
BIG DATA MINING AND ANALYTICS
ISSN 2096-0654 01/06 pp155–170
Volume 3, Number 3, September 2020
DOI: 10.26599/BDMA.2020.9020001


C The author(s) 2020. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Error Data Analytics on RSS Range-Based Localization

Shuhui Yang�, Zimu Yuan, and Wei Li

Abstract: The quality of measurement data is critical to the accuracy of both outdoor and indoor localization methods.

Due to the inevitable measurement error, the analytics on the error data is critical to evaluate localization methods

and to find the effective ones. For indoor localization, Received Signal Strength (RSS) is a convenient and low-cost

measurement that has been adopted in many localization approaches. However, using RSS data for localization

needs to solve a fundamental problem, that is, how accurate are these methods? The reason of the low accuracy

of the current RSS-based localization methods is the oversimplified analysis on RSS measurement data. In this

proposed work, we adopt a generalized measurement model to find optimal estimators whose estimated error

is equal to the Cramér-Rao Lower Bound (CRLB). Through mathematical techniques, the key factors that affect

the accuracy of RSS-based localization methods are revealed, and the analytics expression that discloses the

proportional relationship between the localization accuracy and these factors is derived. The significance of our

discovery has two folds: First, we present a general expression for localization error data analytics, which can explain

and predict the accuracy of range-based localization algorithms; second, the further study on the general analytics

expression and its minimum can be used to optimize current localization algorithms.

Key words: Cramér-Rao Lower Bound (CRLB); error data analytics; generalized least squares; Received Signal

Strength (RSS)

1 Introduction

Location information is critical in many mobile device-
based applications. With the increasing demands
on location assisted services in both indoor and
outdoor environments, location positioning approaches
have progressed significantly recently. Localization
approaches based on various wireless measurements,
such as Received Signal Strength (RSS)[1], Angle
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Of Arrival (AOA)[2], Time Difference Of Arrival
(TDOA)[3], Time Of Arrival (TOA)[4], and many
others[5], have been proposed. Different from the Global
Positioning System (GPS) for outdoor positioning,
which uses satellites to provide universal services[6, 7],
the performance of indoor positioning systems is
sensitive to device deployment and signal collection
and measurement. Additionally, hardware and software
cost is an issue to consider when developing indoor
positioning system. Among the above mentioned
localization schemes, RSS-based positioning is a
promising approach since the RSS signal measurement is
easy to obtain without the extra hardware and software
cost. We will be considering RSS-based positioning
schemes in our work.

However, the accuracy of those proposed localization
methods remains a changeling issue. In order to
solve this issue, we need to accomplish two key
tasks: The first one is to identify the optimal
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localization algorithm, where its estimation error
equals the Cramér-Rao Lower Bound (CRLB); then
the second is to perform localization data analytics,
through mathematical techniques, finding the analytics
expression that describes the exact relationship between
the localization error and the measurement error, and
also how the measurement error propagates during
the calculation. Most of the existing studies[8–11] used
some simplified assumptions to analyze the theoretical
accuracy of the range-based localization methods. On
one hand, in those work, there is a strong assumption
that the path loss exponent as well as the transmission
power are known. In experiments, they can be obtained
simply by calibrations, or some empirical values are used.
However, in practical conditions, such an assumption
may not hold. On the other hand, most of those work
also assumed that the data errors of RSS measurement
are Gaussian or Identical and Independent Distribution
(IID). However, as our following study shows, these
assumptions are not true in realistic environments.
Therefore, the optimality of these studies holds only
under special and ideal conditions. The error data
analytics on these non-optimal algorithms cannot reflect
the true accuracy of RSS range-based localization
approaches.

In order to study the accuracy of the range-based
localization methods, we adopt two key strategies: One
is to select a general log-distance path loss range model,
and the other is to assume RSS measurement errors being
non-IID. Based on these two strategies, we discover
that the Generalized Least Squares (GLS) method can
be used as an effective and efficient estimator, with its
estimation error being equal to CRLB. We then can use
mathematical techniques to explore the propagation of
the measurement errors in the GLS method. We derive
an analytic expression for the localization error, which
shows that the accuracy of range-based localization
methods majorly depends on the following key factors:
the amount of anchors, the relative geometry of the
anchors, the measurement ranges, the errors in the
measurement data, and the errors in the estimated
parameters. In order to know how these factors affect
the localization accuracy, we further study the minimum
of the localization error, and discover that the final
localization error is proportional to the measurement
ranges, the errors in the measurement and estimated
parameters, and inversely proportional to the square root
of the amount of anchors. The major contributions of
this paper are as follows: (1) We develop a general error

data analytics expression for the GLS method, based
on which we can explain the accuracy of the range-
based localization algorithms, i.e., what magnitude
errors should be expected; (2) the proposed analytics
expression as well as its minimum provide insights
in the possible directions regarding the optimization
of current localization algorithms. The observed gap
between the practical and the optimal accuracy implies
the remarkable potential for such optimization.

The remainder of this paper is organized as follows.
Section 2 gives the problem. Section 3 describes how
to use the optimal and practical estimators to solve the
range-based localization problem. Section 4 presents the
theoretical analytics on the accuracy of the GLS method.
Section 5 gives the experimental verification and Section
6 concludes the paper.

2 Problem and Related Work

RSS is defined as the power level of a signal at the
receiver in wireless communication and networking.
Based on the radio propagation theory, RSS follows
the inverse-square law, that is, the quantity of RSS
is inversely proportional to the square of the distance
between the transmitter and the receiver. Researchers
proposed some range models based on the above inverse-
square law[12]. Among these models, the most widely
used one is called the log-distance path loss model[13, 14],
which can be described as

NPi D ˛ � 10ˇ lg
p
.xi � xu/2 C .yi � yu/2 C �i (1)

where NPi indicates the measured RSS in dBm, which is
received at the unknown location .xu; yu/ (the blind
node) from the anchor .xi ; yi /. ˇ is the path loss
exponent. In a free space, the value of ˇ is 2, which
indicates that the power loss is minimal. The signal
strength received at 1 m is denoted as ˛, which can be
regarded as an indicator of the transmission power of
anchors. �i is the measurement error in NPi , which is
unknown in practice. Then, the problem of RSS range-
based localization can be described as (note that RSS-
based localization methods mainly include range-based
and range-free schemes[15]. In this paper, we purely
focus on the range-based approach.): given m anchors
with known positions as .xi ; yi /; i D 1; 2; : : : ; m and
RSS measurements . NP1; NP2; : : : ; NPm/, how to calculate
.xu; yu/?

