
BIG DATA MINING AND ANALYTICS
ISSN 2096-0654 02/05 pp102–120
Volume 3, Number 2, June 2020
DOI: 10.26599/BDMA.2019.9020024

C The author(s) 2020. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Feature Representations Using the Reflected Rectified Linear Unit
(RReLU) Activation

Chaity Banerjee, Tathagata Mukherjee�, and Eduardo Pasiliao Jr.

Abstract: Deep Neural Networks (DNNs) have become the tool of choice for machine learning practitioners today.

One important aspect of designing a neural network is the choice of the activation function to be used at the neurons

of the different layers. In this work, we introduce a four-output activation function called the Reflected Rectified

Linear Unit (RReLU) activation which considers both a feature and its negation during computation. Our activation

function is “sparse”, in that only two of the four possible outputs are active at a given time. We test our activation

function on the standard MNIST and CIFAR-10 datasets, which are classification problems, as well as on a novel

Computational Fluid Dynamics (CFD) dataset which is posed as a regression problem. On the baseline network for

the MNIST dataset, having two hidden layers, our activation function improves the validation accuracy from 0.09 to

0.97 compared to the well-known ReLU activation. For the CIFAR-10 dataset, we use a deep baseline network that

achieves 0.78 validation accuracy with 20 epochs but overfits the data. Using the RReLU activation, we can achieve

the same accuracy without overfitting the data. For the CFD dataset, we show that the RReLU activation can reduce

the number of epochs from 100 (using ReLU) to 10 while obtaining the same levels of performance.

Key words: deep learning; feature space; approximations; multi-output activations; Rectified Linear Unit (ReLU)

1 Introduction

Deep Neural Networks (DNNs)[1] have become the
learning algorithm of choice for a lot of real-world
large-scale machine learning tasks. They have been
successfully used for solving problems in computer
vision[2, 3], natural language processing[4], machine
learning for radio frequency domains[5], robotics[6], and
bioinformatics[7–10], to name a few areas of application.
However, in spite of the success of deep neural
networks, there are gaps in our understanding of

�Chaity Banerjee is with Department of Idustrial & Systems
Engineering, University of Central Florida, Orlando, FL 32816-
2368, USA. E-mail: Chaity.BanerjeeMukherjee@ucf.edu.
� Tathagata Mukherjee is with the Department of Computer

Science, University of Alabama in Huntsville, Huntsville, AL
35806, USA. E-mail: tathagata.mukherjee@uah.edu.
� Eduardo Pasiliao Jr. is with Air Force Research Labs, United

States Air Force, Eglin Air Force Base, Shalimar, FL 32579,
USA. E-mail: elpasiliao@gmail.com.
�To whom correspondence should be addressed.

Manuscript received: 2019-11-25; accepted: 2019-12-13

how such deep learning machines work, considerable
research and reshaping of our basic understanding about
machine learning systems are required in order to
plugin this gap[11]. Though the universal approximation
theorem states that multi-layer feedforward networks
are universal approximators[12], most of the real-world
networks in use today do not satisfy the underlying
assumptions of these theorems in one way or another.
One important aspect of neural network design is
the choice of the activation function to be used at
different layers of the network. Activation functions are
used to introduce non-linearity into the neural network
computations and proper choice of activation functions
is crucial for effective performance of neural networks.
The early activation functions to gain traction were
either the Sigmoid or the Tanh. Both are differentiable
and have nice analytic properties that make them
mathematically appealing. However, with the advent
of deep neural architectures, practitioners realized that it
was hard to train very deep neural networks with these
activation functions as they are saturated activations.

Chaity Banerjee et al.: Feature Representations Using the Reflected Rectified Linear Unit (RReLU) Activation 103

To get around this problem, the Rectified Linear Unit
(ReLU) activation was introduced, which though non-
differentiable at zero is non-saturated and hence speeds
up training of deep neural models.

A function f is called non-saturated if and only if it
satisfies the following:
j lim

x!C1
f .x/j D C1_ j lim

x!�1
f .x/j D C1 (1)

Any function f that does not satisfy the above
condition is saturated. Note that the idea of saturated
and non-saturated functions is independent of their use
in neural networks. Intuitively, a saturated function is
one that “squeezes” the domain of the input. Thus for
example, the Sigmoid activation function that is defined

as �.x/ D
1

1C e�x
, is saturated as it maps any input

to the range Œ0; 1�, whereas the ReLU activation which
is defined as �.x/ D maxf0; xg is non-saturated as
limx!C1 �.x/ D 1 and hence does not squeeze the
input domain. Note that the ReLU activation is not
differentiable at 0 and hence back propagation should
theoretically fail at this point. However, in general, due
to the precision issues of floating point numbers in
computers, this situation seldom arises in reality and
ReLU as defined above is known to work well with very
deep neural networks[1]. Apart from ReLU and its single
output variants like leaky-ReLU, there are multi-output
variations of ReLU like Concatenated ReLU (CReLU).
All of these ReLU variations are non-saturated and
hence work well for training deep networks. Note that
some recent works show that deep Tanh networks are
able to converge with careful model initialization while
deep Sigmoid networks still fail. We provide a detailed
discussion of the state of the art in activation function in
Section 2.

Apart from the property of saturation of the activation
functions, another property that is important in the
context of training deep networks is sparsity[13]. Sparse
networks are important because they have less number
of parameters and hence are easier to train and less
prone to the problem of overfitting thus giving better
generalization performance. Sparsity in deep networks
is usually enforced through the use of regularizers,
using the idea of dropout[1] which is another form
of regularization or through the use of convolutional
networks. However, activation functions can also be
used for network sparsification[13]. Thus for example, the
ReLU activation enforces sparsity by only considering
the highly positive features and discarding the negative
ones whereas variations like the CReLU enforce sparsity

by considering either the highly positive or the highly
negative features at a time. Though activation functions
are limited in their ability to enforce network sparsity,
coupled with the idea of saturation, they have a large
impact on the performance of a deep neural network.

The idea of multi-output ReLU activation was first
introduced independently in the context of convolutional
networks in Refs. [14, 15]. Both papers introduced a
form of two-output variation of the ReLU activation.
In Ref. [14], the authors first examined existing
convolutional neural network models and discussed
an important property of the convolutional filters in
the lower layers. More precisely, they observed that
the filters in the lower layers formed pairs (i.e., filters
with opposite phases). Inspired by this observation,
the authors proposed a novel, yet simple and effective
activation scheme called CReLU. CReLU is defined as
follows: �.x/ D .maxf0; xg;maxf0;�xg/, and hence
is a two-output activation which doubles the depth of the
activation from one layer to another. Thus, whenever x is
positive, the activation is .x; 0/. But when x is negative,
unlike the ReLU which discards the negative features,
here the activation is .0;�x/. The intuition for this
activation scheme is to allow a filter to be activated in
both positive and negative directions while maintaining
the same degree of non-saturated non-linearity. Note that
though the authors motivated the use of this activation
using the idea of capturing both the positive and negative
phases, one may also look at this activation, when
used in the context of fully connected networks, as the
width of the output of the particular layer increasing.
Thus, if the layer at which the activation is applied
has n neurons, the resulting output will have 2n neural
units. This in turn has the potential to improve the quality
of approximations computed by the resulting network
as wider networks can compute better approximations
of the underlying function[12] for the same depth of the
network[16].

Motivated by the efficiency of the two-output ReLU
activation, in this paper, we introduce the idea of
generalized non-saturated multi-output activations and
study their performance on the task of multi-class
classification. More precisely, we propose a generalized
framework for a four-output ReLU activation. Our
activation is non-saturated and enforces sparsity thereby
guaranteeing the efficacy of the activation for training
deep networks. As we consider a four-output activation,
our function doubles the amount of non-saturated non-
linearity and increases the depth of the activation

104 Big Data Mining and Analytics, June 2020, 3(2): 102–120

by four. Note that this in turn has the potential to
compute equivalent solutions as a deep network using a
shallower variety for a given classification task. Unlike
the concatenated ReLU where the activation considers
the positive phase if the features are highly positive and
the negative phase if the features are highly negative
but not both at the same time, our activation considers
both a feature and its negation at each neuron which
automatically augment the data in the feature space,
hence speeding up the learning process. We demonstrate
the efficacy of the four-output activation for classification
using the MNIST and CIFAR-10 datasets.

This paper is organized as follows: In Section 2,
we present a detailed study of the various activation
functions that have been studied in the context of neural
networks; in Section 3, we formally introduce the four-
output variation of the ReLU activation and study some
of its properties. Finally, in Section 4, we describe the
results of our experiments. We conclude the paper in
Section 5.

