
BIG DATA MINING AND ANALYTICS
ISSN 2096-0654 l l05/06l lpp 56 – 67
Volume 3, Number 1, March 2020
DOI: 10.26599/BDMA.2019.9020018

@ The author(s) 2020. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

On Quantum Methods for Machine Learning Problems
Part II: Quantum Classification Algorithms

Farid Ablayev, Marat Ablayev, Joshua Zhexue Huang, Kamil Khadiev,
Nailya Salikhova, and Dingming Wu�

Abstract: This is a review of quantum methods for machine learning problems that consists of two parts. The first

part, “quantum tools”, presented some of the fundamentals and introduced several quantum tools based on known

quantum search algorithms. This second part of the review presents several classification problems in machine

learning that can be accelerated with quantum subroutines. We have chosen supervised learning tasks as typical

classification problems to illustrate the use of quantum methods for classification.

Key words: quantum classification; binary classification; nearest neighbor algorithm

1 Introduction

Classification is one of the basic problems for Machine
Learning (ML). There are many applications for
classification tasks, so the problem has been intensively
researched. In this part of the review, we present variants
of Nearest Neighbour (NN) algorithms for classification
problems and two algorithms for binary classification
which is a specific case of the classification problem.

1.1 Algorithms for the binary classification

This review presents two well-known methods for binary
classification: Support Vector Machine (SVM)[1] and
perceptron[2, 3]. The main idea of the two methods is
constructing a hyperplane in the feature space to separate
training vectors into two classes. However, the two
methods have different ways of choosing a hyperplane.

1.1.1 SVM
The main computational step of the SVM algorithm is

� Joshua Zhexue Huang and Dingming Wu are with the
College of Computer Science & Software Engineering,
Shenzhen University, Shenzhen 518000, China. E-mail:
zx.huang@szu.edu.cn; dingming@szu.edu.cn.
� Farid Ablayev, Marat Ablayev, Kamil Khadiev, and Nailya

Salikhova are with the Kazan Federal University, Kazan 42008,
Russia. E-mail: fablayev@gmail.com; mablayev@gmail.com;
kamilhadi@gmail.com; nailyasalikhova66@gmail.com.
�To whom correspondence should be addressed.

Manuscript received: 2019-09-10; accepted: 2019-09-25

the solving of a quadratic programming problem that
is NP-hard. The only solution is discretization and a
brute-force algorithm. The quantum algorithm[4] uses
the quantum maximum search[5], which is based on the
quantum Grover’s search algorithm[6]. It achieves a
quadratic speed-up compared to the known classical
algorithm.

1.1.2 Perceptron
The perceptron method is based on the idea of a
random sampling of hyperplanes and checking whether
a candidate hyperplane classifies training data well. The
quantum algorithm for candidate hyperplane checking
also uses the quantum Grover’s search algorithm and
again provides a quadratic speed-up compared to the
classical algorithm[7, 8].

1.2 Nearest neighbour algorithms

The k-Nearest Neighbor (k-NN) algorithm relates an
object to the class of the majority of its k-nearest
neighbors in the multidimensional feature space. In the
learning process, the distances between the unclassified
objects and those that have been previously classified
are calculated. The main disadvantage of this classical
algorithm is its high computational complexity, which
increases quadratically with the number of objects.

Obviously, the k-NN algorithm’s solution to the
classification problem has an inherent parallelism. This
fact is exploited in quantum approaches to k-NN



Farid Ablayev et al.: On Quantum Methods for Machine Learning Problems Part II: Quantum Classification Algorithms 57

classification. In the quantum case, thanks to the
phenomenon of quantum superposition, we can calculate
the distances between the unclassified object and all
other objects in the quantum parallel mode, and encode
this information in amplitudes. A partial measurement
of the corresponding qubits of the quantum register with
a certain probability gives information about the most
appropriate class label for the unclassified object.

Section 4 presents two variants of quantum versions
of k-NN algorithms. The Hamming distance is used as a
metric for vector proximity. Both algorithms can be split
into two stages: the preliminary stage and the main stage.
The preliminary stage of each algorithm (the procedure
presented in Section 4.1) is an algorithm in the quantum
branching program model that is used for reading data.
The main stage of each algorithm is a quantum circuit
that does not read input data. The first k-NN quantum
algorithm[9] is an analog of the classical weighted NN
algorithm, where k is a number of all training vectors.
The second k-NN quantum algorithm[10] is an analog of
the classical NN with one parameter: the threshold value
t . This threshold is used for selecting nearest neighbors,
based on a Hamming distance from the test vector of at
most t .

The third quantum algorithm presented in Section
5 is another interpretation of the NN algorithm. This
algorithm is presented in a quantum query model.
It works with sparse training vectors and can show
up to quadratic speed-up comparing to the classical
algorithm[11]. The main idea of the classical approach
is to choose the nearest neighbor and assign its class to
the test vector (i.e., it is the k-NN algorithm for k D 1).
The quantum method can speed-up the nearest neighbor
vector search using the quantum algorithm for maximum
search, which is based on Grover’s search algorithm.

2 Preliminaries

The classification problem is the task of assigning a new
object to one of a set of predefined classes f0; 1; : : : ;D�
1g. Each object is represented as a vector in the Rn space,
where each element of the vector is a description of one
of the object’s features. A training set of input vectors
x1; : : : xm 2 Rn is required, with the corresponding
output values y1; : : : ym 2 f0; : : :D � 1g.

The NN method is a well-known approach to
classification and clustering problems. We consider the
classification problem[12, 13] in this review. The algorithm
is a metric algorithm, meaning that a metric is defined in

the feature space. Its essence lies in the idea that the new
object belongs to the same class as its nearest neighbor
from the training set. The k-NN method generalizes the
NN method by stipulating that the new object belongs
to the class of the majority of its k-nearest neighbors. In
classification problems with an even number of classes,
k is an odd number, so that the same number of nearest
neighbors will not have different classes. Problems with
an odd number of classes, give rise to an ambiguity
problem that can be solved by applying the weighted
nearest neighbor method, in which the value of a weight
function wi is assigned to the i-th nearest neighbor of
the new object.