Many range-based localization methods have been
designed to solve the above problem[8, 10, 16]. Using the
range model in Eq. (1), systems that are non-linear and
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over-determined were developed in Refs. [8, 10, 16].
To solve the above problem, two tasks here are to be
accomplished: (1) the linearization of the non-linear
system, and (2) the development of an optimal solution.
As a matter of fact, several linearization techniques
have been proposed, such as the classical Newton
method. To avoid the local minima introduced to the
system by the Newton method, alternative linearization
algorithms[17], multidimensional scaling[18], semidefinite
programming[19], second-order cone programming[20],
and linearized least squares methods[21–23] were also
proposed.

In order to find the most effective solution, however,
we need to combine the above linearization techniques
with optimal estimators. Two important issues here
should be addressed: The first one is how to treat the
parameters ˛ and ˇ, i.e., the indicator of the transmission
power and the path loss exponent; the second is the
statistical assumption on the measurement error �i . For ˛
and ˇ, some studies[24–26] applied the simply assumption
that they are known parameters, assigning them with
empirical values, or achieved by calibrations in the
experiments. However, as has pointed out by some other
studies[27, 28], these two parameters cannot be treated
as known constant values in practice. This is because
they may be volatile in different indoor environments.
Based on the above discussion, we could classify the
assumptions on ˛ and ˇ into two types: the simplified
range model and the general range model, according to
whether ˛ or ˇ is treated as known or not. For �i , in
much existing work, it is basically assumed as Gaussian
or IID. In other words, the two different measurement
errors �i and �j are independent but identical random
variables. As our following study shows, however, when
the general range model is considered, �i and �j cannot
be simply considered as identical.

Based on the above discussion, we classify the existing
range-based localization methods into four types, as
shown in Table 1. For the methods in Types I – III,
they either used the simplified range model or assumed
the measurement error is IID. When a general range
model is adopted, these methods cannot guarantee their
optimality. In fact, if the assumptions could not reflect
the realistic statistical property of RSS measurements,

Table 1 Classification of the assumptions.
Error

distribution
Log-distance path loss range model
Simplified General

IID I. Refs. [29–33] II. Refs. [27, 28, 34, 35]
Non-IID III. Refs. [22, 23, 36–41] IV. Our work

the claimed optimal algorithms could not guarantee the
optimal accuracy. Accordingly, the error analytics under
such conditions may not reflect the true accuracy. Even
when the measurement error is not significant, it leads
to a large bias due to propagation, resulting in large bias.
Different from the previous researches, our studies can
be classified as Type IV. Specifically, we use the general
log-distance path loss range model and identify that the
measurement error is non-IID. Based on the assumption
in Type IV, we recognize the GLS method as the optimal
estimator. Then, we use mathematical techniques to
analyze the propagation of the measurement and obtain
the theoretical optimal accuracy of RSS range-based
localization approach. From the study, we see that the
efficient estimators for Types I – III in Table 1 cannot
provide optimal solutions when the assumption in Type
IV is adopted. Our study further verifies that the methods
in Types I – III are special cases in Type IV.

3 Location Estimation

3.1 Range-based localization problem

In this subsection, we will explain the range-based
localization problem using the the assumption of Type
IV in Table 1. Denote the four unknown parameters
in Eq. (1) as a vector � D .˛; ˇ; xu; yu/

T, where T
indicates the transpose of a vector or a matrix, then the
RSS measurement can be expressed as
fi .�/ D ˛ � 10ˇ lg

p
.xi � xu/2 C .yi � yu/2 (2)

where fi .�/ indicates the RSS measurement calculated
by � . Denote all fi .�/ as the following vector:

F.�/ D .f1.�/; f2.�/; : : : ; fm.�//
T (3)

and all measured RSS values as the following vector:
NP D . NP1; NP2; : : : ; NPm/

T (4)

When � is the true solution, we actually have
NP � F.�/ D e (5)

where e D .�1; �2; : : : ; �m/
T. Since e is unknown, in

practice, the following system is used to find a solution
for � :

NP � F.�/ � 0 (6)

That is, given a set of measured RSS values . NP1;
NP2; : : : ; NPm/, we have the system described as a matrix

form:8̂̂̂̂
<̂̂
ˆ̂̂̂:

NP1 D˛�10ˇ lg
p
.x1 � xu/2 C .y1 � yu/2;

NP2 D˛�10ˇ lg
p
.x2 � xu/2 C .y2 � yu/2;

:::

NPm D˛�10ˇ lg
p
.xm � xu/2 C .ym � yu/2

(7)
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Usually, the amount of anchors used in Eq. (7) is
more than four, i.e., m > 4, there are four unknown
parameters. In addition, more measurements could
eliminate the effect of the random error too. Since Eq.
(2) is non-linear, the system in Eq. (7) is non-linear and
over-determined.

Basically, solving the system in Eq. (7) depends on
two key operations: linearizing a non-linear system and
finding a best estimation of � for the over-determined
system. For the first issue, as discussed in Section
2, several mathematical tools can be used. A typical
approach is the Newton method that is selected as the
linearization tool in our work (note that in this paper
we do not consider the local minimum of the Newton
method because our idea is to analyze the theoretical
accuracy of range-based localization methods other than
their practical performance). For the issue of the best
estimation, it is critical to know the statistical property
of e, i.e., the covariance matrix ˝ of e:

˝ D Cov.e/ D

0BBBB@
�2

�1
��1�2

� � � ��1�m

��2�1
�2

�2
� � � ��2�m

:::
:::

: : :
:::

��m�1
��m�2

� � � �2
�m

1CCCCA (8)

where Cov indicates the covariance matrix of a vector;
��i

indicates the standard variance of the error �i on the
i -th measurement NPi ; and ��i �j

indicates the covariance
of the i -th and j -th measurement errors. When the errors
in e are independent (i.e., ��i �j

D 0) but not identical,
the covariance matrix ˝ becomes a weighted diagonal
matrix:

˝ D

0BBBB@
�2

�1

�2
�2

: : :

�2
�m

1CCCCA (9)

Moreover, when all errors in e are independent and
identical, i.e., for any �i and �j , there is �2

�i
D �2

�j
D �2

r ,
we have

˝ D I�2
r (10)

where I is the identical matrix. Note that for different
cases of ˝, various optimal estimators can be used.
For the case in Eqs. (8) – (10), the generalized least
squares method, Weighted Least Squares (WLS) method,
and Ordinary Least Squares (OLS) method will be the
optimal estimators, respectively. As shown later, the
property of˝ determines what optimal estimator should
be selected, and the correctness of the error analytics
also depends on what estimators are used.