2 Background and Related Work

Activation functions have been studied for a very long
time, in fact since the early days of neural networks. Let
us suppose that the input to a shallow (single hidden
layer) neural network is given by the vector x. Let
us suppose that the network is fully connected. Then
given a single neuron of the hidden layer, the input
to the neuron is given by wTx, where w is the vector
of weights and it is learned through back propagation.
If the single neuron does nothing but passes on this
input to its output, the output of the neuron is also
wTx, then the operation that is being performed at the
neuron is nothing but a simple aggregation and if this
happens at each of the nodes of the hidden layer, then the
neural network becomes a system that simply outputs
a linear combination of its inputs, which is not much
of a learning. In order to get over this problem, we
introduce the idea of an activation function at a node.
The activation function, usually denoted by � , takes the
input to the node and adds “non-linearity” to it, thus the
output of the node becomes �.wTx/. Note that if � is
the identity mapping, then the output to a node is the
linear combination of the input values. This is known as
a linear activation and as we have seen above, it does not
do much.

In order to introduce non-linearity in the neural
network computation, the choice of �. / is of paramount
importance. In the early years of neural networks, �

was usually chosen to be the Sigmoid activation which

is defined as �.x/ D
1

1C e�x
. The advantages of

Sigmoid activation functions are that they are easy to
understand and use, but they are mostly used in shallow
networks[17]. With the advent of deep learning, the
use of Sigmoid activations has plummeted. Sigmoid
activation shows some disadvantages, i.e., sharp damp
gradients during back-propagation from deeper hidden
layers to the input layers, gradient saturation, slow
convergence, and non-zero centered output, thereby
causing the gradient updates to propagate in a different
direction. The unsuitability of the Sigmoid activation
for training deep networks with random initialization
was first studied in Ref. [18]. The authors noted that
Sigmoid activation was “unsuited for deep networks with
random initialization because of its mean value, which
can drive especially the top hidden layer into saturation”.
Most of the problems with the Sigmoid activation can
be explained by the fact that it introduces saturated non-
linearity and hence this should be avoided for learning
with deeper neural architectures.

Different variations of the Sigmoid activation have
also been considered in the literature. For example,
in Ref. [19], the authors introduced the hard Sigmoid
activation. They considered a neural network with
weights constrained to two values, namely,�1 and 1, and
demonstrated the efficacy of the hard Sigmoid on three
different standard datasets. The hard Sigmoid activation
is defined as follows:

�.x/ D max
�
0;min

�
0;
x C 1

2

��
(2)

One of the advantages of hard Sigmoid in comparison
to the soft Sigmoid as discussed above, is the fact that
the hard Sigmoid activation has a lesser computation
cost when implemented either in specialized hardware
or software. Another variation of the Sigmoid activation
has been used in reinforcement learning and is called
the Sigmoid weighted Linear Units (SiLU)[20]. Finally,
there is the variation of the Sigmoid activation called
the Swish activation, which is defined as �.x/ D x �

Sigmoid.x/[21]. The Swish is a simple function and
easy to implement and use, and does not suffer from the
problem of vanishing gradients.

In order to overcome the issues with the Sigmoid
activation, the hyperbolic tangent (Tanh) activation was
introduced[22]. The Tanh activation is defined as

�.x/ D
ex � e�x

ex C e�x
(3)

It should be noted that the Tanh activation is also a

Chaity Banerjee et al.: Feature Representations Using the Reflected Rectified Linear Unit (RReLU) Activation 105

saturated activation function, because it squeezes the
input into the range Œ�1; 1�. With the renewed interest
in neural networks, the Tanh function becomes the
preferred activation compared to the Sigmoid activation,
because it leads to better training performance for
multi-layer neural networks[23]. Variations of the Tanh
activation have also been studied and successfully used
in natural language processing[24]. However, the Tanh
function does not solve the vanishing gradient problem
of the Sigmoid activations. One of the main advantages
of the Tanh activation is that it produces zero-centered
output, thereby aiding the back-propagation process.
A property of the Tanh activation is that it can attain
a gradient of 1 only when the value of the input is
x D 0. This makes the Tanh function produce some
dead neurons during computation. A dead neuron is
a condition where the activation weight is not used as
a result of zero gradient. This limitation of the Tanh
function has spurred further research into activation
functions with the aim of resolving the problem. One of
the products of this research is the invention of the ReLU
activation function which we discuss in detail later.

Several activation functions have been inspired by the
Tanh activation. The hard hyperbolic function defined as

�.x/ D

8̂<̂
:
�1; x < �1I

x; �1 6 x 6 1I

1; x > 1

(4)

has been used in natural language processing[24] and is
a simpler and computationally less expensive version
of Tanh. The Softmax activation is another variation
inspired by the Tanh activation that is widely used. The
Softmax activation is defined as

�.xi / D
exiP
j exj

(5)

and always produces values between 0 and
1. Furthermore, the output of the Softmax activation
can be considered as probabilities as they always sum
to 1. It must be pointed out that both Sigmoid and
Softmax activations produce values between 0 and 1
and hence are saturated activations. While the Sigmoid
activation is used for binary classification, and the
Softmax activation is used for multi-class classification.
Finally, there is the Softsign activation function which
was first introduced in Ref. [25]. It is defined as

�.x/ D
x

jxj C 1
(6)

The Softsign activation has been used in deep learning
systems for regression and speech processing.

The ReLU activation was first proposed in Ref. [26].
As described earlier, the ReLU activation is defined as
�.wTx/ D maxf0;wTxg, where x is the input and w is the
parameter learned using back-propagation. ReLU has
been the most widely used as well as the most successful
activation function till date and has been used to solve
a wide variety of problems[21]. The ReLU activation
provides better performance both in terms of training
time and generalization capability when compared with
the Sigmoid or the Tanh activations[27]. Furthermore,
ReLU is a linear function and hence preserves the linear
properties of the underlying features and is easy to
optimize using gradient descent. Another nice property
of ReLU is that it introduces sparsity in the hidden units
as it squeezes the input values from zero to infinity (in
practice the upper bound is the maximum possible value
of the feature).

In spite of its successes, ReLU is not without
drawbacks. ReLU has a limitation that it easily overfits
the data compared to the Sigmoid activation. The idea
of “dropouts”[1] has been used to reduce the chances
of overfitting with ReLU and several variations of
ReLU activation have been proposed and studied in the
community with the aim of alleviating this problem.
In recent time, there has been a concerted effort to
understand why deep networks work the way they do[16]

and as a part of this effort, researchers are also trying to
understand why the ReLU activation outperforms most
of the classical activation functions by considering the
approximation power of ReLU networks. For example,
in Ref. [28], the authors investigated the family of
functions represented by DNNs using ReLU activations.
There are also some work towards generalizing the ReLU
activation. For example, in Ref. [29], the authors studied
the problem of learning a generalized ReLU which has
the form of max.0;wTx/, reliably in polynomial time
whereas in Ref. [30], the authors studied generalizations
of the two-output concatenated ReLU empirically.

One of the most commonly used variations of ReLU
is the “leaky-ReLU’, which was first proposed in
Ref. [31] and used in the contest of natural language
processing. The leaky-ReLU is similar to the ReLU but
instead of completely ignoring the negative features, as is
done in ReLU, it maintains a small slope in the activation
function for the negative features, thus considering a
fraction of the negative features for the feature space
computation. The leaky-ReLU activation is defined as

�.x/ D

(
x; x > 0;

˛x; x 6 0
(7)

106 Big Data Mining and Analytics, June 2020, 3(2): 102–120

where the parameter ˛ which is usually chosen to be a
small positive number, was introduced in order to get
around the problem of dead neurons that is encountered
for the ReLU activation. Due to this parameter, the
gradients are never equal to zero during the training time
which in turn solve the dead neuron problem. It must
be pointed out that the leaky-ReLU does not lead to
a significant improvement in the results as compared
to the ReLU. The only gain from using the leaky-
ReLU activation is the fact that the gradients are non-
negative throughout the training process and there is
some change in the sparsity of the underlying features
that are computed.

The parameter ˛ for the leaky-ReLU is chosen to be
a small constant. However, there is the possibility of
“learning” this parameter using back propagation during
the learning process and the Parametric ReLU (PReLU)
activation achieves exactly that. PReLU is defined in
Ref. [7], but the parameter ˛ is learned during the
training phase. It was reported by the authors that PReLU
was better than ReLU for large-scale image recognition
tasks and indeed networks using the PReLU surpassed
humans for the task of classification using the imagenet
dataset[32]. Another variation of the leaky-ReLU which
is similar is called the randomized leaky ReLU. The
activation function is defined in the same way as in
Ref. [7], but the parameter ˛ is neither a constant nor
is learned. Instead, it is chosen randomly from a subset
of Œ0; 1�. Another variation of ReLU that uses learnable
parameters is called the S-Shaped ReLU. Here instead
of the scale parameters being learnable, the thresholds
are also learned from the data. Interested readers can
refer to Ref. [33] for details on this activation.

