
BIG DATA MINING AND ANALYTICS
ISSN 2096-0654 05/06 pp208–224
Volume 3, Number 3, September 2020
DOI: 10.26599/BDMA.2020.9020005

C The author(s) 2020. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Novel and Efficient Randomized Algorithms for Feature Selection

Zigeng Wang, Xia Xiao, and Sanguthevar Rajasekaran�

Abstract: Feature selection is a crucial problem in efficient machine learning, and it also greatly contributes to the

explainability of machine-driven decisions. Methods, like decision trees and Least Absolute Shrinkage and Selection

Operator (LASSO), can select features during training. However, these embedded approaches can only be applied

to a small subset of machine learning models. Wrapper based methods can select features independently from

machine learning models but they often suffer from a high computational cost. To enhance their efficiency, many

randomized algorithms have been designed. In this paper, we propose automatic breadth searching and attention

searching adjustment approaches to further speedup randomized wrapper based feature selection. We conduct

theoretical computational complexity analysis and further explain our algorithms’ generic parallelizability. We conduct

experiments on both synthetic and real datasets with different machine learning base models. Results show that,

compared with existing approaches, our proposed techniques can locate a more meaningful set of features with a

high efficiency.

Key words: feature selection; randomized algorithms; efficient selection

1 Introduction

In the big data world, we see an explosion in data volume,
data diversity, and data dimensions. High-dimensional
data bring a lot of difficulties to machine learning.
They require not only a large amount of computational
resources and storage space, but also more training data
for the machine learning models to learn well. Feature
selection can reduce data dimensions by selecting a
subset of important features. With a concise subset
of features, machine learning models’ learning and
prediction efficiency can be greatly improved, and the

� Zigeng Wang, Xia Xiao, and Sanguthevar Rajasekaran are
with the Department of Computer Science and Engineering,
University of Connecticut, Storrs, CT 06269, USA. E-mail:
fzigeng.wang, xia.xiao, sanguthevar. rajasekarang@uconn.edu.

� A preliminary version of this paper was published at 2019 IEEE
21th International Conference on High Performance Computing
and Communications; IEEE 17th International Conference on
Smart City; IEEE 5th International Conference on Data Science
and Systems (HPCC/SmartCity/DSS)[1].

�To whom correspondence should be addressed.
Manuscript received: 2020-04-15; revised: 2020-05-06;
accepted: 2020-05-07

models’ explainability can be greatly enhanced.
High-dimensional feature space is a common

complication in different scientific applications. For
example, in modern bioinformatics and genetics, a
conventional DNA sequence representation is through
counting the occurrences of length-K sub-strings called
K-mers[2, 3]. Typically, K is chosen to be larger than
20, so that the number of possible K-mers can be
greater than 1012. As another example, in smart city
travel demand applications, a large number of different
vehicle records, weather conditions, and geographic
metrics are taken as features in the prediction models
with feature dimensions greater than 200 million[4, 5].
Moreover, the data generated in the smart city context
are usually gathered in a heterogeneous and streaming
fashion[6–8]. A majority of these applications are time-
sensitive (e.g., smart and connected vehicles) which need
real-time or near-real-time data analysis[9]. As a result,
an effective and efficient feature selection algorithm
design, nowadays, becomes even more important and
necessary.

Feature selection is the process of selecting a subset
of the most relevant features from a given set of features

Zigeng Wang et al.: Novel and Efficient Randomized Algorithms for Feature Selection 209

in a group of data examples by discarding irrelevant,
redundant, and noisy features, either based on or not
based on the corresponding labels of the examples.
Feature selection is different from feature extraction.
Feature extraction constructs a new feature space by
projecting the original high-dimensional feature space to
a low-dimensional space. For feature selection, the new
feature set is a directly selected subset of the original
feature set, while the new feature space of feature
extraction is transformed from the original space through
linear or nonlinear combinations. Examples of feature
extraction techniques include PCA[10] and LDA[11].
Although feature selection and feature extraction reduce
the data dimension from two different perspectives,
both methods share the same potential advantages of
increasing model computational efficiency, reducing
storage space, improving the learning accuracy, etc. Due
to the advantage of high explainability, feature selection
has been employed in many different applications,
ranging from bioinformatics[12], text mining[13] to image
processing[14], ecological modeling[15], and industrial
fault diagnosis[16]. Li et al.[17] and Jović et al.[18]

gave comprehensive summaries of feature selection
applications.

Feature selection methods can be classified into three
main categories: filter methods, wrapper methods,
and embedded methods. Filter methods select features
without actually training a machine learning model,
in which features are ranked with respect to certain
statistical criteria, such as Pearson’s correlation and
mutual information with dependent variables. Some
novel graph based approaches[19, 20] are proposed. These
approaches construct a feature interaction graph with
each node representing each feature and the weights on
the edges representing the relations between each pair
of features. Then, clustering algorithms are designed
and applied to group important feature sets. Filter
methods can usually select features efficiently[21], but
the selected features can be with low quality for a given
prediction problem[22], which is mainly due to the fact
that the features are selected without actually training a
prediction model. Different from filter methods, wrapper
methods select features in a supervised way, in which
the important feature subsets are pinpointed based on the
predicting performance given the true labels and learning
models. In wrapper methods, different optimization
algorithms have been used to locate the optimal feature
set that minimizes the predicting error. But wrapper
methods can be time consuming since the wrapper
methods treat the learner as a black box and evaluate

the predicting performance of the well-trained learner
iteratively with different potentially meaningful feature
subsets. The randomized feature selection algorithms
proposed in this paper fall under the wrapper category,
which aim to accelerate the selection process. Details
on different wrapper methods are provided in Section 2.
Besides filter and wrapper methods, embedded methods
perform feature selection in a hybrid way in which the
important features are being located at the same time
the learner is being trained. Decision tree and Least
Absolute Shrinkage and Selection Operator (LASSO)
based models are typical examples. But this feature
selection ability can only be embedded in a small
number of machine learning models, while this may
be difficult for popular non-parametric models such as
KNNs[23]. Moreover, conventional training of linear
models with l1 normalization should be with the whole
feature set, which can be memory intensive when the
data dimension is very high[24]. A general summary
of the pros and cons of the three classes of feature
selection methods is shown in Table 1. Besides selecting
concise features to improve prediction performance,
there are also many novel discussions on the fairness
issues[25, 26] and the privacy issues[27, 28] involving in the
whole feature selection process.

In different research domains, many kinds of non-
parametric and linear models, which are not embedded
with feature selection capability, have been shown to
have great prediction advantages. For example, in the
material science domain, Gaussian process regressor
has been used in polymer discovery and takes the
lead in dielectric and bandgap predictions given the
multi-scale material descriptors as features[29, 30]. For
another example, in bioinformatics, KNNs classifier
has been extensively applied to the metagenomic
classification problem, in which short DNA/RNA
subsequences are used as features[2, 3]. The number
of different combinations of these short subsequences
can be exponential in the length of the sequence(s).
More specifically, in the smart city context, a unified
linear regression model has been applied to predict
unit original taxi demands on temporal, spatial, event,
and multiple combinational features. Results show
that this linear model outperforms popular non-linear

Table 1 Pros and cons of different feature selection
methods.
Category Pros Cons

Filter Computationally efficient Low accuracy
Wrapper High accuracy Computationally expensive

Embedded Low extra cost Learner dependent

210 Big Data Mining and Analytics, September 2020, 3(3): 208–224

models on large scale datasets from an industrial online
taxicab platform[4]. For all the applications above, the
data dimensions can be from 100C to 1 000 000C, and
selecting important feature subsets becomes an urgent
requirement. In view of the above discussion, we
observe that wrapper feature selection methods are a
suitable/ideal approach for many applications.

Traditional wrapper based feature selection methods
rely on conventional searching algorithms such as
branch and bound[31, 32] and sequential search[33, 34]. But
those schemes usually cannot overcome local optima or
features’ dependency. In order to select a better subset
of features, randomized optimization approaches have
been extensively used[35, 36]. These algorithms can locate
a better feature set with a higher computational cost. As
a result, lightweight randomized selection algorithms
have recently received a growing attention. Randomized
feature elimination and selection algorithms[37–39] have
been designed to locate important feature subsets
effectively.

In this paper, we propose efficient randomized
feature selection algorithms incorporating three novel
techniques to further accelerate and enhance the feature
selection process. The first semi-randomized selection
technique speeds up feature discovery by dynamically
controlling the feature candidate generation breadth
through evaluating the quality of the already discovered
feature subset in each iteration. The second warm
start technique initializes the feature selection with
a comparatively meaningful warm feature subset and
quickly refines the feature subset with a predefined
learner based on a fine-grained feature selection
stage estimation. The third cool down technique
introduces cool down factors to describe the degree of
potential of each feature based on feature candidate
evaluation history. Searching attention is optimized
and concentrated on feature candidates with higher
accuracy improvement potentials. We conduct extensive
experiments to show that, compared to existing models,
the proposed techniques can select important feature sets
more effectively and efficiently.

Our paper has the following contributions: (1)
The three techniques we propose are highly generic
and can be used in different randomized selection
algorithms with arbitrary machine learning models; (2)
our algorithms are naturally parallelizable and work-
optimal; (3) our algorithms are very memory efficient
where the memory usage is independent from the total
number of features; and (4) we offer a theoretical time
complexity analysis and a convergence proof for our

feature selection algorithms.
The rest of this paper is organized as follows: Related

works are summarized in Section 2. In Section 3,
we present our randomized feature selection speedup
techniques. Section 4 provides the theoretical analysis
of the algorithm. The experimental evaluation and
comparison are in Section 5. Section 6 concludes this
paper.

2 Related Work

In this section, we first summarize the feature selection
strategy of wrapper methods. Then, we discuss two
classes of wrapper methods, deterministic wrapper
algorithms, and randomized wrapper algorithms,
respectively.

