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On Quantum Methods for Machine Learning Problems
Part I: Quantum Tools
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Abstract: This is a review of quantum methods for machine learning problems that consists of two parts. The first

part, “quantum tools”, presents the fundamentals of qubits, quantum registers, and quantum states, introduces

important quantum tools based on known quantum search algorithms and SWAP-test, and discusses the basic

quantum procedures used for quantum search methods. The second part, “quantum classification algorithms”,

introduces several classification problems that can be accelerated by using quantum subroutines and discusses

the quantum methods used for classification.
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1 Introduction

Machine Learning (ML) is a rapidly developing area
of computer science, motivated by a sharp growth in
the volume of data that is being transferred, stored, and
processed on a daily basis. Quantum methods bring new
ideas and approaches to machine learning problems.
Over the last decade, several survey and tutorial papers
have been published by mathematicians with a variety
of backgrounds in computer science, placing emphasis
on different machine learning problems. These papers
present several aspects of the application of quantum
methods in machine learning[1–4].

In this review, we focus on two main problems of
machine learning, namely the classification problem
and the clustering problem. Classification is associated
with learning algorithms that group data according to
certain criteria, while clustering aims to find inherent
patterns in the data. In this paper, we consider
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classification as the process by which algorithms
group data based on predefined characteristics, which
is known as supervised learning. Clustering, on
the other hand, is the process of grouping data
without predefined characteristics, which is known as
unsupervised learning.

We present the basic quantum methods, such as the
Grover quantum search and its variants as fundamental
tools. We then demonstrate how these quantum tools
can be useful for accelerating the computations of
classification and clustering problems. Rather than
attempting to cover all known classification and
clustering problems for which quantum subroutines can
be useful, we have chosen what we consider to be
typical tasks as references to demonstrate the power of
quantum subroutines.

The first part of the review is organized as follows.
First, we present the basic notions and formalizations
of qubits and quantum registers, and the quantum
states of qubits and quantum registers. We show the
difference between the classical and quantum registers
and their states, and define the transformations of the
quantum states of quantum registers and methods for
the extraction of information. We present the quantum
circuit, quantum query algorithm model, and quantum
branching program as models for the realizations of
quantum algorithms. In the main section, we present
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the basic quantum procedures used in quantum search
algorithms. We not only give a formal description of
the procedures, but also present them in a form that
can be used for constructing classification problems and
present recent sources for readers to find realizations of
such procedures.

2 Quantum Computing Basics

In this section, we present the basic notions of
quantum computations as found in Ref. [5]. Jozsa[6]

also provided some excellent notes on quantum
computations.

2.1 Qubit

The notion of quantum bit (qubit) is the basis of
quantum computations. Qubit is the quantum version
of the classical binary bit physically realized with a
two-state device. Just like a binary digit, there are two
possible outcomes for the measurement of a qubit: the
value 0 or 1. Whereas the state of a classical bit can
only be either 0 or 1, the general state of a qubit
according to quantum mechanics can be any coherent
superposition of both, which allows computation on 0
and 1 simultaneously. Such a phenomenon is known as
the quantum parallelism.

Formally, a qubit’s state is a column vector j i from
the two-dimensional Hilbert space H2, i.e.,

j i D ˛ j0i C ˇ j1i (1)

where vectors j0i and j1i are the orthonormal bases of
H2, and ˛; ˇ 2 C such that j˛j2 C jˇj2 D 1. Numbers
˛ and ˇ are called amplitudes.

The Bloch sphere is a representation of a qubit’s
state as a point on a three-dimensional unit sphere
(see Fig. 1). Consider a qubit in state j i such that
j˛j2 C jˇj2 D 1, we can then represent amplitudes as

j iDcos
�

2
j0iCei� sin

�

2
j1i ; 06�<2 ; 06�6 

(2)
where i is the imaginary unit, � is the azimuthal angle,
and � is a polar angle of a point on the bloch spere in
Fig. 1.

z

y
x

Fig. 1 Bloch sphere.

If we consider only real values for ˛ and ˇ, then the
state of a qubit is a point on a unit circle (see Fig. 2).
Thus, in the case of real-valued amplitudes, the state of
a qubit is

j i D cos � j0i C sin � j1i , � 2 Œ0; 2 / (3)

2.2 States of quantum registers

A quantum register is an isolated quantum mechanical
system composed of n qubits (a quantum n-register). A
quantum n-register can represent the superposition
of 2n states. This allows us to compute on 2n

states simultaneously. This phenomenon of quantum
parallelism is a potential advantage of quantum
computational models.

Formally, a quantum state j i of a quantum n-
register is described as follows. Let � D �1�2 � � � �n

be a binary sequence. Then the tensor product j�1i ˝
j�2i ˝ � � � ˝ j�ni is denoted by j�i. Let Basis D
fj00 � � � 0i, j00 � � � 1i, : : : ; jbin.i � 1/i ; : : : ; j11 � � � 1ig
be a set of orthonormal vectors, where bin.i/ is
a binary representation of i . Basis forms a basis
for 2n dimensional Hilbert space H2n . The basis
vectors from Basis can also be represented in brief as
j0i ; : : : ; j2n � 1i. Usually, Basis is usually referred to
as computational basis.

A quantum state j i of a quantum n-register is a
complex valued unit vector in 2n-dimensional Hilbert
space H2n that is described as a linear combination of
basis vectors jii, i 2 f0; : : : ; 2n � 1g:

j i D

2n�1X
iD0

˛i jii ; with
2n�1X
iD0

j˛i j
2
D 1 (4)

where j˛i j2 expresses the probability to find the n-
register in state jii when state j i is measured with
regard to Basis. We say that state j i is in the
superposition of basis vector jii with amplitude ˛i . We
will also use the notation .H2/˝n for Hilbert space
H2n to outline the fact that vectors are the states of a
quantum n-register.