The weight function is one of the parameters in the
weighted nearest neighbor method that is chosen by the
researcher. It assesses the degree of importance of the
i-th neighbor for classifying a new object or test object.
This function is non-negative and does not increase in
i . It may depend on the distance (metric value) from the
new object to its i -th nearest neighbor !i D !.d.x; xi //,
where x is a new object; or from the number of the
nearest neighbor !i D !.i/. For example, as a weight
function, depending on the number of the nearest
neighbor of a new object, a geometric progression
!.i/ = .ıi6k/ � qi , 0:5 6 q 6 1 can be taken, where
ıcondition is 1 if the condition is true and 0 otherwise. The
definition of ! means that the element with the higher
index has a larger weight, but elements with indexes
greater than k do not have any weight.

We thereby obtain a variant of the method of k-
exponentially weighted nearest neighbors, in which the
new object belongs to the class that has the greatest total
weight among its k-nearest neighbors. If !.i/ D 1 and
i < k, then the algorithm corresponds to the method of
k-NN.

In general, the weighted nearest neighbor algorithm
can be presented as follows:

y D argmax
y2Y

X
i2f1;:::;kg; and yiDy

!i (1)

where Y D f0; 1; : : : ;D � 1g and y is the class label
for the new object. The number of neighbors k and the
metrics are parameters of the model, and are chosen by
the researcher.

3 Quantum Algorithms for Binary
Classification

We start with binary classification because it is the



58 Big Data Mining and Analytics, March 2020, 3(1): 56–67

simplest version of the problem, but the algorithms can
be modified to deal with more classes. Here we present
the problem formally.

Binary classification problem. Given a sequence
of input vectors x1; : : : ; xm 2 Rn and a sequence of
corresponding output values y1; : : : ; ym 2 f�1; 1g, find
a function F W Rn ! f�1; 1g that classifies an input
data item.

3.1 SVM

The SVM is a well-known algorithm for the
classification problem[1]. For function F , we can write
the following:

F.x/ D sign

 
nX
iD1

xiwi C w0

!
D sign..x � w/C w0/

(2)
where x D .x1; : : : ; xn/ 2 Rn, the coefficients w D
.w1; : : : ; wn/ 2 Rn and w0 2 R are parameters of the
algorithm, .x �w/ is the inner product of the vectors, and
the hyperplane .x � w/C w0 separates two classes.

As a plane, we choose the farthest one of the nearest
vectors. The closest vectors to the plane are called
“support vectors” and should be such that .xi � w/ C
w0 D yi or, equivalently, yi ..xi � w/C w0/ D 1. For
finding the parameters of the plane, we should maximize
the distance between different classes with 2=jjwjj

or, equivalently, minimize 0:5jjwjj2. The minimization
problem can be solved with the following conditions:

yi ..xi � w/C w0/ > 1; i 2 f1; : : : ; mg (3)

Based on the Kuhn–Tucker theorem, we can replace
the problem by the dual formulation of the Lagrange
function:

L.w;w0; �/D 0:5.w �w/�
mX
iD1

�i .y
i ..w �xi /�w0/�1/

! min
w2Rn;w02R

max
�2Rm

(4)

with the following conditions for i 2 f1; : : : ; mg:
� �i > 0;
� �i D 0, or .xi � w/ � w0 D yi .
At the same time, we have the following conditions:8̂̂̂̂

<̂
ˆ̂̂:
@L
@w
D w �

mX
iD1

�iy
ixi D 0I

@L
@w0
D �

mX
iD1

�iy
i
D 0

(5)

Therefore, we obtain the next relation between �

and w:

8̂̂̂̂
<̂
ˆ̂̂:
w D

mX
iD1

�iy
ixi I

mX
iD1

�iy
i
D 0

(6)

Finally, we obtain the following optimization problem
on the � variables:

L.�/ D
mX
iD1

�iC0:5

mX
iD1

mX
jD1

�i�jy
iyj .xi �xj /! max

�

(7)
with the following conditions for i 2 f1; : : : ; mg:

� �i > 0;

�
Pm
iD1 �iy

i D 0.

In a case of a non-linear separation between classes,
we can add errors �i ; in that case yi ..w �xi /Cw0/ > 1�

�i . The minimization function is replaced by 0:5jjwjj2C
C
Pm
iD1 �i , where C is a constant that is a parameter

of the algorithm. The Lagrange function in Eq. (4) is
replaced by

L.w;w0; �; �; ˇ/ D 0:5jjwjj2 C C
mX
iD1

�i�

mX
iD1

�i

n
�i
�
.w � xi / � w0

�
� 1C �i

o
�

mX
iD1

ˇi�i (8)

with �i and ˇi > 0. The relation between �; ˇ and w; �
can be obtained using an equation similar to Eq. (6). At
the same time, we obtain the additional equality C �
ˇi ��i D 0. Because ˇi > 0, we get �i 6 C . The final
minimization problem is

L.�/ D
mX
iD1

�iC0:5

mX
iD1

mX
jD1

�i�jy
iyj .xi �xj /! max

�

(9)
with the following conditions for i 2 f1; : : : ; mg:

� C > �i > 0;

�
Pm
iD1 �iy

i D 0.

If the input data is not linearly separable, then we can
replace the inner product .xi � xj / by another function
k.xi ; xj /, which is called the kernel of the SVM
algorithm. Typically, researchers choose the following
functions as possible kernels: .xi �xj /d and .xi �xjC1/d

for some constant d ; or e� jjx
i�xj jj2 for some constant

 > 0.
In the general case, L.�/ can have several local



Farid Ablayev et al.: On Quantum Methods for Machine Learning Problems Part II: Quantum Classification Algorithms 59

minimums, and gradient-based methods are unhelpful.
In that case, the problem is NP-hard. We can apply
discretization and then use brute force or analog
algorithms. We can also apply the Grover’s search to this
problem and obtain a quadratic speed-up. A description
of the algorithm follows.

