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Abstract: Computer clusters with the shared-nothing architecture are the major computing platforms for big data

processing and analysis. In cluster computing, data partitioning and sampling are two fundamental strategies to

speed up the computation of big data and increase scalability. In this paper, we present a comprehensive survey

of the methods and techniques of data partitioning and sampling with respect to big data processing and analysis.

We start with an overview of the mainstream big data frameworks on Hadoop clusters. The basic methods of data

partitioning are then discussed including three classical horizontal partitioning schemes: range, hash, and random

partitioning. Data partitioning on Hadoop clusters is also discussed with a summary of new strategies for big data

partitioning, including the new Random Sample Partition (RSP) distributed model. The classical methods of data

sampling are then investigated, including simple random sampling, stratified sampling, and reservoir sampling. Two

common methods of big data sampling on computing clusters are also discussed: record-level sampling and block-

level sampling. Record-level sampling is not as efficient as block-level sampling on big distributed data. On the

other hand, block-level sampling on data blocks generated with the classical data partitioning methods does not

necessarily produce good representative samples for approximate computing of big data. In this survey, we also

summarize the prevailing strategies and related work on sampling-based approximation on Hadoop clusters. We

believe that data partitioning and sampling should be considered together to build approximate cluster computing

frameworks that are reliable in both the computational and statistical respects.

Key words: big data analysis; data partitioning; data sampling; distributed and parallel computing; approximate

computing

1 Introduction

An overwhelming volume of data is now being
generated from business transactions, computer
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simulations, mobile devices, sensors, satellites, social
media, and so on. This massive quantity of data can be
used to produce high-value information for decision-
support, forecasting, business intelligence, research on
data-intensive science, and other fields of application.
Traditional technologies, such as data warehousing and
Structured Query Language (SQL)-based Relational
DataBase Management Systems (RDBMSs), have
become impractical for handling such a tremendous
volume and complexity of big data[1–3]. It is hard or
impossible to use a single machine to analyze terabyte-
scale datasets, so scalable distributed computing
architectures have become a common design choice
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for big data analysis frameworks. In these frameworks,
data partitioning and sampling are two fundamental
strategies for scaling-out and speeding-up big data
analysis algorithms. The survey presented in this
paper gives a concise summary of the most common
methods of partitioning and sampling to support big
data analysis on Hadoop clusters.

“Big data” is a label used when the size of
the data itself becomes part of the problem. A
common strategy for big data analysis on computing
clusters is divide-and-conquer[3, 4]. The MapReduce
computing model[5] is used to apply this strategy in
the mainstream big data analysis frameworks[6–9],
such as Apache Hadoop (http://hadoop.apache.org/)
and Apache Spark (http://spark.apache.org/). These
frameworks implement a shared-nothing architecture
(https://www.oreilly.com/learning/processing-data-in-
hadoop) where each node is independent in terms
of both data and resources. On Hadoop clusters, the
Hadoop Distributed File System (HDFS)[10] organizes
and replicates a big data file as small distributed data
blocks. Studies have shown that when the data size is
large enough, parallelization based on distributed data
blocks can result in a linear speed-up as computing
resources increase in the cluster[11]. In fact, cluster
computing frameworks can be scaled easily by adding
more machines to the computing cluster. However, the
growth rate of data may quickly exceed the available
resources. Furthermore, scaling-out a computing cluster
requires additional costs and the necessary investment
may not be always available in practice[12].

A promising approach to reduce the cost of
cluster computing and increase the efficiency of
big data analysis is approximate computing[13–17],
which uses only a subset of the input data to
produce approximate results while achieving low
latency and efficient resource utilization[18–20]. Over the
past decade, sampling-based approximation techniques
have been applied for Approximate Query Processing
(AQP) and the statistical analysis of big data on
computing clusters[16, 21–23]. In addition, sampling
techniques are essential in exploratory data analysis,
statistical estimation, and predictive modeling[24, 25].
Nevertheless, sampling from big data is a challenge
when considering the block-based organization and the
high costs of memory, I/O, and communication on
computing clusters with a shared-nothing architecture.

Given the impact of data partitioning and sampling
methods on the efficiency and effectiveness of

sampling-based approximate big data analysis, we
present a concise overview of these methods with
respect to big data on Hadoop clusters. On Hadoop
clusters, big data is partitioned into small data
blocks in HDFS. HDFS blocks are the units of
storage, transmission, and processing. Consequently,
the partitioning strategy affects the performance of any
operation, including sampling. For instance, conducting
record-level sampling on HDFS files with many HDFS
blocks requires loading the entire data into memory
and launching many map tasks (equal to the number
of HDFS blocks in the file) to select records from all
of the blocks. On the other hand, without considering
the statistical properties of the data, the sequential
partitioning in HDFS means that there is no guarantee
that HDFS blocks are random samples. Consequently,
block-level sampling of HDFS files may produce biased
results. Thus, the partitioning and sampling strategies
should be considered to guarantee the quality of
approximate results from HDFS data. In this paper,
our objective is to help researchers to get started with
data sampling and partitioning to support approximate
big data analysis. We consider only structured big data
stored in HDFS and focus on the volume dimension of
big data.