2.1 Wrapper feature selection strategy

Wrapper methods select features by iteratively
generating and evaluating the predictive performance
of feature set candidates. Figure 1 illustrates a generic
wrapper feature selection method, which includes two
main components: (1) Search and generate a candidate
feature subset; (2) evaluate the candidate set’s prediction
performance. These two components are repeated
iteratively until a predefined stopping condition is
satisfied.

As shown above, the wrapper methods first generate
candidate subsets by using different searching strategies
based on the given data. A candidate subset then goes
to a predefined learner for performance evaluation and a
certain quantitative metric (e.g., accuracy or Root Mean
Square Error (RMSE)) is usually computed based on an
objective function�. The evaluation metric is then

Data

Search feature

candidate

Evaluate feature

candidate

Selected

features

Stopping

criteria
Proposed candidate

Evaluation output

Evaluation output

Fig. 1 A generic wrapper based feature selection
framework.

�For a given learning algorithm, there are usually two main
steps to finalize the model. The first step is model training, where
the learner is trained based on the training data. And the second
step is model testing, where the trained learner is tested based on
a separate set of testing data. People always use the test result to
evaluate the true prediction performance of the constructed model.
Similarly, in wrapper methods, the testing results are usually
used as the evaluation metrics for feature candidate performance
comparison.

Zigeng Wang et al.: Novel and Efficient Randomized Algorithms for Feature Selection 211

compared with the previous results, if the candidate
subset yields a better value, the previously stored best
feature subset and its solution are usually replaced with
the current ones. Conventionally, based on the searching
and evaluation history, new feature candidates are then
generated and tested. This process iterates over the
feature space until the stopping criteria is satisfied. The
stopping criteria can be no performance improvement
over a given number of iterations, the maximum number
of iterations has been reached, etc. The important feature
subset is finalized and output by incorporating prior
knowledge.

2.2 Selection of candidate subsets

Selecting candidate feature subsets is a main part in
wrapper methods. For a dataset with n different features,
the number of different potential feature combinations
can be exponential (�.2n/). Algorithms like exhaustive
search may not be practical for large values of n. Due
to this fact, different heuristic algorithms have been
designed to locate a probabilistic optimal solution. With
respect to searching strategies, wrapper methods can
be categorized into two classes, deterministic feature
selection and randomized feature selection.
2.2.1 Deterministic feature selection
Any deterministic feature selection method will employ
deterministic algorithms to search feature subsets
and generate deterministic outputs. Due to its ability
to successfully solve discrete and combinatorial
optimization problems, Branch and Bound (B&B) has
also been used in feature selection[31, 32]. The search
starts with the whole feature set and it iteratively removes
features until the error threshold is met. Then, the
residual feature subset is pruned and refined through
backtracking. In order to further improve the searching
speed, Approximate Monotonicity with Branch and
Bound (AMB&B)[40] was proposed, in which non-
monotonic evaluation functions can be used with a
relaxed error threshold. Although B&B based methods
empirically run much faster than exhaustive search, these
approaches can still take exponential times in the worst
case. They also assume monotonicity of the features
with respect to the evaluation functions.

Sequential feature selection is another main
deterministic feature selection category. Traditional
Sequential Forward Search (SFS) and Sequential
Backward Search (SBS) follow greedy hill climbing
strategies which slightly change feature subsets by
adding/deleting features in each iteration[34]. Based on

SFS and SBS, a sequential floating search algorithm[41]

and its variations have been proposed. In sequential
floating search, the algorithm adjusts the trade-off
between forward and backward steps dynamically and
allows a “self-controlled backtracking” to moderate
the features’ nonmonotonicity effect. Replacing-the-
weak-feature strategy[33] was designed to broaden
the sequential forward floating search’s scope by
checking whether removing any feature in the current
feature subset and adding a new one can improve the
accuracy. Sequential selection based approaches can
generate solutions in asymptotically linear time, but
these approaches usually suffer from local optima
in the optimization process and also assume feature
monotonicity.

2.2.2 Randomized feature selection
To overcome getting stuck in local optima and accelerate
feature selection, different randomized approaches have
been proposed.

One group of these randomized algorithms employ or
combine existing conventional randomized optimization
algorithms[42], such as evolutionary algorithms[35],
genetic algorithms[36], and simulated annealing[43],
in which feature selection is directly treated as a
0-1 integer programming problem. Random feature
subsets are generated and modified iteratively based
on the embedded randomized optimization algorithms
to maximize the prediction performance of a selected
feature subset. Compared to the deterministic feature
selection, these randomized approaches, relying on
powerful well-developed optimization algorithms, can
locate a better feature subset without getting trapped in
local optima. But this type of randomized approaches is
heuristic in nature. There are no theoretical guidelines
on their effectiveness and efficiency[35], which makes
the selection of the most suitable algorithm difficult.
Also for some light-weight applications, because of the
high computational cost of the complicated optimization
schemes being used, the above approaches may not be
perfectly suitable. As a result, some concise randomized
feature selection approaches have attracted a lot of
research interest.

In 2004, Stracuzzi and Utgoff[37] proposed a
Randomized Variable (feature) Elimination (RVE)
algorithm. The RVE algorithm conducts feature
searching backwards by iteratively eliminating one or
more random features. The search was conducted along
a narrow trajectory through a sparsely sampled feature

212 Big Data Mining and Analytics, September 2020, 3(3): 208–224

space, by which a smaller number of subsets need to
be evaluated and a significant amount of computation
power can be saved. RVE comes with a convergence
proof and it works effectively in practice, especially
when the features are redundant or irrelevant, but when
the features are with high dimension, RVE can use a lot
of memory.

In 2015, Saha et al.[38] proposed a Randomized
Feature Selection (RFS) algorithm. As shown in
Fig. 2, the RFS starts with a random feature subset
and generates a feature candidate by looking at its
neighboring feature subsets, either through adding and/or
deleting one random feature. A decision on whether to
update the starting feature set or not will be made based
on the neighbor’s prediction performance. The RFS
algorithm selects features following a finer granularity
with single feature operations and provides a solid
convergence proof by modeling the feature selection
process as a homogeneous Markov chain. Different
from RVE, RFS has a high memory efficiency since its
feature candidate selection is conducted by evaluating
only a subset of the features and it is suitable for high

Start

Sample a feature subset F' randomly and

compute its accuracy A

Outcome

of flipping an unbiased 3-sided

coin

Add a random

feature from F−F'

to F' ; remove a

random feature

from F' to get F''

Choose a random

feature from F−F' and

add it to F' to get F''

Remove a

random

feature from

F' to get F''

Compute the accuracy A' of set F′′

If A' >A
Update F' and A

with F'' and A'

With probability 1−u update F ' and A with F '' and A'

End

is 1

is 2

is 3

No significant

improvement in A

No

Yes

No

Yes

Fig. 2 Flowchart of randomized feature selection
algorithm[38].

dimensional data. But there are still many opportunities
to further improve the models’ performance. In each
iteration, the RFS model refines the selected feature
set by only comparing the accuracy with one candidate
feature set, which can slow down the search process by
escalating on adding and deleting less important features.
The escalation can be very severe when the selected
feature set is premature since the initial feature set is
randomly selected at the beginning of the search in RFS.
Another opportunity to accelerate the feature selection
process is by leveraging all the previous evaluation
history and properly adjusting the searching attention.
Motivated by these, we propose our semi-randomized
feature selection algorithms as the following and we are
mainly comparing our approaches with RFS.

3 Our Algorithm

Inspired by the state-of-the-art randomized approaches
in wrapper based feature selection algorithms[37, 38],
we design novel techniques to accelerate existing
randomized feature selection algorithms and to locate a
more meaningful subset of features. The techniques are
summarized as follows:

� Semi-randomized selection which increases
the exploration breadth in every search iteration
automatically according to the search stage estimation.
By evaluating more than one candidate feature set, semi-
randomized selection selects candidates based on their
grouped potential contributions to the accuracy. In order
to construct a better subset of features and to speedup
the convergence, neighboring feature combinations with
the current feature set are ranked based on the stage
estimation.

� Warm start which initializes the feature selection
with a comparatively more meaningful warm feature
subset instead of directly conducting search from a pure
random feature subset (e.g., as in RFS[38]) to avoid the
escalations caused by frequently adding and deleting
less important features into/from the selected feature set.
The warm start technique is also jointly developed with
feature elimination, which reduces the initializing cost
especially for the high dimensional data sets with high
feature dependency.

� Cool down which assigns a cool-down factor to
each feature to describe their temporary potentials to
improve the accuracy based on the previous performance
evaluations. With the cool-down factor, our algorithm
can adjust the searching attention effectively to the

Zigeng Wang et al.: Novel and Efficient Randomized Algorithms for Feature Selection 213

features with high probability to improve accuracy, so
that computational cost is optimized in such a way that
candidate feature evaluations which consume the most
running time are reduced.

In the following subsections, we detail our new feature
selection enhancement techniques. We further discuss
their potential for feature selection speed and prediction
accuracy improvement.

3.1 Semi-randomized selection

In order to search for a meaningful feature set, a nice
balance between the greediness and randomness in the
searching process always has to be carefully considered.
As shown in Fig. 2, the RFS algorithm replaces
a temporally selected feature set F 0 with a feature
candidate subset F 00 if F 00 improves the prediction
performance, no matter how tiny the improvement is,
so that features which are not very meaningful can
also be selected. In this way, the pure-randomized
selection mechanism in RFS, which adds/deletes one
single feature at a time can potentially increase the
time complexity of the selection algorithm. Such
irrelevant features can dramatically slow down the
selection process, especially when there is randomness
in the learner or there is noise in the training set. At
the initialization stage of feature selection, the pure-
randomized approach can be even more harmful as we
discuss in detail in Section 3.2.