Fig. 2 Qubit’s state with real-value amplitudes.
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If a state j i 2 .H2/˝n can be decomposed to the
tensor product of several single qubits, i.e., j i D
j 1i ˝ j 2i ˝ � � � ˝ j ni, j i, it is considered
“not entangled”. Otherwise, if the state can not be
decomposed to the tenser product of several single
qubits, it is called “entangled”. An example of
entangled states are Einstein, Podolsky, and Rosen
(EPR)-pairs.

2.3 Transformations of quantum states

Quantum mechanics postulates that transformations of
quantum states j i 2 .H2/˝n (of a quantum n-register)
are mathematically determined by unitary operatorsˇ̌

 0
˛
D U j i (5)

where U is a 2n � 2n unitary matrix. Such a unitary
transformation is acting on the quantum n-register. A
unitary matrix U can be written in the exponential form

U D eiW (6)

where W is a Hermitian matrix[7].

2.4 Basic transformations of quantum states

Qubit transformations are rotations of � near Ox, Oy, and
Oz axes of the Bloch sphere:8̂̂̂̂

ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:
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Below are several basic transformations (unitary
matrices).
� I is an identity operator. That is, I D R Ox.0/ D

R Oy.0/ D R Oz.0/:

I D

 
1 0

0 1

!
(8)

� X is a NOT operator. NOT flips the state of a qubit.
It is a special case of R Ox.�/—a rotation around the X -
axis of the Bloch sphere by  .

X D

 
0 1

1 0

!
(9)

� S and T are phase transformation operators.8̂̂̂̂
<̂
ˆ̂̂:
S D

 
1 0

0 i

!
I

T D  =8 D ei =8

 
e�i =8 0

0 ei =8

! (10)

They are special cases of the rotation around the Z-
axis of the Bloch sphere: S is rotation by

 

2
and T is

rotation by
 

4
.

� �z is the Pauli-Z gate. It is a special case of
R Oz.�/—a rotation around the Z-axis of the Bloch
sphere by  .

�z D

 
1 0

0 �1

!
(11)

� H is a Hadamard operator. It is the combination
of two rotations: around the Z-axis of the Bloch sphere
by   and around the Y -axis of the Bloch sphere by

 

2
.8̂̂<̂

:̂
H D R Oy

� 
2

�
R Oz. /I

H D
1
p
2

 
1 1

1 �1

!
(12)

The Hadamard operator has several useful properties.
Firstly, since H D H�, for any state of a qubit j i,
we have H.H j i/ D j i. Secondly, the Hadamard
operator creates a superposition of the basis states of a
qubit with equal probabilities. The Hadamard operator

maps the j0i to
j0i C j1i
p
2

. A measurement of this qubit

has equal probabilities to obtain basis states j0i or
j1i. The Hadamard gate is usually used to initialize
the state of a qubit. Thirdly, if a one-qubit state is

in the form j 0i D
ei�

p
2
j0i C

e�i�

p
2
j1i ; applying of

the Hadamard operator to this qubit allows for the
transfer of phase information into amplitudes. After
applying the Hadamard gate to j 0i, we obtain j 1i D
H j 0i D cos� j0i C sin� j1i.

2.5 Quantum circuits

Circuit is a simple and visual way of representing
a sequence of transformations of register states. A
classical Boolean circuit is a finite directed acyclic
graph with AND, OR, and NOT gates. It has n input
nodes, which contain n input bits (a state of n-
register). The internal nodes are AND, OR, and NOT
gates, and there are one or more designated output
nodes. The initial input bits are fed into AND, OR, and
NOT gates according to the circuit, and eventually the
output nodes assume some values. A circuit computes
a Boolean function f W f0; 1gn ! f0; 1gm, if the output
nodes get the value f .�/ for every input � 2 f0; 1gn.

A quantum circuit (also called a quantum network or
quantum gate array) acting on the quantum register is
a realization of the transformation of quantum states
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(states of a quantum register). A quantum circuit
generalizes the idea of the classical circuit, replacing
the AND;OR, and NOT gates with elementary operators
(quantum gates). A quantum gate is a unitary operator
on a small (usually 1, 2, or 3) number of qubits.
Mathematically, if gates are applied in a parallel way
to different parts of the quantum register, then they
can be composed by taking tensor products. If gates
are applied sequentially, then they can be composed by
taking the ordinary product.

Figure 3 illustrates the Hadamard operator (or gate)
and Fig. 4 illustrates the NOT orX gate. If the rectangle
of a gate crosses a line of a qubit then the gate is applied
to this qubit. If the rectangle crosses several lines of
qubits, then it is applied to all of these qubits.

Controlled quantum transformation. Controlled
operator C q.U / (the quantum “if then else” operator)
is implemented by a unitary transformation U that
is applied only if some condition for q qubits is
fulfilled. Supposing that qubits jc1i, jc2i ; : : : ;

ˇ̌
cq
˛

are in one of basis states fj0i ; j1ig, Fig. 5 shows
a quantum circuit that implements operator C q.U /,
which applies a unitary transformation U controlled
by jc1i, jc2i ; : : : ;

ˇ̌
cq
˛

qubits with the condition that
all controlling qubits are in state j1i. This condition is
represented on the circuit diagram in Fig. 5 by black
points. This operator can be represented as
C q.U / jc1i jc2i � � �

ˇ̌
cq
˛
j i D jc1i jc2i � � �

ˇ̌
cq
˛
U j i

(13)
If all the control qubits are in state j1i, the (unitary)

transformation U is applied. If one qubit is in state j0i,
the identical transformation is applied.