The remainder of this paper is organized as follows.
Section 2 gives an overview of big data analysis
frameworks on cluster computing. The most common
data partitioning and sampling techniques are given in
Sections 3 and 4, respectively. An emerging paradigm
for big data analysis on computing clusters is presented
in Section 5. The challenges of big data partitioning
and sampling for approximate cluster computing are
discussed in Section 6. Finally, Section 7 concludes this
survey.

2 Big Data Analysis Frameworks

In this section, we start with an overview of
cluster computing for big data analysis. We then
briefly describe two most common big data analysis
frameworks, Apache Hadoop and Apache Spark.

2.1 Overview of cluster computing for big data
analysis

To cope with the ever-increasing data volume in a
range of different application areas, cluster computing
with a shared-nothing architecture has become a
common paradigm for building big data analysis
frameworks[6, 26, 27]. In a shared-nothing architecture,
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each node in the computing cluster is independent in
terms of both data and computation. The MapReduce
computing model[5, 28] is the underlying model in the
mainstream big data analysis frameworks[6, 7]. A big
data file is divided into small non-overlapping data
blocks and distributed on the nodes of the computing
cluster with HDFS. These blocks are then processed
with a parallel, distributed algorithm with two general
operations: Map and Reduce. The Map operation
processes the distributed data blocks independently and
the Reduce operation integrates the Map results to
produce the global result for the entire dataset. Figure 1
illustrates the MapReduce model.

Big data technologies include distributed file
systems[29, 30], distributed computational systems[31],
and Massively Parallel Processing (MPP) systems[32, 33].
Distributed file systems, such as Google File System
(GFS)[34], HDFS[10], and Microsoft Cosmos[35], provide
scalable and fault-tolerant storage solutions. Recent
advances in these frameworks (e.g., MapReduce[5, 28],
Hadoop[10], and Cosmos/Dryad[35, 36]) have simplified
the development of large-scale and the distributed
data-intensive applications. Moreover, higher-level
programming languages and conceptual data models
have been proposed, such as Scope[36], DryadLINQ[37],
Pig[38], Dremel[39], Hive[40], Jaql[41], and Tenzing[42].

Hadoop-based computing clusters have become the
norm for big data management and analysis in a
range of different application areas. Apache Hadoop
and Apache Spark are two most widely used big data
analysis frameworks in both academia and industry[6–9].
Next, we provide a brief description of these two
frameworks before discussing big data partitioning and
sampling.

Fig. 1 MapReduce model.

2.2 Apache Hadoop

Apache Hadoop is one of the most well-established
platforms supporting the distributed and parallel
processing of massive data. It provides a general
partitioning mechanism to distribute aggregation
workload across different machines using the
MapReduce computing model. It is a multi-purpose
engine, but not a real-time and high-performance
engine because of the high throughput latency in
its implementations. The Hadoop platform contains
the Hadoop kernel, Hadoop MapReduce, HDFS, the
resource manager (YARN), and a number of projects
(e.g., Hive and HBase). The Hadoop MapReduce
framework[5, 28] provides a highly efficient and reliable
programming environment for processing large volume
distributed datasets.

2.3 Apache Spark

Apache Spark[43] is another open-source and large-
scale data processing framework. Spark introduced
the core abstraction, Resilient Distributed Dataset
(RDD)[44], for distributed in-memory data-parallel
computing. RDDs are read-only, immutable, and fault-
tolerant collections of elements (objects) distributed or
partitioned across a set of nodes in a cluster. RDD
supports two types of operations: transformations and
actions. Transformations (e.g., map() and filter()) are
deterministic but lazy operations that define new RDDs
without immediately computing them. Actions (e.g.,
reduce(), count(), and collect()), on the other hand,
launch the computation on RDDs and then return the
output to the driver program or store it in a persistent
storage system. For more details, see Fig. 2, in which
A, B, C, D, E, F, and G are RDDs.

Fig. 2 Data sharing using Spark RDD.
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3 Data Partitioning

Data partitioning is a fundamental operation in
distributed systems to manage and process big data
on computing clusters. In this section, we first briefly
review the basic methods of data partitioning. Then,
we elaborate on horizontal partitioning and discuss
its classical schemes. Finally, we discuss big data
partitioning on Hadoop clusters.

