarantee. We make use of Bayesian networks
to find an approximate distribution of the input genomic
dataset, then inject differential privacy noise into the
approximate distribution. Finally, synthetic genomic
dataset is sampled based on the noisy distribution of
input genomic dataset.
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