3.2 Non-IID measurement error

As mentioned earlier, the measurement error �i cannot
be simply regarded as IID. In this subsection, we will
show that even when the simplified range model is used,
the measurement error �i cannot be seen as IID. Consider
an estimation N� D . N̨ ; Ň; Nxu; Nyu/

T for the measurement
NPi . Putting N� into Eq. (2), we have

NPi Dfi . N�/D N̨ � 10 Ň lg
p
.xi � Nxu/2C.yi � Nyu/2 D

Pi C �i (11)

where Pi is the true RSS measurement. Then we get
�2

�i
D Var.�i / D Var.Pi C �i / D Var.fi . N�// (12)

where Var indicates the variance of a random variable or
a function. Since the expression of fi is known, we can
use the delta method[42] to calculate the variance of fi :

Var.fi .�// � rfi .�/
T

� Cov. N�/ � rfi .�/ (13)
It is easy to know that N̨ , Ň, Nxu, and Nyu are the mean

of ˛, ˇ, xu, and yu, respectively. Since we have8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

@fi .E. N̨ //

@˛
� 1;

@fi .E. Ň//

@ˇ
� 10 lg di ;

@fi .E. Nxu//

@xu

�
10ˇ.xi � xu/

ln.10/d2
i

;

@fi .E. Nyu//

@yu

�
10ˇ.yi � yu/

ln.10/d2
i

(14)

where E denotes the mean of a random variable and
di D

p
.xi � xu/2 C .yi � yu/2. Then we get

rfi .�/D

�
1; 10 lg.di /;

10ˇ.xi �xu/

ln.10/d2
i

;
10ˇ.yi �yu/

ln.10/d2
i

�T

(15)
Denoting the variance of ˛, ˇ, xu, and yu as �2

˛ , �2
ˇ

,
�2

x , and �2
y , then we have

Cov. N�/ D

0BBB@
�2

˛

�2
ˇ

�2
x

�2
y

1CCCA (16)

Putting Eqs. (15) and (16) into Eq. (13) and
simplifying, we finally get

�2
�i

D�2
˛C.10 lg.di //

2�2
ˇC

�
10ˇ

ln.10/di

�2

.�2
xC�2

y / (17)

From Eq. (17), it is obvious that the measurement error
cannot be assumed as the identical distribution due to
the existence of di . In addition, when the simplified
range model is considered, i.e., �˛ D �ˇ D 0, Eq. (17)
becomes

�2
�i

D

�
10ˇ

ln.10/di

�2

.�2
x C �2

y / (18)
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It is clear that when di ¤ dj , there is �2
�i

¤ �2
�j

. This
indicates that even when the simplified range model
is used, the measurement error cannot be considered
as Gaussian or IID. Therefore, the optimality of the
algorithms based on the IID assumption (Types I and III
in Table 1) cannot hold.

3.3 Non-linear GLS estimator

As discussed earlier, the problem of range-based
localization is to find a set of parameters best fitting
Eq. (6). In this paper, we combine the Newton method
with the GLS method to solve the problem (from the
knowledge of estimation theory, we know that other
methods such as maximum likelihood estimation may
also be optimal estimators. The GLS method is selected
since its statistical distribution can be expressed without
knowing the exact value of the covariance matrix). First,
we will use the Newton method to linearize the system
in Eq. (6). Define the residual vector r.�/ between the
measured vector NP and the calculated vector F.�/ as

r.�/ D NP � F.�/ (19)

Since the residual is non-linear, we need to linearize it
and find a solution iteratively. By Taylor’s theorem, the
system in Eq. (19) can be linearized at each iteration:

r.�/ � r.� .s//C J.� � � .s// (20)

where � .s/ indicates that it is the initial guess of � or
the solution calculated by the previous iteration, and s
indicates the number of the iteration. J is the Jacobian
matrix with

J.i;j / D
@ri .�

.s//

@�j
D
@Fi .�

.s//

@�j
(21)

Denoting the final Jacobian matrix as J , we have

JD

0BBBBBBBB@

�10ˇ
x1 � xu

d2
1 ln.10/

�10ˇ
y1 � yu

d2
1 ln.10/

�10 lg.d1/ 1

�10ˇ
x2 � xu

d2
2 ln.10/

�10ˇ
y2 � yu

d2
2 ln.10/

�10 lg.d2/ 1

:::
:::

: : :
:::

�10ˇ
xm � xu

d2
m ln.10/

�10ˇ
ym � yu

d2
m ln.10/

�10 lg.dm/ 1

1CCCCCCCCA
(22)

We can see that Eq. (20) is a linear system with the
known � .s/ and the unknown � . Now the linear least
square method can be used to find a solution for � . Since
r.�/ has the same statistical property with e, the GLS
method can be used as an efficient estimator, which will
find a solution to minimize the squared Mahalanobis
length of the residual vector r.�/. Therefore, an efficient
estimation of � is given by

� � � .s/
D .J T˝�1J /�1J T˝�1r.� .s// (23)

With Eq. (23), we get a formula to refine the solution
iteratively. Basically, by an initial guess � .0/, the formula
can be iteratively used to find a best solution until the
residual is less than a threshold or other terminating
conditions are met. When the iteration is finished, the
estimated � will be approximately treated as the true
solution. Denoting the final estimation error as �� D

� � � .s/, we have
�� D .J T˝�1J /�1J T˝�1e (24)

According to the covariance law, we have
Cov.��/DCov..J T̋ �1J /�1J T̋ �1e/D.J T̋ �1J /�1

(25)
In addition, we also have

Cov.��/ D

0BBB@
�2

˛

�2
ˇ

�2
x

�2
y

1CCCA (26)

Denoting the localization error as �2 and taking Eqs.
(25) and (26) together, we have
�2

D�2
xC�2

y D.J T˝�1J /�1
.3; 3/C.J

T˝�1J /�1
.4; 4/ (27)

In Eq. (27), the subscripts (3, 3) and (4, 4) indicate
the third and the fourth elements of the diagonal line of
.J T˝�1J /�1, respectively. Since .J T˝�1J / is a 4� 4

matrix, it is hard to find the analytic expression of its
inverse matrix. This means that if we want to get the
analytic expression for �2, alternative methods should
be considered.

Note that from the knowledge of the GLS estimator,
we know it is unbiased, consistent, efficient, and
asymptotically normal. The meaning of efficient here
is that the estimation error of the GLS method equals
CRLB. In other words, the GLS method can achieve the
best accuracy.