The quantum circuit shown in Fig. 6 generalizes the
above controlled quantum transformation. Supposing

Fig. 3 Hadamard gate.

Fig. 4 NOT or X gate.

jc1i �

jc2i �
:::

jcqi �

j i U

Fig. 5 Controlled quantum transformation.

jc1i

jc2i �
:::

jcqi

j i U

D

jc1i X � X

jc2i �
:::

jcqi X � X

j i U

Fig. 6 General form of controlled quantum circuit.

that we need to apply transformation U for j i with
the condition that c1 D 0; c2 D 1; : : : ; cq D 0, such a
circuit is shown on the left side of Fig. 6. The white and
black points describe the conditions of the controlling
qubits (0 and 1) for applying transformation U for j i.

The technical construction of such a circuit is shown
on the right side of Fig. 6. The inversion operator
X is added to those controlling qubits that should be
0. Operator U will then be applied if all controlling
qubits are 1. After the operator U has been applied, we
“return” the controlling qubits in their initial states.

Using this mechanism, an arbitrary control condition
can be implemented. Such controlled transformations
are key transformations for quantum algorithms. The
controlled operator C q.U / itself can be expressed as
a unitary matrix. Two basic controlled operators are
CNOT and CCNOT (or 2CNOT).

The CNOT.a; b/ gate flips the second entry b (the
target qubit) if and only if the first entry a (the control
qubit) is j1i (see Fig. 7).

The CCNOT (or 2CNOT) is a Toffoli gate. The
2CNOT.a; b; c/ gate flips the third entry c (the target
qubit) if and only if the first entry a and the second entry
b (the control qubits) are j1i (see Fig. 8).

At the abstract level, quantum state transformations
are described in terms of linear transformations
of U . Such transformations are implemented by
affecting the quantum register, which means that linear
transformations of U are implemented by “controlled”
actions of type O on the quantum register:

jai �

jbi X

Fig. 7 CNOT gate.

jai �

jbi �

jci X

Fig. 8 CCNOT gate.
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O W jii ! ˇ jj i :

Note that the quantum register can be prepared
in some specific initial quantum state. A quantum
algorithm acts on the quantum register to obtain the
necessary quantum state.

2.6 Information extraction (measurement)

There is only one way to extract information from a
state of a quantum n-register for the “macro” world,
which is to measure the state of the quantum register.
Measurement can also be considered as the second
type of quantum operators, with unitary transformations
being the first.

Different measurements are considered in quantum
computation theory. In this review, we will use only a
measurement in the respect of “computational basis”.
This measurement is described as follows. If we
measure the quantum state

P
i ˛i jii, then we get one

of the basis states jii with a probability j˛i j2.
We can also perform partial measurement of the

state of a quantum register. Considering the case of a
quantum 2-register, let j i be a state of such a quantum
2-register:
j i D ˛00 j00iC˛01 j01iC˛10 j10iC˛11 j11i (14)
Imagining that we measure the first qubit of the 2-

register, the probability of getting j0i is the same as
if we measure both qubits and sum over all of the
probabilities of the j0i outcome on the first qubit:

Pr.j0i/ D Pr.j00i/CPr.j01i/ D j˛00j2Cj˛01j2 (15)
The state of the second qubit after the measurement

is

j 0i D
˛00 j0i C ˛01 j1ip
j˛00j2 C j˛01j2

(16)

In a similar way, we get the probability of getting 1.
Pr.j1i/ D Pr.j10i/CPr.j11i/ D j˛10j2Cj˛11j2 (17)
The state of the second qubit after the measurement

is

j 1i D
˛10 j0i C ˛11 j1ip
j˛10j2 C j˛11j2

(18)

Partial measurement of a state j i of a quantum n-
register for n > 2 is a direct generalization of the case of
partially measuring state j i of the quantum 2-register
to the quantum n-register case.

3 Computational Models and Complexity
Measurements

The computational complexity is based on the
formalization of computation models. This section

defines the main computational models that are used for
quantum search problems.

The computational model oriented for Boolean
functions is defined as

f W f0; 1gN ! f0:1g (19)

Let X D fx1; : : : ; xN g be a set of variables of
function f . Note that the above computational model
can be easily generalized for other general functions.

3.1 Decision trees and branching programs

We consider a deterministic version of the closely
related Decision Tree (DT) and Branching Program
(BP) models of computation[8]. They are closely related.
Following are two versions of DTs and BPs for quantum
generalization.

3.1.1 Graph representation
DT A is a directed leveled binary tree with a selected
starting node (root node). All the nodes V of A are
partitioned into levels V1; : : : ; V`. Level V1 contains
the starting node. Nodes at level Vi are connected to
nodes at level ViC1. At each node in the tree, a Boolean
variable x 2 X is tested. Different from the DT model,
the BP model is not a tree but a leveled acyclic directed
graph in which there could be more than one in-going
edges to a vertex at level Vi from the vertices at level
Vi�1.

The computation of a DT and a BP starts from the
root node. At each node in the graph, a Boolean variable
x 2 X is tested. Depending on the outcome of the
query, the algorithm proceeds to the x D 0 child or the
x D 1 child of the node. Leaf nodes are marked by “0”
or “1”. If for an input � D �1; : : : ; �N , the computation
reaches a leaf node in the tree, it outputs the value of the
function listed at this leaf node.

Usually, the DT model is used when seeking to
minimize computational time (number of queries). The
DT model can be arbitrarily wide. The BP model
is typically used when seeking to minimize both
computational time (number of queries) and memory
(number of nodes).