Supposing that " > 0 is a given precision for our
solution, then we can split the segment Œ0IC � to
points with interval "; these points will be possible

solutions. There are d D 1 C
C

"
points for one �i ,

so the j -th point is �i D " � j , for j 2 f0; : : : ; mg.
Enumerating all possible solutions .�1; : : : ; �m/ with
precision ", the solution number q D

Pm
iD1 ji � .d C

1/i�1 is .�q1; : : : ; �
q
m/ D ." � j1; : : : ; " � jm/ for ji 2

f0; : : : ; dg and i 2 f1; : : : ; mg. We can obtain q by
.j1; : : : ; jm/ and vice versa.

With the function f W f0; : : : ; .d C 1/m � 1g ! R
as f .q/ D L.�q1; : : : ; �

q
m/, the problem is a maximum

search for the function f . The quantum version of the
algorithm is presented as Algorithm 1 (QSVM represents
Quantum Supporting Vector Machine).

The complexity of the quantum algorithm is presented
in Property 1 and can be compared with the complexities
given in the subsequent properties.

Property 1. The expected quantum query complexity
of the quantum version of the learning phase for the SVM

algorithm is height.QSVM/ DO
��C
"

�m=2
m2Cm2n

�
.

Proof. O.m2n/ is required for precomputing all of
the inner products. The maximum search algorithm
then computes the function f . The complexity of
computing f is O.m2/ and the size of the search space

is
�C
"

�m
. Hence, the complexity of the maximum

search is O
��C
"

�m=2
m2
�

and the total complexity is

O
��C
"

�m=2
m2 Cm2n

�
.

Algorithm 1 QSVM (x1, . . . , xm/. Quantum version of the
SVM learning phase.

for i 2 f1; : : : ; mg do F Precomputing all inner products
.xi � xj /

for j 2 f1; : : : ; mg do
ipi;j  .xi � xj /

end for
end for
q  Grover max.0; .d C 1/m � 1; f /
� �

q

1
; : : : ; �

q
m

w  
Pm

iD1 �iy
ixi

return w

For comparison, the classical algorithm has the
following complexity.

Property 2. The query complexity of the learning
phase for the SVM algorithm is height.SVM/ D

O
��C
"

�m
m2 Cm2n

�
.

Note that the different approach to the solution given
in Ref. [14] achieves an exponential speed-up.

3.2 Perceptron

The perceptron is a simple Artificial Neural Network
(ANN). It can also be considered as a building block for
ANNs[2] and as a modification of the SVM algorithm[3].
Wiebe et al.[7, 8] suggested a quantum algorithm for
training a classical perceptron that shows a quadratic
speed-up. The algorithm is based on Grover’s search
algorithm[6].

In the classical model, the function F can be written
as follows:

F.x/ D sign

 
nX
iD1

xiwi C w0

!
D sign.x � w C w0/

(10)
where x D .x1; : : : ; xn/ 2 Rn is the input, w D .w1;
: : : ; wn/ 2 Rn and w0 2 R are parameters of the
algorithm; x � w is the inner product of the vectors, the
hyperplane x �wCw0 separates two classes, and w and
w0 should be chosen such that yi .w � xi C w0/ > 0.
There is an assumption that all training vectors are
separated by a margin of  in the feature space.

The idea of the classical algorithm is to invoke
random sampling of .w;w0/ and check whether the
hydroplane classifies the training set correctly. The
classical algorithm requires O.mn/ to search for the
existence of a pair .xi ; yi / that is misclassified; that is,

yi .w � xi C w0/ < 0. O
�

log
1

"2

�
samples need to be

checked to get the correct one with error probability "2

for some constant " > 0.
Property 3. The query complexity of sampling

algorithm A for perceptron is height.A/ D

O
�
nm log

1

"2

�
, where " > 0 is a constant and

the training vectors are separated by a margin of  in
the feature space.

Quantum algorithm for perceptron training. The
quantum algorithm operates with a quantum register
j i of dlog2me qubits. As a function for oracle,
we use fw.i/ D Fw.xi ; yi /, where Fw.xi ; yi / is a
Boolean-value function that is 1 if and only if the
vector xi is misclassified. We use the amplitude



60 Big Data Mining and Analytics, March 2020, 3(1): 56–67

amplification version of the Grover’s search algorithm
to find misclassified vectors. The query complexity
of the procedure is O.

p
mn/. As in the classical

case, we invoke random sampling of .w;w0/ for K D

O
�

log
1

"2

�
times. The algorithm is presented as

Algorithm 2.
As was proven in Ref. [11], if K D log3=4 " for some

" > 0, then the algorithm returns the result with error
probability "2. The complexity of the algorithm is
presented in the following property.

Property 4. The query complexity of Algorithm 2

is height.QPerceptron Trnning/ D O
�
n
p
m log

1

"2

�
,

where " > 0 is a constant and the training vectors are
separated by a margin of  in the feature space.

4 Quantum Nearest Neighbour Algorithms

We consider the classification problem for D classes,
assuming that the input vectors are binary or at least
represented in binary form. Here we present the problem
formally.

Problem. Given the sequence of input vectors
x1; : : : ; xm 2 f0; 1gn and the sequence of corresponding
output values y1; : : : ; ym 2 f0; : : : ;D � 1g, find a
function F W f0; 1gn ! f0; : : : ;D � 1g that classifies an
input data item.

We will call x1; : : : ; xm; y1; : : : ; ym the training data
and x1; : : : ; xm the training vectors. The argument of F
is a test vector.

4.1 Training set superposition construction
subroutine

A utility procedure will be used in the quantum
algorithms of this section. The procedure is an algorithm
in the quantum branching program model, and it is

Algorithm 2 QPerceptron Trnning (x, (x1, : : :: : :: : : , xm)).
Quantum version of the preception training procedure.

found False
for i 2 f1; : : : ; Kg do

.w;w0/ Random.N .0;1//
j  Grover.1;m;F.w;w0//

if j D �1 then
found True
break; F Stopping the for-cycle

end if
end for
return .w;w0/

required to store a superposition of training vectors in a
single quantum state of n qubits; that is, it needs to get
the following quantum state:

jT i D
1
p
m

mX
jD1

jxj i (11)

Trugenberger[15] introduced an algorithm for
generating this state unitarily from a simple initial state
of n qubits.