To pinpoint a feature subset which is more
informational, we propose a new Semi-Randomized
Feature Selection (Semi-RFS) approach. The main idea
of our algorithm is that, in each step, Semi-RFS samples
more than one feature and picks the local-optimal to be
the candidate set F 00. Comparing to the pure-randomized
feature, our feature set candidate has a higher probability
of contributing to a larger increase in the prediction
accuracy. In this way, a feature subset can be constructed
in a more concise and efficient way.

With respect to application requirements, we
customize two different variations of the Semi-RFS
approach, namely, static Semi-RFS and adaptive Semi-
RFS, respectively. The main difference between the two
algorithms is on the choice of the feature group size.
A pseudo-code of Semi-RFS is shown in Algorithm 1.
For static Semi-RFS, features are selected from random
feature samples (Fg and Fg0) of a static size. g and g0 are
the predefined sizes for feature groups sampled from the
residual feature set F �F 0 and currently selected feature
set F 0, respectively. In contrast the adaptive Semi-RFS

Zigeng Wang et al.: Novel and Efficient Randomized Algorithms for Feature Selection 7

In Eq. (1), the searching stage metric Nni can drop
dramatically to 0 once a better feature set is located. In
order to maintain the stability of Nni and the group sizes,
we leverage ideas from adaptive filters and calculate Nni

with adaptive averaging.

Nni.k/ D
(

0; k D 0;

w � nni.k/ C .1 � w/ � Nni.k � 1/; k > 0

(2)
In Eq. (2), the lowercase nni.k/ denotes the current

exact number of consecutive iterations with no accuracy
improvement at the k-th iteration. The capitalized Nni.k/

is the metric we used in Eq. (1) and it is calculated
with weighted averaging of the current exact nni.k/ and
its previous value Nni.k � 1/. The adaptive averaging
will enhance the robustness of the feature group size
calculation. For simplicity, we omit the iteration index k

in Nni. Nni represents the stage estimation metric for the
current iteration.

3.2 Warm start

In feature selection, the initial feature set largely
influences the search efficiency. In RFS[38] etc., the
selection starts from a random feature subset, in which
there can be many irrelevant features, so that an arbitrary
neighbor of the initial feature set can be selected with
a high probability based on a tiny contribution of
prediction accuracy. In the initialization stage, with a
tiny accuracy improvement, feature set F 0 will be rapidly
updated. If we formulate it as an pure optimization
problem, because of the plateau, the initial point can be
far from optimal, which makes the whole optimization
process hard to converge. As a result, locating a warmly
initialized preliminary feature subset Fpre can speedup
the whole optimization process.

A warmly initialized preliminary feature subset carries
general information to describe the data distributions
for discrimination. The initial feature set Fpre can
be generated from other low weight feature selection
algorithms, or from domain experts and numerical
simulations. But, a good starting feature set may not
perform perfectly for the predefined learner due to its
specific learning strategy and learnability. Thus, a
good transition is of great importance, in which the
preliminary initial feature would be quickly tuned with
the predefined learner for a better accuracy. So here,
we design a refined adaptive Semi-RFS to speedup the
transition from the preliminary features in which we
refine the feature group size computation in Eq. (3) with

Algorithm 1:� Semi-RFS

Input: F 0 (an initial feature subset), F (the entire feature
 set), and L (a predefined learner)
1 Compute accuracy A evaluated with learner L on feature
 set F 0 ;
2 repeat
3 �For adaptive Semi-RFS: compute feature group sizes g

and g0;
4 Evaluate feature candidates by adding and/or removing

each single feature from the feature group(s) Fg and/or
Fg0 ;

5 Identify the accuracy A0 of the locally best feature
candidate F 00;

6 if A0 > A then
7 Update A and F 0 with A0 and F 00, then start a new

search from F 0;
8 else
9 With probability 1 � u, update A and F 0 and start a

new search from F 0;
10 end

11 until A predefined stopping condition is satisfied;
12 Return F 0;

a finer granularity.

g D jF � F 0j � Iwarm

ˇ � Iwarm C e˛�Nni
I

g0 D jF 0j � Iwarm

ˇ � Iwarm C e˛�Nni

(3)

In contrast to Eq. (1), a warm start index Iwarm

is introduced for a more accurate searching stage
prediction. During the initialization, Nni can be close to
zero for multiple steps, so that using Nni solely cannot
accurately describe the search status at the transition
time. Thus, we involve a parameter PCTimp for stage
estimation. PCTimp is the percentage of potential feature
set candidates that can contribute to the prediction
accuracy with the features drawn from the sampled
feature group. A larger PCTimp indicates the selection
process is far from completion.

Iwarm.k/ D
(

1; k D 0I
1

1�PCTimp.k/
; v0 2 k > 0

(4)

We formulate the positive correlation between Iwarm

and PCTimp in Eq. (4). For PCTimp, we also employ
adaptive averaging shown as the following, where
lowercase pctimp.k/ denotes the percentage of better

selects features from feature groups of adaptive sizes
based on the feature selection status. The group size
is computed based on a specially designed adaptive
function Fsemi. This function works as follows. When
the feature selection begins, the selected feature set F 0
is far from optimal, so that weak residual features are
more likely to be selected and added to F 0. In order to
avoid the frequent interactions with the weak features,
the feature group size should be comparatively large
and the searching should be conducted in a broader
and greedier manner. When the feature selection is
nearing an end, a concise feature group can be more
helpful, because the searching randomness introduced
by a small feature group can result in a potentially further
descend. A theoretical analysis of the Semi-RFS is given
in Section 4.1.

In adaptive Semi-RFS, we design a function Fsemi for
computing the feature group size adaptively based on
estimating the searching progress. When the feature
selection initially begins, a generated feature candidate
set may more likely have a better accuracy since the
initial feature set could be far from optimal. There
can be many consecutive iterations with no better sets
discovered near the final stage of the selection. This
could happen if the feature set F 0 is close to optimal
and it is difficult to locate a candidate set with a better
accuracy. Thus, the group size can be computed based

214 Big Data Mining and Analytics, September 2020, 3(3): 208–224

on estimating of the searching stage. We discovered
that the number of consecutive iterations with no new
better feature sets being found would be a good metric
for the searching stage estimation. We use Nni to denote
this metric and the subscript ni stands for no accuracy
improvement. Here, Nni with a small value indicates the
feature selection is starting, while a larger Nni indicates
the search is approaching an end. We formulate feature
group size computation functions as Eq. (1). In Eq. (1),
we use generalized sigmoid functions to calculate the
percentage of the features in the residual feature set
and the current feature set to be sampled. There are
two hyper-parameters in the equations, ˛ and ˇ, where
ˇ is for controlling the initial group size and ˛ is for
balancing the influence of the stage estimation of metric
Nni. In Section 5.2, we conduct an experimental study
that reveals that the hyper-parameters ˇ and ˛ are not
sensitive.

g D jF � F 0j � 1

ˇ C e˛�Nni
I

g0 D jF 0j � 1

ˇ C e˛�Nni

(1)

In Eq. (1), the searching stage metric Nni can drop
dramatically to 0 once a better feature set is located. In
order to maintain the stability of Nni and the group sizes,
we leverage ideas from adaptive filters and calculate Nni

with adaptive averaging.

Nni.k/D
(

0; k D0I
w �nni.k/C.1�w/�Nni.k�1/; k >0

(2)
In Eq. (2), the lowercase nni.k/ denotes the current

exact number of consecutive iterations with no accuracy
improvement at the k-th iteration. The capitalized Nni.k/

is the metric we used in Eq. (1) and it is calculated
with weighted averaging of the current exact nni.k/ and
its previous value Nni.k � 1/. The adaptive averaging
will enhance the robustness of the feature group size
calculation. For simplicity, we omit the iteration index k

in Nni.

3.2 Warm start

In feature selection, the initial feature set largely
influences the search efficiency. In RFS[38], the selection
starts from a random feature subset, in which there can
be many irrelevant features, so that an arbitrary neighbor
of the initial feature set can be selected with a high
probability based on a tiny contribution of prediction
accuracy. In the initialization stage, with a tiny accuracy
improvement, feature set F 0 will be rapidly updated. If

we formulate it as an pure optimization problem, because
of the plateau, the initial point can be far from optimal,
which makes the whole optimization process hard to
converge. As a result, locating a warmly initialized
preliminary feature subset Fpre can speedup the whole
optimization process.

A warmly initialized preliminary feature subset carries
general information to describe the data distributions
for discrimination. The initial feature set Fpre can
be generated from other low weight feature selection
algorithms, or from domain experts and numerical
simulations. But, a good starting feature set may not
perform perfectly for the predefined learner due to its
specific learning strategy and learnability. Thus, a
good transition is of great importance, in which the
preliminary initial feature would be quickly tuned with
the predefined learner for a better accuracy. So here,
we design a refined adaptive Semi-RFS to speedup the
transition from the preliminary features in which we
refine the feature group size computation in Eq. (3) with
a finer granularity.

g D jF � F 0j � Iwarm

ˇ � Iwarm C e˛�Nni
I

g0 D jF 0j � Iwarm

ˇ � Iwarm C e˛�Nni

(3)

In contrast to Eq. (1), a warm start index Iwarm

is introduced for a more accurate searching stage
prediction. During the initialization, Nni can be close to
zero for multiple steps, so that using Nni solely cannot
accurately describe the search status at the transition
time. Thus, we involve a parameter PCTimp for stage
estimation. PCTimp is the percentage of potential feature
set candidates that can contribute to the prediction
accuracy with the features drawn from the sampled
feature group. A larger PCTimp indicates the selection
process is far from completion.