3.1.2 Linear representation
Let dim.A/ D max

16i6`
jVi j and d D dim.A/. Let S D

fs1; : : : ; sd g be a set of d -dimensional column-vectors,
where si is a vector with all components “0” except one
“1” in the i -th position. We call vector s 2 S a state of
A. State s at each level i , 1 6 i 6 ` represents a node
(by “1” component) where A can be found at that level.
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Next, let Xi � X be a set of variables tested at level i .
A transformation of state s at level i , 1 6 i 6 ` � 1,
is described by a set Qi .Xi / of matrices that depend
on the values of variables Xi tested at that level. State
s.0/ 2 S is an initial state.

DT A can be formalized as

A D hS;Q1.X1/; : : : ;Q`�1.X`�1/; s
.0/
i (20)

Computation on an input � by A is presented
as a sequence s.0/ ! s.1/ ! � � � ! s.`/ of state
transformations determined by the structure of A and
input � . Let s.i/ be the current state at level i , then
the next state will be s.iC1/ D Qi .Xi ; �/s

.i/, where
matrix Qi .Xi ; �/ 2 Qi .Xi / is determined by � for Xi
variables. In the BP model, if x is a variable tested at
level i , Qi .Xi / D fQ

i .x; 0/;Qi .x; 1/g.

3.1.3 Complexity measures
Time and space (memory) are the two main complexity
measures used for computational models. For decision
models of computation, the analogs of these complexity
measures are query complexity and size complexity.
Query complexity is the maximum number of queries
that the algorithm can perform during computation,
which is equal to the depth D.A/ that is the length of
the longest path from the root to a leaf in the decision
tree A. Size complexity is the width of A, denoted by
dim.A/. In addition, bits are used to encode a state at
levels of A, such that size.A/ D dlog2 dim.A/e. For
function f , the complexity measure D.f / refers to the
minimum time needed for computing f , and both of
dim.f / and size.f / refer to the space.

3.2 Quantum query algorithm

The Quantum Query Algorithm (QQA) is a
generalization of the DT model. A QQA A for
computing Boolean function f .X/ is based on a
quantum size.A/-register (on a quantum system
composed of size.A/ qubits). With j starti as an initial
state, the procedure of computation is determined by
the sequence U0;Q;U1; : : : ;Q;U` of operators that
are dim.A/ � dim.A/ unitary matrices.

Algorithm A contains of two types of operators.
Operators Ui are independent of input X , while Q is
the query-operator of a fixed form that depends on the
tested input X . The algorithm consists of performing
U0;Q;U1; : : : ;Q;U` on j starti and measuring the
result, as shown in Fig. 9.

The algorithm computes f .X/ on an input � . The
initial state j starti is transformed to a final quantum

ψ U0
U1 UTQQ

Fig. 9 Quantum query algorithm as a quantum circuit.

state j i that can be measured to get value f .�/. The
final state j i depends on the input � , so j i can
be represented as j � i; the final state also depends
on f .�/, so j i can be represented as j .f .�//i orˇ̌
 f .�/

˛
. These are the notations used in the paper.

3.3 Quantum branching program

Quantum Branching Programs (QBPs)[9–11] are another
known model of computations, and a generalization of
the classical BP model. QBPs and QQAs are closely
related, and each could be considered a variant of the
other depending on the point of view. For example, in
this paper, QBP can be considered as a variant of the
QQA model, which can test only one input variable at a
level of computation.

Following Ref. [11], a QBP A over the Hilbert space
Hd is defined as

A D hTa; j 0ii (21)

where Ta is a sequence of l instructions, Taj D�
xij ; Uj .0/; Uj .1/

�
is determined by the variable xij

tested on step j , and Uj .0/, Uj .1/ are unitary
transformations in Hd , d D dim.A/. Vectors j i 2
Hd are called states (state vectors) ofA, and j 0i 2 Hd

is the initial state of A. Quantum branching program as
a quantum circuit is shown in Fig. 10. A computation
of A on an input � D �1 � � � �n 2 f0; 1g

n is defined as
follows.

(1) A computation of A starts from the initial state
j 0i.

(2) The j -th instruction of A reads the input symbol
�ij (the value of xij ) and applies the transition matrix
Uj D Uj .�ij / to the current state j i for obtaining the
state j 0i D Uj .�ij / j i.

(3) The final state is

xj1 • �������� · · ·

xj2 • �������� · · ·
...

xjl · · · • ��������
|φ1〉

U1(1) U1(0) U2(1) U2(0)

· · ·

Ul(1) Ul(0)

NM


|φ2〉 · · · NM
|ψ0〉




...

|φq〉 · · · NM


Fig. 10 Quantum branching program as a quantum circuit.
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j � i D

0@ 1Y
jDl

Uj .�ij /

1A j 0i (22)

BPs and QBPs are convenient computational models
in complexity theory. It is easy and natural to define
various restricted models for this computational model.
The one that we use here is a read-once model, which
has the restriction that each input variable can be tested
at least once. In this case, we have ` D N , meaning that
the number of computational steps equal the number of
input variables. Note that QQA and QBP in the above
forms present a quantum algorithm in terms of linear
transformations of quantum states by applying unitary
d � d matrices U . Such an abstract linear presentation
is important for the complexity analysis of a quantum
algorithm. However, the programming of the quantum
algorithm uses a different kind of presentation.

3.4 Programming-oriented presentation

3.4.1 QQA
One of the tools for constructing the algorithm is to
change a quantum register. We present here as an
example of important tool for inverting the sign of
amplitude that is one of the main steps in Grover’s
search algorithm.