Property 5. If n is an input vector size and m is the
number of input vectors in a training set, then there is an
algorithm A for constructing the quantum state jT i. The
algorithm has the following complexity properties:
� size.A/ D 2nC 2I
� height.A/ D mI
� time.A/ D O.mn/.
Let us construct the algorithm A as the proof of the

property.
We use three registers. The first is a register j'i of n

qubits for storing input vectors xj ; the second register is
a utility register jui D ju1i ju2i of two qubits; and the
third is a register jvi of n qubits that is holding memory.
The full initial state is
j 10 i D j'i jui jvi D j0; : : : ; 0I 01I 0; : : : ; 0i (12)

This state is split into two terms: one corresponding
to the already stored input vectors and another ready to
process a new input vector from the training set. These
two parts are distinguished by the state of the second
utility qubit ju2i. The j0i state is for the stored input
vectors, and j1i is readiness for processing.

Before processing the vector xj , the algorithm
reads it and stores it to the j'i register. This can
be done using the CNOT operator. The controlling
bit is an input bit xjs and the target bit is the s-th
qubit of j'i, where s 2 f1; : : : ; ng. If j'i D j0; : : : ;
0i before the procedure, then after the procedure
j'i D jx

j
1 ; : : : ; x

j
ni. If j'i D jxj1 ; : : : ; x

j
ni before the

procedure, then after the procedure j'i D j0; : : : ; 0i.
Therefore, we can use the same procedure for erasing
the j'i register. That is why we consider an input with
the duplication of each vector xj ; that is, the input
is x1; x1; x2; x2; : : : ; xm; xm. For the next part of the
procedure, we assume that j'i D jxj1 ; : : : ; x

j
ni.

For each input vector xj to be stored, the operations
described below are performed:

j 
j
1 i D

nY
sD1

2CNOT.xjs ; u2; vs/j 
j
0 i (13)



Farid Ablayev et al.: On Quantum Methods for Machine Learning Problems Part II: Quantum Classification Algorithms 61

where xjs and u2 are the control qubits, and vs is the
target qubit.

This operation simply copies the input vector xj into
the memory register of the processing term, identified
by ju2i D j1i.

The next operation works as follows. If the contents
of the input vector and the memory register are identical,
then all of the qubits of the memory register are set to
j1i (this will be exactly the case only for the processing
term):

j 
j
2 i D

nY
sD1

NOT.vs/CNOT.xjs ; vs/j 
j
1 i (14)

where in the CNOT operator, xjs is the control qubit and
vs is the target qubit.

The next operation changes the first utility qubit u1 of
the processing term to a j1i, while keeping it unchanged
for the stored input vectors term:

j 
j
3 i D nCNOT.v1; : : : ; vn; u1/j 

j
2 i (15)

where v1; : : : ; vn are control qubits and u1 is the target
qubit.

This is followed by the controlled normalization
operator:8̂̂̂̂

ˆ̂<̂
ˆ̂̂̂̂:

CSj D j0i h0j ˝ 1C j1i h1j ˝ Sj I

Sj D

0BBBB@
s
j � 1

j

1
p
j

�1
p
j

s
j � 1

j

1CCCCA (16)

for j D 1; : : : ; m
j 
j
4 i D CSmC1�j .u1; u2/j 

j
3 i (17)

This operation separates out the new input vector to
be stored with the already correct normalization factor.

The utility qubit u1 is then restored to its original
value:

j 
j
5 i D nCNOT.v1; : : : ; vn; u1/j 

j
4 i (18)

where v1; : : : ; vn are control qubits and u1 is the target
qubit.

The next operation restores the memory register v to
its original state:

j 
j
6 i D

1Y
sDn

CNOT.xjs ; vs/NOT.vs/j 
j
5 i (19)

where in the CNOT operator, xjs is the control qubit and
vs is the target qubit.

When these operations are complete,

j 
j
6 i D

1
p
m

jX
kD1

jxj I 00I xki C

r
m � j

m
jxj I 01I xj i

(20)

The third register v of the processing term and the
second term in the equation above are then restored to
the initial value j01; : : : ; 0ni:

j 
j
7 i D

1Y
sDn

2CNOT.xjs ; u2; vs/j 
j
6 i (21)

where xjs and u2 are control qubits, and vs is the target
qubit.

At this point, a new input vector can be loaded into
register j'i and the sequence of operations reiterated. At
the end of the whole process, the v-register is exactly in
the state jT i.

The time complexity of the algorithm is O.mn/.
The algorithm is presented as Algorithm 3, where X

is a training set, m is the length of the training set, and n
is the length of each input vector in the training set. The
algorithm constructs a superposition of input vectors of
the training set X .

In the next two subsections, we describe two quantum
k-NN algorithms. The first is from Ref. [9] and the
second is from Ref. [10]. Both algorithms can be split
into two stages: the preliminary stage and the main stage.

The similarity of these two algorithms lies in the
preliminary stage that prepares a superposition of the
training data using Algorithm 3. Their differences are as
follows:
� They have different mechanisms for computing the

distance between vectors;
� The first algorithm changes the superposition of

the training data in the main stage, while the second
algorithm does not change it until the measurement.

Since the preliminary stage of both algorithms has the
time complexity O.mn/, these two algorithms have the

Algorithm 3 Construct Superposition(X, m, n). Quantum
algorithm for constructing superposition of input vectors of
the training set.
j 0i D j'IuI vi D j0; : : : ; 0I 01I 0; : : : ; 0i F The initial
value
for j 2 f1; : : : ; mg do

load xj into the register j'i of j j�1i F result state is
denoted as j j i

j j i  
Qn

sD1 2CNOT.xj
s ; u2; vs/j 

j i

j j i  
Qn

sD1 NOT.vs/CNOT .x
j
s ; vs/j 

j i

j j i  nCNOT.v1; : : : ; vn; u1/j 
j i

j j i  CSmC1�j .u1; u2/j 
j i

j j i  nCNOT.v1; : : : ; vn; u1/j 
j i

j j i  
Q1

sDn CNOT.xj
s ; vs/NOT.vs/j 

j i

j j i  
Q1

sDn 2CNOT.xj
s ; u2; vs/j 

j i

erase j'i using xj

end for
return jvi F superposition in the register v



62 Big Data Mining and Analytics, March 2020, 3(1): 56–67

same time complexity as their classic counterparts. If
a more efficient way to construct the superposition in
O.n/, or to receive the superposition from a quantum
memory device, were to be found, the performance of
these quantum algorithms would be independent of the
number of training vectors. It is impossible to achieve
such an effect with the classical algorithm.