One interesting variation of the ReLU activation
that has been studied is the Flexible Rectified Linear
Unit (FReLU)[34]. ReLU networks miss the benefits
from negative values and hence in this paper, the
authors proposed a novel activation function to further
explore the effects of negative values. By redesigning
the rectification point of ReLU as a learnable parameter,
FReLU expands the states of the activation output.
When the network is successfully trained, FReLU tends
to converge to a negative value, which improves the
expressiveness and thus the performance. Furthermore,
FReLU is designed to be simple and effective without
exponential functions to maintain low-cost computation.

A smoothed version of ReLU called the Softplus
activation function was introduced in Ref. [35]. It

is defined as �.x/ D log.1C ex/. This function has
smoothing and non-zero gradient properties which
enhance the stabilization and performance of deep neural
networks designed with Softplus units. The Softplus
activation has been used for statistical applications and
speech recognition, and in general is known to converge
faster than ReLU and Sigmoid activations.

Most of the activation functions inspired by ReLU,
that we have studied till now, extend ReLU by
considering scaled versions of the negative features,
where the scaling factor is either a fixed constant
or learned from the data. The Exponential Linear
Unit (ELU) is also inspired by ReLU but instead of
considering scaled versions of the negative features, it
considers scaled versions of the exponentiation of these
features. Thus the ELU is defined as

�.x/ D

(
x; x > 0I

˛.ex � 1/; x 6 0
(8)

where ˛ is an ELU hyper parameter that controls the
saturation point for negative inputs, which is usually
set to 1. The advantages of ELU are in that it achieves
faster training time and generalization ability, specially
with networks that have five or more layers and as ELU
has a clear saturation plateau for the negative features,
it thereby learns more robust feature representations.
However, ELU has its own problem, namely, it does
not center the values at zero. In order to address this
problem, the parametric ELU activation was proposed,
which is defined as

�.x/ D

(
cx; x > 0I

˛.ex=b � 1/; x 6 0
(9)

where ˛, b, and c > 0 are parameters. Here c changes
the slope in the positive quadrant, b controls the scale of
the exponential decay, and ˛ controls the saturation in
the negative quadrant. Interested readers can consult Ref.
[36] for further details. Another variation of the ELU is
the Shifted Exponential Linear Units (ShELU)[37]. Here
the authors applied a ı shift to the input values near the
origin and showed that this leads to improved learning
using convolutional networks.

One of the most interesting variations of ReLU-like
activations is the idea of the Maxout layer that was
first introduced by Goodfellow et al.[38] in 2013. In a
typical neural network, given the input x 2 Rd and a
hidden layer having m nodes, the output of the hidden
layer is computed as z 2 Rm where zi D �.wT

i xC bi /,
and wi and bi are learned parameters. However, for the

Chaity Banerjee et al.: Feature Representations Using the Reflected Rectified Linear Unit (RReLU) Activation 107

Maxout network with the same settings, corresponding
to one hidden layer node, k pseudo-nodes are created.
Thus for the i-th hidden layer node, it creates k nodes
zi1; zi2; : : : ; zik where zij D wT

Wij xC bij , and wWij and
bij are learned parameters. Note that we use the “:” in
wWij in order to emphasize the fact that the weights are
corresponding to the “pseudo-nodes” that correspond to
the i-th hidden layer node. Finally, the output of the
i-th hidden layer node is obtained as hi .x/ D maxj zij ,
i D 1; 2; : : : ; m. Thus intuitively, the output of each
hidden layer node is a line and hence them linear outputs
together can be thought of as a piece-wise linear curve.
In fact, the authors showed that the Maxout networks
are universal approximators that use piece-wise linear
functions to approximate any function. Also note that
for the Maxout activation, the entire hidden layer can be
thought of as the activation function and hence we can
say that the Maxout layer is a multi-output activation
function.

All the activation functions that we have discussed
till now are single-output activations. They take a
single value as the input and return a single value as
the output. However, there are variations of activation
functions that increase the depth of the activation by
having more than one output and these are called
multi-output activations. Two-output activations were
introduced simultaneously in Refs. [14, 15]. They used
similar idea but the authors in Ref. [14] did more
experiments and also proved a reconstruction property
of the corresponding activation when used in context
of convolutional networks. The CReLU is defined as
follows: �.x/ D .maxf0; xg;maxf0;�xg/. Note that
this is a two-output function: The output of the function
is either .x; 0/ or .0;�x/ depending on the value of
the input x. Furthermore, this is not equivalent to
the absolute value function which is a single-output
function. The concatenated ReLU maintains the same
degree to non-saturated non-linearity as the ReLU
activation while at the same time doubling the depth
of the activation. CReLU can be interpreted in two
ways, the first considers the phases of the input feature
being learned by the system, while the other, and not
so common interpretation is that it makes the output
layer wider, thereby increasing the approximating power
of the resulting network[16]. Generalizations of this
activation was empirically studied in Ref. [30], where
the authors considered different scaling factors for the
input features. They showed that by parameterizing the

concatenated ReLU, which they called the generalized
ReLU activation, there is room for improving the feature
space learned by the deep network. Though they did
not consider the problem of automatically learning the
scaling parameter, it is possible to do so during the
training phase using back propagation.

We have seen before that the concatenated ReLU
activation accounts for both the positive phase as well as
the negative phase, depending on the value of the input
x. For the generalization of the ReLU, the authors in
Ref. [30] considered not only the positive as well as the
negative phases (that is x and �x), but also the effect
of different choices of a phase parameter, which can
be different depending upon whether x is positive or
negative. They also considered the effect of shifting the
point of discontinuity at the same time as the change of
phase is done. Taking all these into account, the authors
defined the generalized ReLU activation as

�.x/D.˛ �maxf0; .x/gC
; ˇ �maxf0; �.�x/gCı/
(10)

where ˛; ˇ;
; and ı are hyper-parameters to be either
learned from the data or selected empirically. ./ and
�./ are functions of the input x. The authors selected the
phase parameters as shown in Fig. 1 and also selected
 and � to be identity mappings. In Section 3.1, we
introduce the four-output reflected ReLU which has been
inspired by the success of these “two-output” variants.

Activation functions have also been studied from the
perspective of the quality of the approximations that
they compute as well as the types of feature spaces that
are generated by them. For example, in Refs. [16, 39],
the authors studied the power of deeper networks with
continuously differentiable activation functions for the

Fig. 1 Choice of the phase parameters.

108 Big Data Mining and Analytics, June 2020, 3(2): 102–120

task of learning discriminative features. Similarly in
Ref. [40], the authors studied how the ReLU activation
computed piece-wise linear approximations of functions.
With the same goal in mind, namely, in order to
understand why deep networks work, researchers have
also studied such networks from the perspective of the
features that they compute. For example, in Ref. [41],
the authors studied the feature representations computed
by autoencoders from a theoretical perspective and then
studied the problem of input feature reconstruction from
the computed features. Another direction of research in
deep neural networks has been in relation to designing
new and more efficient deep architectures for efficient
training and testing for general classes of problems[42].
Several different deep architectures are available, such
as GoogleNet and AlexNet[43], that can be used as an
“off-the-shelf” deep network for many different tasks.
These can also be modified and used with other novel
architectures for intermediate feature computation[44]. In
this paper, we do not study the activation function being
introduced from a theoretical perspective, neither do
we build novel architectures using the newly introduced
activation. Our goal in this work is to show that the
Reflected ReLU (RReLU) activation which is a non-
saturated sparse function that produces simultaneous
activations, and can be used in any neural network for
computing possibly better models for both the tasks
of classification and regression. Next we introduce the
RReLU activation function.

3 Reflected ReLU Activation

Let the features of the i -th training example of the neural
network be denoted by xi D .xi

1; x
i
2; : : : ; x

i
n/ where

i D 1; 2; : : : ; m. Let us assume that the first hidden layer
has � neurons where each neuron uses the activation
function �./. For the ease of description, let us also
assume that the network is fully connected from the
input layer to the hidden layer. Let the weight of the
edge between input feature k and hidden unit l be
denoted by wkl . Then the output of the l-th hidden
unit is given by �.