A w-register can be changed as follows. Let S D
fj1i; : : : ; jwig be the basis states. Any jai 2 S is
represented as ji; j i, where i denotes variable xi tested
in state jai and j corresponds to the j -th xi testing at
the level where jai is located. The query Q performs
the transformation (inverting the sign of amplitude):

Q W ji; j i 7! .�1/xi ji; j i :

Inverting the sign of amplitude for a state jii where
xi is tested can be implemented using an additional

qubit j'i. From j'i D
j0i � j1i
p
2

, the query makes the

following transformation:

Q W ji; j i j'i 7! ji; j i j' ˚ xi i :

Property 1. Supposing j'i D
j0i � j1i
p
2

, the operator

Q performs the “inverting the sign of amplitude”
procedure:

Q W ji; j i j'i 7! .�1/xi ji; j i j'i :

Proof. If xi D 0, then ji; j i j' ˚ xi i D ji; j i j'i D
.�1/0 ji; j i j'i. If xi D 1, then ji; j i j' ˚ xi i D
ji; j i j' ˚ 1i D ji; j i j0˚1i�j1˚1ip

2
D ji; j i j1i�j0ip

2
D

� ji; j i j0i�j1ip
2
D .�1/1 ji; j i j'i. Therefore, ji; j i

j' ˚ xi i D .�1/
xi ji; j i j'i.

After the last transformation, the state of the
algorithm is measured with regard to j0i; : : : ; jw � 1i
and the result is transformed into the answer of the
algorithm according to a predefined rule.

Two most frequently considered types of quantum
query algorithms are exact and bounded error
algorithms. In this work, we will consider only
bounded error algorithms. A quantum query algorithm
A computes f with bounded error, if for every
.x1; : : : ; xN /, for which f .x1; : : : ; xN / is defined, the
probability that A outputs f .x1; : : : ; xN / as the answer
is at least 2=3.

3.4.2 QBP
We change the read-once QBP P to the following
QBP A by modifying its register. Basis states S D
fj1i ; : : : ; jd ig are equipped with ancillary qubits as
follows. State jai 2 S will be modified by adding
state jki and qubit j�i, where k is the index of variable
x 2 X tested in the state jai and j�i, and presents
a Boolean value of the input x tested. The new basis
states are that S 0 will be S 0 D fjki jai j�i W k 2 f1; : : : ;
N g; a 2 f1; : : : ; dg; � 2 f0; 1gg.

From the initial state of jj1i j 0i j0i, where j 0i is
a starting state of Q, the transformation of A moves
through the following sequence:

Q;U1;Q; T;Q;U2;Q; T;Q; : : : ;Q;UN :

The matrix T defines a transition that changes the
testing variable’s index on the current level to the
variable that is tested on the next level:

T W jjzi jai j�i ! jjzC1i jai j�i :

The matrix Q is a query, such that

Q W jki jai j�i ! jki jai j� ˚ xki :

Ui is an operator from QBP P that is oriented for
acting on the basis states of the quantum state. Ui
applies U 0i to jai if j�i D j0i and applies U 1i to jai
if j�i D j1i. We have to apply the query Q twice
for one step of the algorithm in order to get state
j�i D j0i before testing the next input. More precisely,
before applying Q, the qubit j�i is in the state of
j0i. The first application of Q converts jki jai j0i to
state jki jai jxki; the second application of Q converts
jki ja0i jxki to jki ja0i j0i.

3.5 Complexity measures

As the main complexity measures, we use the
following:
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� size.A/ is a number of qubits of the underlying
quantum register.
� dim.A/ is the size of the quantum system; that

is, the dimension of the quantum states of the register
(dim.A/ D 2size.A/).
� height.A/ is the number of queries for a query

model algorithm; height.A/ D N for a quantum
branching program. The standard notation for a number
of queries in the quantum computation literature for the
quantum model isQ.A/ and for the deterministic model
is D.A/.
� time.A/ is a number of basis gates in the quantum

circuit that implements A.

4 Quantum Tools for Quantum
Classification

This section presents some quantum subroutines which
can be used both independently and as the part of other
algorithms. In particular, the controlled normalization
operator is used in the algorithm for constructing a
superposition of the training set, and the operators
for changing the phase of the quantum state by a
value that is proportional to the amount of zeroes
and for transferring quantum state phase information
into the amplitudes subroutine are used in the first
quantum k-nearest neighbor algorithm. The number
incremenntation operation, OR operation, and overflow
check subroutine are used in the second quantum k-
nearest neighbor algorithm.

4.1 Quantum operators

4.1.1 Controlled normalization operator
This gate[12] is designed to divide one part of the
quantum register into two parts, so that the coefficients
of the untouched parts remain unchanged and the two
new parts have the correct normalized coefficients.

Problem. Given a quantum .n C 2/-register and its
quantum state is in the form

j 0i D
1
p
p

k�1X
iD1

jxi0; : : : ; x
i
n�1I 00iCs

p � k C 1

p
jxk0 ; : : : ; x

k
n�1I 11i (23)

How to achieve the following quantum state:

j 1i D
1
p
p

k�1X
iD1

jxi0; : : : ; x
i
n�1I 00iC

1
p
p
jxk0 ; : : : ; x

k
n�1I 10iCs

p � k

p
jxk0 ; : : : ; x

k
n�1I 11i (24)

Solution. Given an n-register and a utility register of
two qubits.

j 0i D
1
p
p
jx10 ; : : : ; x

1
n�1I 00iCs

p � 1

p
jx20 ; : : : ; x

2
n�1I 11i (25)

where 0 6 p 6 1, .x10 ; : : : ; x
1
n�1/ and .x20 ; : : : ;

x2n�1/ 2 f0; 1g
n, and the number p is given.