3.4 Practical estimators

As discussed earlier, the GLS method cannot be used
in practice since the covariance matrix ˝ is unknown.
In this subsection, we will introduce some practical
localization algorithms, which will be compared with
the GLS estimator in Section 5 in order to know how
close the practical accuracy is to the best accuracy.
In fact, when the IID assumption is adopted, these
practical algorithms are regarded as efficient estimators.
Here, we will briefly introduce several commonly used
practical algorithms, such as Feasible Generalized Least
Squares (FGLS), OLS, and the Levenberg-Marquardt
(LM) algorithm[43].

For the FGLS method, it is used as an implementable
version of the GLS estimator. In our case, the goal is
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to find an available approximation for ˝. Actually, the
approximated˝ could be initially estimated by applying
inefficient estimators, and then the Newton method can
be used to calculate the residuals and build the consistent
FGLS estimator during each of its iterative steps. In
this paper, we choose the estimated covariance matrix
calculated by the LM method. Denoting the estimated
covariance matrix as˝LM, we use the following equation
at each iteration:

� � � .s/
D .J T˝�1

LMJ /
�1J T˝�1

LMr.�
.s// (28)

For the OLS method, it uses the Gauss-Newton
algorithm directly. However, as conducted in Section
4.2, we know that the RSS measurement error is not
spherical. Thus, the OLS method may be statistically
inefficient with misleading inferences. Therefore, the
result calculated by the OLS method may not be optimal.
Similar to the non-linear GLS method, the OLS method
should also be combined with an iterative approach to
refine the solution repeatedly. Actually, for the OLS
method, the equation used for the iteration will be

� � � .s/
D .J TJ /�1J Tr.� .s// (29)

For the LM method, it can be considered as a
robust version of the OLS method in dealing with
the challenging issues of global convergence. In
mathematics and computing, the LM method is also
known as the Damped Least-Squares (DLS) method,
which is used to solve non-linear least squares problems.
The LM method interpolates between the Gauss-Newton
algorithm and the method of gradient descent, which is
more robust than the Gauss-Newton algorithm. In many
cases, it finds a solution even if it starts very far off the
final minimum. The interested readers can find more in
Ref. [43].

4 Theoretical Error Data Analytics

4.1 Basic idea

From Eq. (27), it is easy to see that the localization
accuracy depends on the Jacobian matrix J and the
covariance matrix ˝. However, it is hard to use Eq.
(27) to analyze the relationship between �2 and �2

�i

since it involves calculating the inverse of a high-order
matrix. Therefore, we conquer the problem by dividing
it into a three-step procedure. The first step is to convert
RSS measurements to measurement ranges, then we
will analyze the relationship between RSS measurement
errors and range estimation errors caused by the
conversion. In the second step, based on the converted
measurement ranges, we use the multilateration method

to calculate the unknown location, that is, using m

converted ranges to estimate the unknown location.
Through analyzing the propagation of the range
estimation errors in the multilateration method, we
finally get an analytic expression of the estimation error.
From the expression, we can see that the localization
error depends on several key factors. However, the
error expression does not provide enough information
on how these factors affect the accuracy. In the third
step, we further derive the minimal localization error, by
which we can clearly see how different factors affect the
localization accuracy.

4.2 Errors in RSS measurement conversion

In the first step, we will investigate the relationship
between measurement errors and range estimation errors
when RSS measurements are converted to measurement
ranges. Denote the distance between .xu; yu/ and
.xi ; yi / as di , i.e.,

di D

p
.xi � xu/2 C .yi � yu/2 (30)

Let ! D .˛; ˇ; Pi /
T, we get a function hi for di :

di D hi .!/ D 10
˛�Pi

10ˇ (31)

Consider an estimation N� D . Nxu; Nyu; N̨ ; Ň/T for the
measurement NPi . Putting N̨ , Ň, and NPi into Eq. (31), we
get an estimated distance Ndi for di , that is

Ndi D hi . N!/ D 10
N̨ � NPi

10 Ň D di C �i (32)

where �i is the error in Ndi and N! D . N̨ ; Ň; NPi /
T.

Denoting the variance of Ndi as �2
�i

, we get

�2
�i

D Var.�i / D Var.di C �i / D Var.hi . N!// (33)

Then we can calculate the variance of hi . N!/ by
Var.hi . N!// � rhi .!/

T
� Cov. N!/ � rhi .!/ (34)

Since we have8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

@hi .E. N̨ //

@˛
� di

ln.10/
10ˇ

;

@hi .E. Ň//

@ˇ
� di

ln.10/
10ˇ

.10 lg.di //;

@hi .E. NPi //

@Pi

� �di

ln.10/
10ˇ

(35)

Then we get

rhi .!/ D

�
di

ln.10/
10ˇ

; di

ln.10/
10ˇ

.10 lg.di //; di

ln.10/
10ˇ

�T

(36)
Since

Cov.��/ D

0B@ �2
˛

�2
ˇ

�2
�i

1CA (37)
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Putting Eqs. (36) and (37) into Eq. (34), we finally get

�2
�i

�

�
ln.10/
10ˇ

�2

d2
i Q�2

i (38)

where
Q�2

i D �2
�i

C �2
˛ C .10 lg.di //

2�2
ˇ (39)

From Eq. (38), we can see that the error in the
converted ranges depends on several factors: the true
distance di , the measurement error in NPi , and the
estimation error of both ˛ and ˇ. Since the measurement
error �i is assumed as independent to others, it is easy
to know that �i is also independent to other range
estimation errors. From Eq. (38), we also know that
�i does not have the identical distribution. Therefore, for
the multilateration method, we also need to use the GLS
algorithm to achieve an optimal solution. Note that if ˛
and ˇ are perfectly estimated (i.e., �2

˛ D �2
ˇ

D 0), and
if the measurement error is IID (i.e., �2

�i
D �2

r ), then Eq.
(38) becomes

�2
�i

� d2
i

�
ln.10/
10ˇ

�2

�2
r (40)

which is the case described in Ref. [38]. This also
verifies that previous works in Ref. [38] are special
cases of Type IV in Table 1.