Pn
kD1wklxk C bl/ where bl is the

bias for this hidden unit. CReLU is the standard feed
forward neural network model where the parameters
are the weights and biases that are learned from the
training data using back propagation. As seen from
the expression of the output, the activation function �
plays an important role in adding non-linearity to the
output of the network. Thus if we choose � to be the

linear activation, then the output of the hidden layer
neuron is given by

Pn
kD1wklxk C bl which is nothing

but a linear combination of the inputs. If this is the case
with each node (neuron), then the output of the entire
network is a linear combination of its inputs and hence
the network is of limited utility as it can only estimate
functions given by linear combinations of the input. Note
that the activation function � introduces non-linearity
into the computations of the neural network but ideally
for training deeper network architectures, we want to
use non-saturated non-linearity which also increases
the depth of the activation function. With this aim in
mind, we are now ready to describe the reflected ReLU
activation. This is inspired by the idea of concatenated
ReLU, however instead of having a single active non-
zero output at a time as is the case with concatenated
ReLU, and the RReLU activation always has two active
outputs among four possible outputs.

3.1 Reflected ReLU: Definition

As mentioned before, the ReLU activation considers only
the positive features and discards the negative features by
setting them to zero. In case of a fully connected network,
this is done so as to consider only highly discriminative
features which are defined as those that result in a
positive response under the ReLU activation. In case
of convolutional neural networks, ReLU-based filtering
is supposed to facilitate the exploitation of discriminative
information by de-noising the filter detections (negative
values being filtered out as the noise). In the context
of convolutional neural networks, ReLU and pooling
filter out a lot of information from their input. The
concatenated ReLU activation function modifies the
convolutional block in order to keep more information
after application of the ReLU. The idea of concatenated
ReLU and its variants are motivated by the observation
that information from the strong negative detections is
as important as the strong positive detections, but this
information is totally left out by the ReLU activation.
For fully connected networks, the concatenated ReLU
considers both the strongly positive features as well as
the strongly negative ones.

The reflected ReLU activation borrows these ideas
from the concatenated ReLU. However, the concatenated
ReLU and its variations still consider either the strongly
positive responses (features) or the strongly negative
responses but do not consider simultaneously the
strongly positive responses and their negation (or the
strongly negative responses and their negation). Note

Chaity Banerjee et al.: Feature Representations Using the Reflected Rectified Linear Unit (RReLU) Activation 109

that in two dimensions, given a feature x, its negation
is simply its reflection in the x-axis. The reflected
ReLU activation considers an input x and its negation
simultaneously and is defined as follows:
�.x/D.maxf0;xg;maxf0;�xg;minf0;xg;minf0;�xg/:

Note that when x > 0, this translates to �.x/ D .x;
0; 0;�x/, whereas when x < 0, this translates
to �.x/ D .0;�x; 0; x/. Furthermore, the activation
function is sparse as two of the four possible outputs
are zero for any given input x. We also note that this
activation is non-saturated but unlike the concatenated
ReLU, it doubles the degree of unsaturation, and the
number of neurons in the output layer is quadrupled
by the reflected ReLU, thus automatically increasing
the width of the network which in turn may help in
computing better approximations of the target functions.

In the context of a Convolutional Neural Network
(CNN), the reflected ReLU can be interpreted as a
simultaneous min-max activation (see Fig. 2). Thus
given a convolutional filter, we take the output of the
filter and concatenate it with the negative of the output.
This concatenated output is now passed through two
activations, i.e., the first one being maxf0; xg which
is nothing but the ReLU and the second is minf0; xg,
where x denotes the concatenation of the output of the
convolutional filter and its negation.

Variations of reflected ReLU. The definition of
RReLU as we have used above is amenable to several
variations through the change of slope and origin as
was done for the generalized ReLU in Ref. [30]. For
example, for a slope-based variation, one can define the
reflected ReLU as follows:

�.x/ D .˛ �maxf0; xg; ˛ �maxf0;�xg;

ˇ �minf0; xg; ˇ �minf0;�xg/;

where ˛ and ˇ are slope parameters that can in general
be different or the same and may also be learned in a
data driven paradigm. As discussed in Ref. [30], one
can also choose them empirically based on the choices

Fig. 2 Reflected ReLU: Simultaneous min-max convolutions.

as shown in Fig. 1. Note that with this variation, one
can control the fraction of the positive and negative
phases of the features that will be used for the neural
network training. We also present results for a fixed
choice of these phase parameters in the experimental
section. In order to distinguish this variation from the
definition of the RReLU as introduced before, we call
this variation the parameterized RReLU and the version
defined earlier the simple RReLU. Responses obtained
from both variations are shown in Figs. 3 and 4.

3.2 Reconstruction property

As noted in Ref. [14], a notable property of concatenated
ReLU is information preservation: Concatenated ReLU
preserves both the negative and the positive linear
responses after convolution (thus if the response is
positive, then it is preserved through maxf0; xg; while if
the response is negative, then it is preserved through
maxf0;�xg). A direct consequence of information
preservation is the ability to reconstruct the input to
the convolutional layers, which are given the output of
CReLU. Reconstruction property of a CNN implies that
the features it computes are representative of the input
data and this aspect of convolutional neural networks is
important in order to understand the inner working of
deep convolutional networks[14, 45]. Note that in order
to be able to reconstruct the output of the convolutional

x>0

y =
x

(a) Simple RReLU

y
 =
 − 3x

x>0

y =
x/ 3

(b) Parameterized RReLU

Fig. 3 Positive response plot for RReLU. The x-axis is the
input feature and y-axis is the response corresponding to
input feature x.

x<0
y
 =
 −x

y =
x

(a) Simple RReLU

x<0

y
 = x/ 3

y =
 −

3x

(b) Parameterized RReLU

Fig. 4 Negative response plot for RReLU. The x-axis is the
input feature and y-axis is the response corresponding to
input feature x.

110 Big Data Mining and Analytics, June 2020, 3(2): 102–120

layer after application of the activation function, the
activation should preserve the features computed by
the convolutional layers and hence the reconstruction
property should apply to the output of the activation
function. Intuitively, if an activation function satisfies the
reconstruction property, then it is “lossless” and hence
conducive to computation of the best possible features
using the output of the convolutional layers. Next, we
show that the reflected ReLU activation satisfies the
reconstruction property. The proof is simple and follows
from a similar result for the concatenated ReLU as
stated in Ref. [14]. We state the result in the context of
reconstruction from the features computed using a single
convolutional layer without max-pooling. The result for
the case when max-pooling is used is similar and we
omit it here as it also follows through the application of
a similar result stated in Ref. [14].

Theorem 1. Let x 2 Rn be the input vector and let
w be the d � k weight matrix such that the columns
of the matrix correspond to k convolutional filters. Let
x D x0 C .x � x0/ where x0 2 range.w/ and .x � x0/ 2
ker.w/. Then we can reconstruct x0 with fCNN.x/ D
RReLU.wTx/.

Proof. The proof of the result follows using the
reconstruction algorithm as given in Ref. [14] (replicated
as Algorithm 1). Note that the RReLU is defined as
�.x/ D .maxf0; xg;maxf0;�xg;minf0; xg;minf0;�xg/:

The first part of the activation .maxf0; xg;
maxf0;�xg/ is nothing but the CReLU and hence by
Algorithm 1, this satisfies the reconstruction property.
Now referring back to Fig. 2, we see that when applied
to a single convolutional layer, RReLU consists of two
parts, of which the first part is nothing but CReLU which
is concatenated with its negation to get the RReLU
activation. Hence in order to reconstruct the input from
the output of RReLU, we simply apply Algorithm 1
to the output of the first part of the RReLU activation

Algorithm 1 Reconstruction over simgle convolution without
max-pooling[14]

1: function RECONSTRUCT

2: fCNN.x/ convolutional features
3: w weight matrix
4: z RReLUC

�1
fCNN.x/

5: .wT/
C
 Moore-Pensore-Inverse (wT)

6: Reconstruction X .wT/Cz

7: return X
8: end function

thereby generating the input. This completes the proof.

�
We are now ready to discuss the results using the

reflected ReLU activation for the task of classification
with the MNIST and CIFAR-10 datasets.

4 Experimental Setup and Result

In order to test the efficacy of the reflected ReLU
activation, we used it for the task of classification on
the MNIST and CIFAR-10 datasets and regression on a
novel Computational Fluid Dynamics (CFD) dataset.
We used a baseline neural network using the ReLU
activation for the experiments and compared the results
of classification (and regression) from this network
with those obtained from the same network using the
reflected ReLU activation instead of ReLU. We used the
validation (or test) accuracy as a measure of how well
the network performed with the given activation. We
started our discussion by describing the MNIST dataset
and the baseline network that we used for the same.
Then we stated the results of our experiments with the
MNIST data. This is followed by a similar discussion
about the CIFAR-10 dataset and the CFD dataset. All the
experiments were run on a computer having a 16 core
AMD Threadripper CPU, 128 GB of RAM, a GTX 2080
Ti graphics card, running Ubuntu 18.04, and NVIDIA
propriety drivers.