To separate the second term of the above state (the
first utility qubit state is j1i) into two parts, one where
the state of the second utility qubit is j0iwith coefficient
1
p
p

and the other where the state of the second utility

qubit is j1i with coefficient

s
p � 2

p
; that is, to achieve

the following quantum state:

j 1i D
1
p
p

ˇ̌
x10 ; : : : ; x

1
n�1I 00

˛
C

1
p
p

ˇ̌
x20 ; : : : ; x

2
n�1I 10

˛
Cs

p � 2

p

ˇ̌
x20 ; : : : ; x

2
n�1I 11

˛
(26)

The same operator should convert
ˇ̌
 00
˛

to
ˇ̌
 01
˛
, whereˇ̌

 00
˛
D

1
p
p

ˇ̌
x10 ; : : : ; x

1
n�1I 01

˛
Cs

p � 1

p

ˇ̌
x20 ; : : : ; x

2
n�1I 10

˛
(27)

ˇ̌
 01
˛
D

1
p
p

ˇ̌
x10 ; : : : ; x

1
n�1I 01

˛
Cs

p � 2

p

ˇ̌
x20 ; : : : ; x

2
n�1I 10

˛
�

1
p
p

ˇ̌
x20 ; : : : ; x

2
n�1I 11

˛
(28)

This can be achieved by applying the following
controlled gate to the utility register ju1i ju2i:

CS D

 
I 0

0 S

!
; S D

0@ q
p�2
p�1

1p
p�1

�1p
p�1

q
p�2
p�1

1A (29)

where the first utility qubit ju1i acts as a control qubit
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and the second utility qubit ju2i acts as a target qubit.
Operator CS provides for the adjustment of amplitudes
to the desired values.

Similarly, given the following quantum state:

j 0i D
1
p
p

k�1X
iD1

ˇ̌
xi0; : : : ; x

i
n�1I 00

˛
Cs

p � k C 1

p
jxk0 ; : : : ; x

k
n�1I 11i (30)

The following quantum state

j 1i D
1
p
p

k�1X
iD1

jxi0; : : : ; x
i
n�1I 00iC

1
p
p
jxk0 ; : : : ; x

k
n�1I 10iCs

p � k

p
jxk0 ; : : : ; x

k
n�1I 11i (31)

can be obtained by applying the following controlled
gate to the utility register ju1i ju2i:

CS D

 
I 0

0 SpC1�k

!
;

SpC1�k D

0@ q
p�k
p�kC1

1p
p�kC1

�1p
p�kC1

q
p�k
p�kC1

1A (32)

4.1.2 Changing the phase
This operator[12] changes the phase of the state of the
quantum register by a value that is proportional to the
number of zeroes.

Problem. Given a state j�0i D jm1; : : : ; mni of a
quantum n-register, how to change the phase of the state
by a value that is proportional to the number of qubits
that is equal 0.

Solution. Apply the unitary operator U D ei  2nDm ,

whereDm D
nX
kD1

�
�z C I

2

�
is a linear combination of�

�z C I

2

�
matrices and �z is the Pauli-Z gate. The

result quantum state is
j�1i D U j�0i D ei  2nDm jm1; : : : ; mni (33)

The result is the change of the phase by value
 

2n
k,

where k is the number of zeroes.

4.1.3 Number incrementation operation
Problem. Given an n-bit number a, how to increment
this number (a D aC 1).

Solution[13]. One utility qubit is initially set to j1i.
Let aŒ0�; : : : ; aŒn � 1� be the binary representation of

number a. Increment by 1 flips the least significant
bit. If it was flipped from 0 to 1, the addition should
be stopped; otherwise, proceed to flip the next least
significant bit. Repeat in this way until the bit is flipped
from 0 to 1. The utility qubit can be viewed as a flag
which signals the first time when a bit was flipped from
0 to 1. The utility qubit is j1i as long as it is required to
continue flipping bits and becomes to j0i when bits can
stop being flipped.

The time cost of the number incrementation operation
is measured by the number of elementary gates (NOT,
2CNOT):

time D

8̂<̂
:
1; if n D 1I

10; if n D 2I

2n2 C n � 5; if n > 3

(34)

Algorithm 1 shows the procedure, where a is an n-
bits binary number.

4.1.4 OR operation
Problem. Given t bits, how to apply an OR operation
to them.

Solution. Algorithm 2 shows the procedure, where
v is an n-qubit register. The algorithm requires n � 1
utility qubits.

4.1.5 Overflow check
Problem. Given three integers b, t , and n, such that
t 6 n, how to know if b is greater than or equal to n� t .

Solution. Consider integer k such that 2k�1 6 n 6

Algorithm 1 Increment (a, n)
jai  a F the number is described with n bits: aŒ0�; : : : ;
aŒn � 1�, where aŒn � 1� is the most significant bit.
jai  jai ˝ j1i F initial state
for i 2 f0; : : : ; n � 2g do
jai  CNOT.an; ai /jai
jai  CNOT.ai ; an/jai

end for
jai  CNOT.an; an�1/jai
jai  NOT.an/jai

Algorithm 2 OR (v)
jvi  jvi ˝ j0i˝.n�1/ F initial state
for i 2 f1; : : : ; ng do
jvi  NOT.vi /jvi

end for
jvi  2CNOT.v0; v1; vnC1/jvi
for i 2 f3; : : : ; ng do
jvi  2CNOT.vi ; vnCi�2; vnCi�1/jvi

end for
jvi  NOT.v2n�1/jvi
return jv2n�1i F result is the state of the last qubit
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2k , and let integer l D 2k � n. Condition b > n� t can
then be rewritten as(

b C l > nC l � t;

b C l C t > 2k
(35)

Let a D l C t . Condition b > n� t is true if the sum
b C a overflows. Choose log2 t as the most significant
qubits of the result of this sum and use the previously
described OR operation on them to check for overflow.
If the result of this operation is 0 then the condition b >
n � t is met.

