BIG DATA MINING AND ANALYTICS
ISSN 2096-0654 04/06 pp196-207
Volume 3, Number 3, September 2020
DOI: 10.26599/BDMA.2020.9020004

Gradient Amplification: An Efficient Way to Train Deep Neural
Networks

Sunitha Basodi, Chunyan Ji, Haiping Zhang, and Yi Pan*

Abstract: Improving performance of deep learning models and reducing their training times are ongoing challenges

in deep neural networks. There are several approaches proposed to address these challenges, one of which is

to increase the depth of the neural networks. Such deeper networks not only increase training times, but also

suffer from vanishing gradients problem while training. In this work, we propose gradient amplification approach

for training deep learning models to prevent vanishing gradients and also develop a training strategy to enable or

disable gradient amplification method across several epochs with different learning rates. We perform experiments

on VGG-19 and Resnet models (Resnet-18 and Resnet-34) , and study the impact of amplification parameters on

these models in detail. Our proposed approach improves performance of these deep learning models even at higher

learning rates, thereby allowing these models to achieve higher performance with reduced training time.

Key words: deep learning; gradient amplification; learning rate; backpropagation; vanishing gradients

1 Introduction

Deep learning models have achieved state-of-the-art
performances in several areas including computer
vision!", automatic speech recognition'”, natural
language processing!®!, and beyond*-®!. These models
are designed, trained, and tuned to achieve better
performance for a given dataset. Their performance
increases further with the increase in the depth of the
network!®!. The major challenge associated with the
increase in the network architecture is the high amount
of time required to train the model even on parallel
computation resources and also vanishing gradients™.
Training deep neural networks is time-consuming, which

e Sunitha Basodi, Chunyan Ji, and Yi Pan are with the
Department of Computer Science, Georgia State University,
Atlanta, GA 30302, USA. E-mail: sbasodil @student.gsu.edu;
cji2@student.gsu.edu; yipan@gsu.edu.

e Haiping Zhang is with the Center for High Performance
Computing, Joint Engineering Research Center for Health
Big Data Intelligent Analysis Technology, Shenzhen Institutes
of Advanced Technology, Chinese Academy of Sciences,
Shenzhen 518055, China. E-mail: hp.zhang @siat.ac.cn.

* To whom correspondence should be addressed.

Manuscript received: 2020-04-01; accepted: 2020-04-16

could take days or sometimes weeks depending on
the type of the model architecture and size of the
dataset. One way to speed up the training process
is to increase the learning rate. This will accelerate
the training process by quickly converging to optima,
but also has the risk of missing the global optima
resulting in sub-optimal solutions or sometimes non-
convergence!'’l. Lower learning rate does not have such
arisk and can converge to optima, but increases training
speeds. In general, training process with a learning rate
scheduler begins with higher learning rates for a few
epochs, followed by reduction of learning rates for the
next couple of epochs, which is repeated until the desired
optima or model performance is achieved. One way
to improve the training speed of deep learning models
can be to determine ways to achieve optimal model
parameters at larger learning rates.

The other important area of research in deep
learning models is to prevent vanishing gradient

=131 The vanishing gradient problem occurs

problem!
during training of artificial neural networks, specifically
during backpropagation. There are several approaches
to avoid this problem. One suggested early method

was to perform a two-step training process, which

© The author(s) 2020. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Sunitha Basodi et al.: Gradient Amplification: An Efficient Way to Train Deep Neural Networks 197

involved network weight initialization followed by fine-
tuning using backpropagation method"*!. The other
simpler methods that prevent this problem are Rectified
Linear Unit (ReLU) activation function!!> 1% and Batch
Normalization (BN)!!7). Since ReLU activation saturates
inputs in only one direction, it has less impact of
vanishing gradients. The other recent approach of batch
normalization not only improves the performance of the
model, but also reduces vanishing gradient problems.
Resnet architectures have residual connections, which
also overcome vanishing gradient problem to some
extent!!!, Lately, due to the improvement of hardware
along with the computational abilities of Graphical
Processing Units (GPUs), neural networks can be trained
without the issue of vanishing gradients.

In this work, we propose a novel gradient
amplification approach along with a training strategy
which addresses the challenges discussed above. In
this method, gradients are dynamically increased for
some layers during backpropagation so that significant
gradient values are propagated to the initial layers. This
process is repeated for a few epochs along with the
normal training process with no gradient amplification
for the other epochs. When neural networks are trained
using this method, we observe that the testing/training
accuracies of the models improve and achieve higher
accuracies faster, even at higher learning rates, therefore
reduce the training time of these deep learning models.

Our contributions include the following:

— We propose a novel way of amplifying gradients
during backpropagation for effective training of deep
neural networks.

— We suggest a unique training strategy which
includes amplification during certain epochs along with
normal training with no amplification.

— We perform comprehensive experiments to
understand the impact of different parameters used in
amplification.

— We perform step-wise analysis of training strategy
demonstrating the best strategy with different learning
rates.

The remainder of this paper is organized as follows.
Related works are briefly described in Section 2.
Our proposed approach is presented in Section 3.
Experimental setup, results, and their comparisons
are covered in Section 4, followed by conclusions in
Section 5.

2 Background

In addition to deep learning models, there have
been efforts to analyze large datasets using clustering
techniques on cloud architectures!'® 191, In this section,
we briefly discuss the existing approaches to address
vanishing gradient problem and study the impact of
learning rates on the training time of deep learning
models.

2.1 Vanishing gradient

Vanishing gradient problem!!!~13! occurs while training
artificial neural networks during backpropagation and
can become significant with the increase of depth
of the network. In gradient-based learning methods,
during backpropagation, network weights are updated
proportional to the gradient value (partial derivative of
the cost function with respect to the current weights)
after each training iteration (epoch). Depending on
the type of the activation functions and network
architectures, sometimes the gradient value is too small
and gets gradually diminished during backpropagation
to the initial layers. This prevents the network from
updating its weights and also sometimes when the
value is too small, the network may be completely
stopped from training (updating weights). Though
there is no fundamental solution to this problem,
some of the approaches help to avoid it">"). One such
approach consists of performing a two-step training
process. In the first step, network weights are trained
using unsupervised learning methods (such as auto-
encoding) and then the weights are fine-tuned using
backpropagation method!'¥!. Other simpler methods that
prevent this problem are ReLU activation function!!> 161,
BN and Resnet networks!'). ReLU activation zeros
the negative values and only considers positive
values. As it saturates inputs in only one direction, it has
less impact on vanishing gradients. The other approach,
batch normalization, also reduces vanishing gradient
problems other than boosting the performance of the
model. In batch normalization, during every training
iteration, the input data are normalized to reduce its
variance, so that the data do not have large bounds. Since
inputs are normalized, gradients are also regulated!'”.
Resnet network architectures have residual networks
and residual connections which help to improve on
this problem. In addition to these approaches, recent
advancement in the hardware has also played a crucial
role in solving this issue. Increased computational

198

abilities and availability of GPUs aid in reducing this
problem.