3.1 Overview of data partitioning

The purpose of data partitioning is either query
processing in databases systems or data-intensive
computing in big data analysis frameworks. It was first
used in centralized databases[45–49]. Das et al.[50] and
Baker et al.[51] investigated solutions for distributed
database systems. A workload-aware partition was
proposed by Kamal et al.[52] Partitioning solutions for
big data applications on NoSQL data-stores were also
proposed in Refs. [52, 53]. As Fig. 3 shows, there are
three major categories of data partitioning methods:
horizontal, vertical, and functional partitioning.

In horizontal partitioning, the records of the
dataset are divided into disjoint subsets where each
subset has the same columns as the entire dataset
(see Refs. [48, 50, 54, 55] for more details). This
idea started from parallel database systems, and is
also known as sharding. Notable implementations
of horizontal partitioning are Apache HBase
(https://hbase.apache.org/), IBM Informix (https://
www.ibm.com/analytics/informix), MongoDB (https:

Fig. 3 Data partitioning methods.

//docs.mongodb.com/), MySQL Cluster (https://www.
mysql.com/products/cluster/), MySQL (https://www.
mysql.com/), Oracle NoSQL database (https://www.
oracle.com/technetwork/database/nosqldb/), Spanner
(https://cloud.google.com/spanner/), and Teradata
(https://www.teradata.com/). There are various schemes
for horizontal partitioning, including range, hash, and
random schemes. In vertical partitioning, the columns
of the dataset are divided into subsets that share a
key column (see Refs. [45, 46, 53, 56–58] for more
details). The columns are divided according to their
pattern of use. For example, frequently accessed
columns might be placed in one vertical partition and
less frequently accessed fields in another partition.
Vertical partitioning methods can be classified into
two subcategories: optimal solution under restrictive
assumptions and heuristic approach. Horizontal and
vertical partitioning can also be combined to divide the
dataset according to the target application or workload;
that is called hybrid partitioning. For example, an
e-commerce system might divide the data into two
separate subsets: one to store invoice data and the
other to store product inventory data. This is sometimes
known as functional partitioning[59] and is used to
improve isolation and data access performance, such as
by separating read-write data from read-only data.

3.2 Horizontal data partitioning

In this paper, we focus on horizontal partitioning to
distribute datasets with a large number of records.
There are three main horizontal partitioning schemes
that are commonly used for big data on computing
clusters: hash, range, and random. In addition, there
is a special kind of hash partition called a round-robin
partition. Figure 4 shows how a dataset can be divided
with each of these schemes.
� Hash partitioning: In a hash partition, records

are divided into subsets by hashing the record key and
mapping the hash value of the key to a partition. There
are multiple methods for this mapping. A common

Fig. 4 Horizontal partitioning schemes.
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method is a round-robin, which is to mod the hash
key with the number of partitions, with the result
being the partition ID (with 0 as the first index). It
is important to understand that hash-based partition
provides a key-wise independent guarantee, because if
records have the same key value then they must have
the same hash value. Thus, they will be mapped to the
same partition. However, a hash-based partition does
not guarantee order among partitions. The round-robin
method guarantees a balanced partitioning, in which
subsets are equivalent in size.
� Range partitioning: Range partitioning segments

data according to a prescribed range over consecutive
ranges of the underlying dataset, and is one of the
best partitioning methods to use when global order
is required. It provides both a key-wise independent
guarantee and partition-wise ordering. Therefore,
anything that could be implemented using a hash-
based partition can also be implemented using a range
partition. Range partitioning requires a set of key-
ranges to be predefined. In a distributed environment,
how to choose partition boundaries is a challenge. It
is especially difficult for massive scale data analysis
because typically no statistics about the key distribution
over the machines are available at the beginning of the
partition. Range partitioning therefore requires a cost-
effective and accurate way to determine the partition
boundaries and involves a tradeoff of accuracy and cost.
� Random partitioning: In a random partition,

the records are divided randomly into subsets using a
random number generator to determine where to put
each record. While random partitioning can produce
approximately equal-sized subsets, similar to round-
robin, it requires extra processing to calculate a random
value for each record.

Table 1 shows a comparison of different horizontal
partitioning schemes. Each scheme has its advantages
and drawbacks regarding the performance of workload
in responsiveness, storage, and processing cost. Also,
many works have presented a blended approach to
partitioning, for example Ref. [59]. The random and
round-robin partitioning methods provide a guarantee
of balanced partitions.