Algorithm 3 shows the procedure, where b is an n-bit
number, and n and t are integers.

4.2 Quantum search

This section presents a quantum solutions for search
problems that are faster than classical solutions.

4.2.1 Search problem
Given a function f W ŒN � ! f0; 1g, find the x 2 fL;
: : : ; Rg � ŒN � such that f .x/ D 1. The function f is
computed by Oracle.

4.2.2 Classical algorithm and complexity
If we consider deterministic algorithms, the only way
to find the required x is the brute-force linear search
algorithm. If we consider randomized (probabilistic)
algorithms, for set f �1.1/ D fx W f .x/ D 1g, there
exist efficient algorithms. Let t D jf �1.1/j, if one of
x 2 ŒN � is randomly chosen, the probability of getting
the right x is t=N . Therefore, in N=t repetitions, we
can find x 2 f �1.1/ with high probability.

4.2.3 Quantum grover algorithm and complexity
Below, we present a basic “maximum/minimum
search” problem that explores the Grover search
algorithm. These quantum algorithms play essential
roles as subroutines in different quantum algorithms
for classification problems. Originally, the Grover
algorithm was developed for the “single one search”
problem[14].

Single one search problem. Given a function f W

ŒN � ! f0; 1g, find the x 2 fL; : : : ; Rg � ŒN �, such

Algorithm 3 Overflow check (b, n, t)
jbi  b

k  choose k from condition 2k�1 6 n 6 2k

l  2k � n

a l C t

jbi  jbi C a

m choose log2 t as the most significant qubits of jbi
return ORjmi

that f .x/ D 1. It is known that there is only one
x 2 fL; : : : ; Rg having f .x/ D 1. The function f is
computed by Oracle.

Consider a quantum register j i with N quantum
states or log2N qubits. The state x 2 ŒN � is
corresponding to solution x. We start from the state of
equal amplitudes for all states, then we apply query to
Oracle operator Q that inverts the amplitude of Ox 2
f �1.1/; i.e., Q W jii ! .�1/f .i/ jii. After that we
apply diffusion operator D:

D D

0BBBB@
2
N
� 1 2

N
� � �

2
N

2
N

2
N
� 1 � � �

2
N

::: � � �
: : :

:::
2
N

2
N

� � �
2
N
� 1

1CCCCA D
H˝ log2NRH˝ log2N (36)

R D

0BBBB@
�1 0 � � � 0

0 0 � � � 0
::: � � �

: : :
:::

0 0 � � � 0

1CCCCA (37)

The diffusion operator rotates each amplitude near
the mean of all amplitudes. The repetition of query
and diffusion operators increase the amplitude of Ox 2
f �1.1/. In

 

4

p
N steps, we will get the maximal

amplitude of the solution Ox. After measurement, Ox will
be obtained with high probability. Algorithm 4 shows
the procedure.

Property 2[14]. Grover’s search algorithm A has
query complexity of height.A/ D O.

p
R � L/ D

O.
p
N/ and error probability ofO

�
1

N

�
for the single

one search problem.
In a case of multiple solutions for t D jf �1.1/j > 1,

the property below holds.
Property 3[15, 16]. Grover’s search algorithm

Algorithm 4 Grover .L, R, f/
j i  j0i F The initial value
j i  H˝nj i FWe obtain equal amplitudes
for i 2 f1; : : : ;

 

4

p
N g do

j i  Oj i F Query.
j i  Dj i F Diffusion.

end for
Ox  MEASUREMENT.j i/
if f . Ox/ D 0 then F If Ox is not solution, then there is no
solution.
Ox  �1

end if
return Ox
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A0 has a query complexity of height.A0/ D
O
�p

.R � L/=t
�
D O

�p
N=t

�
and an error

probability of O
�
1

N

�
for the multiple ones search

problem, where t D jf �1.1/j.
In a case of an unknown number of solutions, the

property below holds.
Property 4[17]. In a case of unknown number of

solutions t , there is a quantum algorithm A00 with
an expected query complexity of hight.A00/ D
O
�p

.R � L/=t
�
D O

�p
N=t

�
and an error

probability of O
�
1

2

�
for the multiple ones search

problem, where t D jf �1.1/j.
It is known that if the Grover’s search algorithm A

or its variant has a query complexity of height.A/ D
Q.N/ then time.A/ D O.Q.N/ � log2N/, because
the implementation of diffusion operator D requires
O.log2N/ gates from a standard basis.

4.2.4 Amplitude amplification
The amplitude amplification algorithm is a
generalization of Grover’s search algorithm[15].
There are two generalizations: changing the diffusion
operator and changing the query operator. For the
first generalization, assuming that we have a quantum
algorithm with measurement in the end for the single
one search or multiple ones search problems. This
quantum algorithm can be represented by a unitary
matrix A. If the algorithm has the success probability
p, then we can replace the diffusion operator by
ARA�1 and do 1=

p
p steps. We then obtain an

algorithm that finds a solution with high probability.
Property 5[15]. Assuming that there is a quantum

algorithm A for the single one search problem with
measurement only in the end and a small success
probability p. The amplitude amplification algorithm
which extends Grover’s search algorithm by replacing
D by ARA�1 has a query complexity of height.A/ D
O .height.A/ � 1p

p
/ and an error probability of O.p/.

A similar result can be obtained for the multiple ones
search problem.

For the second generalization, supposing that we
have a complex function f with a classical or a
quantum algorithm with measurement only in the end,
such that its running time is T .N /. We can then
implement it in Oracle and the running time of the one’s
search will be Q.N/ � T .N /, where Q.N/ is the query
complexity of the corresponding version of Grover’s

search:
� O.

p
N � T .N // in a case of single one search;

� O.
p
N=t � T .N // in a case of t ones search

problem;

� O

�
height.A/ � 1p

p

�
in a case of amplitude

amplification.