2.2 Learning rate

Learning rate is one of the most important
hyperparameters, which controls the performance
of deep neural networks. Having higher learning
rates cause the model to train faster, but might have
sub-optimal solutions. = However, lower learning
rates take longer time to train the model, but can
achieve better optimal solutions!!?!. There are several
approaches designed to take advantage of them. One
such method is learning rate scheduler, where we start
with higher learning rates and gradually lower the
rates with training epochs?!l. There are several ways
in which such a scheduler can be designed, namely,
directly assigning the learning rates to the epochs,
gradually decaying the learning rate based on the
current learning rate, current epoch, and total number
of epochs (time-based decay); reducing the learning
rate in a step-wise manner after a certain number of
epochs (step decay); and exponentially decaying the
learning rate based on the initial learning rate and the
current epoch (exponential decay). Another approach
includes adapting learning rate dynamically based on
the performance of the optimization algorithm without
need of any scheduling, some of such methods include
Adagrad??!, Adadelta®!, RMSprop!?*!, and Adam!®!,
Reference [26] summarized all the above discussed
methods in detail. Reference [27] proposed a method
to automatically tune the learning rate based on the
local gradient variations of the data samples, which
has similar performance to other adaptive learning
rate methods. Reference [28] showed that models can
achieve similar test performance without decaying the
learning rate but by increasing the batch size instead.
This method not only has fewer parameter updates, but
also increases parallelism thereby reducing training
times.

In the next section, we discuss our proposed method
and training strategy with a fixed learning rate schedule
across epochs, which achieves better accuracies even at
the higher values of learning rates.

3 Proposed Method

Our proposed approach is to dynamically amplify
(increase) the value of the gradients for a selection
of layers during backpropagation. This ensures
that the gradient values are not diminished while
updating weights for the initial network layers and a

Big Data Mining and Analytics, September 2020, 3(3): 196-207

significant value of the gradients is available during
backpropagation even for deep neural networks with
large number of layers. Architectures of neural networks
have evolved over the years and there are many different
layers where such an amplification can be done. The
layers on which gradient amplification can be performed
during backpropagation are arranged into a group, say G.
To determine this group, firstly, the type of layers that
needs to be included for gradient amplification should be
identified. Each of the layers, such as convolution layers,
batch normalization layers, pooling layers, activation
function layers, and so on, can be chosen to be included
in the group. The type of the layer considered plays a
crucial role in the performance of the model. Gradient
amplification is done on a subset of the layers from this
group G, which we refer as amp layers in the rest of
the paper. Selection of the amp layers from a group of
layers can be done in various methods. In this work,
we determine the amp layers by random selection. To
identify which subset size has better performance, we
choose a parameter § representing the ratio of amp
layers to be selected from all the layers in the group
G. Gradients are amplified when they pass through
these randomly selected layers during backpropagation.
During amplification, value of gradients is increased at
run time by multiplying the actual gradient values by a
factor I". The value of I" is important as it should not be
too small or too large. If the value of I" is too small, then
the increase might not be effective, and if it is too large, it
might overfit the data or cause incorrect weight updates.
During training, we perform gradient amplification for
some epochs and with no gradient amplification for other
epochs. Algorithm 1 describes the training process with
gradient amplification and Algorithm 2 describes the
steps for the selection of layers from G.

4 Experiment & Result

4.1 Setup

Our experiments are performed on CIFAR 10 dataset
which consists of 60 000 colored images of 10 classes
with 6000 images per class and each image has 32 x 32
resolution. We implement our algorithms using python
and pytorch®! libraries. In our experiments, we employ
several standard deep learning models and train them
for 150 epochs. The number of epochs, combination
of number of epochs, and learning rates can be chosen
as one thinks best. In this work, the first 100 epochs
have learning rate of 0.1 and the next 50 epochs have
the learning rate of 0.01 (as shown in Fig. 1). The first

Sunitha Basodi et al.: Gradient Amplification: An Efficient Way to Train Deep Neural Networks 199

Algorithm 1 Training process with gradient amplification
Input: M, params=[(e1.n1.B1. 1), (€2, n2, f2.12), ...]

Variables:

I' is gradient amplification factor;

B is ratio of layers to be selected for amplification;

n is the learning rate;

amp the set of layers selected to perform amplification;

M is the neural network model;

params is an array of elements, each in the format (end_epoch,

n, B,).

start_epoch=0
for (e;, n;, Bi, I;) in params do
update learning rate to 7;
optimizer=sdg_optimizer(n;)
if (8; > 0) then
amp = GetGradientAmpLayers(M,)
end if
for k = start_epoch to ¢; do
train the model M
if (8; > 0) then
multiply gradients with I; for layers in amp during
backpropagation
else
perform regular backpropagation without gradient
amplification
end if
end for
start_epoch=e;
reset amp
evaluate model M with a testing set
end for
return

Algorithm 2 Determination of amp layers

Input: M, B
B is the ratio of layers to be selected for amplification;
G 1is a set consisting of a group of all layers that can be used
for gradient amplification;
layer_types= Set indicating the type of layers to be used for
amplification.

Function GetGradientAmpLayers(M, f8)
for all layer in layer_types do

include layer in G
end for
amp_size = B*size_of(G)
amp = RandomSelect(G, amp_size)
EndFunction

50 epochs are trained with learning rate of 0.1 without
gradient amplification. This is because for the first
few epochs, the model is considered to be in transient
phase and the network parameters undergo significant
changes. This initial transient can be considered for
any number of epochs and in this work, we set it to

0 Number of epochs 100 150

7=0.01]

n=0.1

|A;
I‘

Fig. 1 Experiment setting showing the number of epochs
and learning rates corresponding to epochs for training all
the models.