3.3 Big data partitioning on Hadoop clusters

Data partitioning is a key issue in big data analysis
frameworks. It is used to control the parallelism
and achieve scalability to large computing clusters.
However, it is a computationally expensive operation
when working with big data[60]. In fact, the efficiency
and effectiveness of big data queries and analysis
algorithms are greatly affected by the data partitioning
scheme[60–66]. On Hadoop clusters, data partitioning
is basically the responsibility of HDFS[10]. When
importing a big data file into HDFS, the file is
sequentially divided into small blocks of a fixed
storage size determined with byte range. In Apache
Spark, the initial step is importing HDFS blocks
into the RDD in-memory data structure. An RDD
can be partitioned and repartitioned using different
methods, such as hash, range, and custom partitioning.
Range partitioning is also applied in BerkeleyDB
(https://www.oracle.com/database/berkeley-db/), HBase
(https://hbase.apache.org/), and MongoDB (https://
docs.mongodb.com/), whereas hash-based partitioning
is applied in CouchDB (http://couchdb.apache.org/),
Clustrix (http://www.clustrix.com), DynamoDB (https:
//aws.amazon.com/dynamodb/), Riak (http://basho.
com/products/riak-kv/), VoltDB (http://voltdb.com/
overview), and many other data stores.

Table 1 A comparison of data partitioning schemes.
Scheme Strength Limitation

Round-robin
– Sequential scan of the entire dataset – Both point and range queries are complicated to process.
– Well-balanced data partition

Hash

– Sequential scan of the entire dataset – Not well-suited for range queries
– Best suited for point queries based – Also, not well-suited for point queries on non-partitioning
partitioning attributes (only one partition attributes
has to be searched)

Range

– Sequential scan of the entire dataset – Execution skew might occur because of all processes in one
– Well-balanced data partition or a few partitions.
– Well-suited for both point and range queries
(only one or few partitions has to be searched)

Random
– Sequential scan of the entire dataset – It requires extra processing to calculate random values.
– Approximately balanced data partition – Records are distributed in random, and no

order is followed.
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In big data exploration and analysis, we can look at
data partitioning as a preprocessing step that prepares
the data for subsequent exploration and analysis tasks.
For these tasks, the statistical properties of the data
should be considered when partitioning big data in order
to guarantee the accuracy of the results. A key problem
with data partitioning on Hadoop clusters is that HDFS
does not consider these statistical properties, such as
the probability distribution. For instance, sequentially
dividing a big dataset into small data blocks in HDFS
does not guarantee that each block is a random sample
in the case that the data are not randomly ordered
in the original dataset. In such case, using HDFS
blocks directly to estimate statistics and build models
may lead to statistically incorrect or biased results.
Another key issue is data skew, which describes the
uneven distribution of the records leading to tasks with
different execution times[67–69]. On computing clusters,
the performance strongly depends on how evenly data
are distributed among the nodes. In fact, this may
happen on both the Map side, due to imbalanced
input data, and the Reduce side, due to imbalanced
intermediate data[70–72]. Sampling has been employed
with data partitioning to alleviate the effect of data skew
and guarantee load balancing[60, 73], as we discuss in
Section 4.3. There is also the problem of imbalanced
data, which is a major challenge to machine learning
algorithms[74]. Classical data partitioning methods do
not consider the class or key distribution.

While range and hash partitioning are the most
common methods, random partitioning is necessary to
guarantee that the data is uniformly distributed across
the nodes. One work on distributed data randomization
on Hadoop clusters is Cloud OnLine Aggregation
(COLA)[75]. It introduces a preprocessing stage to
randomize data in HDFS using a MapReduce job. In
the Map operation, a random number between 1 and
P (the number of HDFS blocks) is assigned to each
record in the data. Then, each record is written to the
assigned block in the Reduce operation. After that,
block-level sampling can be used for online aggregation
by sequentially reading the randomized blocks from
HDFS. In addition to the general random partitioning
scheme, sampling-based data partitioning is required to
make the distributed data blocks reflect the statistical
properties of the entire dataset. This is done, for
instance, by making each HDFS block a simple random
sample or stratified random sample of the entire data. A
promising work in this direction is the Random Sample

Partition (RSP)[76], which is a distributed data model
to represent a big dataset as a set of non-overlapping
data blocks, called RSP blocks. Each RSP block is a
random sample of the entire dataset. An RSP can be
generated from an HDFS file using a two-stage data
partitioning method[77, 78]. Each RSP block is created
by combining approximately equal random slices from
all of the original HDFS blocks.

As Fig. 5 shows, RSP blocks preserve the probability
distribution of the entire dataset. This partitioning
operation can be scheduled to run offline on the
computing cluster. An RSP is saved as an HDFS-RSP
file with metadata storing the RSP block information,
including the size and location. An RSP-based Big Data
Management System (BDMS) has been formulated
by Emara and Huang[78]. Moreover, an open source
of a Spark library to represent HDFS blocks as a
set of RSP blocks has been developed in Ref. [79].
Selecting an RSP block from an HDFS-RSP file
is equivalent to drawing a random sample directly
from the original HDFS. The RSP model reduces
the sampling time from hours to seconds on small
computing clusters. Consequently, data scientists can
use RSP blocks directly in sampling-based approximate
big data analysis. This solves a key issue on Hadoop
clusters because completely random disk access can
be five orders of magnitude slower than sequential
access[80].