Additionally, if a method of training vectors storage
uses a smaller number of qubits, without affecting the
proportions between the features of the vectors, then it
would be possible to reduce the memory size for these
algorithms.

4.2 Schuld-Sinayskiy-Petruccione (SSP) algorithm

The algorithm, presented in Ref. [9], is a quantum
version of the classical weighted nearest neighbor
algorithm. The idea of the quantum version of
the algorithm is as follows. Firstly, we prepare a
superposition of all vectors from the training set as one
quantum state, using the procedure from Section 4.1.
Second, we compute the Hamming distance between
each training vector and the test vector, and store this into
the amplitude of each training vector in the superposition.
Having done that, if we measure the class qubit, we will
get the appropriate class with high probability. If we
repeat the algorithm enough times, then we can get the
probability distribution, which will carry information
about the average closeness of members of each class to
the test vector (“k  all”).

Only the preliminary stage of the algorithm (the
procedure in Section 4.1) reads input variables; the main
stage is a quantum circuit that does not read input data.

Property 6. If n is the size of an input vector, m is
the number of input vectors in a training set, and D is
a number of classes, then the algorithm SSP–kNN for
classifying a test vector has the following complexity
properties:
� size.SSP-kNN/ D 2nC logD C 1I

� time.SSP-kNN preliminary stage/ D O.mn/I

� time.SSP-kNN main stage/ D O.n/:

The SSP algorithm can be described as follows.
The first step of the algorithm is preparing a

superposition of all of the training vectors into one
quantum state using the construction of a training set
superposition algorithm from Section 4.1.

jT i D
1
p
m

mX
jD1

jx
j
1 ; : : : ; x

j
n ; y

j
i (22)

The algorithm for constructing the superposition of

vectors of the training set has O.mn/ time complexity.
The test vector is represented as jxi D jx1; : : : ; xni.

The second step is to prepare the following initial
state:

j 0i D
1
p
m

mX
jD1

jx1; : : : ; xnI x
j
1 ; : : : ; x

j
n ; y

j
I 0i (23)

This state is made up of three registers: The first
contains the test vector (n qubits), the second contains
the superposition of the training vectors (nC dlogDe
qubits), and the third contains a utility qubit. The part of
the second register that stores yj and contains dlogDe
qubits will be called the “class register”. Initially, we
assign j0i to the last utility qubit.

The third step of the algorithm is to apply the
Hadamard gate to the utility qubit:

j 1i D
1
p
m

mX
jD1

jx1; : : : ; xnI x
j
1 ; : : : ; x

j
n ; y

j
i˝

1
p
2
.j0i C j1i/ (24)

The fourth step is to prepare a state for obtaining
the Hamming distance. We apply the CNOT gate
to jx1; : : : ; xnI x

j
1 ; : : : ; x

j
ni with jx1; : : : ; xni as the

control register and jxj1 ; : : : ; x
j
ni as a target register,

and then apply the NOT gate to reverse the states in
the second register:

j 2i D

nY
sD1

NOT.xjs /CNOT.xs; xjs / j 1i D

1
p
m

mX
jD1

jx1; : : : ; xnI d
j
1 ; : : : ; d

j
n ; y

j
i˝

1
p
2
.j0i C j1i/ (25)

where

d js D

(
1; if jxjs i D jxsiI

0; otherwise.

The fifth step is to apply the unitary operator U , where
U D ei  

2n�; � D I ˝D
j
Ham ˝ I ˝ �z;

D
j
Ham D

nX
sD1

�
�z C I

2

�
;

in which �z is a Pauli-Z matrix. The operator � assigns
the number of zeros in the second register as a phase in
the case of a j0i value of the utility qubit. In the case
of a j1i value of the utility qubit, the operator assigns
the same value, but as a negative. Note that the number
of zeros is the number of unequal bits for jxi and

ˇ̌
xj
˛
;

that is, the Hamming distance between these vectors.



Farid Ablayev et al.: On Quantum Methods for Machine Learning Problems Part II: Quantum Classification Algorithms 63

Denoting this as dHam.x; x
j /, the state after applying �

is

j 3i D U j 2i D
1
p
2m

mX
jD1

.ei  
2ndHam.x;x

j /
jx1; : : : ; xnI d

j
1 ; : : : ; d

j
n ; y

j
I 0i C

e�i  
2ndHam.x;x

j /
jx1; : : : ; xnI d

j
1 ; : : : ; d

j
n ; y

j
I 1i/ (26)

The sixth step is to apply a Hadamard gate on the
utility qubit, and write the phase information of the j -th
state into amplitudes:8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

U2 D I ˝ I ˝ I ˝H I

j 4i D U2 j 3i D
1
p
m

mX
jD1�

cos  
2n
dHam.x; x

j /jx1; : : : ; xnI d
j
1 ; : : : ; d

j
n ; y

j I 0iC

sin  
2n
dHam.x; x

j /jx1; : : : ; xnI d
j
1 ; : : : ; d

j
n ; y

j I 1
�
(27)

The seventh step is to measure the utility qubit. If
the test vector is close to the training vector, then
the probability of a j0i result is high; otherwise, the
probability of a j1i result is high. The probability of
getting j0i is

Pr0 D
1
p
m

mX
jD1

cos2
h  
2n
dHam.x; x

j /
i

(28)

In other words, if there are many training vectors for
which the Hamming distance between them and the test
vector is small, then Pr0 is high.

If we obtain a j0i result, then the next step is
to measure the “class register”. We have a higher
probability of getting a class c 2 f0; 1; : : : ;D � 1g for
classes that have training vectors with smaller Hamming
distances from the test vector. After obtaining a j0i
result from the utility qubit measurement, we have the
following state:

j 5i D
1

p
m � Pr0

D�1X
yD0

jyi ˝
X
lWylDy

cos
 

2n
dHam.x; x

l/jx1; : : : ; xnI d
l
1; : : : ; d

l
n; y

l
I 0i

(29)
The probability of obtaining c-result from the “class

register” measurement is

Pr.c/ D
1

m � Pr0

X
lWylDc

cos2
h  
2n
dHam.x; x

l/
i

(30)

The class c has a higher probability where more
training vectors of this class have a small Hamming
distance from the test vector.