4.3 Errors in location estimation

After converting RSS measurements to measurement
ranges, we use the multilateration approach to calculate
.xu; yu/. Note that only when an optimal estimator
is used, the localization error will be the same with
that in Eq. (27). Next, we will analyze how range
errors propagate in the multilateration approach. For
the distance d i estimated by P i , ˛, and ˇ, we have

d i D

p
.xi � xu/2 C .yi � yu/2 C �i (41)

Note that the statistical property of �i is shown in
Eq. (38). Denoting the unknown location as a vector
# D .xu; yu/

T and writing Eq. (41) as a function ki , we
have

di D ki .#/ D

p
.xi � xu/2 C .yi � yu/2 (42)

Denote all ranges Ndi calculated by NPi , N̨ , and Ň with Eq.
(31) as

Nd D .d1; d2; : : : ; dm/
T (43)

and all ranges calculated by .#/ with Eq. (42) as
k.#/ D .k1.#/; k2.#/; : : : ; km.#//

T (44)

When # indicates the true location, we have
Nd � k.#/ D g (45)

where g D .�1; �2; : : : ; �m/
T. Since the error vector g is

unknown, we use the following system to find a solution:

Nd � Nk.#/ � 0 (46)

Writing Eq. (46) in a matrix form, we have8̂̂̂̂
<̂̂
ˆ̂̂̂:

Nd1 D
p
.x1 � xu/2 C .y1 � yu/2;

Nd2 D
p
.x2 � xu/2 C .y2 � yu/2;

:::

Ndm D
p
.xm � xu/2 C .ym � yu/2

(47)

Let˝d be the covariance matrix of g. Since the errors
in any two ranges are uncorrelated, we have ��i �j

D 0

when i ¤ j . Then the covariance matrix of g becomes

˝d D

0BBBB@
�2

�1

�2
�2

: : :

�2
�m

1CCCCA (48)

Putting Eq. (38) into Eq. (48), we have

˝d D

�
ln.10/
10ˇ

�2

0BBBB@
d2

1 Q�2
1

d2
2 Q�2

2

: : :

d2
m Q�2

m

1CCCCA (49)

Knowing the covariance matrix of g, we can use the
non-linear GLS method to find a best estimation for Eq.
(46). Define the residual vector between Nd and k.#/ as

rd .#/ D Nd � k.#/ (50)

After linearizing the above system, we have
rd .#/ � rd .#

.s//C Jd .# � #s/ (51)

where the Jacobian matrix Jd has

.Jd /.i;j / D
@.rd /i .#

.s//

@#j

D
@ki .#

.s//

@#j

(52)

that is

Jd D

0BBBBBBB@

x1 � xu

d1

y1 � yu

d1x2 � xu

d2

y2 � yu

d2
:::

:::
xm � xu

dm

ym � yu

dm

1CCCCCCCA
(53)

Then an efficient estimation of # can be calculated by
# � #.s/

D .J T
d˝

�1
d Jd /

�1J T
d˝

�1
d rd .#

.s// (54)

When the iteration is finished, the estimation error�# D

# � #.s/ can be expressed as
�# D .J T

d˝
�1
d Jd /

�1J T
d˝

�1
d g (55)

By the knowledge of the covariance law, we have

˝�# DCov..J T
d˝

�1
d Jd /

�1J T
d˝

�1
d g/D.J

T
d˝

�1
d Jd /

�1

(56)
Putting Eq. (49) into Eq. (56), we have
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˝�# D

�
ln.10/
10ˇ

�2

0BBBBB@J T
d

0BBBBB@
1

d2
1

Q�2
1

0 � � � 0

0 1

d2
2

Q�2
2

� � � 0

:::
:::

: : :
:::

0 0 � � �
1

d2
m Q�2

m

1CCCCCAJd

1CCCCCA

�1

(57)
Since a multiplication of two 2 � 2 matrices can be

solved by the analytic method, after simplifying, we
have

˝�# D

�
ln.10/
10ˇ

�2
 
 1  2

 2  3

!�1

(58)

where

 1 D

mX
iD1

.xi � xu/
2

d4
i Q�2

i

D

mX
iD1

cos2 �i

d2
i Q�2

i

(59)

 2 D

mX
iD1

.xi � xu/.yi � yu/

d4
i Q�2

i

D

mX
iD1

cos�i sin�i

d2
i Q�2

i

(60)

 3 D

mX
iD1

.yi � yu/
2

d4
i Q�2

i

D

mX
iD1

sin2 �i

di
2

Q�2
i

(61)

where �i is the angle between the line by the anchor
.xi ; yi /, the blind node .xu; yu/, and X-axis. Since
.J T

d
˝�1

d
Jd / in Eq. (56) is a 2�2matrix, we can use the

analytical method to calculate its inverse matrix. That is,
we have 

 1  2

 2  3

!�1

D
1

 1 3 �  2
2

 
 3 � 2

� 2  1

!
(62)

Also because we have

˝�# D

 
�2

x

�2
y

!
(63)

we finally get the following analytic expression of �2:

�2
D �2

x C �2
y D

�
ln.10/
10ˇ

�2
 1 C  3

 1 3 �  2
2

(64)

From the above study, we know that the accuracy of
the multilateration method is the same with that of the
calculation in Section 3.3. That is, the error expression
in Eq. (64) is the same with the localization error in
Eq. (27). From Eq. (64), we can see that the accuracy
depends on the following factors: the measurement range
di , the relative geometry of anchors �i , the amount of
anchors m, the measurement error �2

�i
, and the errors in

estimated ˛ and ˇ, i.e., �2
˛ and �2

ˇ
. In addition, when ˇ

and ˛ are perfectly estimated, i.e., �2
ˇ

D �2
˛ D 0, and

if the measurement error is IID, Eq. (64) turns into the
case described in Ref. [38]. However, Eq. (64) does not
provide enough information on how these factors affect

the accuracy. Therefore, we need to find other ways to
clarify how these factors affect the accuracy of the GLS
method.

4.4 Minimum of localization error

From Eq. (64), we obtain the analytic expression of the
localization error, i.e., the optimal solution in an analytic
form. Next, we will derive its minimum to explore how

different factors affect the accuracy.
 1 C  3

 1 3 �  2
2

in Eq.