Choice of activation function. For our experiments,
we decided to use two variations of the reflected ReLU
activation, namely, the simple reflected ReLU and
the parameterized Reflected ReLU (pRReLU). For the

parameterized version, we used the parameters ˛ D
1
p
3

and ˇ D �
p
3. Our choice of the parameters is not

based on any optimization criteria but is done in a
way as to make the positive and negative responses
asymmetric (since in the case of simple RReLU, the
responses are symmetric). Since the reflected ReLU is a
form of data augmentation technique in the feature space
(see discussion in Section 4.2), choosing the responses
in a way that they are asymmetric has the possibility
of making the resulting augmentation technique robust
to artifacts in the feature space that may introduce
bias. As mentioned in Ref. [30], the parameters for
any parameterized version of activation function should
ideally be chosen by optimizing the resulting loss.
However, since the goal of this paper is to introduce
a new activation function and not to study parameterized

Chaity Banerjee et al.: Feature Representations Using the Reflected Rectified Linear Unit (RReLU) Activation 111

activations in general, we have refrained from taking
that route, since we feel that our choice of parameters,
though empirical, is enough to establish our thesis for
this paper and shows the efficacy of the reflected ReLU
activation.

4.1 Result for MNIST data

The MNIST dataset consists of 60 000 gray-scale images
of handwritten digits (the numbers 0 – 9), each image
having dimension 28 � 28. We used 50 000 images for
training and 10 000 images for testing. The MNIST
dataset is known to be an easy dataset compared to the
other standard datasets being used with deep learning
systems. As a result, we decided to use a shallow (having
less than 3 hidden layers) fully connected network
to keep the resulting model simple. Note that simple
convolutional networks can obtain pretty high accuracy
with the MNIST dataset[15] and so our expectation was
that a fully connected network would get comparable
results albeit may be a little less in terms of the accuracy.

Our network has input size of 784 (corresponding
to the vectorized versions of 28 � 28 images). This
is followed by two hidden layers each having 256
neurons. The output of the first hidden layer is passed
through an ReLU activation and this is the input
of the second hidden layer which simply computes
a linear combination of its inputs (that uses just a
linear activation). The output layer has 10 neurons
corresponding to the 10 classes of the MNIST data.
Note that this is a very simple network that uses a non-
saturated non-linearity in one layer only. As mentioned
before, we decided to keep the network simple in order
for ease of comparison with the results from using
the reflected ReLU. We used the Adaptive Moment
Estimation (ADAM)[46] optimizer to minimize a softmax
cross entropy loss. We trained the network with a batch
size of 128 for 5000 steps. We trained the network
several times and recorded the average training and
testing errors across different runs. To our surprise, the
average training accuracy with ReLU hovered 0.11–0.14
while the average test accuracy hovered between 0.09–
0.11. The results for one of the trained models is shown
in Table 1 and the plots of the training & testing accuracy
for different mini-batch trainings are shown in Fig. 5.

Table 1 also shows the results of our experiments with
the same network architecture when the ReLU activation
is changed to the reflected ReLU with phase parameters

˛ D
1
p
3

and ˇ D �
p
3. Figure 6 shows the plot of

Table 1 Results for MNIST network with ReLU, pRReLU,
and simple RReLU.

Activation Train-Acc Test-Acc
ReLU 0.110 0.09

pRReLU 0.984 0.97
Simple RReLU 0.960 0.96

Training
Testing

Number of steps

Fig. 5 Training & testing accuracy of baseline MNIST
network (ReLU).

the training & testing accuracy for training over several
mini-batches under the same settings. Finally, Fig. 7
shows the results for the simple RReLU under the same
settings. Note that we do not change anything else
in the network except the activation function applied
to the first layer, which is changed from ReLU to
parameterized/simple RReLU. As seen from Table 1 and
Fig. 6, with this simple change, the training accuracy
jumps from 0.110 to 0.984 and the testing accuracy
jumps from a meager 0.09 to around 0.97, more than 90%
increase from the baseline results with ReLU, under both

Number of steps

Training
Testing

Fig. 6 Training & testing accuracy of MNIST network using

RReLU with phase parameters ˛̨̨ DDD
1
p

3
and ˇ̌̌ DDD���

p
3.

112 Big Data Mining and Analytics, June 2020, 3(2): 102–120

Number of steps

Training
Testing

Fig. 7 Training & testing accuracy of MNIST network using
simple RReLU.

the parameterized as well as the simple RReLU. That it
was possible to increase the accuracy of the network by
over 90% goes on to show the efficacy of the reflected
ReLU activation.

Next, we present the results of our experiments
with the CIFAR-10 image classification dataset. For
the MNIST experiments, we had intentionally
chosen a simple shallow network that was fully
connected. Though our network was not optimized
the reflected ReLU activation that was managed to get
near state-of-the-art accuracy with the dataset. Now we
wanted to test the activation with a more complicated
network. The CIFAR-10 dataset is known to be hard for
various reasons and fully connected networks are known
to perform badly with the data. As a result, we started
with a deeper convolutional network and optimized it
with the ReLU activation. We used the results obtained
from this network as the baseline for our comparison.

4.2 Result for CIFAR-10 dataset

The CIFAR-10 small image classification dataset[47]

consists of 50 000, 32 � 32 color training images
and 10 000 test images. Each image belongs to one
of 10 classes: airplanes, cars, birds, cats, deer, dogs,
frogs, horses, ships, and trucks. Each class contains
6000 images and there is a wide variation within the
images in each class. For example, the images for the
class “birds” contain birds of several different types,
each image containing birds at different magnifications.
Furthermore, there are only 6000 images in each class
of which around 5000 are used for training. This is too
small a set to capture all the variability in the data. This
makes it hard to design moderately deep convolutional
networks that perform relatively well (testing accuracy

over 0.7) for this dataset. We ran the experiments on
a system having a 16-core AMD Threadripper CPU,
128 GB of RAM, running Ubuntu 16.04, and GTX 2080
Ti graphics card with 11 GB of graphics memory.

Our baseline CIFAR-10 network is convolutional in
nature having a total of seven hidden layers, one input
layer and one output layer of size 10. The first hidden
layer is a convolutional layer and uses 32 filters each of
size 3 � 3. The output of this layer is passed through the
ReLU activation and a second convolutional layer having
64 filters each of size 3�3. The output from this is again
passed through an ReLU activation followed by a max-
pooling layer with a pool size of 2 � 2. A dropout with
probability of 0.25 is applied after the max-pool. This
is followed by two more convolutional layers followed
by the ReLU activation where the first convolutional
layer applied 128 filters and the second used 256 filters,
each filter being of size 3 � 3. These are followed by
a max-pooling layer and dropout as before. After the
convolutional layers, we flatten the output and pass it
through a fully connected layer having 512 neurons,
an ReLU activation, and a dropout with probability of
0.5. Finally, we have another fully connected layer
with 10 neurons as the final output layer. Note that
for the baseline network as described above, all the
activation functions were ReLU. The results of using
the baseline network for the CIFAR-10 classification is
shown in Table 2 for training with 20 epochs. Note that
the network overfits with ReLU.

Figure 8 show the results for the same network
architecture but with all the activation functions for
the convolutional layers changed to parameterized
RReLU (denoted by pRReLU in Table 2) with

phase parameters ˛ D
1
p
3

and ˇ D �
p
3. The fully

connected layer still uses the ReLU activation and we
train for 20 epochs. Figure 8 shows how the accuracy
varies over the different epochs. We note that there is
negligible decrease in the testing performance compared
to the baseline network but there is no overfitting. Note
that we obtained similar results when the simple RReLU
activation was used instead of the parameterized version

Table 2 Results for CIFAR-10 network with ReLU,
pRReLU (single layer), pRReLU, and simple RReLU.

Activation Train-Acc Test-Acc
ReLU 0.8161 0.7838

pRReLU (single layer) 0.8387 0.8004
pRReLU 0.7483 0.7805

Simple RReLU 0.7445 0.7693

Chaity Banerjee et al.: Feature Representations Using the Reflected Rectified Linear Unit (RReLU) Activation 113

ing
ing

Number of epochs

Fig. 8 Training & testing accuracy of CIFAR-10 network

with RReLU and phase parameters ˛̨̨ DDD
1
p

3
and ˇ̌̌ DDD ���

p
3

in all convolutional layers. Note that there is no overfitting.

of the function (see Table 2), that is as in the case
of parameterized RReLU, there was no overfitting. It
must also be pointed out that using any variation of the
RReLU activation function in all the four convolutional
layers quadruples the total number of parameters at each
layer compared to the ReLU activation. However, the
network still does not overfit, as it does when using the
ReLU activation in all the layers. This observation is
counter-intuitive and is most likely due to the fact that
the RReLU activation can be interpreted as an automatic
data augmentation technique in the feature space where
every feature is augmented with its negation. This results
in implicitly increasing size of the training set which
in turn compensates for the increase in the number of
parameters.