Iwarm.k/ D
8
<
:

1; k D 0I
1

1 � PCTimp.k/
; k > 0

(4)

We formulate the positive correlation between Iwarm

and PCTimp in Eq. (4). For PCTimp, we also employ
adaptive averaging shown as the following, where
lowercase pctimp.k/ denotes the percentage of better
candidates at the k-th iteration,

PCTimp.k/D

8
ˆ̂̂
<̂
ˆ̂̂
:̂

0; k D 0I
pctimp.k � 1/; kD1I
.1�w0/�PCTimp.k�1/C
w0 � pctimp.k � 1/; k > 1

(5)

Zigeng Wang et al.: Novel and Efficient Randomized Algorithms for Feature Selection 215

We describe the two-step warm start feature selection
process in Algorithm 2. The algorithm starts from a
preliminary feature set and the feature set will be fine-
tuned with the warm start adaptive process.

Warm start can work with a preliminary feature set and
also it can enhance feature elimination algorithms such
as RVE[37]. In feature elimination, the algorithm begins
with the entire feature set. If there are many irrelevant
or redundant features, the feature elimination process
will face the same plateau problem in the initialization
stage of feature selection. As a result, feature elimination
algorithms can also leverage the warm start and follow
the Semi-RFS mechanism as shown in Algorithm 3. In
order to select a concise set of features, we penalize
the feature addition operation by introducing biased
coin tosses, so that the features will have a higher
probability of being removed instead of being added.
Please note that, due to the nature of evaluating from
the whole feature set, feature elimination algorithms can
suffer from high memory usage when the total feature
dimension is very high.

3.3 Cool down

Throughout the feature selection process, the efforts

Algorithm 1:�2 Warm start initialization
Input: Fpre (a preliminary feature subset), F (the entire

feature set), and L (learner)
Output: A subset F 0 of features (F 0 � F)

1 begin
2 Compute the accuracy A evaluated by learner L with

feature subset Fpre;
3 Set Fwarm to override the existing group size function Fg

and Fg0 in Semi-RFS;
4 Call Semi-RFS with overrided Fwarm, and with variables

Fpre, F , and L;
5 Return the return value F 0 of Semi-RFS;
6 end

Algorithm 2:��3 Warm start elimination
Input: F (the entire feature set) and L (learner)
Output: A subset F 0 of features (F 0 � F)

1 begin
2 Set Preliminary feature set Fpre with F ;
3 Compute the accuracy A evaluated by learner L with

feature subset Fpre;
4 Set Fwarm to override the existing group size function Fg

and Fg0 in Semi-RFS;
5 Call Semi-RFS with overridden Fwarm and feature

addition penalty, and with variables Fpre, F , and L;
6 Return the return value F 0 of Semi-RFS;
7 end

spent on searching and evaluating irrelevant/redundant
features cannot contribute to the prediction accuracy.
Thus, locating the temporarily weak features and
focusing search attention on high potential features can
largely contribute to the selection efficiency. In previous
works[37, 38], features from the residual set F � F 0 are
randomly selected with equal probability, and then added
into the current feature set F 0, while the features in
F 0 are also to be removed with the same probability.
This memory-less searching strategy does not leverage
any previous feature candidate evaluation results, which
brings redundancies to duplicate candidate evaluations.

In feature addition operation, new feature candidates
are constructed by picking feature f from F �F 0 purely
randomly and letting the merge of f and F 0 to be F 00. If
F 00 does not achieve a better accuracy than the previous
feature set F 0, in the next iteration, however, feature
f can still be selected with an equal probability with
all the other features in the residual feature set F � F 0.
But in the previous round of evaluation, feature f has
been proved to be a temporarily weak feature and it is
redundant to be selected in the exact adjacent round and
to be re-evaluated. As a result, a lot of computational
power is wasted. We design a cool down technique
which generates feature candidates with higher potentials
by fully utilizing history evaluations.

In each addition and deletion operation, instead of
sampling features equally, we assign a large cool-
down factor to the weak features based on historic
evaluations to decrease their possibility of being sampled
for evaluation. For an addition operation, if a picked
feature f from the residual feature set has been proved
to be temporarily irrelevant when the feature candidate
brings a big accuracy drop, we will assign a large value
to the cool-down factor f . The same holds for removing
features from the current feature set F 0. If a feature
f 0 in F 0 has been evaluated to be temporarily relevant
(the removal of f 0 brings a large performance drop), a
large cool down value will be assigned to f 0, so that the
removal probability of feature f 0 can be reduced. We
formulate the relation between the probability of being
chosen and the cool-down factors in Eq. (6).

P.i/D

8
ˆ̂̂
<
ˆ̂̂
:

1=fac.i/
PjF j

iD1;fi 2F 0 1=fac.i/
; if fi 2 F 0I

1=fac.i/
PjF j

iD1;fi 2F �F 0 1=fac.i/
; if fi 2 F � F 0

(6)
In Eq. (6), fi denotes the i-th feature in the entire

216 Big Data Mining and Analytics, September 2020, 3(3): 208–224

feature set, P.i/ is fi ’s probability of being chosen, and
fac.i/ is the cool-down factor of feature fi . The larger
the cool-down factor, the lower the probability will be
that a feature will be chosen in local selection.

During the entire feature selection process, F 0 can
change dramatically from its being initialized to being
finalized. And the temporary relevance of a feature in the
residual feature set F �F 0 and F 0 may not be permanent.
So, the cool-down factor assigned to each feature should
be gradually warmed up and the features will have gently
increasing probabilities of being sampled. To summarize,
we also enclose a detailed illustration of Semi-RFS with
cool down in Algorithm 4. For a better illustration of the
cool down approach, we explain this idea together with

Semi-RFS.

4 Analysis

4.1 Convergence proof for Semi-RFS

We model Semi-RFS in Section 3.1 as a walk in a
complete directed graph G.V; E/. We use V to denote
the set of nodes and E to denote the set of edges. Each
node v in V represents a distinct combination of features.
There can be 2n distinct nodes when there are in total
n features. Given a node v, we define its arbitrary
neighbor as v0 which has an edge directly connecting
to it. Semi-RFS algorithm begins with a node v and
moves to its neighbors iteratively. In Semi-RFS, the

Zigeng Wang et al.: Novel and Efficient Randomized Algorithms for Feature Selection 17

Algorithm 4:� Semi-randomized feature selection with cool down (detailed)
Input: An initial feature subset F 0 (F 0� F), a complete feature set F , a predefined learner L, a stopping condition Cstop, and a
group size computation function Asemi

Output: A subset of selected features F 0
1 begin
2 Compute the accuracy A evaluated with learner L on feature subset F 0;
3 Initialize the cool-down factors facs for all the features in the currently selected feature set F 0 with value

p
jF 0j and features in

the residual feature set F � F 0 with
p

jF � F 0j ;
4 repeat
5

6

7

8

Compute feature candidate group sizes g and g0 based on Eq. (1);
Compute the selection probabilities PF 0 and PF �F 0 for features in F 0 and F � F 0 based on Eq. (6);
Uniformly randomly pick one element from the sets 1; 2, and 3;
if the picked element equals 1 then

9 Pick a set Fg of g random features from F � F 0 with PF �F 0 , evaluate the performance of each combination F 0 C f ,
8f 2 Fg with learner L, and add the best of Fg

� to F 0 to get F 00 ;
10 Pick a set Fg0 of g0 random features from F 0 with PF 0 and remove the weakest of Fg0 from F 00 to get new F 00 and get

the new accuracy A0;
11 else if the picked element equals 2 then
12 Pick a set Fg of g random features from F � F 0 with PF �F 0 , choose the best of Fg with L and add to F 0 to get F 00,

and compute the new accuracy A0;
13 else
14 Pick a set Fg0 of g0 random features from F 0 with PF 0 and remove the weakest of Fg0 with L to get F 00 and compute

the new accuracy A0;
15 end
16 Decrement all the fac whose values are greater than 1 by 1 ;
17 Update fac for the features in g and/or g0 in previous evaluation ;
18 if A0 > A then
19 Update A and F 0 with A0 and F 00 and perform a new search from F 00;
20 else
21 With probability u, perform another search from F 0;
22 With probability 1 � u, update A and F 0 with A0 and F 00 and perform search from F 00;
23 end
24

25

until the predefined stopping condition Cstop is satisfied;

26

Return F 0 ;

 end

g

Note: �The best of Fg denotes the feature in Fg that can contribute the most to the accuracy after combining with F 0 but not the
accuracy of the feature alone. The same applies for the weakest of F 0 .

Table 2 Result comparison of material property prediction.
white cwhite c

2*Algorithms Number of Features RMSE Runtime (s)
bandgap dielectric bandgap dielectric bandgap dielectric

FE[30] 88 35 0.47 0.48 – –
RFS[38] 33.1 28.4 0.466 0.471 2456 1942

Semi-RFS 33.3 26.7 0.464 0.472 1204 1015

Zigeng Wang et al.: Novel and Efficient Randomized Algorithms for Feature Selection 217

move only depends on the current node, so that we model
the process as a Markov chain. We further use A.v/ to
denote the accuracy of the specific feature combination
of the node v. Let N.v/ stand for the set of all neighbors
of node v and let N denote the size of N.v/. For a fair
theoretical comparison, we use the same state transition
probabilities as in RFS[38], and we write the transition
probability Pvv0 from node v to v0 as

Pvv0 D
(

0; v0 … N.v/I
min.1; exp.c �.A.v0/ � A.v////; v0 2 N.v/

(7)
where c is a constant. If we are at some node v in a given
time step, it is not necessary to move to a different node
in the next time step. We could remain in the same node
v with a certain probability when no better neighbors
can be found.

The main difference between the RFS and Semi-RFS
is the selection of moves. RFS picks one neighbor
randomly for evaluation and makes the move based on its
accuracy, while Semi-RFS makes the move by evaluating
a group of neighbors. We rank the neighbors of v in the
following manner. We will set the rank of a neighbor
v0 to be 1 if v0 provides the least accuracy improvement
in the neighbor set N.v/; we will set the rank of v0 to
be 2 if it has the second least accuracy improvement;
and so on. Please note that the accuracy improvement
can be a negative number if A.v0/ is smaller than A.v/.
We formulate the relation among the rank of node v0,
the group size g, and neighbor size N . We utilize the
sampling lemma from randomized sorting[44] in our
analysis.