(64) can be written as
mP

iD1

cos2 �i

d2
i

Q�2
i

C

mP
iD1

sin2 �i

d2
i

Q�2
i�

mP
iD1

cos2 �i

d2
i

Q�2
i

��
mP

iD1

sin2 �i

d2
i

Q�2
i

�
�

�
mP

iD1

cos �i sin �i

d2
i

Q�2
i

�2
(65)

After simplifying, we get
mP

iD1

1

d2
i

Q�2
i

mP
iD1;j D1

.sin �j cos �i � cos �j sin �i /2

d2
i

d2
j

Q�2
i

Q�2
j

(66)

and it can be rewritten as
mP

iD1

1

d2
i

Q�2
i

mP
iD1;j D1

sin2.�j ��i /

d2
i

d2
j

Q�2
i

Q�2
j

(67)

Since sin2.�j � �i / 6 1, we have
mP

iD1

1

d2
i

Q�2
i

mP
iD1;j D1

sin2.�j ��i /

d2
i

d2
j

Q�2
i

Q�2
j

>

mP
iD1

1

d2
i

Q�2
i

mP
iD1;j D1

1

d2
i

d2
j

Q�2
i

Q�2
j

(68)

Let the minimum of (d1; d2; : : : ; dm) be dmin, the
minimum of (�2

�1
; �2

�2
; : : : ; �2

�m
) be �2

�min
, and let Q�2

min D

�2
�min

C �2
˛ C .10 lg.dmin//

2�2
ˇ

. Since d2
j Q�2

j > d2
min Q�2

min,
we have

mP
iD1

1

d2
i

Q�2
i

mP
iD1;j D1

1

d2
i

d2
j

Q�2
i

Q�2
j

>

mP
iD1

1

d2
i

Q�2
i

mP
iD1;j D1

1

d2
i

Q�2
i

d2
min Q�2

min

(69)

Since
mP

iD1

1

d2
i

Q�2
i

mP
iD1;j D1

1

d2
i

Q�2
i

d2
min Q�2

min

D

d2
min Q�2

min

mP
iD1

1

d2
i

Q�2
i

m
mP

iD1

1

d2
i

Q�2
i

(70)

and
d2

min Q�2
min
Pm

iD1
1

di
2

m
mP

iD1

1

d2
i

D
1

m
d2

min Q�2
min (71)
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we finally get
 1 C  3

 1 3 �  2
2

>
1

m
d2

min Q�2
min (72)

Then, putting Eqs. (72) and (64) together, we get

�2 >

�
ln.10/
10ˇ

�2
1

m
d2

min Q�2
min (73)

We can see that the right side of Eq. (73) is the
minimum of the localization error of the GLS method.
The inequality means that the real localization error of
range-based localization methods cannot be smaller than
that minimum.

From Eq. (73), we can see that the minimum of
the localization error is proportional to d2

min, Q�2
min, and

the inverse of m. We see that when the measurement
range di and the measurement error Q�2

i increase, d2
min

and Q�2
min will probably increase. This implies that the

measurement ranges and errors have a proportional
relationship with the localization error, i.e., the minimal
range and measurement error will probably increase
when all ranges or measurement errors increase.
Similarly, increasing the amount of anchors will decrease
the localization error. Therefore, from the minimum,
we know how factors in the previous section affect the
localization accuracy (note that the minimum does not
contain the information of �i , which means the effect of
the relative geometry should be studied in future work).

5 Experiment and Verification

5.1 Verification method

When verifying the theoretical analytics in Section 4,
we prefer using the simulation approach other than
real experiments. There are three reasons for this
strategy: Firstly, when comparing different localization
algorithms, we need to know the optimal accuracy that
can be achieved. However, since the practical algorithms
such as the OLS method cannot guarantee the best
estimation, we have to use the GLS method to get the
best accuracy by simulation. In other words, only with
the simulation data can we calculate the covariance
matrix ˝, which is unknown in practice. Secondly, in
order to verify the correctness of our analytics in Section
4, we need to know the accurate value of �˛, �ˇ , ��i

,
and ˇ. However, in practical environments, we cannot
use non-optimal algorithms to get their accurate values.
Therefore, only by simulation data can we know their
correct values. Thirdly, in our experiments, we need
to change the values of different factors to verify their
relationship with the localization error. However, in real

environments, several factors are not adjustable, such as
�˛, �ˇ , and ��i

. Therefore, only by simulation can we
freely adjust these factors to see how their changes affect
the localization accuracy. Due to the above reasons, we
choose the simulation approach to verify the theoretical
error data analytics in Section 4.

5.2 Simulation setting

Before presenting the experimental study, we first
introduce the settings of the simulation environment.
We can define the blind node at the location (0, 0). The
anchors are randomly deployed in a circular area with
the radius of 20 m. In order to meet the requirement
of the model as described in Eq. (1), the minimal
measurement range is set to 1 m. We set ˛ D �25 dBm,
i.e., we assume all anchors use homogenous devices
whose transmission powers are equal. For ˇ, we set it as
2, which means an ideal propagation condition.

We generate two different RSS measurement data for
the verification of the correctness of the proposed error
data analytics in Section 4. The first one is the data
with the non-IID measurement error, which satisfies
the relationship in Eq. (17). In order to generate NPi

with the non-IID error, we need to add errors to the
true parameters � D .˛; ˇ; xu; yu/

T. Since there are m
measurements, for i-th measurement NPi , we denote its
errors added to every parameter as �˛i , �ˇi , �xi , and
�yi , respectively. Let ��i D .�˛i ; �ˇi ; �xi ; �yi /

T.
Adding ��i to the true vector � , we get � C ��i D

.˛ C �˛i ; ˇ C �ˇi ; xu C �xi ; yu C �yi /
T. Putting

� C ��i into Eq. (2) as the input, i.e., fi .� C ��i /,
we can obtain an RSS measurement NPi . Note that we
use the variances �2

˛ , �2
ˇ

, �2
x , and �2

y to generate �˛i ,
�ˇi , �xi , and �yi , respectively, here 4 6 i 6 m. If
there are no special remarks, we have �˛ D 2:5 dBm,
�ˇ D 0:2, �x D 1m, and �y D 1m as default. By
m measurements, we obtain the vector of the RSS
measurement NP . Furthermore, by NP �F.�/, we also get
the error vector e, which is needed for the calculation of
the covariance matrix ˝ for the GLS method.

The second type of simulation data will be generated
with the IID error. For this type, we generate a vector
of the measurement error e D .�1; �2; : : : ; �m/ with the
Gaussian distribution, that is, the variance of e is �2

r .
Here, the default setting for �r is 2.5 dBm. Then we use
Eq. (5) to generate the vector of the RSS measurements
NP , i.e., NP D F.�/ C e. With this method, we get m

RSS measurements with the IID error. Since e is also
known, we can construct the covariance matrix ˝ for
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the GLS method. However, this type of data cannot be
used to calculate the analytic error expression and its
minimum because the correct value of �˛ and �ˇ cannot
be calculated.