50 epochs. The next 50 epochs have the same learning
rate of 0.1 but has gradient amplification applied during
backpropagation while training the model (as shown in
Fig. 2a). After identifying the best params with gradient
amplification for epochs 51-100, using those params for
those epochs, we extend amplification for epochs 101-
130 to identify the best params and with no amplification
for epochs 131-150, as shown Fig. 2b. There are mainly
three important parameters while applying gradient
amplification method, namely, the type of the layers to
be employed for amplification, the ratio of layers (8) to
be chosen from selected layers to perform amplification,
and gradient amplification factor. The effects of varying
each of these parameters are explained in detail in the
subsections below. We run our experiments on Resnet
and VGG models with different architectures.

Here we perform three phase analysis while evaluating
our model.

Phase 1 In this phase, we choose the type of
layers to be considered for amplification. There are
several types of layers at which amplification can be
applied such as activation function layers, pooling
layers, batch normalization layers, and convolution
layers. Convolution layers apply kernel functions and

0 Number of epochs 50 100 150
< n=0.1 »le n=0.01 >l
I ' —]
No amplification ‘l With amplification m No amplification]
(a) Step 1
0 Number of epochs 50 100 130 150
l— =01 " =001 —
[= i) = I -
I No amplification I With amplification || With amplification || No amplification
(b) Step2

Fig. 2 Two-step training process carried out during
performance analysis of deep learning models. Experiments
are firstly executed on the models with training steps
shown in Step 1. For Step 2, ratio parameters for gradient
amplification which have better performance of the models
in Step 1 are considered as the parameters for epochs
51-100 and experiments are performed by analyzing ratio
parameters for epochs 101-130, with no amplification from
epochs 131-150. These settings show the number of epochs
and the learning rates corresponding to these epochs while
training these models.

200

extract important features from the data and pooling
layers perform accumulation of features over a grid
using several strategies, such as retrieving maximum
values, minimum values, averaging, fractional pooling,
and so on. Since the network parameter tuning while
training can be sensitive to these values, in this work, we
do not perform amplification on these layers. Batch
normalization layers normalize data over a batch of
inputs, and activation function layers transform data non-
linearly before forwarding it to the succeeding layers. In
our work, we perform gradient amplification on batch
normalization and activation function layers. ReLU is
the activation function used in Resnet and VGG models.
From these two types of layers, either one or both of
them can be considered for amplification. Once the type
of the layers is selected, we now tag all the layers of the
selected type to belong to the group G. We now move to
the next phase to determine the final amplification layers
amp.

Phase 2 Once the set of layers G is determined, the
next task is to find the subset of layers, which gives
better performance. It requires identifying subset size
and selection of those many layers from G. Since the
size is unknown, experiments are performed by selecting
the size to be a ratio of size of G. This ratio, 8, is chosen
from the set § € {0,0.1,0.2,...,0.9,1}. The actual
size of amp is determined by the value 8 x size_of(G).
When the value is 0, no layers are chosen and gradient
amplification is not performed. When the value is 1, then
all the layers in G are considered for amplification. 0
is included to verify whether the model performs better
without gradient amplification or vice versa. Random
selection is employed to select amp subset of layers
from G. We perform experiments with all these sizes
and select the model with the best performance.

Phase 3 In this phase, the layers amp on which
gradient amplification can be applied is known. The
only parameter left to explore is I", the factor with which
gradient needs to be amplified. To reduce computation
complexity in testing all the combinations of parameter
values amp, 8, and I, firstly, experiments are performed
on all combinations of amp and S, i.e., until Phase
2, then the best models are chosen from Phase 2
and analyzed by varying I". The value of I' is firstly
varied from {1,2,3,...,10} to analyze the impact
of amplification and then fine-tuned by varying from
{1.1,1.2,...,2.9, 3.0} to determine the value that works
best during training.

Big Data Mining and Analytics, September 2020, 3(3): 196-207

4.2 Result

In our experiments, we employ Resnet-18, Resnet-34,
and VGG-19 models and perform thorough analysis. As
the complexity of the model and the depth of the network
increase, it takes longer to compute and requires more
GPU/Control Processing Unit (CPU) resources. Since
we perform many experiments (around hundreds),
having models with relatively simpler architectures and
less layers would make the computation time faster. Most
of our experiments are performed on High Performance
Computing (HPC) cluster in Georgia State University
(GSU).

While performing experiments, we choose either
batch normalization layers or ReLLU layers or both and
then verify their performance over multiple epochs. We
firstly explain the training params, which is important
to understand the performance tables. We train our
models for 150 epochs and the learning rate of the first
100 epochs is 0.1 and the next 50 is 0.01. We train the
models with no gradient amplification for the first 50
epochs as the initial transient and for the next epochs.
We aim to identify the pattern to select the epochs,
which improve the overall performance of the model.
We follow the training steps mentioned in Algorithm
1 and params = [(e1, n1, B1, 1), (e2, n2, B2, I2),
(€3, 3, B3, I3), (ea, N4, Ba, I'y), ...] is chosen as
[(50,0.1,0,1), (100,0.1,0, 1), (130,0.01,0, 1), (150,
0.01, 0, 1)] when no gradient amplification is performed.
The values in each element represent end epoch, learning
rate, ratio of amplified layers, and gradient amplification
factor, respectively. For instance, (50, 0.1, 0, 1) means
that the model is trained with learning rate 0.1 until we
reach 50 epochs, during which 0 layer is selected for
gradient amplification and amplification factor is 1.