4 Data Sampling

Sampling is an essential strategy to reduce the burden
of big data volume. In this section, we start with an
overview of the random sampling strategy commonly
used in data science. Then, we briefly review four
key sampling schemes. After that, we discuss big data
sampling on Hadoop clusters.

4.1 Overview of data sampling

The goal of random sampling is to obtain representative
small subsets that can be processed efficiently to
explore and analyze the data[81, 82]. Data scientists often
use small random samples to obtain sample statistics,

Fig. 5 Random sample partition distributed data model.
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assess the quality of estimators, and test statistical
models with different algorithms. Random sampling is
also fundamental in statistical estimation procedures,
such as the bootstrap[83]. In fact, random sampling has a
long history of use in databases[84, 85], but it is becoming
more important in the big data era, when handling
an entire dataset all at once may not be possible
considering the ever-increasing volume of data. Data
quality is often more important than data quantity
when using a sample to make an estimate or build
a model[86]. In addition, using small random samples
allows for greater attention to data quality and enables
deeper data exploration[87]. Furthermore, random
sampling is essential in approximate and incremental
computing[81, 88], as we discuss in Section 5.

Many researchers have considered sampling-based
approaches to estimate various statistics in the context
of database systems and data streams[89–94]. Rojas et
al.[95] suggested data exploration on smaller but better-
selected samples generated from sampling techniques
other than random sampling. Kandel et al.[96] pointed
out that the data scientists they interviewed were
concerned about using data sampling in big data,
because of the bias it could introduce into their analysis.
In the same vein, Lin and Ryaboy[97], who noted that it
is easy to make errors when sampling from a big dataset
and that it runs contrary to the objective of big data
analysis, also suggested using as much data as possible
and running experiments at scale.

4.2 Data sampling methods

There are a range of different methods to draw a sample
from a dataset. Choosing between these methods, which
are known as sampling schemes, depends mainly on
the target application or workload. In the following,
we introduce key sampling schemes and methods
commonly used in data science. Table 2 summarizes the
sampling methods.
� Bernoulli sampling: In this scheme, each item

in the dataset has an equal probability to be included
in the sample[98]. This sampling scheme operates
without replacement, where each data item is selected

independently for the sample[99]. Consequently, the
sample size is random and not fixed. Thus, it is difficult
to estimate the processing latency over Bernoulli
samples. To overcome this limitation, simple random
sampling scheme can be used.
� Simple random sampling: This is a flexible

and general method for constructing a synopsis of
data items, and is one of the most common sampling
techniques[100–102]. In this scheme, each data item has
an equal chance to be included in the selected sample.
Simple random sampling performed with replacement
allows each data item to appear multiple times in the
sample; sampling without replacement allows each data
item to appear at most one time. However, simple
random sampling does not ensure that each group in
the original data is considered fairly in the sample.
Stratified sampling can be used to overcome this
limitation.
� Stratified sampling: This is a sampling scheme in

which the original data is divided into a homogeneous
disjoint set of groups (strata); from each group (stratum)
a random sample is drawn and these are combined
to build the sample of the original data[103]. Stratified
sampling ensures that data items from each group are
considered fairly in the sample and no group will
be overlooked. Compared to simple random sampling,
stratified sampling provides higher statistical precision
and reduces the sampling error. It also requires a smaller
sample size to achieve the same accuracy as simple
random sampling, thus further improving performance
and utilizing less computing resources.
� Reservoir sampling: This is done without

replacement from a big array (list) in a single pass,
where the length of the array is indeterminate or
unbounded[104]. Reservoir sampling receives data items
from an array and maintains a sample in a buffer called a
reservoir. If the dataset consists of an unknown number
of items, or too many to fit into storage, then simple
random sampling does not work, and reservoir sampling
can be used. The reservoir sampling technique has been
used extensively in large-scale data mining applications
(see Refs. [105–107] for more details).

Table 2 A summary of common sampling methods.
Method Description

Simple random sampling[100–102] Data items are selected with equal probability and the sample size is fixed.
Bernoulli sampling[98, 99] Data items are selected with equal probability but the sample size is random.
Stratified sampling[103] Data items are divided into strata and a sample is drawn from each stratum.
Reservoir sampling[104] Data items are added to a reservoir of a fixed size.

Bootstrapping[83, 108] Multiple samples are drawn with replacement and used for statistical estimation and diagnosis.
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� Bootstrap method: This is a classical method
to assess the variability of a sample statistic. It uses
multiple samples with replacement from the observed
dataset[83, 109]. However, bootstrapping on big datasets
requires high computational and storage costs as
it depends on repeatedly drawing samples of sizes
comparable to the original dataset and computing
estimates from all these samples.