5.3 Localization algorithms for comparison

In this subsection, we will introduce the practical
algorithms and the optimal algorithm to be compared.
Through comparison, we can investigate their accuracy
gap and find the opportunity to optimize current
algorithms or design new algorithms. In order to verify
the correctness of the theoretical error data analytics in
Section 4, i.e., the correctness of the analytic expression
of the localization error and its minimum, we will also
explain the method of calculating these two formulas
(we will not investigate how the relative geometry affects
the localization accuracy since we do not know the
exact relationship from the expression). We introduce
the configuration of the algorithms first as follows:

� Levenberg-Marquardt method. Among the
proposed techniques, we apply the Levenberg-Marquardt
method[43], which is widely regarded as the most robust
one in dealing with the challenging issues of global
convergence. This algorithm requires setting an initial
scale for each parameter. In our experiments, we set the
initial scale for xu and yu as (�20; 20), which means
the blind node will not locate outside the testing area.
For ˛, the initial scale is set as (�20; �30/, and for ˇ,
we set its initial scale as (1, 3).

� Ordinary least squares. The OLS method
assumes the measurement error being IID, for both
types of the simulation data. We simply use the Gauss-
Newton method to find the solution. It uses the iterative
procedure to refine the solution. Similar to the LM
method, the OLS method also need to set initial values
for each parameter. In our experiments, in order to
eliminate the local minimal, we set the initial value for
(xu; yu; ˛; ˇ) as (0, 0, �25, 2).

� Feasible generalized least squares. The FGLS
method is similar to the OLS method, and the only
difference is the equation used to calculate iteratively.
For FGLS, we also need to set a proper initial value for
all parameters. Here we use the same configuration with
that of the OLS method. For the FGLS method, we use
the LM method to construct an approximated covariance
matrix for ˝, which means that the solution calculated
by the LM method is adopted to generate and calculate
its covariance matrix to replace ˝.

� Generalized least squares. For the GLS method,
in practice, we cannot get the covariance matrix of the
measurement error. Therefore, in our experiments, we
need to obtain the measurement error added to the true
value in order to calculate the covariance matrix. Since
the GLS method also uses an iterative procedure to
find the solution, we use the same configuration for
unknown parameters as the OLS method. Therefore,
for both simulation data, we use the generated RSS
measurement error e to calculate ˝ D Cov.e/. Note
that, since ˝ is unknown in practice, the GLS method is
valid theoretically for our cases.

For all the above algorithms, we need to properly set
the initial guess for xu, yu, ˛, and ˇ to avoid the local
minimal, that is, we set the initial guess close enough
to their true values. Next, we will introduce how to
calculate the analytic expression of the localization error
and its minimum. For the analytic error expression, in
addition to knowing .xi ; yi /, .xu; yu/, and di , we also
need to know Q�2

i , i.e., �2
�i

, �2
˛ , and �2

ˇ
. Since �2

˛ and
�2

ˇ
have been assigned with the default value, we only

need to determine �2
�i

. However, since �2
�i

is different
under varying RSS measurement Pi from the blind node
to the anchor .xi ; yi /, it is hard to get �2

�i
for all possible

positions of anchors. Therefore, in our experiments, we
use �2

i as �2
�i

in each location calculation. To eliminate
the possible random noise caused by this approach, we
repeat the calculation many times, i.e., when the number
of repeating is large enough, the variance of �i will be
close to �2

�i
. For the minimum of CRLB, we need to

know dmin and Q�2
min. It is easy to get dmin by finding out

the minimal one in .d1; d2; : : : ; dm/. For Q�2
min, we select

the minimum in .�2
1 ; �

2
2 ; : : : ; �

2
m/.

5.4 Effect of measurement ranges

In this subsection, we will explore how measurement
ranges affect the localization accuracy. In order to know
the effect on the changing of di , we need to keep other
factors fixed. To keep the relative geometry of anchors
fixed, i.e., all �i fixed, we will extend the measurement
ranges proportionally. In addition, we also keep Q�i

fixed, and therefore, the localization error depends only
on the measurement ranges di . Here, we define an
extending coefficient � to indicate how measurement
ranges change. That is, given a specific value of � , the
coordinates of all anchors are multiplied by �. Then we
use the extended coordinates of the anchors to calculate
the localization of the blind node. In this experiment,
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the extending coefficient changes from 1 to 3 with the
step of 0.1. Other settings are assigned with the default
values as introduced in Section 5.2.

Figure 1 shows the localization error of four
localization algorithms (LM, OLS, FGLS, and GLS
for short), the Analytic Error Expression (AEE), and
the Minimum of the Error Expression (MoEE). From
Fig. 1, we have the following observations: (1) When the
extending coefficient � increases, the localization error
of four algorithms, the error expression and its minimum
all increase proportionally. This verifies our error data
analytics in Section 4.4, i.e., when other factors are fixed,
the localization error is proportional to the measurement
ranges. (2) When we compare different algorithms in
terms of accuracy, we can see that the GLS method has
the best performance, and the performances of other
methods are similar. Additionally, we also observe a
significant gap on accuracy between the practical and
the optimal results. This indicates a great opportunity
to improve the current practical algorithms. (3) From
Fig. 1, we can see that the analytic error expression is
close to the accuracy of the GLS method, which verifies
the correctness of the expression in Eq. (64). (4) For
the minimum of the localization error, we can see it is
far below the optimal accuracy. This also means that it
is possible to find novel algorithms if we can find the
conditions that make the actual localization error close
to the minimum.

Figure 2 shows the effect of the measurement ranges
for the IID data. We can see that, when the measurement
ranges increase, the localization error of the four
algorithms increases proportionally. This also verifies the
results in the experiments on the non-IID data. For the
accuracy comparisons on different algorithms, the GLS
method also has the best accuracy. Other algorithms
have similar accuracy and their accuracy has a large gap
to the optimal accuracy. An important conclusion from
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Fig. 1 Effects of measurement ranges with non-IID error.
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Fig. 2 Effects of measurement ranges with IID error.

this gap is that, even when the measurement error is
IID, the claimed optimal algorithms, such as the OLS
method, cannot obtain the best solution. This means that
these algorithms are inefficient no matter what type of
the simulation data is used. Therefore, the simplified IID
assumption on the measurement error in Table 1 cannot
hold.

5.5 Effect of measurement errors

Next, we will investigate how measurement errors affect
the localization performance. Here, we change the
measurement error with the other factors fixed. From
Eq. (1) in Section 2, we know that the measurement
error depends on the error in estimated ˛, ˇ, xu, and
yu. For �˛ and �ˇ , we use their default values and keep
them fixed (the effect of the change of �˛ and �ˇ will
be studied in later subsections). Then, the measurement
error only depends on the error added to the true xu and
yu. We increase�xi and�yi proportionally to generate
the non-IID RSS measurement data. Here, �xi and
�yi change in the same ratio to let the added location
error change proportionally. Specifically, we increase the
standard variance of �xi and �yi from 1 to 5 m with
the step of 0.25 m.