Performance of original models with no
gradient amplification is firstly recorded. Next,
models with gradient amplification are
experimented in two steps. We firstly set params as
[(50, 0.1, O, 1), (100, 0.1, xx, 2), (130, 0.01, O, 1),
(150, 0.01, 0, 1)]. That is, no gradient amplification
is applied for the first and the last 50 epochs, as
shown in Fig. 2a. For epochs 51-100, the ratio of
selected layers is scanned from {0,0.1,0.2,...,1} to
identify the best model with the amplification factor
2. For simplicity, we define S1_{mm} to represent the
modified ratio mm during epochs 51-100 in Step 1
while performing amplification, and S2_{mm}_{nn} to
represent the modified ratio mm during epochs 51-100

Sunitha Basodi et al.: Gradient Amplification: An Efficient Way to Train Deep Neural Networks 201

and nn during epochs 101-130, respectively, during
amplification in Step 2. So, the params defined above
will be represented as S1_xx, where xx represents the
value that is varied. Once we identify the best ratio for
51-100 epochs, say 0.7, we then run the experiments
with different ratio values for the next 30 epochs
by setting params to be §2.0.7_xx, i.e., [(50,0.1,0,
1), (100,0.1,0.7,2), (130, 0.01, xx, 2), (150, 0.01, 0, 1)]
as shown in Fig. 2b. Note that, the learning rate is
decreased to 0.01 after 100 epochs. After these
experiments, the best models are chosen to perform
experiments in Phase 3 to analyze the impact of gradient
amplification factor on its performance. All the phases
and various experiments performed are shown in Fig. 3.
From our initial experiments, we observe that the
ratio values {0.1, 0.3, 0.5, 0.6} on average provide better
results in Step 1, explained below in detail in Phase
2. Instead of running Step 2 only on the best models
from Step 1, different models are built with ratio values
{0.1,0.3, 0.5, 0.6} for epochs 51-100 where the learning
rate is 0.1. We perform our analysis on Phases 1 and
2 for the following amplification params in Step 2 (see
Fig. 2b):
$2.0.1xx: [(100,0.1,0.1, 2), (130, 0.01,xx, 2)]
$2.0.3_xx: [(100,0.1,0.3, 2), (130, 0.01,xx, 2)]
$2.0.5xx: [(100,0.1,0.5, 2), (130, 0.01,xx, 2)]
$§2.0.6 xx: [(100,0.1,0.6,2), (130, 0.01,xx, 2)]

4.2.1 Phase 1: Effect of type of layers

In this work, ReLU, BN, or both (ReLU+BN) are the
layers used for gradient amplification. We run original
models without gradient amplification 5 times and

Identify the type of layers
‘ Tag all of the layers of the chosen type

|

Randomly select actual amplification layers

Phase 1

“ Rety BN

Repeat by selecting from {0, 0.1, 0.2, ..., 1}

l Phase 2

Train the model with amplified gradients

evaluate on the test data

l

‘ Select best models ‘

‘ Vary gradient amplification factor ‘ ' Repeat by selecting from {2, 3, 4, ..., 10} '
l Phase 3

Train the model with amplified gradients

evaluate on the test data

Fig. 3 Overview of all the experiments performed by
varying different parameters of gradient amplification.

record their training and testing accuracies and compare
the corresponding gradient amplified models with the
mean of the these accuracies across 5 runs. For each
type(s) of layer chosen, experiments are run for params
§2.0.1xx, §2.0.3.xx, §2.0.5_xx, and §2_0.6_xx, that
is, for each ratio value in 8 € {0.1,0.3,0.5,0.6} during
epochs 51-100 (n = 0.1), we build models by varying
ratio values from {0, 0.1, ..., 1.0} for epochs 101-130
(n = 0.01), without amplification from 131-150 (see
Fig. 2b). The best training and testing accuracies of
these models are compared with the average training
and testing accuracies of corresponding original model.
Since training accuracies of the original models are
close to 100%, we emphasize our comparison on testing
accuracies.

In VGG-19 model, we perform analysis considering
ReLU, BN, or both layers for gradient amplification
and provide accuracy improvements for params
§2.0.1xx, §2.03xx, §2.0.5xx, and S2.0.6_xx,
respectively. When only ReLU layers are chosen, testing
accuracies improve around 1.98%, 1.31%, 1.08%,
and 1.25%, respectively for above params. In the
case of amplification applied only to BN layers, an
improvement of 2.27%, 1.64%, 0.91%, and 0.96% in
testing accuracies is observed. When both ReL.U and
BN are chosen, models have accuracy difference of
0.9%, 0.64%, 0.13%, and 0.3%, respectively. When
both layers are used in amplification, the improvements
across different models are less than 1%, which become
better when only either ReLU or BN is used. Best
improvements are seen when amplification is applied
on only BN layers.

Resnet models are made of residual blocks, each of
which consists of two convolutional units and therefore
each block has two ReLLU and BN layers. In these
models, other than experimenting with all ReL.LU and BN
layers, we additionally perform experiments considering
only one of the BN layers from residual blocks. When all
the BN layers are considered for amplification in Resnet-
18 models, there is an improvement of 1.66%, 1.35%,
0.53%, and 0.34% respectively, for params S2_0.1_xx,
§2.0.3xx, §2.0.5xx, and S2.0.6_xx. When only
ReLU layers are used, there is a difference of 1.76%,
1.32%, 0.77%, and 0.26%, respectively. When both BN
and ReLU are used, there is an initial improvement of
01.14%, 0.03%, for params S2_0.1_xx and S$2_0.3_xx,
but the performance drops for params $2_0.5_xx and
§2.0.6_xx. When only one of the BN layer from a
residual block is considered, there is an improvement

202

of 1.98%, 2.08%, 1.64%, and 1.32% for respective
params. When both BN and ReLU are used for
amplification, there is an improvement only for params
§2_0.1_xx, which either declines or slightly changes for
the remaining params. When either ReLU or BN layers
are considered, for params $2_0.1 xx and $2_0.3_xx,
performance improvement of more than 1.3% can be
observed and for params S$2_0.5_xx and $2.0.6_xx,
improvements are less than 1%. When one of the BN
layers in residual blocks are considered, then the models
have accuracy improvements of more than 1.3% for all
params and it also achieves the best testing accuracy of
94.57% with an improvement of 2.08% over original
model.

Similarly for Resnet-34, in the case of only BN layers,
there is an accuracy gain of 1.21% and 0.64% for params
S§2.0.1_xx and S2_0.3_xx, and then slightly decreases
for params $2.0.5xx and S§2.0.6_xx, respectively.
When only ReLU layers are considered, there is an
improvement of 1.61% and 0.42% for $2_0.1_xx and
§2.0.3xx, and for other params, there is a slight
decrease (less than 0.8%) for params $2_0.5_xx and
§2_0.6_xx. When both BN and ReL.U are used, there is
an initial improvement of 1.14% for params $2_0.1_xx
and then it declines for other params. As we include both
BN and ReLU layers, Resnet-34 model performance
decreases quickly with the increase in the ratio of
amplified layers. When only one of the BN layers is
used in a residual block, an improvement of 1.67%,
1.23%, 1.55%, and 1.49% can be seen for respective
params. When all the BN layers are only used for
amplification, there is an improvement of more than
1% only for params S$2_0.1_xx and the performance
either declines or slightly changes for remaining params.
Similar pattern is observed when only ReLLU or both
ReL.U and BN are used for amplification. When one of
the BN layers in residual blocks is considered, models
have accuracy improvements of more than 1.2% for all
params and it also achieves the best testing accuracy of
94.39% with an improvement of 1.67% over original
model.