4.3 Big data sampling on Hadoop clusters

To employ the previous sampling methods on Hadoop
clusters, we need to consider the special block-based
architecture of cluster computing frameworks. Thus, we
can discuss two common ways to get random samples
from big datasets stored in HDFS depending on whether
the sampling units are individual records or blocks of
records.
� Record-Level Sampling (RLS): This depends

on the random selection of individual records from
the dataset, and is an expensive operation in cluster
computing frameworks that implement a shared-
nothing architecture[60]. Record-level sampling goes
through all of the records sequentially, and is
thereby highly time-consuming. It requires a complete
pass over the entire distributed big dataset and
results in communication and I/O costs. For a large
HDFS file, record-level sampling is not efficient
because it reads the data record-by-record. This
operation becomes more challenging when many
disjoint random samples are required, as in ensemble
methods[24, 110] and statistical estimation methods like
the bootstrap. The Bag of Little Bootstraps (BLB)
is one approach to scale the classical bootstrap
method to big data by drawing samples of small
sizes[108, 111]. However, obtaining small disjoint random
samples is still a challenge in cluster computing
frameworks[112]. Spark supports sampling on RDDs.
In particular, Spark’s sampling functions can be
classified into two categories: simple random sampling
using the sample() function and stratified sampling
using sampleByKey() and sampleByKeyExact(). Spark
implements these sampling functions in a batch fashion,
where all data items are first accumulated in a batch, and
then the actual sampling is carried out. In addition, the
divide-and-conquer strategy is used to scale sampling
algorithms to big data on computing clusters, as in
Refs. [113, 114]. Sampling is also used as fundamental
strategy to solve the data skew problem on Hadoop
clusters, as in Ref. [115].

� Block-Level Sampling (BLS): This method
considers that a big dataset is stored as a set of
disjoint data blocks[116], each containing a small subset
of records. In this case, a block instead of a record
is randomly selected during the sampling process.
Block-level sampling is appealing in cluster computing
frameworks, since HDFS data blocks are the units of
both storage and processing in these frameworks. In
contrast to record-level sampling, block-level sampling
requires significantly fewer block accesses for the same
sample size. However, the results obtained from block-
level samples may be biased or incorrect because the
data in HDFS blocks may be correlated. The same
problem arises with RDDs in Apache Spark using
partition-level sampling. Furthermore, the entire RDD
should be read into memory in order to obtain a
block-level sample. The RSP model[76] solves these
problems by making HDFS blocks into ready-to-use
random sample data blocks. RSP blocks have unbiased
and consistent estimators. Hence, RSP blocks can
be used directly in statistical estimation and predictive
modeling, especially when analyzing big data requires
more than the available resources to meet specific
application requirements.

In the absence of a statistical summary, drawing
a random sample from a distributed dataset is a
nontrivial task, because we cannot perform sampling
arbitrarily. Experts have also suggested that using
multiple sampling strategies on the same dataset
would enable a more effective evaluation of a dataset.
Therefore, this domain is in need of more research to
find better solutions.

5 Approximate Cluster Computing for Big
Data Analysis

Approximate computing has become a common
and necessary paradigm to cope with the ever-
increasing data volume on computing clusters. In this
section, we first present an overview of approximate
computing. Then, we elaborate on the sampling-
based approximation approach for big data analysis on
Hadoop clusters.

5.1 Overview of approximate computing

Data is growing exponentially, and even faster
than Moore’s law predicts of computational power.
Nowadays, modern services use big data analysis
systems to mine and extract valuable patterns and trends
from data. Handling these data is quite expensive.
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Recently, approximate computing has emerged as a
promising solution to reduce the computing resources
usage, processing time, and even energy consumption
of big data analysis frameworks[13, 14, 19, 20, 22, 117, 118].
Unlike traditional computing, approximate computing
is done over a small synopsis of the data instead of the
entire dataset. Many data algorithms are amenable to an
approximate result rather than an exact one[119].

In fact, it is sometimes impossible to obtain exact
results, either due to the underlying algorithm, e.g.,
machine learning algorithms, or due to the data
generation process, given that real-world datasets
often have noise that affects the results. Approximate
computing makes a trade-off between accuracy and
efficiency. This trade-off can be depicted as a “runtime–
resources usage–accuracy” triangle as shown in Fig. 6.

Due to the growth of digital data being faster than
the growth of computational power, approximate
computing is emerging as an essential technique
for big data analytics with interactive response
times. Approximate computing is sometimes
combined with incremental computing where the
data is processed incrementally and the results are
updated accordingly. This technique is also known as
incremental approximate computing, see Fig. 7 for
more details.

There are various approximation techniques that have
been proposed in databases for approximate query
processing, including sampling, sketching, histograms,
and online aggregation[21, 116]. These techniques have
been recently extended to big data on computing
clusters. Sampling, in particular, has been adopted
in cluster computing frameworks, as discussed in
Section 5.2.