Since for small angles �
�
� <

 

12

�
, sin � � � , and

cos � � 1 � �2, the following statement is true.
(1) If for b vectors among m vectors of the training

set
dHam <

n

6
;

then the following double inequality for the probability
Pr0 is true:

b

m

�
1 �

�  
12

�2�
< Pr0 6 1:

(2) If bc vectors among above b vectors belong
to c class, then the following double inequality for
probability Pr.c/, conditioned on the probability Pr0,
is true:

bc

b
< Pr.c/ 6 1:

For computing the time complexity of the algorithm,
there are n NOT gates and n CNOT gates in the fourth
step, while the fifth step requires 2n gates for the unitary
operator U implementation due to Ref. [16], and there
are two Hadamard gates in Steps 3 and 6. The total
time complexity of the main stage of the algorithm is
therefore 4nC 2.

The algorithm is presented as Algorithm 4 and is
labelled as SSP-kNN.X;m; n; x/, where X is a training
set, m is the length of the training set, n is the length of
each vector in the training set, and x is the test vector. If
we obtain a 1-result from the utility qubit measurement,
then we are unable to obtain a class, and the algorithm

Algorithm 4 SPP-kNN(X, m, n, x). Schuld-Sinayskiy-
Petruccione algorithm.
jT i  Construct Superposition.X;m; n/ F Constructing the
superposition of the training set X : 1p

m

Pm
jD1 jx

j

1
; : : : ; x

j
n ;

yj i

jxi  jx1; : : : ; xni F test vector
jui  j0i F utility qubit
j i  jxi jT i jui F initial state
j i  jxi jT i ˝H jui FH gate to the utility qubit
j i  

Qn
sD1X.xs/CNOT.xs ; x

j
s /j i

j i  U j i F applying operator U for calculating the
Hamming distance
j i  jxi jT i ˝H jui

ut  Measurement.jui/ F measuring the utility qubit
if ut is j0i then

c  Measurement.jyi/ F measure register jyi
end if
if ut is j1i then

c  �1

end if
return c



64 Big Data Mining and Analytics, March 2020, 3(1): 56–67

returns �1 to represent “unknown”.
This algorithm is run enough times as necessary to

obtain a precise picture from the measurement results.

4.3 Ruan-Xue-Liu-Tan-Li (RXLTL) algorithm

In this algorithm, which was presented in Ref. [10], we
are provided with a Hamming distance threshold value
t . The RXLTL–NN algorithm finds all of the training
vectors for which the Hamming distance from the test
vector is at most t , then it assigns the most frequent
class among the chosen set of training vectors to the test
vector.

Property 7. If n is the size of a vector, D is the
number of classes, m is the number of training vectors,
and t is the threshold value for the distance between the
test vector and the vectors of the training set (t 6 n),
then the algorithm RXLTL–NN for classifying the test
vector has the following complexity properties:
� size(RXLTL-NN) D 2nC dlog2 ne C logD C 1I

� time(RXLTL-NN preliminary step) D O.mn/I

� time(RXLTL-NN main steps) D O.n3/:

The proof of the property is attained by describing
RXLTL algorithm below.

The first step of the algorithm is to prepare a
superposition of all training vectors into one quantum
state using the construction of the training set
superposition algorithm outlined in Section 4.1.

jT i D
1
p
m

mX
jD1

jx
j
1 ; : : : ; x

j
n ; y

j
i (31)

The time complexity of this step is O.mn/. The
training set superposition does not change in the main
stage until the measurement step. The test vector is
represented as jxi D jx1; : : : ; xni.

The second step is to prepare the following initial
state:

j 0i D
1
p
m

mX
jD1

jx1; : : : ; xnI x
j
1 ; : : : ; x

j
n ; y

j
i (32)

This state is made up of two registers. The first
contains the test vector (n qubits) and the second is
the superposition of the training vectors (nC dlogDe
qubits). The part of the second register that stores yj and
contains dlogDe qubits will again be called the “class
register”.

The third step is to prepare the state for computing
the Hamming distance. We apply a CNOT operator
to jx1; : : : ; xnI x

j
1 ; : : : ; x

j
ni with jxj1 ; : : : ; x

j
ni as the

control register and jx1; : : : ; xni as the target register.

Then, a NOT gate is applied to reverse the states in the
first register:

j 1i D

nY
sD1

NOT.xs/CNOT.xjs ; xs/ j 0i D

1
p
m

mX
jD1

jd
j
1 ; : : : ; d

j
n I x

j
1 ; : : : ; x

j
n ; y

j
i (33)

If bits xs and xjs are the same, then d js D 1; otherwise
d
j
s D 0. The reversing of the states in the first register

is merely a mathematical trick. The Hamming distance
between xj and x is dHam.x

j ; x/ D
Pn
sD0.1 � d

j
s /.

The fourth step is to compute the Hamming distance
using jd j1 ; d

j
2 ; : : : ; d

j
n i and separate the set of training

vectors that have a Hamming distance with the test vector
of at most t , hence obtaining the following quantum
state:

j 2i D
1
p
m

�X
j2˝

jd
j
1 ; : : : ; d

j
n I x

j
1 ; : : : ; x

j
n ; y

j
I 1iC

X
j…˝

jd
j
1 ; : : : ; d

j
n I x

j
1 ; : : : ; x

j
n ; y

j
I 0i
�

(34)

where ˝ D fj W dHam.x
j ; x/ 6 tg.