Our experiments show that for VGG-19 models,
selecting ReLU improves the performance of the models,
but achieves best performance when BN layers are
chosen for amplification. In Resnet-18 and Resnet-34,
performance of the models improves when BN layers
are chosen for amplification and best performance is
achieved when one of the BN layers from a residual
block is selected for amplification.

Big Data Mining and Analytics, September 2020, 3(3): 196-207

4.2.2 Phase 2: Effect of ratio of selected layers

Here, we discuss the impact of the ratio of selected layers
on each of the above types. In our training strategy,
gradient amplification is firstly applied in Step 1 (as
shown in Fig. 2a) to determine the best performing ratio
values for epochs 51-100. The best training and testing
accuracies after gradient amplification across all the ratio
values are compared with the original baseline models
to analyze the overall effectiveness. In VGG-19, for all
layer types, as the ratio of amplified layers increases,
the performance of the model diminishes compared to
original models. The training accuracies decrease at an
increased rate compared to testing accuracies. When
gradient amplification is performed, training and testing
accuracies decrease slightly by —0.3% and —0.14% (for
BN only) and increase slightly by 0.02% and 0.03% (in
the case of ReLU+BN) and show an improvement of
0.65% and 0.77% (for ReLU only), respectively.

In Resnet-18 and Resnet-34 models, as the ratio
of amplified layers increases, training and testing
accuracies remain close to the accuracies of the
baseline models when only one of the BN layers in
a residual block is considered. When either BN or
ReLU is considered, as the ratio of amplified layers
increases, performance of the models decreases slightly
compared to original models. When both BN and
ReLU are considered for amplification, as the ratio of
layers increases, performance of the models decreases
significantly compared to respective baseline models. In
Resnet-18, the best training and testing accuracies after
gradient amplification across all the ratio values, show
an improvement by 0.69% and 0.62% (for BN only),
0.52% and 0.67% (for ReLLU only), 0.52% and 0.67%
(in the case of ReLU+BN), and 0.79% and 0.92% (in
the case when one of BN layers from residual block),
respectively. In Resnet-34, the best training and testing
accuracies after gradient amplification across all the ratio
values show an improvement by 0.54% and 0.68% (for
BN only), 0.4% and 0.15% (for ReLU only), 0.42%
and 0.81% (in the case of ReLU+BN), and 0.57% and
0.85% (when one of the BN layers from residual blocks
are considered), respectively.

In the case of Step 1, amplification is applied
only for epochs 51-100 (n = 0.1). We also perform
experiments by applying amplification for epochs
101-150 (n = 0.01), by considering all or some of the
epochs. We observe that the models perform better
when amplification is applied from 51-100 epochs

Sunitha Basodi et al.: Gradient Amplification: An Efficient Way to Train Deep Neural Networks 203

(n = 0.1) followed by 101-130 epochs (n = 0.01) as
shown in Step 2 (Fig. 2b). To narrow the parameter
space, we only consider ratio values for epochs 51—
100 where the models perform better. From analysis
of model performances in Step 1, ratio values
{0.1,0.3,0.5, 0.6} on average provide better results and
therefore, these ratios are used for epochs 51-100
(n = 0.1) as mentioned earlier and ratio values are varied
for 101-130 epochs (n = 0.01), namely S2_0.1_xx,
§2.0.3xx, §2.0.5_xx, and $2_0.6_xx. Figure 4 shows
the performance of VGG-19, Resnet-18, and Resnet-34
models respectively for these params when different
layers are amplified. Performance improvements of
these models are discussed in Phasel in detail. Here
we emphasize on the effect on the models as the ratio
of amplified layers increases. For VGG-19 models,
as the ratio of layers increases, there is an increase
in performance initially and then it decreases when
the ratios are above 0.7. When both ReLU+BN are
amplified, the models have significant decrease with
the increase of ratio values. In the case of Resnet-18,
models have improved or similar performance even as
the ratio increases except when both ReLU+BN are
amplified, in which case it decreases. For Resnet-34,
models have improved or similar performance even as
the ratio increases until 0.8, after which it decreases. But
when both ReLU+BN are amplified, the performance
declines even for smaller ratios.

When amplification is applied using approach in Step
1 (Fig. 2a), the models perform better when only ReLU
is amplified in the case of VGG-19, and Resnet-18 and
Resnet-34 models perform best when only one of the
BN layers from a residual block is used for amplification.
When amplification is done as in Step 2, all models
achieve higher accuracies than baseline models for most
of the ratio values except when ReLU+BN are amplified,
in which case only some of the smaller ratio values have
better models. This shows that a small ratio of amplified
layers are sufficient to improve the performance of
original models.

4.2.3 Phase 3: Effect of gradient amplification
factor

Figure 5 shows the performance of models as I" is varied.
params of the best models after analysis Phases 1 and
2 is taken and gradients are amplified by varying the
value of I" from {1,2,3,..., 10}. For VGG-19, the best
model is achieved while amplifying only BN layers for
params S2_0.1.0.3. For Resnet-18 and Resnet-34, the

@ 100
& [— original testing —— Amp testing
>
S |y o -
3 90 w\
5
& (BN

0
< 8 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 0.9 1.0

Ratio of layers amplified
3100
= —— Original testing —l— Amp testing
>
3 iy
S 90 el
3 \
S |RelLU
< 50
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1.0
Ratio of layers amplified

S0
< —— Original testing —l— Amp testing
>
1%
] ae— ——
3
S [ReLU+BN
< 80

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Ratio of layers amplified

(a) Step 2 for VGG-19

‘‘‘‘‘

--—

5
BN —— Original testing —l— Amp testing

o 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 10
Ratio of layers amplified

‘‘‘‘‘

Lo -

—— Original testing —l— Amp testing

Accuracy (%) Accuracy (%)

0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1.0
Ratio of layers amplified

ReLU+BN — Ogm:g\"'_

0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1.0
Ratio of layers amplified

- -

o BN1/2 ——— Original testing —li— Amp testing
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1.0
Ratio of layers amplified