However, for the non-IID data, we use m RSS
measurements, whose error is e D .�1; �1; : : : ; �m/

generated by the change of �xi and �yi . Since
measurement errors may not be equal to each others,
we cannot determine the relationship between e and the
localization error �2, i.e., they do not have one to one
mapping relationship. Therefore, in this experiment, we
bring a new metric to measure the overall change of
the measurement errors. We define the average of all
measurement errors in e as

O�� D
1

m

mX
iD1

��i
(74)

Therefore, for the non-IID data, we will analyze the
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relationship between � and O�� .
Figure 3 shows the comparison on the non-IID data.

Note that, O�� changes from 4.26 to 7.06 dBm, which is
caused by the change of �xi and �yi . We can see that
when the average measurement error, i.e., O�� increases,
the localization error of the four algorithms, the error
expression and its minimum increase proportionally.
This verifies our error data analytics in Section 4,
i.e., when other factors are fixed, the change of the
localization error is proportional to the change of
the measurement error. The accuracy comparison on
different algorithms has the similar result with the
previous experiments. The GLS method is the best and
its performance is close to the analytic error expression.
Additionally, the minimum of the localization error is
also significantly smaller than the error of the optimal
algorithm.

For the IID data, we change the value of �r from 2.5
to 10 dBm. Figure 4 shows the result. From Fig. 4, we
observe the similar phenomenon with the experiments
on the non-IID data. That is, the localization error of
all algorithms increases when the measurement error
�r increases. We also observe that the accuracy of
the practical algorithms is significantly lower than that
of the optimal algorithm. This also verifies that the
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Fig. 3 Effects of measurement error with non-IID error.

2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5
0

1

2

3

4

LM

OLS

FGLS

GLS

(dBm)r

Fig. 4 Effects of measurement error with IID error.

practical algorithms cannot reach optimal accuracy when
the measurement error is assumed as IID. In practical
environments, it is inappropriate to use the assumption
in Types I and II, i.e., measurement errors are IID.

5.6 Effect of errors in estimated ˛̨̨ and ˇ̌̌

As we discussed earlier, the variances of the estimated ˛
and ˇ are assumed as constants. However, in different
environments and time periods, they may have different
means and variances. Therefore, knowing how these two
parameters affect the localization accuracy may help us
find better policies to handle the environment-related
issues. We will investigate how the changing of �˛ and
�ˇ affects the localization accuracy. Note that since �˛

and �ˇ should be adjustable in our experiments, only the
non-IID data is generated for comparison. In the tests,
we change the value of �˛ from 0 to 5 dBm with the step
of 0.25 dBm and the value of �ˇ from 0.1 to 1 with the
step of 0.05.

Figures 5 and 6 illustrate how the changes of �˛

and �ˇ affect the localization accuracy. We see that
in all algorithms, the analytic error expression and its
minimum increase when �˛ or �ˇ increases. In addition,
the result of the accuracy comparison is similar as the
result in previous experiments, i.e., the GLS method has
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the best accuracy which is close to the analytic error
expression. The accuracy of the practical algorithms also
has a significant gap with the optimal accuracy. This
verifies that the simplified range model in Types I and
III cannot hold.

5.7 Effect of the amount of anchors

As analyzed in Section 4.4, we know that the localization
error is inversely proportional to the square root of the
amount of anchors. In this test, we use both the non-
IID data and the IID data to verify this analytics. Here,
we keep other factors fixed and change the amount of
anchors from 8 to 24.

Figure 7 shows the result of the experiments on the
non-IID data. From Fig. 7, we can see that when the
amount of anchors increases, the localization error of
the four algorithms, the analytic error expression and its
minimum all decrease. Note that the relationships are not
linear, which verifies that the localization error is a power
function of the amount of anchors. We also see that,
when the amount of anchors is small, the performance of
different algorithms has some fluctuations. However,
when the amount of anchors is large enough, the
localization accuracy will be stable and the result of the
accuracy comparison is the same with that in previous
experiments. In addition, we can see that the error
expression is very close to the error of the GLS method.

Figure 8 shows the comparison when the IID data
is used. Similar to the experiments on the non-IID
data, the localization error will decrease when the
amount of anchors increases. The result of the accuracy
comparison is also similar to the results on the non-IID
data. From Fig. 8, we also observe the significant gap
on the accuracy between the practical algorithms and
the optimal algorithm. The result also verifies that the
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assumption of the IID measurement error cannot hold.

5.8 Summary and discussion

In summary, our experiments verify the correctness of
the theoretical error data analytics in Section 4. In one
hand, our experiments support the proposed analytics on
the error expression and the lower bound, that is, what
are the key factors affecting the localization accuracy and
how these factors affect the accuracy. In addition, our
experiments show that there is a significant gap between
the practical accuracy and the optimal accuracy, which
means there may have a good opportunity to improve
the accuracy of the current algorithms.

Based on the study, we further discuss the possibility
of improving the current algorithms. For example, from
the test on the measurement ranges, we possibly can
use anchors closer to the blind node to increase the
localization accuracy. Similarly, from the test on the
amount of anchors, we may also obtain better accuracy
by using more anchors for measurements. Since the
errors of estimated ˛ and ˇ also affect the localization
accuracy, we may use less volatile devices and indoor
environments to decrease �˛ and �ˇ , but increase the
accuracy.

Note that in this paper, we did not consider the effect
of the relative geometry of the anchors. However, from
the experiments, we observe that in all tests, the lower
bound is significantly smaller than the localization error
of the optimal algorithm. Considering the lower bound
is obtained by a condition sin2 .�i � �j / 6 1, we can
expect that the relative geometry plays an important
role. That is, a specific geometry may bring better
accuracy compared with the random geometry used
in this paper. Therefore, an important work in future
is to study how the relative geometry will affect the
localization accuracy.
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6 Conclusion and Future Work

In this work, we focus on a long-term unresolved
problem: the accuracy of the RSS range-based
localization methods. We adopt a generalized
measurement model to find optimal estimators
whose estimation error equals the Cramér-Rao lower
bound. Through mathematical techniques, the key
factors for the accuracy of RSS-based localization
methods are revealed, and the analytics expression
that discloses the proportional relationship between
the localization accuracy and these factors is derived.
Our experiment through simulation also verifies the
correctness of the proposed theoretical error data
analytics.

In the future, our work will focus on two further
issues to complete the study of the localization accuracy
problem: (1) analyzing how the relative geometry of
anchors affects the localization accuracy and finding
out the optimal geometries for the localization anchor
placement. (2) Finding out practical algorithms whose
accuracy may be equal to or close to the optimal
algorithm, i.e., the GLS method.
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