The incrementation circuit (a D a C 1) is used for
computing the Hamming distance. Denoting this as
Incds

, the sum
Pn
sD1 d

j
s can be obtained by invoking

Incds
n times. Let us add the third register jai and the

utility qubit jui. Initially, j1i is assigned to the last utility
qubit. Recalling that the meaning d js is reversed, such
that the Hamming distance is less than or equal to t
implies

Pn
sD1 d

j
s > n � t . With g chosen according to

2g�1 6 n 6 2g (i.e., g D dlog2 ne) and l D 2g � n,
then the condition that the Hamming distance be less
than or equal to t can be rewritten as8̂̂̂̂

<̂
ˆ̂̂:

nX
sD1

d js C l > nC l � t I

nX
sD1

d js C l C t > 2g
(35)

If the initial a D l C t , then the condition that
the Hamming distance be less than or equal to t can
be determined by whether the sum of

Pn
sD1 d

j
s C a

overflows or not. g C 1 qubits are required for gettingPn
sD1 d

j
s C a. For checking the condition after getting

a result of
Pn
sD1 d

j
s C a, the most significant qubit is

selected and gets the “overflow check” signal, which
indicates the condition that the Hamming distance be
less than or equal to t .

The fifth step is to apply a partial measurement on the
utility qubit jui. The probability of getting a 1-result



Farid Ablayev et al.: On Quantum Methods for Machine Learning Problems Part II: Quantum Classification Algorithms 65

is Pr1 D j˝j=m. After the measurement, we get the
following state:

j 3i D ˛
X
j2˝

jd
j
1 ; : : : ; d

j
n I x

j
1 ; : : : ; x

j
n ; y

j
I aI 1i;

˛ D
1

p
m � Pr1

(36)

If the result of the measurement of jui is j1i, then the
next step is to measure the “class register”. After the
measurement of the “class register” jyi, the probability
of obtaining class c is Pr.c/ D

P
j2fyjDcg j˛j

2. We
obtain the class that has more vectors from ˝ (the
training vectors with a distance of at most t ) with higher
probability. The final classification result is an analog
for “majority voting” in the classical NN algorithm.

If j˝j D � �m, � 2 .0; 1�, then Pr1 D �:
If ! �� �m vectors among the above � �m vectors belong

to the c class (where ! 2 .0; 1�), then Pr.c/ D !�:
If we repeat the algorithm enough times, we will

obtain the probability distribution, which will carry
information about how close the members of each class
are to the test vector.

The time complexity of the algorithm can be computed
as follows:

time.Incds
/ D

8̂<̂
:
1; if n DD 1I
10; if n DD 2I
2n2 C n � 5; if n > 3

(37)

We invoke Incds
n times. So the total time complexity

of the main stage of the algorithm is O.n3/.
The algorithm is presented as Algorithm 5, and is

labelled as RXLTL–NN.X;m; n; x; t/, where X is a
training set, m is the length of the training set, n is
the length of each vector in the training set, x is the test
vector, and t is a chosen parameter. If we obtain a 0-
result from the utility qubit measurement, then we cannot
obtain a class, and the algorithm returns�1, representing
“unknown”.

5 Quantum Nearest Neighbors Algorithm
with Quadratic Speed-up

In this section, we present a classification method that
is developed for non-binary classification problems.
Wiebe et al.[11] suggested a quantum version of the
NN algorithm with a quadratic speed-up. This quantum
algorithm uses the minimum search algorithm[5] and
subroutines for computing distances between vectors[11].

In the classical algorithm, the function F can be

Algorithm 5 RXLTL-NN(X, m, n, x, t). Ruan-Xue-Liu-Tan-
Li algorithm.
jT i  Construct Superposition.X;m; n/ F Construct a
superposition of the training set X : 1p

m

Pm
jD1 jx

j

0
; : : : ;

x
j

n�1
; yj i

jxi  jx0; : : : ; xn�1i F test vector
g dlog2 ne

l  2g � n

a t C l

jai  a

jui  j1i

j i  jxIT I aIui F initial state

j i  
n�1Q
sD0

NOT.xs/CNOT.xj
s ; xs/j i

for s 2 f0; : : : ; n � 1g do
j i  2CNOT.xs ; u; a0/j i

for r 2 f0; : : : ; n � 2g do
j i  2CNOT.xs ; ar ; u/j i

j i  2CNOT.xs ; u; arC1/j i

end for
j i  NOT.u/j i

end for
ut  Measurement.jui/
if ut is j1i then

c  Measurement.jyi/ F measure register jyi
end if
if ut is j0i then

c  �1

end if
return c

written as the k-NN algorithm for k D 1:
F.x/ D yj , for j D argmin

i2f1;:::;mg

jjxi � xjj (38)

The classical algorithm is a linear search among
vectors x1; : : : ; xm for the minimum of jjxi � xjj. The
procedure for computing the distance between two
vectors has complexity O.n/, so the algorithm has the
following complexity.

Property 8. The classical query complexity of the
k-NN algorithm is height(1NN) D O.nm/.

Quantum version of the nearest neighbor
algorithm. First, the maximum search algorithm[5] is
used; second, distance computing algorithms are used
for computing the distance between vectors xi and x.
Both of these methods were described in the first part of
the paper.

The assumptions are follows:
(1) The input vectors x1; : : : ; xm and x are d -sparse

for some 1 6 d 6 n. In other words, each vector xi has
only d non-zero elements.



66 Big Data Mining and Analytics, March 2020, 3(1): 56–67

(2) Quantum oracles are provided in the form
Ojiijj ij0i ! jiijj ijxij i;
F jiijli ! jiijpos.i; l/i;

where pos.i; l/ is the position of the l-th non-zero
element of xi .

(3) There is an rmax such that 0 6 xij 6 rmax for any
i 2 f1; : : : ; mg; j 2 f1; : : : ; ng.

(4) Each vector is normalized to 1, for convenience.
It is known that for any two vectors a and b, the

following equality holds:
ka � bk2 D kak2 C kbk2 � 2.a � b/ (39)

where a � b is the inner product of a and b. Therefore,
the following property holds:

F.x/ D yj , for j D argmin
i2f1;:::;mg

jjxi � xjj D

argmax
i2f1;:::;mg

.xi � x/2 (40)

The quantum algorithm is presented as Algorithm 6.
The algorithm has the complexity given in the

following property.
Property 9. The quantum query complexity of the

quantum version of the nearest neighbor algorithm is
O.
p
m logm � d2r4max/.