(b) Step 2 for Resnet-18

——

BN = Original testing —li— Amp testing

Accuracy (%) Accuracy (%)

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10
Ratio of layers amplified

-‘1\'/.
—— Original testing —B— Amp testing

0.2 0.3 04 H‘fn 0.6 0.7 0.8 0.9 1.0
Ratio of layers amplified

100

—r

ReLU+BN —— original testing —8— Amp testing
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 0.9 1.0
Ratio of layers amplified

100

Accuracy (%) Accuracy (%) Accuracy(%) Accuracy (%)

BN1/2 —— Original testing —l— Amp testing

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Ratio of layers amplified

(c) Step 2 for Resnet-34

Fig. 4 Performance of the models after training with Step
2 strategy with gradient amplification (red) applied from
epochs 51-100 compared to mean accuracies of the original
models (blue) with no gradient amplification. In each plot,
blue horizontal line shows the average testing accuracy of
the original models without gradient amplification. Amp
testing refers to testing accuracies of models with gradient
amplification. The type of the layer is shown in each
subplot; horizontal and vertical axes correspond to the
ratio of amplified layers and accuracies, respectively. These
experiment plots correspond to params $2_0.3_xx, where the
ratio (0.3) of layers are amplified for epochs 51-100. The
other params $2_0.1_xx, $2_0.5_xx, and $2_0.6_xx also have
similar performance patterns.

204

S 100F

S A

> w " I e ——

O

@© 80

o

3

S VGG-19 == Original testing —Ml— Amp testing

< 1 2 3 4 5 6 7 8 9 10
Gradient amplification magnitude

& 100F

e - N

> T e——a

O

@ s0p

3

S Resnet-18 ~—— Original testing —ll— Amp testing

B e I e S S R
Gradient amplification magnitude

S 100F

é _——a

> - : :

[¢] === Original testing —li— Amp testing

© 80F

3

O |Resnet-34

< %

1 2 3 4 5 6 7 8 9 10
Gradient amplification magnitude

Fig. 5 Performance comparison of amplified models (red) as
I is varied from 1 to 10 (horizontal axis) vs. original models
(blue).

best models are achieved while amplifying only
one of the BN layers in residual units and for
params S2_0.3_0.5 and $2_0.1_0.7, respectively. While
changing values of I, as the factor of amplification I"
increases, the performance of the models declines. To
generalize, we can say that when I" is more than 5,
the models do not perform better or sometimes perform
worse than the corresponding baseline models. Effect
of amplification factor I" also depends on the ratio of
layers being amplified. If the ratio is close to 1, then I"
value less than 5 can also decrease performance of the
models.

We also perform experiments by fine-tuning the
amplification factor from 1 to 3 in steps of 0.1, i.e., by
varying I" € {1.1,1.2.1.3,1.4, ..., 3}. Figure 6 shows
the performance of these models as I" is varied in small
steps from 1 to 3. In the case of VGG-19 and Resnet-
18, the model always performs better than the baseline
models both during training and testing and for Resnet-
34, the model performs better until 2.7 and declines after
that. In all these models, it can be observed that the
best accuracy is around the value 2, which justifies our

Big Data Mining and Analytics, September 2020, 3(3): 196-207

~ 100]

<

Fy - P ool o o |
@ 90

e

3

8 VGG-19 == Original testing —ll— Amp testing
< %0 1f1]:2 1‘3 I‘J 1:5 1:6 1‘.7 1‘.8 1:9 2‘.0 2‘.] 2"2 2‘.3 2II ’_7‘.-') ’_7IG 2‘.7 2‘.8 2‘.9 3‘.0

Gradient amplification magnitude

< 100

<

> B 2 . e e E —N——n—n -5
Q

@ 90

e

3

g Resnet-18 == Original testing —ll— Amp testing

111213141516 1718192021 2223242526272829 3.0
Gradient amplification magnitude

- N e e O i

_\-\.\.

—— Original testing —l— Amp testing

Resnet-34
1.1 1213141516 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0
Gradient amplification magnitude

Accuracy (%)

Fig. 6 Performance comparison of amplified models (red)
as I' is varied in small steps from 1 to 3 (horizontal axis) vs.
original models (blue).

experiment analysis in the above phases.

4.3 Best model

The best performance of all the models is shown in
Table 1. Performance improvements can be observed
both training and testing accuracies. The rows with
“original” in params column show the performance of
the original model with no gradient amplification. The
following grayed row shows the performance of the
corresponding model with gradient amplification. The
params that achieves these best models is also shown. We
can observe that gradient amplification increases
both training and testing accuracies. Though training
accuracies are very close to 100% in the original model,
gradient amplification improves them further. It can be
noted that Resnet models comprise of residual blocks
architecture (an extra connection to the preceding layer),
which already overcome vanishing gradients by passing
the current gradients directly to the previous layers
without modification using residual connection, and
therefore an improvement of 1.67% can be assumed
to be significant.

Table1l Accuracy comparison of models with gradient amplification vs. mean accuracies of corresponding original model

across 5 runs.

Model

Mean/best accuracy (%) Improved accuracy (%)

params

Training Testing Training Testing
VGG-19 Orlgmal . . 97.87 91.08 - -
Ours (VGG-19 with amplification) 99.764 93.35 1.9 2.27
Resnet-18 Or1g1.nal . . 98.371 92.488 - -
Ours (Resnet-18 with amplification) 99.878 94.57 1.51 2.08
Resnet-34 Or1g1.nal . . 98.444 92.716 - -
Ours (Resnet-34 with amplification) 99.774 94.39 1.25 1.67

Sunitha Basodi et al.: Gradient Amplification: An Efficient Way to Train Deep Neural Networks 205

Figure 7 shows the performance of the each of
the models for the params listed in Table 1. These
plots demonstrate that the models trained with gradient
amplification do not cause overfitting problem. In the
case of VGG-19, the best model is achieved when

100
80
S
3 60
e
3
o
o
<
40
Mean original training accuracy
—— Mean original testing accuracy
201 Training accuracy with gradient amplification
—— Testing accuracy with gradient amplification
0 20 40 60 80 100 120 140
Number of epochs
(a) VGG-19
100+
90
80
g
>
[9)
€70
S
o
o
<
60
Mean original training accuracy
50 e 3
—— Mean original testing accuracy
Training accuracy with gradient amplification
10l —— Testing accuracy with gradient amplification
0 20 40 60 80 100 120 140
Number of epochs
(b) Resnet-18
100
90
80F
B
o T0F
e
S
3
& 60f
50 - T
Mean original training accuracy
Mean original testing accuracy
0k Training accuracy with gradient amplification
—— Testing accuracy with gradient amplification