Lemma 1 Let a subset of neighbors of node v be
denoted with Fg.v/ � N.v/ and the size of the subset
jFg.v/j D g. For any neighboring node v0

ar 2 Fg.v/,
let its rank in Fg.v/ be j and let its rank in N.v/ be rj .
Then, j and rj are related as follows:

Prob:

jrj � j

N

g
j >

p
4˛

Np
g

p
log N

!
< N �˛ (8)

where ˛ is a constant. From the Lemma in Formula
(8), rank rj in N.v/ is tightly bounded with its rank
j in feature subset Fg . In Fg , the neighbor v0 with
the highest accuracy will have rank g in Fg , so that by
substituting j with g, we have

Prob:

N � rg >

p
4˛

Np
g

p
log N

!
< N �˛ (9)

In Formula (9), N � rg represents the number of
neighbors that have a better accuracy than node v. When
the group size g is reasonably small as k � log N , we

have

Prob:

N � rg >

Np
k=4˛

!
< N �˛ (10)

For static Semi-RFS, k is a constant and for adaptive
Semi-RFS, k is a parameter characterized in Eq. (1).
As a result, in Semi-RFS, in each iteration, the worst
gradient according to Eq. (7) is

�0 D min
v02N.v/; and rank.v0/>N � Np

k=4˛

A.v0/ � A.v/ (11)

with a high probability. While in RFS, the worst gradient
is

� D min
v02N.v/

A.v0/ � A.v/ (12)

Therefore, Semi-RFS can lead to a steeper descent.
We use the same assumption in Refs. [38, 45] that

an algorithm is said to have converged if the underlying
Markov chain had been in a globally optimal state at
least once. We use D to denote the diameter of G.V; E/.
Given n features, the expectation of D is �.n/. A path
must exist from the starting node vstart to the optimal
node vopt with length 6 D.

According to Eq. (7), node v will move to its
neighboring node v0 with a normalized probability
1

N
Pvv0 > 1

N
exp.c�0/. For an arbitrary starting node

vstart, the expected path length to reach vopt is

E.steps/ 6 N D �exp

�c

DX

iD1

�0
i

!
D ŒN �exp.�c�0/�D

(13)
It can be proved by induction easily that Semi-RFS

converges within 6 2mŒN � exp.�c�0/�D steps, with
a probability of > .1 � 2�m/, for any integer m. We
have a feature group size k � log N and the number of
feature candidate evaluations is 6 2m � k � log N ŒN �
exp.�c�0/�D with probability > .1�2�m/. Comparing
to the number of total evaluations 2mŒN � exp.�c�/�D

in RFS[38], Semi-RFS can take a less number of steps
when the following condition is satisfied:

�0 � � > log k C log log.N /

c � D
(14)

Given jF �F 0j D n0 > 0, we have jF 0j D n�n0 > 0,
then,

N D jF � F 0j C jF 0j C jF � F 0j � jF 0j D
n0 C .n � n0/ C n0 � .n � n0/ D
n � n0 C n � n02 6 n2 (15)

Since D D �.n/, the RHS of Formula (14) satisfies
the following condition:

log k C log log.N /

c � D
6 log k C log log.n2/

c0 � n
(16)

218 Big Data Mining and Analytics, September 2020, 3(3): 208–224

where c0 is another constant related to D D �.n/, and

lim
n!C1

log k C log log.n2/

c0 � n
D lim

n!C1
log log.n/

c0 � n
D 0

(17)
So that the condition in Formula (14) can easily be

satisfied given a comparatively large n.

4.2 Parallelization of Semi-RFS

In this subsection, we show that the proposed Semi-
RFS naturally supports parallelization. The efficiency of
our proposed feature selection approach can be further
improved with multi-processor machines.

We illustrate the parallelization potentials by
employing the Parallel Random Access Machine
(PRAM) as an example. PRAM is a collection
of Random Access Machines (RAMs) working in
synchrony and communication among the RAMs
is relying on a common shared memory block[46].
Concurrent Read and Concurrent Write (CRCW) PRAM
is a common type of PRAM, in which data can be read
or written concurrently into the same unit in memory
at the same time. In Algorithm 5, we show a parallel
version of Semi-RFS.

In wrapper based feature selection approaches, feature
candidate evaluations become the dominant part of
overall computation, since in each iteration, learners
will be trained from scratch and feature candidates are
evaluated independently. Our model naturally supports
parallel feature candidate evaluations. Each feature
candidate in the candidate group can be assigned to one
single processor for evaluation in parallel. Considering
one single evaluation as the basic time unit, given a
group size of O.k � log N / in Section 4.1, one round of
evaluations can be done in O.1/ time using log n CRCW
PRAM processors with N 6 n2. Locating the best

10 Big Data Mining and Analytics, September 2020, 3(3): ???–???

must exist from the starting node vstart to the optimal
node vopt with length 6 D.

According to Eq. (7), node v will move to its
neighboring node v0 with a normalized probability
1

N
Pvv0 > 1

N
exp.c�0/. For an arbitrary starting node

vstart, the expected path length to reach vopt is

E.steps/ 6 N D �exp �c

DX

iD1

�0
i

!
D ŒN �exp.�c�0/�D

(13)
It can be proved by induction easily that Semi-RFS

converges within 6 2mŒN � exp.�c�0/�D steps, with
a probability of > .1 � 2�m/, for any integer m. We
have a feature group size k � log N and the number of
feature candidate evaluations is 6 2m � k � log N ŒN �
exp.�c�0/�D with probability > .1�2�m/. Comparing
to the number of total evaluations 2mŒN � exp.�c�/�D

in RFS[38], Semi-RFS can take a less number of steps
when the following condition is satisfied:

�0 � � > log k C log log.N /

c � D
(14)

Given jF �F 0j D n0 > 0, we have jF 0j D n�n0 > 0,
then,

N D jF � F 0j C jF 0j C jF � F 0j � jF 0j D
n0 C .n � n0/ C n0 � .n � n0/ D
n � n0 C n � n02 6 n2 (15)

Since D D �.n/, the RHS of Formula (14) satisfies
the following condition,

log k C log log.N /

c � D
6 log k C log log.n2/

c0 � n
(16)

where c0 is another constant related to D D �.n/, and

lim
n!C1

log k C log log.n2/

c0 � n
D lim

n!C1
log log.n/

c0 � n
D 0

(17)
So that the condition in Formula (14) can easily be

satisfied given a comparatively large n.

4.2 Parallelization of Semi-RFS

In this subsection, we show that the proposed Semi-
RFS naturally supports parallelization. The efficiency of
our proposed feature selection approach can be further
improved with multi-processor machines.

We illustrate the parallelization potentials by
employing the Parallel Random Access Machine
(PRAM) as an example. PRAM is a collection of RAMs
working in synchrony and communication among the
RAMs is relying on a common shared memory block[46].
Concurrent Read and Concurrent Write (CRCW) PRAM

is a common type of PRAM, in which data can be read
or written concurrently into the same unit in memory at
the same time. In Algorithm 5, we show that a parallel
version of Semi-RFS.

In wrapper based feature selection approaches, feature
candidate evaluations become the dominant part of
overall computation, since in each iteration, learners
will be trained from scratch and feature candidates are
evaluated independently. Our model naturally supports
parallel feature candidate evaluations. Each feature
candidate in the candidate group can be assigned to one
single processor for evaluation in parallel. Considering
one single evaluation as the basic time unit, given a
group size of O.k � log N / in Section 4.1, one round of
evaluations can be done in O.1/ time using log n CRCW
PRAM processors with N 6 n2. Locating the best
feature candidate can be done in O.log log log n/ time
following the divide-and-conquer algorithm using log n

CRCW PRAM processors[47]. As a result, the Parallel
Semi-RFS algorithm is asymptotically work optimal.
Given log n CRCW PRAM processors, the sequential
evaluation time can be reduced from 2m � k � log N ŒN �
exp.�c�0/�D to 2m � ŒN � exp.�c�0/�D .

5 Experimental Evaluation

In this section, we conduct an experimental study
and evaluate the performance of our proposed feature
selection algorithms. We first apply our three speedup
approaches to NIPS 2003 feature selection challenge
dataset[48] and cross-compare their performance with an
existing randomized algorithm[38]. Then, we conduct
an empirical study to investigate hyper-parameter
sensitivity in adaptive Semi-RFS. We further apply

Algorithm 5:� Parallel Semi-RFS
Input: F 0 (a initial feature subset), F (the entire feature set),

and L (a predefined learner)
1 Compute the accuracy A evaluated with learner L on feature

subset F 0;
2 repeat
3

4

5

6

Compute feature group sizes g and g0;
Compute A0 for each generated feature candidate in
parallel;
Locate the locally best feature candidate based on
accuracy in parallel;
Update A and F 0;

7 until A predefined stopping condition is satisfied;
8 Return F 0 ;

feature candidate can be done in O.log log log n/ time
following the divide-and-conquer algorithm using log n

CRCW PRAM processors[47]. As a result, the parallel
Semi-RFS algorithm is asymptotically work optimal.
Given log n CRCW PRAM processors, the sequential
evaluation time can be reduced from 2m � k � log N ŒN �
exp.�c�0/�D to 2m � ŒN � exp.�c�0/�D .

5 Experimental Evaluation

In this section, we conduct an experimental study
and evaluate the performance of our proposed feature
selection algorithms. We first apply our three speedup
approaches to NIPS 2003 feature selection challenge
dataset[48] and cross-compare their performance with an
existing randomized algorithm[38]. Then, we conduct
an empirical study to investigate hyper-parameter
sensitivity in adaptive Semi-RFS. We further apply
our algorithms to solve real world problems, including
polymer descriptor discovery for bandgap and dielectric
constant prediction[30] and smart city restaurant revenue
prediction[49], and compare the feature selection
performance.