Comments. As already discussed, the algorithm
works for d -sparse vectors, where 1 6 d 6 n. This
means that in the general case, we realize the speed-up
if
p
m > n. This setup is reasonable for a range of

problems, as problems with d -sparse vectors in training
and testing sets are not unusual.

Another restriction of the algorithm is rmax. Typically,
a prepossessing procedure can be performed that
normalizes data and changes rmax. The complexity of
this procedure is O.mn/, but it will be performed only
once, so we do not take account of the complexity of the
peprocessing procedure in the case of a large test set.

6 Conclusion

This paper surveys quantum algorithms for binary
classification and discusses the quantum nearest
neighbor algorithms. It further analyzes the quantum
nearest neighbor algorithms and reveals their quadratic
speed-up over classical algorithms.

Algorithm 6 QNN(x, (x1, . . . , xm)). Quantum version of the
nearest neighbor algorithm.
jxi  x

j  Max inner product.jxi; .jx1i; : : : ; jxmi//

return yj

Acknowledgment

This work was supported in part by the Russian
Science Foundation (No. 19-19-00656) and the Natural
Science Foundation of Guangdong Province, China (No.
2019A1515011721).

References

[1] C. Cortes and V. Vapnik, Support-vector networks, Machine
Learning, vol. 20, no. 3, pp. 273–297, 1995.

[2] F. Rosenblatt, The perceptron: A probabilistic model
for information storage and organization in the brain,
Psychological Review, vol. 65, no. 6, pp. 386–408, 1958.

[3] J. A. K. Suykens and J. Vandewalle, Least squares support
vector machine classifiers, Neural Processing Letters, vol.
9, no. 3, pp. 293–300, 1999.

[4] D. Anguita, S. Ridella, F. Rivieccio, and R. Zunino,
Quantum optimization for training support vector machines,
Neural Networks, vol. 16, nos. 5＆6, pp. 763–770, 2003.

[5] C. Durr and P. Høyer, A quantum algorithm for finding the
minimum, arXiv preprint arXiv: quant-ph/9607014, 1996.

[6] L. K. Grover, A fast quantum mechanical algorithm for
database search, in ACM Symp. on Theory of Computing,
Philadelphia, PA, USA, 1996, pp. 212–219.

[7] A. Kapoor, N. Wiebe, and K. Svore, Quantum perceptron
models, in Advances in Neural Information Processing
Systems, Barcelona, Spain, 2016, pp. 3999–4007.

[8] N. Wiebe, A. Kapoor, and K. M. Svore, Quantum
perceptron models, in Neural Information Processing
Systems, Barcelona, Spain, 2016, pp. 4006–4014.

[9] M. Schuld, I. Sinayskiy, and F. Petruccione, Quantum
computing for pattern classification, in Pacific Rim
International Conference on Artificial Intelligence, Springer,
2014, pp. 208–220.

[10] Y. Ruan, X. L. Xue, H. Liu, J. N. Tan, and X. Li, Quantum
algorithm for k-nearest neighbors classification based on
the metric of hamming distance, International Journal of
Theoretical Physics, vol. 56, no. 11, pp. 3496–3507, 2017.

[11] N. Wiebe, A. Kapoor, and K. M. Svore, Quantum
algorithms for nearest-neighbor methods for supervised
and unsupervised learning, Quantum Information &
Computation, vol. 15, nos. 3＆4, pp. 316–356, 2015.

[12] T. Cover and P. Hart, Nearest neighbor pattern classification,
IEEE Transactions on Information Theory, vol. 13, no. 1,
pp. 21–27, 1967.

[13] K. Fukunaga and P. M. Narendra, A branch and bound
algorithm for computing k-nearest neighbors, IEEE
Transactions on Computers, vol. C-24, no. 7, pp. 750–753,
1975.

[14] P. Rebentrost, M. Mohseni, and S. Lloyd, Quantum support
vector machine for big data classification, Physical Review
Letters, vol. 113, no. 13, p. 130503, 2014.

[15] C. A. Trugenberger, Probabilistic quantum memories,
Physical Review Letters, vol. 87, no. 6, p. 067901, 2001.

[16] C. A. Trugenberger, Quantum pattern recognition, Quantum
Information Processing, vol. 1, no. 6, pp. 471–493, 2002.



Farid Ablayev et al.: On Quantum Methods for Machine Learning Problems Part II: Quantum Classification Algorithms 67

Farid Ablayev received the habilitation
degree (doctor of physics and mathematics-
second level after the PhD level) at Moscow
State University. He is a professor in
Kazan Federal University and Kazan
E. K. Zavoisky Physical-Technical
Institute. His current research interests
include complexity theory, quantum

computing, automata theory, machine learning, and data stream
processing algorithms.

Marat Ablayev received the master
degree from Kazan Federal University in
2005. He is a researcher in Kazan Federal
University and Kazan E. K. Zavoisky
Physical-Technical Institute. His current
research interests include complexity
theory, quantum computing, automata
theory, machine learning, and data stream

processing algorithms.

Joshua Zhexue Huang received the
PhD degree from the Royal Institute of
Technology, Sweden. He is now a professor
in the College of Computer Science
and Software, Shenzhen University, and
professor and chief scientist in the Shenzhen
Institutes of Advanced Technology, Chinese
Academy of Sciences, and honorary

professor in the Department of Mathematics, the University of
Hong Kong. His research interests include data mining, machine
learning, and clustering algorithms.

Kamil Khadiev received the PhD degree
in 2015. He worked in Institute of
Informatics of Tatarstan Academy of
Science, University of Latvia, Smart
Quantum Technologies Ltd, Kazan E. K.
Zavoisky Physical-Technical Institute,
Kazan Federal University. His current
research interests include quantum

computing, quantum algorithms, communicational complexity,
automata theory, branching programs, machine learning, and data
stream processing algorithms.

Nailya Salikhova is a PhD student in
Kazan Federal University. Her current
research interests include quantum
computing, machine learning, and data
stream processing algorithms.

Dingming Wu received the PhD degree
in computer science in 2011 from Aalborg
University, Denmark. She is an assistant
professor with College of Computer
Science & Software Engineering, Shenzhen
University, China. Her general research
area is data management and mining,
including data modeling, database design,

and query languages, efficient query and update processing,
indexing, and mining algorithms.