In order to test this hypothesis, we used the
parameterized RReLU activation in the first or second
convolutional layer only, using the ReLU activation in
the remaining layers of the network. Note that if our
hypothesis is wrong and RReLU reduces overfitting
simply by the virtue of the quality of the features
computed, then using RReLU in one of the earlier
layers of the overfitting network (that uses ReLU in
all the other layers) would reduce the overfitting. This
is because a single application of RReLU would lead
to computation of higher quality features which in turn
would lead to an efficient model that will generalize
well. On the other hand, if this is not the case, then
we can safely conclude that the efficiency of RReLU is
not simply due to the quality of the features computed,
which in turn would support our assertion that RReLU
is efficient and eliminates overfitting due to automatic

data augmentation in the feature space. Table 2 also
shows the results for the CIFAR-10 network architecture
when the parameterized RReLU activation function is
used only after the first convolutional layer. We note
that though there is an improvement in the testing
accuracy, the problem of overfitting remains. Figure
9 shows the plot of the training & testing accuracy
over the different numbers of epochs under this setting.
Similarly, Fig. 10 shows the plot of the training & testing
accuracy over the different numbers of epochs when the
parameterized RReLU activation is applied only after the
second convolutional layer. The problem of overfitting
is present in this case as well, which leads us to conclude
that indeed the efficacy of RReLU activation is due to
the fact that it works as an automatic data augmentation

A

Number of epochs

Training
Testing

Fig. 9 Training & testing accuracy of CIFAR-10 network

with RReLU and phase parameters ˛̨̨ D
1
p

3
and ˇ̌̌ DDD ���

p
3

after the first convolutional layer only (model overfits).

Training
Testing

Number of epochs

Ac
cu
ra
cy

Fig. 10 Training & testing accuracy of CIFAR-10 network

with RReLU and phase parameters ˛̨̨ DDD
1
p

3
and ˇ̌̌ DDD ���

p
3

after the second convolutional layer only (model overfits).

114 Big Data Mining and Analytics, June 2020, 3(2): 102–120

technique in the feature space, automatically considering
the negation of each of the computed features, which
in turn offsets the effect of increasing the number of
parameters and helps to learn a more robust model from
the data.

In order to understand the computation being
performed by the convolutional network with the RReLU
activation, we ran the training several times, each time
for a different number of epoch. In each case, we looked
at one test image and the corresponding filters and
feature maps learned by the network after the second
convolutional layer. The test image that was used is
shown in Fig. 11.

Next, we consider the feature maps learned by the
network after full training with 20 epochs using both
the ReLU and RReLU activations. Figures 12 and 13
show the feature maps learned by the network after 20
epochs in the second convolutional layer. Note that these

x

y

Fig. 11 Single test image from CIFAR-10 dataset. Note that
the image is blurred and hard for humans to decipher. The x
and y axes show the dimensions of the image (32���32).

Fig. 12 Features from the second convolutional layer before

RReLU with phase parameters ˛̨̨ DDD
1
p

3
and ˇ̌̌ DDD ���

p
3 after

the training with 20 epochs.

Fig. 13 Features from the second convolutional layer before
ReLU after the training with 20 epochs.

show the feature maps learned right after the second
convolutional layer and before the application of the
activation function to the output of the convolutional
layer. Figure 14 shows the feature maps from the
same convolutional layer right after using the RReLU

activation function with phase parameters ˛ D
1
p
3

and ˇ D �
p
3. Note that the total number of features

has quadrupled and both the negative and positive
responses are being considered, leading to automatic
data augmentation in the feature space. Figure 15
shows the same features after application of the ReLU
activation and we can clearly see that it learns only
the positive responses from the convolutional layer and
hence does not lead to data augmentation in the feature
space, which can explain the overfitting that is observed
when using the model trained with the ReLU activation.

Fig. 14 Features from the second convolutional layer with

RReLU and phase parameters ˛̨̨ DDD
1
p

3
and ˇ̌̌ DDD ���

p
3 with

20 epochs after RReLU on convolution output.

Chaity Banerjee et al.: Feature Representations Using the Reflected Rectified Linear Unit (RReLU) Activation 115

Fig. 15 Features from the second convolutional layer after
ReLU with training for 20 epochs.

Till now, we have considered the RReLU activation
with a fixed choice of the phase parameters. Next, we
show the results of using a simple RReLU (with both
phase parameters equal to 1). Figure 16 show the results
of training the network with simple RReLU activation in
all the layers except the dense layer. Figure 17 shows the
feature map from the second convolutional layer after
passing it through the simple RReLU activation after
training with 20 epochs. The reader should notice the
feature augmentation achieved by the reflected ReLU
activation.

4.3 Result for regression

Till now, we have shown the efficacy of the reflected
ReLU for the task of classification with two standard
datasets. However, neural networks can also be used
for the task of regression[1]. In this section, we show
the efficacy of the RReLU activation for the task of

Number of epochs

Training
Testing

Fig. 16 Training & tesing accuracy of CIFAR-10 network
with simple RReLU in all convolutional layers. Note that
there is no overfitting.

Fig. 17 Features from the second convolutional layer after
simple RReLU with training for 20 epochs.

regression. In order to do that, we use a novel dataset
from CFD. We choose this dataset because application
of learning techniques for CFD tasks is of independent
interest.

The dataset consists of readings from pressure sensors
deployed on an aerodynamic projectile object as shown
in Fig. 18. The flow-field around the object was governed
by the non-linear in-viscid compressible Euler equations.
The object executed several complex maneuvers in space
as shown in Fig. 19 with a fixed free-stream pressure and
velocity vector. Pressure measurements were recorded at
each data point correlated with the commanded pitch and
yaw of the projectile. Thus corresponding to n pressure
readings at time instant t denoted by the vector Pt , the
data also contains the pitch (˛t) and the yaw (ˇt). Note
that due to the shape of the projectile under consideration,
it does not make sense to consider the roll and hence this
parameter was not considered for this dataset.

The pressure was measured in the free-stream (as
shown in Fig. 18) and the data contains measurements
for a total of 20 000 time instances, and for each
time step, there are 2000 sensor locations providing

Fig. 18 Sensor locations for collecting free-stream data.

116 Big Data Mining and Analytics, June 2020, 3(2): 102–120

Ya
w
 o
f t
he
 o
bj
ec
t (
de
g)

Pitch of the object (deg)

Fig. 19 Trajectory traced out by the projectile. This is
obtained by plotting the pitch and yaw of the object as it
moves.

pressure measurements. The input data matrix was of
size 2000 � 19 800 and the measurements corresponding
to the first 200 time stamps were discarded as they
contained non-physical initial transients of the solution
and did not provide any meaningful information.

We preprocessed the pitch and yaw angles
corresponding to each time stamp t , by projecting them
to the surface of an unit sphere as shown in Fig. 20. Thus
for each input angle (˛t , ˇt), we get the coordinates
.xt ; yt ; zt / of a point on the surface of the unit sphere.
We decided to build and test a network for predicting
the projected data from the pressure sensor readings.
Finally, the data was standardized before being used for

−

−0.8
−0.6

−0.4
−0.2
	0
	0.2

	0.4
	0.6

	0.8
	1.0

--1.0

--0.8
--0.6
--0.4
--0.2

	0
	0.2
	0.4
	0.6
	0.8
 1.0

	1.0−0.8
−0.6

−0.4
−0.2 	0

0.2 	0.4 	0.6
	0.8

--1.2

--1.4
--1.6
--1.8
--2.0

y

x

z

Fig. 20 Projection of pitch and yaw angles on surface of
unit sphere for the free-stream data. Here x, y, and z axes
represent the corresponding co-ordinates of the points in the
cartesian system.

the training and subsequent testing.
Network architecture & results. We used a neural

network architecture first reported in Ref. [48] for a
feature selection algorithm with the same dataset. The
network had 6 hidden layers, the number of nodes in
the first and second hidden layers was the same as the
number of nodes in the input layer. The architecture
can be described as follows: 2000 nodes (input) are
followed by 2000 nodes in the first hidden layer, which
are followed by 2000 nodes in the second hidden layer,
then 1000 nodes in the third hidden layer are followed
by 500 nodes in the fourth hidden layer, 100 nodes
in the fifth hidden layer, 10 nodes in the sixth, and
finally, a layer with 3 output nodes. As reported in
Ref. [48], this network achieved a training loss of
0.3334 and a validation loss of 0.3334. These numbers
were reported after training for 100 epochs over several
runs. The validation error was computed on 20% of the
data selected at random. The network used the ReLU
activation function.