We conduct our experiments with a Dell Precision
Workstation T7910. The workstation includes 256 GB
RAM and two CPU sockets, containing 8 Dual Intel
Xeon Processors E5-2667 (8C 16HT, 20 MB Cache,
3.2 GHz) each. Red Hat Enterprise Linux 7.0 operating
system is running on the machine.

5.1 Synthetic data analysis

We evaluate our techniques on NIPS 2003 feature
selection challenge dataset. The synthetic dataset
is generated with Scikit-Learn Machine Learning
Toolbox[50] following the rules in Ref. [48]. Specifically,
make classification function is used to introduce noise
by the way of correlated, redundant, and uninformative
features. We generate a dataset with 300 examples and
500 features. Among the 500 features, 30 of them are
informative features and 4 out of the 30 informative
features are redundant. The dataset has in total 3 classes
with single cluster for each class. Gradient Boosting
Tree is used as the default learner. Each experiment is
run with a 5-fold cross-validation and we use the average
results of 4 different runs for comparison.

We first evaluate and compare Semi-RFS algorithms
with RFS[38]. For static Semi-RFS, the static feature
group size g from residual features is set to be 2. And
for adaptive case, we set the hyper-parameter ˛ to be
0.5 and 1, and we set ˇ to be 5. A group size of 1 from

Zigeng Wang et al.: Novel and Efficient Randomized Algorithms for Feature Selection 219

the currently selected feature set F 0 is set for all cases
for a fair comparison. The initial feature set is with
20 randomly picked features. We use Semi RFS std2 1
to denote the static Semi-RFS algorithm with residual
group size 2 and selected feature group size 1, and use
Semi RFS adp0.5 and Semi RFS adp1 to denote the two
adaptive Semi-RFS algorithms with ˛ to be 0:5 and 1,
respectively. In contrast to RFS, Semi-RFS evaluates
more than one feature candidate in each iteration. So,
for a fair comparison, the elapsed time is used instead
of the number of iterations for error rate convergence
comparison. As we can see in Fig. 3a, the converge
speeds of both static and adaptive Semi-RFS algorithms
are much higher than that of RFS. More promisingly,

0 25 50 125 150 175 20075 100

Time elapsed (s)

0.30

0.35

0.40

0.45

0.50

0.55

0.60

C
la

ss
ifi

ca
tio

n
er

ro
r r

at
e

RFS

Semi RFS std2 1

Semi RFS adp0.5
Semi RFS adp1

(a) Error rate

0 200 400 600 800 1000 1200

Number of iterations

15.0

17.5

20.0

22.5

25.0

27.5

30.0

32.5

35.0
RFS

Semi RFS std2 1

Semi RFS adp0.5
Semi RFS adp1

N
um

be
r o

f s
el

ec
te

d
fe

at
ur

es

(b) Number of selected features

0 100 102 103101

0

20

40

60

80

RFS

Semi RFS std2 1

Semi RFS adp0.5
Semi RFS adp1

Number of iterations

R
es

id
ua

l f
ea

tu
re

 g
ro

up
 si

ze

(c) Group size

Fig. 3 Feature selection result comparison of Semi-RFS and
RFS.

based on search stage estimation, our adaptive Semi-RFS
approach can adaptively control the feature group size
for candidate selection (shown in Fig. 3c) and contribute
to a faster convergence speed. From Fig. 3b, we can
tell that Semi-RFS algorithms locate more informational
features which potentially lead to a higher accuracy.

We then apply the warm start technique on both
adaptive Semi-RFS and RFS algorithms, and cross
compare the performance. In Fig. 4, we use warm
to denote the algorithms initialized by warm start,
such as warm RFS and warm Semi RFS adp0.5. The
other naming conventions are following the legends in
previous figures. In warm start, a preliminary feature
set of size 20 is pre-generated with a Low-depth Extra

0 20 40 100 120 14060 80

Time elapsed (s)

0.30

0.35

0.40

0.45

0.50

0.55

0.60
RFS
warm RFS
Semi RFS adp0.5

warm Semi RFS adp0.5
C

la
ss

ifi
ca

tio
n

er
ro

r r
at

e

(a) Error rate

0 200 400 600 800 1000 1200

Number of iterations

14

16

18

20

22

24

26

RFS
warm RFS
Semi RFS adp0.5

warm Semi RFS adp0.5

N
um

be
r o

f s
el

ec
te

d
fe

at
ur

es

(b) Number of selected features

0 100 102 103110

0

10

20

30

40

50

RFS
warm RFS

Semi RFS adp0.5

warm Semi RFS adp0.5

Re
sid

ua
l f

ea
tu

re
 g

ro
up

 si
ze

Number of iterations
(c) Group size

Fig. 4 Feature selection result comparison of warm start
with Semi-RFS and RFS.

220 Big Data Mining and Analytics, September 2020, 3(3): 208–224

Trees Classifier. We first compare the convergence speed
in Fig. 4a. The result shows that, in the initialization
step, warm start warmly initializes the feature selection.
With a finer feature group size estimation, warm start
gives a smooth and fast transition from the preliminary
feature set and accelerates the whole convergence speed
of Semi-RFS. From Fig. 4c, we can infer that the warm
start helps the group size shrink earlier and improves
the total feature selection efficiency. For the selected
feature size, we can see in Fig. 4b that warm start can
quickly locate a more concise set of features with a
comparatively higher accuracy and increase the model’s
generalizability.

We also combine our cool down approach with Semi-
RFS and RFS algorithms and evaluate the performance.
In Fig. 5, we use the prefix cd to denote feature
selection schemes embedded with cool down. The other
naming conventions in the legend are following the
ones in all previous plots. Figure 5a shows that, for
both RFS and Semi-RFS, the cool down technique can
largely accelerate the convergence, in which feature
candidates with high accuracy improvement potentials
are reasonably selected and evaluated with higher
probabilities. We can see from Fig. 5b, the cool

0 20 40 100 120 14060 80

Time elapsed (s)

0.30

0.35

0.40

0.45

0.50

0.55

0.60

C
la

ss
ifi

ca
tio

n
er

ro
r r

at
e

RFS
cd RFS

Semi RFS std2 1

cd Semi RFS std2 1

(a) Error rate

0 200 800 1000400 600
12.5

15.0

17.5

20.0

22.5

25.0

27.5

30.0

RFS

cd RFS

Semi RFS std2 1

cd Semi RFS std2 1

N
um

be
r o

f s
el

ec
te

d
fe

at
ur

es

Number of iterations

(b) Number of selected features

Fig. 5 Feature selection result comparison of cool down with
Semi-RFS and RFS.

down approach locates more meaningful features which
contribute to a higher accuracy.

5.2 Hyper-parameter sensitivity study

In this subsection, we conduct an empirical study to
evaluate the sensitivity of two hyper-parameters in
adaptive Semi-RFS algorithm, namely ˛ and ˇ. As
shown in Eq. (1), the hyper-parameter ˛ helps to adjust
the impact of search stage estimation on group size
calculation and ˇ generally helps to control the group
size and balance the influence of stage estimation. In the
experiment, we follow the same settings and notations as
in Section 5.1. We use different combinations of hyper-
parameters ˛ and ˇ and compare their convergence
speed in terms of classification error.

In Fig. 6, the ˇ values used are 1, 2, 4, and 8 for
each sub-figure, respectively. Inside each sub-figure,
we compare the convergence speed of RFS and Semi-
RFS with ˛ values of 0.5, 1, and 2. We can see
that, when ˇ D 1 or 2, different ˛ values bring no
significant difference to the convergence. When ˇ D 4

or 8, the convergence becomes less stable, since the
group size becomes smaller and more irrelevant features
are involved due to an increase in randomness. As a
result, the hyper-parameter ˛ is not sensitive when ˇ is
relatively small. In general, assigning value 1 to both
hyper-parameters can lead to a stable convergence.

5.3 Materials property prediction

In this section, we apply our proposed feature selection
approach on real polymer datasets. In materials
genomics research, it is a central problem to predict
material properties through machine learning and
computational methods. In this application, we apply
our algorithms for polymer property prediction through
materials fingerprinting. Fingerprinting is a crucial step
of data-driven machine learning approach where the
geometric and chemical information on the polymers
are converted to a numerical representation. The entire
dataset contains 242 features describing polymers from
several hierarchical levels[30].

We cross compare our approach with RFS[38] and
an SVM based Feature Elimination (FE) algorithm
employed in Ref. [30]. We follow the same experiment
setup and use the same Gaussian Process regressor[30]

for polymer bandgap and dielectric constant predictions,
respectively. We evaluate the results through a 5-fold
cross validation and calculate the average values of
10 runs. We evaluate feature selection from different
perspectives, including selected number of features,

Zigeng Wang et al.: Novel and Efficient Randomized Algorithms for Feature Selection 221

0 25 50 125 150 175 20075 100

Time elapsed (s)

0.30

0.35

0.40

0.45

0.50

0.55

0.60

C
la

ss
ifi

ca
tio

n
er

ro
r r

at
e

RFS

Semi RFS adp0.5

Semi RFS adp1
Semi RFS adp2

(a) ˇ = 1

0 25 50 125 150 175 20075 100

Time elapsed (s)

0.30

0.35

0.40

0.45

0.50

0.55

0.60

C
la

ss
ifi

ca
tio

n
er

ro
r r

at
e

RFS

Semi RFS adp0.5

Semi RFS adp1
Semi RFS adp2

(b) ˇ = 2

0 25 50 125 150 175 20075 100

Time elapsed (s)

0.30

0.35

0.40

0.45

0.50

0.55

0.60

C
la

ss
ifi

ca
tio

n
er

ro
r r

at
e

RFS

Semi RFS adp0.5

Semi RFS adp1
Semi RFS adp2

(c) ˇ = 4

0 25 50 125 150 175 20075 100

Time elapsed (s)

0.30

0.35

0.40

0.45

0.50

0.55

0.60

C
la

ss
ifi

ca
tio

n
er

ro
r r

at
e

RFS

Semi RFS adp0.5

Semi RFS adp1
Semi RFS adp2

(d) ˇ = 8

Fig. 6 Convergence rate comparison with different hyper-parameter values.