5.2 Sampling-based approximation on Hadoop
clusters

Sampling is one of the most commonly used techniques
to enable approximation on Hadoop clusters[103, 120]. We
introduce the current big data frameworks for sampling-

Fig. 6 Approximate computing trades-off accuracy with
run-time and resources.

Fig. 7 Distributed approximate computing.

based approximate computing on Hadoop clusters as
follows.
� Early Accurate Result Library (EARL)[121] is

an extension of Hadoop that provides early estimation
results. It uses online uniform sampling from HDFS
files with the bootstrap method to incrementally
evaluate the accuracy.
� ApproxHadoop[20] uses multi-stage sampling to

enable approximation in Hadoop MapReduce.
� ApproxSpark[122] uses multi-stage sampling

or adaptive stratified reservoir sampling to enable
approximation in Apache Spark. It supports both
record-level and block-level sampling (called data
item-level and partition-level, respectively in Ref.
[122]). However, block-level sampling leads to
larger error bounds since the data in the RDD is not
necessarily randomized.
� BlinkDB[19] is a distributed sampling-based

approximate query engine that supports SQL-based
aggregation queries with error and time bounds.
� BlinkML[123] enables approximate machine

learning by training a model on a small sample instead
of the entire data and providing error bounds on the
accuracy of the approximate model. It supports models
that rely on maximum likelihood estimation, such
as linear regression, logistic regression, max entropy
classifier, and Probabilistic Principal Component
Analysis (PPCA). To obtain a sample, BlinkML uses
online uniform sampling without replacement. If
the dataset cannot fit into memory, BlinkML either
uses Bernolli sampling or offline samples from a
pre-shuffled dataset.
� IncApprox[119] is a stream data analytics system

which depends on both approximate and incremental
computing to incrementally update an approximate
output for data analysis tasks.
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� Sapprox[124] depends on the distribution of the
dataset in the file system for approximation. It collects
the occurrences of subsets in an offline preprocessing
stage and uses these to facilitate online sampling. It uses
cluster sampling with unequal probability to address the
data skew problem.
� RSP approach[76] is a new approach for

approximate big data analysis using the RSP distributed
data model. It depends on a step-wise process to
analyze data in batches of RSP blocks. Each batch is
a block-level sample of RSP blocks that are processed
using sequential algorithms in a data-parallel fashion.
With this approach, a few RSP blocks are enough to
obtain approximate results that are equivalent to those
built from the entire dataset. The RSP approach has
been applied to different tasks in predictive modeling
and exploratory data analysis (see Refs. [125, 126] for
more details).
� ApproxIoT[127] depends on edge computing

resources to enable sampling-based approximation in
IoT with an online hierarchical stratified reservoir
sampling algorithm.

Table 3 presents a summary of key big data frameworks
for sampling based approximate computing.

6 Discussion

Since cluster and approximate computing are two
common and necessary paradigms for big data analysis
frameworks, efficient and effective data partitioning
and sampling techniques are fundamental for big data
analysis. In this section, we further discuss the current
challenges of enabling approximate cluster computing
and scaling algorithms for big data.
� Bottlenecks of cluster computing in big data

analysis: Although the mainstream big data analysis

frameworks employ the data-parallel model to run
scalable algorithms on computing clusters, analyzing an
entire dataset may exceed the available resources in a
computing cluster. Since the rate of data production is
outracing technology scaling, the ever-increasing data
volume can quickly exceed the memory of a computing
cluster. Hadoop MapReduce is efficient for algorithms
that scan the entire big dataset once. However, for
iterative data analysis algorithms, it becomes inefficient
because of heavy I/O and communication costs[128].
Apache Spark with its in-memory computing model is
much faster than the disk-based cluster computing in
Hadoop MapReduce[43]. Therefore, it is very efficient
for iterative algorithms. Nonetheless, if the memory is
not large enough to hold all of the data blocks of a big
dataset, the computation will dramatically slow down.
� Sampling-based big data partitioning:

Conventional data partitioning methods (e.g., range and
hash) and data partitioning techniques in distributed
file systems (e.g., sequential partitioning in HDFS) do
not necessarily satisfy the requirements of data analysis
tasks. These methods do not consider the statistical
properties of the data which may lead to very poor
results. Therefore, it is essential to develop statistically-
aware data partitioning methods in big data analysis
frameworks. This enables the effective and efficient
use of HDFS data blocks to obtain approximate results
using sequential algorithms. However, high-quality data
partitioning is one of the most expensive operations for
distributed computing because typically no statistics
are available about the data distribution. Big data
analysis requires a not only computationally efficient
but also statistically effective approach at both the data
management and analysis level.
� Online big data sampling: It is straightforward

to obtain a random sample when data are centralized

Table 3 A summary of frameworks for sampling-based approximation on Hadoop clusters.
Framework Description
BlinkDB[19] Approximate distributed query processing engine that uses stratified sampling