For our experiments, we used the parameterized
RReLU activation instead of the ReLU activation and
we compared the results with those reported in Ref. [48].
As the results reported in Ref. [48] were obtained after
training for 100 epochs, one of our goals was to see
whether we can achieve the same (or similar) values of
loss with much lesser number of epochs. The results of
our experiments are shown in Table 3. We modified the
network by using the parameterized RReLU activation
function in all the layers except the last two layers where
we used ReLU. We decided to use the ReLU activation
in the last two layers as the network under consideration
is deep and intuitively, we felt that using a variation of
the RReLU activation in the first few layers would be
enough to achieve our target. Furthermore, we ran one
experiment with 10 epochs to validate our hypothesis
and indeed we observed that with the parameterized
RReLU in all layers except the last two layers, the
performance of the network was identical in terms of the
training and testing losses (identical to four places after
decimal). As a result of this observation, we decided
to stick with out initial network configuration where we

Table 3 Results for CFD baseline network with RRELU
(phase parameters ˛̨̨ DDD

1
p

3
and ˇ̌̌ DDD ���

p
3) in all layers

except the last two layers after 10 epochs. Note: 20/80 test/
train split. MSE: mean squared error.

Network Train-MSE Validation-MSE
CFD (RReLU) 0.3334 0.3329

Chaity Banerjee et al.: Feature Representations Using the Reflected Rectified Linear Unit (RReLU) Activation 117

had ReLU in the last two layers of the network. We first
trained the network for only 10 epochs and used a five-
fold cross validation with 20% of the data being used
for the purpose of cross validation. We see that using
the parameterized RReLU activation, we get the same
training loss as reported by Banerjee et al.[48] within
10 epochs (in fact the network converges in the second
epoch itself if we consider precision to three points after
decimal). We also note that we get better validation
accuracy than what was obtained in Ref. [48]. In terms
of savings of the running time, this leads to a large gain
in the speedup.

In order to better understand the convergence of the
regressor, we finally looked at the rate of convergence
of the results after 10 epochs and 50 epochs. The
convergence plot for the training and testing losses after
10 epochs is shown in Fig. 21. We note that the training
loss converges immediately after the first epoch and
so does the testing loss. We noticed that the training
and testing losses converged to four decimal points
after the first epoch. Figure 22 shows the validation
of the testing loss after four decimal points across the
different epochs. It must be noted that convergence
to four decimal places is already good enough for all
practical purposes, however, we decided to show the
variation in the testing loss after four decimal points in
order to better understand how the testing loss behaves
with the parameterized RReLU activation. Figures 23
and 24 show the training and testing losses after 50
epochs, which the testing loss being plotted to show
the variation after four decimal digits. We note that the
results are similar to those obtained using 10 epochs and

Training
Testing

Lo
ss

Number of epochs

Fig. 21 Convergence of training and testing losses after 10
epochs. Note that there are variations after 2 epochs that are
not visible due to scale of plot as the variations beyond four
decimal places. Note: 20/80 test/train split.

	0.33290

	0.33295

	0.33300

0.33305

0.33310

0.33315

	0.33320

	0.33325

	0.33330

	0.33335

	0 	1 	2 	3 	5 	6 	7 	8 	9	4
Number of epochs

	
Te

st
in

g
lo

ss

	

Fig. 22 Convergence of testing loss after 10 epochs. We show
the variation after four decimal places in this plot. Note:
20/80 test/train split.

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 10 20 30 40 50
Number of epochs

Tr
ai
nn

in
g

lo
ss

Fig. 23 Convergence of training loss after 50 epochs. Note
that there are variations after 2 epochs that are not visible
due to scale of plot as the variations beyond four decimal
places. Note: 20/80 test/train split.

0.3326

0.3328

0.3330

0.3332

0.3334

0.3336

0.3338

0 10 20 30 40 50
Number of epochs

Te
st

in
g

lo
ss

Fig. 24 Convergence of testing loss after 50 epochs. We show
the variation after four decimal places in this plot. Note:
20/80 test/train split.

for all practical purposes, we can conclude the training
converges after 2 epochs.

5 Conclusion

In this paper, we have introduced a new activation
function, namely the RReLU. We have introduced and
studied both a parameterized version of the activation
with different “phase parameters” as well as a non-
parameterized version. We did not optimize the phase
parameters and simply used two phase values chosen
empirically. We have shown the efficacy of the activation

118 Big Data Mining and Analytics, June 2020, 3(2): 102–120

function for both classification as well as regression
using standard and novel datasets, respectively. We have
theoretically established that the RReLU activation has
the reconstruction property and empirically shown that
using the RReLU activation is equivalent to a form
of data augmentation in the feature space where the
negative responses from each layer of the network are
also factored in during training and the decision making
process. Finally, we have also established that the
RReLU can be considered to be a form of concatenated
max-min pooling. We did not study the quality of the
approximations that are learned using this activation
from a completely theoretical standpoint. Going forward,
in another paper, we would like to study in detail the
approximations that can be achieved using this class of
activations.

References

[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning.
Cambridge, MA, USA: MIT Press, 2016.

[2] O. M. Parkhi, A. Vedaldi, and A. Zisserman, Deep
face recognition, in Proc. British Machine Vision Conf.,
Swansea, UK, 2015.

[3] Z. Yu, T. R. Li, N. Yu, X. Gong, K. Chen, and Y. Pan, Three-
stream convolutional networks for video-based person re-
identification, arXiv preprint arXiv: 1712.01652, 2017.

[4] R. Socher, Y. Bengio, and C. D. Manning, Deep learning
for NLP (without magic), in Proc. Tutorial Abstracts of
ACL 2012, Jeju Island, Korea, 2012, p. 5.

[5] D. Roy, T. Mukherjee, M. Chatterjee, and E. Pasiliao,
Detection of rogue RF transmitters using generative
adversarial nets, in 2019 IEEE Wireless Communications
and Networking Conf., Marrakesh, Morocco, 2019.

[6] A. Byravan and D. Fox, SE3-nets: Learning rigid body
motion using deep neural networks, in 2017 IEEE Int. Conf.
Robotics and Automation, Singapore, 2017, pp. 173–180.

[7] J. Liu, Y. Pan, M. Li, Z. Y. Chen, L. Tang, C. Q. Lu, and
J. X. Wang, Applications of deep learning to MRI images:
A survey, Big Data Mining and Analytics, vol. 1, no. 1, pp.
1–18, 2018.

[8] M. Zeng, M. Li, Z. H. Fei, F. X. Wu, Y. H. Li, Y. Pan,
and J. X. Wang, A deep learning framework for identifying
essential proteins by integrating multiple types of biological
information, IEEE/ACM Trans. Comput. Biol. Bioinfor., doi:
10.1109/TCBB.2019.2897679.

[9] M. Yan, L. Liu, S. H. Chen, and Y. Pan, A deep
learning method for prediction of benign epilepsy
with centrotemporal spikes, in Proc. 14th Int. Symp.
Bioinformatics Research and Applications, Beijing, China,
2018, pp. 253–258.

[10] N. Yu, Z. Yu, F. Gu, T. R. Li, X. X. Tian, and Y. Pan,
Deep learning in genomic and medical image data analysis:
Challenges and approaches, J . Inf. Process. Syst., vol. 13,
no. 2, pp. 204–214, 2017.

[11] C. Y. Zhang, S. Bengio, M. Hardt, B. Recht, and O.
Vinyals, Understanding deep learning requires rethinking
generalization, arXiv preprint arXiv: 1611.03530, 2016.

[12] K. Hornik, M. Stinchcombe, and H. White, Multilayer
feedforward networks are universal approximators, Neural
Networks, vol. 2, no. 5, pp. 359–366, 1989.

[13] D. M. Loroch, F. J. Pfreundt, N. Wehn, and J.
Keuper, Sparsity in deep neural networks—An empirical
investigation with tensorQuant, in Joint European Conf.
Machine Learning and Knowledge Discovery in Databases,
Dublin, Ireland, 2018, pp. 5–20.

[14] W. L. Shang, K. Sohn, D. Almeida, and H. Lee,
Understanding and improving convolutional neural
networks via concatenated rectified linear units, in Proc.
33rd Int. Conf. Machine Learning, New York, NY, USA,
2016, pp. 2217–2225.

[15] M. Blot, M. Cord, and N. Thome, Max-min convolutional
neural networks for image classification, in 2016 IEEE
Int. Conf. Image Processing, Phoenix, AZ, USA, 2016, pp.
3678–3682.

[16] D. Rolnick and M. Tegmark, The power of deeper networks
for expressing natural functions, arXiv preprint arXiv:
1705.05502, 2017.

[17] R. M. Neal, Connectionist learning of belief networks, Artif.
Intell., vol. 56, no. 1, pp. 71–113, 1992.