RMSE, and runtime. We compare our randomized
approaches directly with the experimental results in
Ref. [30].

As seen from Table 2, for both bandgap and dielectric
predictions, randomized approaches can locate more
concise feature sets. Our approach selects a feature set of
size 33:3 which contains only 38% of the size of the final
feature set discovered with the FE approach. Moreover,
with less features, we achieve better prediction accuracy
in both cases. Furthermore, our Semi-RFS approach
converges twice as fast as the RFS algorithm. A concise
material descriptor set will greatly enhance the feature
explainability and it will provide more data evidence to
material researchers for targeted experiments. Also, the
highly efficient selection enables material investigations
with larger data size and larger feature size.

5.4 Restaurant revenue prediction

Restaurant revenue prediction is an important index on
analyzing customer demand and sales forecasting and

thus plays an important role in smart city[51]. However,
a large number of features require a high cost and a
long time delay in the data collection phase. Introducing
feature selection into restaurant revenue prediction can
reduce the number of required features, and thus reduce
the cost and improve the efficiency of the whole smart
city network.

Restaurant revenue prediction dataset contains 137
restaurants from different locations from all over the
world[49]. The features include the open date, location,
city type of the restaurant, together with the demographic
information and the commercial information nearby.
Demographic information includes the age and gender
distribution of the population and commercial data
include nearby schools, banks, and commercial facilities.

The original dataset has 37 different features including
categorical features and numerical features. We employ
one-hot encoding on the categorical features such as
location and city type, and expand the feature dimension
to 108. In this problem, we use Gradient Boosting Tree

Table 2 Result comparison of material property prediction.

Algorithm
Number of features RMSE Runtime (s)

bandgap dielectric bandgap dielectric bandgap dielectric
FE[30] 88 35 0.47 0.48 – –

RFS[38] 33.1 28.4 0.466 0.471 2456 1942
Semi-RFS 33.3 26.7 0.464 0.472 1204 1015

222 Big Data Mining and Analytics, September 2020, 3(3): 208–224

regressor as the learner to evaluate our feature selection
algorithm. Due to the limited number of data samples,
we use a 4-fold cross-validation and the average results
of 5 independent runs.

Table 3 summarizes the experimental comparison of
RFS, Semi-RFS, and the base features. We compare the
feature selection algorithms’ performance with respect
to different initial base feature sets of sizes jF j (10, 30,
108) and their corresponding base RMSEs (2.64, 2.6,
2.62)�106. The initial features are selected according to
the generated feature importance metric while training
the gradient boosting tree regressor. Compared with the
base model results, both RFS and Semi-RFS achieve
better RMSEs and the feature search speed of Semi-RFS
is faster than that of RFS. With different initial feature
sizes, we can see that the RMSE increases when the
initial feature size increases due to the ratio of the feature
size and the number of training samples. This shows that
our randomized approach is very suitable for identifying
a smaller subset of features to reduce the error caused
by model overfitting. From the feature selection process,
we discover that the city of a restaurant and whether or
not a restaurant supports drive through play an important
role in the revenue prediction.

6 Conclusion

In this paper, we propose computational and memory
efficient randomized feature selection algorithms based
on semi-randomized selection, warm up, and cool down
techniques. The techniques are highly generic and can
be used in different randomized selection algorithms
with arbitrary machine learning models. Our algorithms
are naturally parallelizable and memory efficient. We
conduct theoretical analysis and extensive experiments
on different datasets with different learners, and our
approaches show promising results.

Acknowledgment

This work was supported in part by the National Science

Table 3 Result comparison of restaurant revenue
prediction.

Algorithm jF j base jF j RMSE base
(�106)

RMSE
(�106) Time (s)

RFS 10 12 2.64 2.23 31.9
Semi-RFS 10 14.4 2.64 2.18 22.4

RFS 30 28.2 2.6 2.36 39.6
Semi-RFS 30 33.8 2.6 2.2 27.8

RFS 108 83.8 2.62 2.42 59.6
Semi-RFS 108 85.2 2.62 2.37 34.1

Foundation (NSF) (Nos. 1447711, 1743418, and 1843025).

References

[1] Z. G. Wang and S. Rajasekaran, Efficient randomized
feature selection algorithms, in Proc. 2019 IEEE 21st Int.
Conf. High Performance Computing and Communications;
IEEE 17th Int. Conf. Smart City; IEEE 5th Int. Conf.
on Data Science and Systems (HPCC/SmartCity/DSS),
Zhangjiajie, China, 2019, pp. 796–803.

[2] R. Ounit, S. Wanamaker, T. J. Close, and S. Lonardi,
CLARK: Fast and accurate classification of metagenomic
and genomic sequences using discriminative k-mers, BMC
Genomics, vol. 16. no.1, p. 236, 2015.

[3] P. Menzel, K. L. Ng, and A. Krogh, Fast and sensitive
taxonomic classification for metagenomics with Kaiju, Nat.
Commun., vol. 7, p. 11 257, 2016.

[4] Y. X. Tong, Y. Q. Chen, Z. M. Zhou, L. Chen, J. Wang,
Q. Yang, L. P. Ye and W. F. Lv, The simpler the better:
A unified approach to predicting original taxi demands
based on large-scale online platforms, in Proc. 23rd ACM
SIGKDD Int. Conf. Knowledge Discovery and Data Mining,
New York, NY, USA, 2017, pp. 1653–1662.

[5] C. F. Zhang, M. X. Dong, T. H. Luan, and K. Ota, Battery
maintenance of pedelec sharing system: Big data based
usage prediction and replenishment scheduling, IEEE Trans.
Network Sci. Eng., vol. 7, no. 1, pp. 127–138, 2019.

[6] H. Moeini, W. X. Zeng, I. L. Yen, and F. Bastani,
Toward data discovery in dynamic Smart city applications,
in Proc. 2019 IEEE 21st Int. Conf. High Performance
Computing and Communications; IEEE 17th Int. Conf.
Smart City; IEEE 5th Int. Conf. Data Science and Systems
(HPCC/SmartCity/DSS), Zhangjiajie, China, 2019, pp.
2572–2579.

[7] X. R. Zhang, C. A. Huang, M. Y. Liu, A. Stefanopoulou,
and T. Ersal, Predictive cruise control with private vehicle-
to-vehicle communication for improving fuel consumption
and emissions, IEEE Commun. Mag., vol. 57, no. 10, pp.
91–97, 2019.

[8] A. Gledson, T. B. Dhafari, N. Paton, and J. Keane,
A smart city dashboard for combining and analysing
multi-source data streams, in Proc. 2018 IEEE 20th

International Conference on High Performance Computing
and Communications; IEEE 16th International Conference
on Smart City; IEEE 4th International Conference on Data
Science and Systems (HPCC/SmartCity/DSS), Exeter, UK,
2018, pp. 1366–1373.

[9] M. Mohammadi and A. Al-Fuqaha, Enabling cognitive
smart cities using big data and machine learning:
Approaches and challenges, IEEE Commun. Magaz., vol.
56, no. 2, pp. 94–101, 2018.

[10] S. Wold, K. Esbensen, and P. Geladi, Principal component
analysis, Chemometr. Intellig. Lab. Syst., vol. 2, nos. 1–3,
pp. 37–52, 1987.

[11] S. Mika, G. Ratsch, J. Weston, B. Scholkopf, and K. R.
Mullers, Fisher discriminant analysis with kernels, in Proc.
Neural Networks for Signal Processing IX: Proc. 1999 IEEE
Signal Processing Society Workshop, Madison, WI, USA,
1999, pp. 41–48.

Zigeng Wang et al.: Novel and Efficient Randomized Algorithms for Feature Selection 223

[12] L. P. Wang, Y. L. Wang, and Q. Chang, Feature selection
methods for big data bioinformatics: A survey from the
search perspective, Methods, vol. 111, pp. 21–31, 2016.

[13] D. Mladenić, Feature selection in text mining, in
Encyclopedia of Machine Learning, C. Sammut and G. J.
Webb, eds. Boston, MA, USA: Springer, 2011, pp. 406–410.

[14] K. Huang and S. Aviyente, Wavelet feature selection for
image classification, IEEE Trans. Image Process., vol. 17,
no. 9, pp. 1709–1720, 2008.

[15] J. L. Tracy, A. Trabucco, A. M. Lawing, J. T. Giermakowski,
M. Tchakerian, G. M. Drus, and R. D. Coulson, Random
subset feature selection for ecological niche models of
wildfire activity in Western North America, Ecol. Modell.,
vol. 383, pp. 52–68, 2018.

[16] C. Liu, D. X. Jiang, and W. G. Yang, Global geometric
similarity scheme for feature selection in fault diagnosis,
Exp. Syst. Applicat., vol. 41, no. 8, pp. 3585–3595, 2014.

[17] J. D. Li, K. W. Cheng, S. H. Wang, F. Morstatter, R.
P. Trevino and J. L. Tang, Feature selection: A data
perspective, ACM Comput. Sur., vol. 50, no. 6, p. 94, 2017.

[18] A. Jović, K. Brkić, and N. Bogunović, A review of
feature selection methods with applications, in Proc. 2015
38th Int. Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO),
Opatija, Croatia, 2015, pp. 1200–1205.

[19] Z. H. Zhang and E. R. Hancock, A graph-based approach to
feature selection, in Proc. Int. Workshop on Graph-Based
Representations in Pattern Recognition, Münster, Germany,
2011, pp. 205–214.