ApproxHadoop[119] Uses multi-stage sampling for approximate MapReduce job execution
EARL[121] Uses online uniform sampling from HDFS files with the bootstrap method

ApproxSpark[122] Uses multi-stage sampling or adaptive stratified reservoir sampling
Supports both record-level and block-level sampling

BlinkML[123] Uses online uniform sampling without replacement
If the dataset cannot fit into the memory, either uses Bernoulli sampling or offline samples

IncApprox[119] A stream data analytics system which depends on both approximate and incremental computing
Sapprox[124] Uses it to facilitate online sampling

RSP approach[76] Approach for approximate big data analysis
Depends on a step-wise process to analyze data in batches of RSP blocks

ApproxIoT[127] Sampling-based approximation in IoT with an online hierarchical stratified reservoir sampling algorithm
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and the size is known. However, in the big data era,
many applications deal with data that are distributed and
unbounded. Drawing a random sample from distributed
data becomes difficult for two main reasons. First,
when the size of data is unknown, it is not possible
to predetermine sampling probability. Second, data are
distributed on different machines and it is not feasible to
collect it to a central machine for sampling. Combined
these challenges give rise to the question of how to
obtain a random sample from distributed data efficiently
with a guarantee of sample uniformity. Classical
sampling techniques (e.g., random) require a full scan
of the dataset each time to generate a random sample,
and are therefore ineffective and cumbersome given the
increasing volume of the data stored in a distributed
system. Current big data systems are mainly targeted
toward batch processing (data-in-rest). In contrast to
classical offline sampling (batches), online sampling
from a massively distributed dataset is difficult. In this
regard, partitioning a big dataset into small subsets (i.e.,
data blocks), each being a random sample of the entire
dataset, is a fundamental operation for big data analysis.
� Ensemble methods for big data analysis: As

mentioned above, divide and conquer is a common
strategy in current big data analysis frameworks. The
big data ensemble model is different from the classical
ensemble model. In big data analysis, an ensemble
model integrates results of different subsets or samples
of data, whereas a classical ensemble combines the
results of different models or algorithms on the same
dataset to produce a robust result. Therefore, the key
question for data partitioning is how to aggregate
the results from these subsets. It is theoretically and
practically necessary to find appropriate ensemble
functions (consensus function) for distributed datasets.
� Approximate big data analysis: It is difficult or

impractical to process an entire big dataset, especially
on small computing clusters. In extreme cases, it is not
even possible to store the entire input dataset. Thus,
a key research question is whether the entire data
needs to be used to find properties and reveal
insights, or if a subset is sufficient. To meet the
challenge, we may apply incremental approximate
computing in the distributed computing cluster to
achieve efficiency. Understanding theoretical trade-offs
between accuracy and sample size is another important
open research issue. With incremental approximate
computation, big data can be analyzed incrementally
to obtain approximate results that are asymptotically
equivalent to those computed using entire dataset. In

this way, computational resources and time can be
decreased significantly. A reliable combination between
cluster computing and approximate computing requires
addressing key issues, such as sample selection, sample
size, accuracy measures, and aggregation functions.

Considering the impact of sampling and partitioning
on the performance and accuracy of sampling-based
approximation on Hadoop clusters, we end this section
with the following Research Questions (RQs):

RQ1: How can we draw a random sample from
a massively distributed dataset on Hadoop clusters,
considering that memory may never be sufficient to hold
an entire big dataset, since data growth rate is faster than
technology scaling?

RQ2: How can we quickly obtain a random sample
partition from a big dataset so that data scientists can
directly use random sample data blocks to explore and
analyze big data using their preferred techniques and
libraries?

RQ3: How can we aggregate the local results from
random sample data blocks of a big dataset for different
data analysis and mining algorithms?

RQ4: How much data (portion size) is sufficient
from an entire big dataset to approximate a result that
is equivalent to the result from the entire dataset?

7 Conclusion

Data partitioning and sampling can provide tremendous
benefits by improving the scalability, manageability,
and performance of big data analysis algorithms on
computing clusters. In this paper, the partitioning
and sampling techniques for big data analysis were
reviewed. While the key classical partitioning schemes
are employed on computing clusters, new sampling-
based partition models have become fundamental to
increase scalability. Furthermore, this is essential to
guarantee the quality of the selected samples and this
to yield more accurate approximate results. In addition
to data partitioning and sampling, key projects in
sampling-based approximation for big data analysis
were briefly reviewed. Also, we highlighted the critical
technical challenges of partitioning and sampling to
support approximate big data analysis on computing
clusters.
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