[18] X. Glorot and Y. Bengio, Understanding the difficulty of
training deep feedforward neural networks, in Proc. 13th

Int. Conf. Artificial Intelligence and Statistics, Sardinia,
Italy, 2010, pp. 249–256.

[19] M. Courbariaux, Y. Bengio, and J. P. David, BinaryConnect:
Training deep neural networks with binary weights during
propagations, in Proc. 28th Int. Conf. Neural Information
Processing Systems, Montreal, Canada, 2015, pp. 3123–
3131.

[20] S. Elfwing, E. Uchibe, and K. Doya, Sigmoid-weighted
linear units for neural network function approximation in
reinforcement learning, Neural Networks, vol. 107, pp. 3–
11, 2018.

[21] P. Ramachandran, B. Zoph, and Q. V. Le, Searching for
activation functions, arXiv preprint arXiv: 1710.05941,
2017.

[22] Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature,
vol. 521, no. 7553, pp. 436–444, 2015.

[23] B. Karlik and A. Vehbi, Performance analysis of various
activation functions in generalized MLP architectures of
neural networks, Int.J . Artif. Intell. Expert Syst., vol. 1, no.
4, pp. 111–122, 2011.

[24] R. Collobert, J. Weston, L. Bottou, M. Karlen, K.
Kavukcuoglu, and P. Kuksa, Natural language processing
(almost) from scratch, J . Mach. Learn. Res., vol. 12, pp.
2493–2537, 2011.

[25] J. Turian, J. Bergstra, and Y. Bengio, Quadratic features
and deep architectures for chunking, in Proc. Language
Technologies: The 2009 Annual Conference of the North
American Chapter of the Association for Computational
Linguistics, Boulder, CO, USA, 2009, pp. 245–248.

Chaity Banerjee et al.: Feature Representations Using the Reflected Rectified Linear Unit (RReLU) Activation 119

[26] V. Nair and G. E. Hinton, Rectified linear units improve
restricted Boltzmann machines, in Proc. 27th Int. Conf.
Machine Learning, Haifa, Israel, 2010, pp. 807–814.

[27] M. D. Zeiler, M. Ranzato, R. Monga, M. Mao, K. Yang,
Q. V. Le, P. Nguyen, A. Senior, V. Vanhoucke, J. Dean, et
al., On rectified linear units for speech processing, in 2013
IEEE Int. Conf. Acoustics, Speech and Signal Processing,
Vancouver, Canada, 2013, pp. 3517–3521.

[28] R. Arora, A. Basu, P. Mianjy, and A. Mukherjee,
Understanding deep neural networks with rectified linear
units, arXiv preprint arXiv: 1611.01491, 2016.

[29] S. Goel, V. Kanade, A. Klivans, and J. Thaler, Reliably
learning the ReLU in polynomial time, arXiv preprint arXiv:
1611.10258, 2016.

[30] C. Banerjee, T. Mukherjee, and E. Jr. Pasiliao, An empirical
study on generalizations of the ReLU activation function,
in Proc. 2019 ACM Southeast Conf., Kennesaw, GA, USA,
2019, pp. 164–167.

[31] A. L. Maas, A. Y. Hannun, and A. Y. Ng, Rectifier
nonlinearities improve neural network acoustic models, in
Proc. 30th Int. Conf. Machine Learning, Atlanta, GA, USA,
2013.

[32] K. M. He, X. Y. Zhang, S. Q. Ren, and J. Sun, Delving deep
into rectifiers: Surpassing human-level performance on
ImageNet classification, in Proc. IEEE Int. Conf. Computer
Vision, Santiago, Chile, 2015, pp. 1026–1034.

[33] X. J. Jin, C. Y. Xu, J. S. Feng, Y. C. Wei, J. J. Xiong,
and S. C. Yan, Deep learning with S-shaped rectified
linear activation units, in Proc. 30th AAAI Conf. Artificial
Intelligence, Phoenix, AZ, USA, 2016, pp. 1737–1743.

[34] S. Qiu and B. L. Cai, Flexible rectified linear units for
improving convolutional neural networks, arXiv preprint
arXiv: 1706.08098, 2017.

[35] C. Dugas, Y. Bengio, F. Bélisle, C. Nadeau, and R. Garcia,
Incorporating second-order functional knowledge for better
option pricing, in Proc. 13th Int. Conf. Neural Information
Processing Systems, Denver, CO, USA, 2001, pp. 472–478.

[36] L. Trottier, P. Giguere, and B. Chaib-draa, Parametric
exponential linear unit for deep convolutional neural
networks, in Proc. 16th IEEE Int. Conf. Machine Learning
and Applications, Cancun, Mexico, 2017, pp. 207–214.

[37] B. Grelsson and M. Felsberg, Improved learning in

convolutional neural networks with shifted exponential
linear units (ShELUs), in Proc. 24th Int. Conf. Pattern
Recognition, Beijing, China, 2018, pp. 517–522.

[38] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville,
and Y. Bengio, Maxout networks, arXiv preprint arXiv:
1302.4389, 2013.

[39] H. W. Lin, M. Tegmark, and D. Rolnick, Why does deep
and cheap learning work so well? J . Stat. Phys., vol. 168,
no. 6, pp. 1223–1247, 2017.

[40] P. Petersen and F. Voigtlaender, Optimal approximation
of piecewise smooth functions using deep ReLU neural
networks, Neural Networks, vol. 108, pp. 296–330, 2018.

[41] Z. Yu, T. R. Li, N. Yu, Y. Pan, H. M. Chen, and B. Liu,
Reconstruction of hidden representation for robust feature
extraction, ACM Trans. Intell. Syst. Technol., vol. 10, no. 2,
p. 18, 2019.

[42] Z. Yu, N. Yu, Y. Pan, and T. R. Li, A novel deep learning
network architecture with cross-layer neurons, in 2016
IEEE Int. Conf. Big Data and Cloud Computing, Social
Computing and Networking, Sustainable Computing and
Communications, Atlanta, GA, USA, 2016, pp. 111–117.

[43] P. Ballester and R. M. Araujo, On the performance of
GoogLeNet and AlexNet applied to sketches, in Proc. 30th

AAAI Conf. Artificial Intelligence, Phoenix, AZ, USA, 2016,
pp. 1124–1128.

[44] A. Kendall, M. Grimes, and R. Cipolla, PoseNet:
A convolutional network for real-time 6-DOF camera
relocalization, in Proc. IEEE Int. Conf. Computer Vision,
Santiago, Chile, 2015, pp. 2938–2946.

[45] A. Mahendran and A. Vedaldi, Understanding deep image
representations by inverting them, in Proc. IEEE Conf.
Computer Vision and Pattern Recognition, Boston, MA,
USA, 2015, pp. 5188–5196.

[46] D. P. Kingma and J. Ba, Adam: A method for stochastic
optimization, arXiv preprint arXiv:1412.6980, 2014.

[47] A. Krizhevsky and G. Hinton, Convolutional deep belief
networks on CIFAR-10, Unpublished Manuscript, vol. 40,
no. 7, pp. 1–9, 2010.

[48] C. Banerjee, T. Mukherjee, C. Lilian, D. Reasor, X. W. Liu,
and E. Pasiliao, A feature selection algorithm using neural
networks, International Journal of Machine Learning and
Computing, vol. 4, pp. 1–8, 2020.

Chaity Banerjee received the MS degree
and PhD degree in computer science from
Florida State University both in 2017.
Currently she is a postdoctoral associate in
the Department of Industrial Engineering
at the University of Central Florida. Her
research interests include machine learning,
data analysis, and feature segmentation and

localization in big data including Cryo-EM tomography and single
particle electron microscopy.

Tathagata Mukherjee received the MS
degree and PhD degree in computer science
from Florida State University in 2014
and 2016, respectively. Currently he is an
assistant professor in computer science at
the University of Alabama in Huntsville.
He has worked extensively with software
defined radios with applications to assured

communication and passive sensing. His research interests are
broadly in the areas of cyber-security and network forensics where

120 Big Data Mining and Analytics, June 2020, 3(2): 102–120

he is interested in applying machine learning, data analytics, and
optimization techniques for offensive security, malware analysis,
and internet forensics. He is also interested in quantum computing
and its applications, the theory and application of deep learning,
and graph theory.

Eduardo Pasiliao Jr. received the BS
degree in mechanical engineering from
Columbia University, New York, NY, USA,
ME degree in coastal and oceanographic
engineering, and PhD degree in industrial
and systems engineering from the
University of Florida, Gainesville, FL, USA
in 1992, 1995, and 2003, respectively. He

is a senior research engineer at the Air Force Research Laboratory
Munitions Directorate (Eglin AFB FL) and is the director of the
AFRL Mathematical Modeling and Optimization Institute. His
research interest is in mathematical optimization with emphasis
on social and communication networks.