0 20 10 60 80 100 120 140
Number of epochs

(c) Resnet-34

Fig. 7 Performance of the best models with gradient
amplification over 150 epochs compared to original model
with no gradient amplification. Original training (gray) and
testing (blue) accuracies including their mean accuracies are
plotted along with amplified training (green) and testing (red)
accuracies. These plots demonstrate that the models do not
overfit while training with amplification.

amplification is applied only on BN layers and for Resnet
models, the best models are achieved when only one of
the BN layers from a residual block is considered for
amplification. Gradient amplification model surpasses
the performance of all the original models. Accuracies
achieved by amplified models not only exceed the mean
average accuracies across 5 runs of the original models,
but also outperform the best accuracy among these 5
runs of the original models.

To analyze the impact of training time, we
perform experiments on the original models without
amplification. Even the best models out of 5 runs do
not achieve performance close to the corresponding
amplified models. We run all the original models for 50
more epochs with the learning rate of 0.01 (i.e., 151-200
with n = 0.01) and notice that these models do not reach
the performance of amplified models. We need to reduce
the learning rate further for the next epochs to improve
performance of the original models and therefore there
is no direct way of comparing them. But clearly, our
proposed method of training with amplified gradients
can train the deep learning models at higher learning
rates to achieve better performance. Original models
take more time to achieve similar accuracy (at the same
settings) as amplified models.

5 Conclusion & Future Work

In this work, we propose a novel gradient amplification
method to dynamically increase gradients during
backpropagation. We also provide a training strategy
consisting of set of epochs with switching between
gradient amplification and without amplification.
Detailed experiments are performed on VGG-19, Resnet-
18, and Resnet-34 models to analyze the impact
of gradient amplification with different amplification
parameters. We learn that only a proportion of layers are
sufficient to attain such a performance gain. It can also be
observed that BN layers give the best improvement while
performing amplification, followed by ReLU layers,
whereas the performance quickly diminishes when both
ReLU+BN are used. All these experiments show that
our proposed amplification method and training strategy
increase the performance of the original models and
achieve better accuracies even at higher learning rates.
In future work, we would like to perform the
experiments on the larger datasets having more output
classification classes like CIFAR-100 and ImageNet.
In our current experimental models, there were no

206

exploding gradients. However, we would also like
to explore other models having such an issue and
experiment gradient diminishing dynamically, similar
to graident amplification, to address gradient exploding
problem. We are also interested in designing an adaptive
algorithm, which will intelligently amplify layers
during backpropagation without manually tuning the
amplification parameters. Fuzzy logic systems have been
used in many applications, such as wireless network
routing!®”!, We will introduce fuzzy logic into our
learning and prediction models in the future.

Acknowledgment

The authors would like to thank Georgia State University
(GSU) for providing us access to High Performance
Computing (HPC) cluster on which most of the
experiments are performed. This research was supported
in part by an NVIDIA Academic Hardware Grant.

References

[1] K.M. He, X. Y. Zhang, S. Q. Ren, and J. Sun, Deep residual
learning for image recognition, in Proc. 2016 IEEE Conf.
on Computer Vision and Pattern Recognition, Las Vegas,

NV, USA, 2016, pp. 770-778.
[2] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. R. Mohamed, N.

Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, et
al., Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups,

IEEE Signal Proc. Mag., vol. 29, no. 6, pp. 82-97, 2012.
[3] S.Hochreiter and J. Schmidhuber, Long short-term memory,

Neural Comput., vol. 9, no. 8, pp. 1735-1780, 1997.
[4] A. Kamilaris and F. X. Prenafeta-Boldd, Deep learning in

agriculture: A survey, Comput. Electron. Agric., vol. 147,

pp- 70-90, 2018.
[5] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F.

Ciompi, M. Ghafoorian, J. A. W. M. Van Der Laak, B. Van
Ginneken, and C. 1. Sdnchez, A survey on deep learning
in medical image analysis, Med. Image Anal., vol. 42, pp.

60-88, 2017.
[6] Q.C.Zhang, L. T. Yang, Z. K. Chen, and P. Li, A survey on

deep learning for big data, Inf. Fusion, vol. 42, pp. 146-157,

2018.
[71 L.Zhang, S. Wang, and B. Liu, Deep learning for sentiment

analysis: A survey, Wiley Interdiscip. Rev., vol. 8, no. 4, p.

el253,2018.
[8] J.D. Wang, Y. Q. Chen, S. J. Hao, X. H. Peng, and L. S.

Hu, Deep learning for sensor-based activity recognition: A

survey, Pattern Recognit. Lett., vol. 119, pp. 3—11, 2019.
[91 G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q.

Weinberger, Deep networks with stochastic depth, in Proc.
14'"" European Conf. on Computer Vision, Amsterdam,

Netherlands, 2016, pp. 646—661.
[10] J. Brownlee, Understand the impact of learning rate on

neural network performance, https://machinelearningmas
tery.com/learning-rate-for-deep-learning-neural-networks,
2019.

Big Data Mining and Analytics, September 2020, 3(3): 196-207

[11] S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber,
Gradient Flow in Recurrent Nets: The Difficulty of Learning
Long-Term Dependencies, In A Field Guide to Dynamical
Recurrent Networks, J. F. Kolen and S. C. Kremer, eds.
Wiley-IEEE Press, DOI: 10.1109/9780470544037.ch14.

[12] G. B. Goh, N. O. Hodas, and A. Vishnu, Deep learning for
computational chemistry, J. Comput. Chem., vol. 38, no. 16,

pp- 1291-1307, 2017.
[13] B. Hanin, Which neural net architectures give rise to

exploding and vanishing gradients? in Proc. Advances
in Neural Information Processing Systems 31, Montréal,

Canada, 2018, pp. 582-591.
[14] J. Schmidhuber, Learning complex, extended sequences

using the principle of history compression, Neural Comput.,
vol. 4, no. 2, pp. 234-242, 1992.