[20] A. K. Das, S. Goswami, A. Chakrabarti, and B.
Chakraborty, A new hybrid feature selection approach using
feature association map for supervised and unsupervised
classification, Exp. Syst. Appl., vol. 88, pp. 81–94, 2017.

[21] P. Xiao, Z. G. Wang, and S. Rajasekaran, Novel speedup
techniques for parallel singular value decomposition, in
Proc. 2018 IEEE 20th Int. Conf. High Performance
Computing and Communications; IEEE 16th Int. Conf.
Smart City; IEEE 4th Int. Conf. Data Science and Systems
(HPCC/SmartCity/DSS), Exeter, UK, 2018, pp. 188–195.

[22] G. Chandrashekar and F. Sahin, A survey on feature
selection methods, Comput. Electr. Eng., vol. 40, no. 1,
pp. 16–28, 2014.

[23] V. Fonti and E. Belitser, Feature Selection Using Lasso,
https://pdfs.semanticscholar.org/24ac/d159910658223209
433cf4cbe3414264de39.pdf, 2017.

[24] J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra,
Efficient projections onto the l1-ball for learning in high
dimensions, in Proc. 25th Int. Conf. Machine Learning,
Helsinki, Finland, 2008, pp. 272–279.

[25] N. Grgić-Hlača, M. B. Zafar, K. P. Gummadi, and
A. Weller, Beyond distributive fairness in algorithmic
decision making: Feature selection for procedurally fair
learning, in Proc. Thirty-Second AAAI Conf. on Artificial
Intelligence (AAAI-18), the 30th Innovative Applications of
Artificial Intelligence (IAAI-18), and the 8th AAAI Symp.
on Educational Advances in Artificial Intelligence, New
Orleans, LA, USA, 2018.

[26] X. Zhang, M. M. Khalili, C. Tekin and M. Liu, Group

retention when using machine learning in sequential
decision making: The interplay between user dynamics
and fairness, presented at the 33rd Conf. Neural Information
Processing Systems (NeurIPS), Vancouver, Canada, 2019,
pp. 15 243–15 252.

[27] T. Zhang, T. Q. Zhu, P. Xiong, H. Huo, Z. Tari, and W. L.
Zhou, Correlated differential privacy: Feature selection in
machine learning, IEEE Trans. Ind. Inf., vol. 16, no. 3, pp.
2115–2124, 2019.

[28] X. R. Zhang, M. M. Khalili, and M. Y. Liu, Improving
the privacy and accuracy of ADMM-based distributed
algorithms, in Proc. 35th Int. Conf. on Machine Learning,
Stockholm, Sweden, 2018, pp. 5796–5805.

[29] C. Li, D. R. De Celis Leal, S. Rana, S. Gupta, A. Sutti, S.
Greenhill, T. Slezak, M. Height, and S. Venkatesh, Rapid
Bayesian optimisation for synthesis of short polymer fiber
materials, Sci. Rep., vol. 7, p. 5683, 2017.

[30] C. Kim, A. Chandrasekaran, T. D. Huan, D. Das, and R.
Ramprasad, Polymer genome: A data-powered polymer
informatics platform for property predictions, J. Phys. Chem.
C, vol. 122, no. 31, pp. 17 575–17 585, 2018.

[31] P. M. Narendra and K. Fukunaga, A branch and bound
algorithm for feature subset selection, IEEE Trans. Comput.,
vol. C-26, no. 9, pp. 917–922, 1977.

[32] J. Doak, An evaluation of feature selection methods and
their application to computer security, Tech. Rep. CSE-92-
18 UC Davis, Department of Computer Science, University
of California, Davis, CA, USA, 1992.

[33] S. Nakariyakul and D. P. Casasent, An improvement on
floating search algorithms for feature subset selection, Patt.
Recognit., vol. 42, no. 9, pp. 1932–1940, 2009.

[34] S. Russell and P. Norvig, Artificial Intelligence: A Modern
Approach. New York, NY, USA: Prentice Hall, 2009.

[35] B. Xue, M. J. Zhang, W. N. Browne, and X. Yao, A
survey on evolutionary computation approaches to feature
selection, IEEE Trans. Evol. Comput., vol. 20, no. 4, pp.
606–626, 2016.

[36] P. Ghamisi and J. A. Benediktsson, Feature selection based
on hybridization of genetic algorithm and particle swarm
optimization, IEEE Geosci. Remote Sens. Lett., vol. 12, no.
2, pp. 309–313, 2015.

[37] D. J. Stracuzzi and P. E. Utgoff, Randomized variable
elimination, J. Mach. Learn. Res., vol. 5, pp. 1331–1362,
2004.

[38] S. Saha, S. Rajasekaran, and R. Ramprasad, Novel
randomized feature selection algorithms, Int. J. Found.
Comput. Sci., vol. 26, no. 3, pp. 321–341, 2015.

[39] A. Brankovic, A. Falsone, M. Prandini, and L. Piroddi,
A feature selection and classification algorithm based on
randomized extraction of model populations, IEEE Trans.
Cybernet., vol. 48, no. 4, pp. 1151–1162, 2018.

[40] I. Foroutan and J. Sklansky, Feature selection for automatic
classification of non-Gaussian data, IEEE Trans. Syst. Man
Cybernet., vol. 17, no. 2, pp. 187–198, 1987.

[41] P. Pudil, J. Novovičová, and J. Kittler, Floating search
methods in feature selection, Patt. Recognit. Lett., vol. 15,
no. 11, pp. 1119–1125, 1994.

224 Big Data Mining and Analytics, September 2020, 3(3): 208–224

[42] D. J. Stracuzzi, Randomized feature selection, in
Computational Methods of Feature Selection, H. Liu and H.
Motoda, eds. London, UK: Chapman and Hall/CRC, 2007,
pp. 53–74.

[43] S. W. Lin, Z. J. Lee, S. C. Chen, and T. Y. Tseng,
Parameter determination of support vector machine and
feature selection using simulated annealing approach, Appl.
Soft Comput., vol. 8, no. 4, pp. 1505–1512, 2008.

[44] S. Rajasekaran and J. H. Reif, Derivation of randomized
sorting and selection algorithms, in Parallel Algorithm
Derivation and Program Transformation, R. Paige, J. Reif,
and R. Watcher, eds. Boston, MA, USA: Springer, 1993, pp.
187–205.

[45] S. Rajasekaran, On simulated annealing and nested
annealing, J. Glob. Optim., vol. 16, no. 1, pp. 43–56, 2000.

[46] J. Jájá, An Introduction to Parallel Algorithms. Redwood
City, CA, USA: Addison Wesley Longman Publishing Co.,
Inc., 1992.

[47] E. Horowitz, S. Sahni, and S. Rajasekaran, Computer

Algorithms C++: C++ and Pseudocode Versions. Stuttgart,
Germany: Macmillan, 1997.

[48] I. Guyon, S. Gunn, A. B. Hur, and G. Dror, Design and
analysis of the NIPS2003 challenge, in Feature Extraction,
I. Guyon, M. Nikravesh, S. Gunn, and L. A. Zadeh, eds.
Berlin, Germany: Springer, 2006, pp. 237–263.

[49] T. F. Investment and Kaggle, Restaurant revenue prediction:
Predict annual restaurant sales based on objective
measurements, https://www.kaggle.com/c/restaurant-
revenue-prediction, 2019.

[50] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B.
Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V.
Dubourg, et al., Scikit-learn: Machine learning in Python, J.
Mach. Learn. Res., vol. 12, pp. 2825–2830, 2011.

[51] A. Lasek, N. Cercone, and J. Saunders, Smart Restaurants:
Survey on customer demand and sales forecasting, in Smart
Cities and Homes, M. S. Obaidat and O. Nicopolitidis, eds.
Amsterdam, Netherlands: Elsevier, 2016, pp. 361–386.

Zigeng Wang received the BS degree from
Xi’an Jiaotong University, China in 2013.
He is currently pursuing the PhD degree
under the guidance of Dr. Sanguthevar
Rajasekaran at the Department of Computer
Science and Engineering, University of
Connecticut, USA. His research interests
focus on designing efficient machine

learning models, including deep learning model compression
and acceleration, and feature selection. He also has research
experiences in time series analysis, natural language processing,
randomized and parallel algorithms, and networked system design.

Xia Xiao received the BS degree from
Huazhong University of Science and
Technology, China in 2011, and the MS
degree in communication engineering from
Chinese Academy of Sciences, China in
2014. He is currently pursuing the PhD
degree in computer science and engineering
at University of Connecticut, USA. His

research interests include deep neural networks, efficient
neuron architecture search, model compression, and network
sparsification. He also conducts research in computer vison, such
as object detection, image segmentation, and speedup techniques
on computer vision model for real time inference systems.

Sanguthevar Rajasekaran received the
MEng degree in automation from the
Indian Institute of Science in 1983, and
the PhD degree in computer science from
Harvard University in 1988. Currently, he
is the head of the Computer Science and
Engineering (CSE) Department, board of
trustees distinguished professor, and United

Technologies Corporation (UTC) chair professor of CSE
at University of Connecticut. Before joining University of
Connecticut, he has served as a faculty member at Computer
& Information Science & Engineering (CISE) Department of
the University of Florida and Computer and Information Science
(CIS) Department of University of Pennsylvania. During 2000–
2002, he was the chief scientist for Arcot Systems. His research
interests include big data, bioinformatics, algorithms, data mining,
randomized computing, and HPC. He has published over 350
research articles in journals and conferences. He has co-authored
two texts on algorithms and co-edited six books on algorithms and
related topics. He has been awarded numerous research grants
from such agencies as NSF, NIH, DARPA, Industry, and DHS
(totaling around $20M). He is a fellow of the IEEE and the AAAS.
He is also an elected member of the Connecticut Academy of
Science and Engineering.