[15] V. Nair and G. E. Hinton, Rectified linear units improve
restricted Boltzmann machines, in Proc. 27" Int. Conf. on

Machine Learning, Haifa, Israel, 2010, pp. 807-814.
[16] X. Glorot, A. Bordes, and Y. Bengio, Deep sparse rectifier

neural networks, in Proc. 14" Int. Conf. on Artificial
Intelligence and Statistics, Fort Lauderdale, FL, USA, 2011,

pp- 315-323.
[17] S. Ioffe and C. Szegedy, Batch normalization: Accelerating

deep network training by reducing internal covariate shift,
arXiv preprint arXiv: 1502.03167, 2015.
[18] Y. Yang and H. Wang, Multi-view clustering: A survey, Big

Data Mining and Analytics, vol. 1, no. 2, pp. 83-107, 2018.
[19] S. Kumar and M. Singh, A novel clustering technique for

efficient clustering of big data in hadoop ecosystem, Big

Data Mining and Analytics, vol. 2, no. 4, pp. 240-247,2019.
[20] J. Schmidhuber, Deep learning in neural networks: An

overview, Neural Netw., vol. 61, pp. 85-117, 2015.
[21] C. Darken, J. Chang, and J. Moody, Learning rate schedules

for faster stochastic gradient search, in Proc. Neural
Networks for Signal Processing Il Proc. of the 1992 IEEE

Workshop, Helsingoer, Denmark, 1992, pp. 3-12.
[22] J. Duchi, E. Hazan, and Y. Singer, Adaptive subgradient

methods for online learning and stochastic optimization, J.

Mach. Learn. Res., vol. 12, pp. 2121-2159, 2011.
[23] M. D. Zeiler, Adadelta: An adaptive learning rate method,

arXiv preprint arXiv: 1212.5701, 2012.
[24] A. Graves, Generating sequences with recurrent neural

networks, arXiv preprint arXiv: 1308.0850, 2013.
[25] D. P. Kingma and J. Ba, Adam: A method for stochastic

optimization, arXiv preprint arXiv: 1412.6980, 2014.
[26] S. Lau, Learning rate schedules and adaptive learning

rate methods for deep learning, https://towardsdatasci
ence.com/learning-rate-schedules-and-adaptive-learning-

rate-methods-for-deep-learning-2c¢8f433990d1, 2019.
[27] T. Schaul, S. X. Zhang, and Y. LeCun, No more pesky

learning rates, in Proc. 30'" Int. Conf. on Machine Learning,

Atlanta, GA, USA, 2013, pp. 343-351.
[28] S. L. Smith, P. J. Kindermans, C. Ying, and Q. V. Le,

Don’t decay the learning rate, increase the batch size, arXiv

preprint arXiv: 1711.00489, 2017.
[29] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z.

DeVito, Z. M. Lin, A. Desmaison, L. Antiga, and A. Lerer,
Automatic differentiation in PyTorch, in Proc. 315! Conf.
on Neural Information Processing Systems, Long Beach,
CA, USA, 2017.

Sunitha Basodi et al.: Gradient Amplification: An Efficient Way to Train Deep Neural Networks 207

[30] H.Liu, J. Li, Y. Q. Zhang, and Y. Pan, An adaptive genetic
fuzzy multi-path routing protocol for wireless ad-hoc
networks, in Proc. 6" Int. Conf. on Software Engineering,

Sunitha Basodi is currently a senior PhD
student at the Department of Computer
Science, Georgia State University. Prior
to that, she worked in Amazon Inc.,
India as a developer from 2009 to 2014.
Her current research focuses on machine
learning and deep learning methods, and
their applications in bioinformatics and

Chunyan Ji received the BSc degree from
East China Normal University, Shanghai,
China in 1995 and the MSc degree in
computer science from Georgia State
4 University (GSU), Atlanta, USA in 2001.
» % She worked as a software developer at
/ Atlanta from 2001 to 2008 and worked as
) - a senior lecturer at BNU-HKBU United
International College, Zhuhai, China from 2008 to 2018. Since
August 2018, she has been with GSU, where she currently works
toward the PhD degree. Her main research interests include sound
event detection and deep learning.

R\

Yi Pan is currently a Regents’ Professor
and chair of computer science at Georgia
State University, USA. He has served as
an associate dean and chair of Biology
Department during 2013-2017 and chair

He joined Georgia State University in
2000, was promoted to full professor in
2004, named a distinguished university professor in 2013, and
designated a Regents’ Professor (the highest recognition given
to a faculty member by University System of Georgia) in
2015. He received the BEng and MEng degrees in computer
engineering from Tsinghua University, China in 1982 and 1984,

of Computer Science during 2006-2013.

Artificial Intelligence, Networking and Parallel/Distributed
Computing and 1st ACIS Int. Workshop on Self-Assembling
Wireless Network, Towson, MD, USA, 2005, pp. 468—475.

respectively, and the PhD degree in computer science from
University of Pittsburgh, USA, in 1991. His profile has been
featured as a distinguished alumnus in both Tsinghua Alumni
Newsletter and University of Pittsburgh CS Alumni Newsletter.
His current research interests mainly include bioinformatics and
health informatics using big data analytics, cloud computing,
and machine learning technologies. He has published more
than 450 papers including over 250 journal papers with more
than 100 papers published in IEEE/ACM Transactions journals.
In addition, he has edited/authored 43 books. His work has
been cited more than 12800 times based on Google Scholar
and his current A-index is 57. He has served as an editor-in-
chief or editorial board member for 20 journals including 7 IEEE
Transactions. Currently, he is serving as an associate editor-in-
chief of IEEE/ACM Transactions on Computational Biology and

Bioinformatics. He is the recipient of many awards including
one IEEE Transactions Best Paper Award, five IEEE and other

international conference or journal Best Paper Awards, 4 IBM
Faculty Awards, 2 JSPS Senior Invitation Fellowships, IEEE BIBE
Outstanding Achievement Award, IEEE Outstanding Leadership
Award, NSF Research Opportunity Award, and AFOSR Summer
Faculty Research Fellowship. He has organized numerous
international conferences and delivered keynote speeches at over
60 international conferences around the world.

Haiping Zhang received the PhD degree
in computational biophysics and biology
from Nanyang Technological University
in 2018. He is currently working as a
postdoc in Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences.
His recent work focuses on applying deep
learning techniques to explore protein-
ligand interactions and exploring strategies to aid drug
development by combinations of MD method, deep learning, and
molecular docking together.