4.2.5 Equal amplitudes preparation

We can prepare
1

m

mX
jD1

jj i using the following

subroutine. Supposing that we have a quantum register
j i ofm quantum states (dlog2.m/e qubits), a quantum
register j�i of m quantum states (dlog2.m/e qubits), a
qubit j�i, and a qubit j�i. Setting j�i D jmi, we then
have the following quantum transformation CMP:(

CMPjiijmij0i ! jiijmij0i, for i 6 mI

CMPjiijmij0i ! jiijmij1i, for i > m:

Algorithm 5 shows the procedure.

4.2.6 Amplitude estimation algorithm
If we do not know the number of ones for function
f , we can estimate the probability of success via
measurement after several iterations; this approach is
called amplitude estimation.

Property 6. For any positive integers k and S , the
amplitude estimation algorithm[15] outputs Qa .0 6 Qa 6
1/ such that

j Qa � aj 6 2 k

p
a.1 � a/

S
C

�
 k

S

�2
with probability of at least

8

 2
when k D 1 and with

probability greater than 1 �
1

2.k � 1/
for k > 2. This

uses exactly S iterations of Grover’s algorithm. If a D
0 then Qa D 0 with certainty, and if a D 1 and S is even,
then Qa D 1 with certainty.

The algorithm is based on Fourier analysis[18], like
the Shor algorithm[19, 20]. This approach can also be

Algorithm 5 Equal ampls base .m, j i/
j i  j0˝dlog2.m/ei F Initial zero value
j i  H˝dlog2.m/ej i

j�i  jmi

j�i  j0i

j�i  j0i

j�ij i  CNOT j�ij i

j ij�ij�i  CMP j ij�ij�i

MEASUREMENT.j�i; j�i/

return j i
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used for eigenvalue estimation[21–23].
As the first and the last step of the algorithm, we

apply the quantum Fourier transform operator FS :

FS W jxi !
1
p
S

S�1X
yD0

e2 ixy=S
jyi; 0 6 x < S:

In the algorithm, we use two quantum registers: the
register j i with N quantum states (dlog2N e qubits)
and the register j�i with S quantum states (dlog2 Se
qubits).

Supposing we have an integer i 2 f1; : : : ; Sg and any
quantum operator U that can be applied to the register
j i. Consider the following operator �iU that can be
applied to the register j�ij i:

�iU W jj ij i ! jj i.U j i/; if j > i � 1I

�iU W jj ij i ! jj ij i; if j < i � 1:

We will use transformation �iO for a query and
transformation �iD for a diffusion. Algorithm 6 shows
the procedure.

One of the applications of the amplitude estimation
algorithm is the estimation of jf �1.1/j[15]; i.e., the
number of arguments for a function f that have a
1-result. The idea is to find the probability of Qa and then
jf �1.1/j � Qa=N .

The traditional approach for amplitude estimation
is not reversible. However, sometimes we need
reversiblity; for example, applying the amplitude
amplification algorithm and getting a result with high
probability. A reversible algorithm[24] uses a coherent
form of majority voting to obtain a reversible analog
for algorithms like amplitude estimation. The property
of this algorithm is presented in Property 7.

Property 7. Let A be a unitary operation that maps
j0˝ni !

p
ajyi C

p
1 � jajjy?i for 1=2 < ja0j 6

Algorithm 6 Amplest .N, S, f/
j i  j0i F The initial value
j�i  j0i F The initial value
j i  H˝ log2N j i F Initialization of the Grover’s search
j�i  FS j�i F quantum Fourier transform
for i 2 f1; : : : ; Sg do
j�ij i  �iOj�ij i F Query.
j�ij i  �iDj�ij i F Diffusion.

end for
j�i  F�1

S
j�i F quantum Fourier transform

x  MEASUREMENT.j�i/

Qa 
�

sin
� x
S

��2
return Qa

jaj 6 1 using Q queries. There exists an algorithm,
such that for any � > 0, there exists an integer k
and a state j i that can be produced and obeys
kj i � j0˝nkijyik2 6

p
2� using a number of queries

bounded above by

2Q

&
ln.1=�/

2
�
ja0j �

1
2

�2
'
:

The basic idea of the algorithm is to prepare k copies
of the state

p
ajyiC

p
1 � jajjy?i, coherently compute

the median via a reversible circuit, and uncompute the
k resource states to find the median of the values of y.

4.2.7 Quantum “maximum search” algorithm
“Maximum” problem. Given a function f W ŒN � !
ŒD�, find the x 2 fL; : : : ; Rg � ŒN �, such that f .x/ D

max
y2fL;��� ;Rg

f .y/, for some integer D > 0. The function

f is computed by Oracle.
There is no better classical algorithm than brute

force. The time and query complexity of the classical
algorithm is O.N/.

Durr and Høyer[25] developed a quantum algorithm
based on the Grover search algorithm from Section
4.2.3. The expected query complexity of the algorithm
is O.

p
N/. Grover max .L;R; f / searches the index

of x 2 fL; : : : ; Rg, which is the maximal element.
Algorithm 7 shows the procedure.

Let Grover .l; r; f / be a quantum subroutine that
returns one of x 2 fl; : : : ; rg, such that f .x/ D 1

with equal probability where l; r 2 ŒN �. If there is no
such x, then the subroutine returns �1. This subroutine
was discussed in Section 4.2.3. Let hm W ŒN � ! f0; 1g
be the function such that hm.x/ D f .x/ > f .m/, for
m 2 ŒN �.

Durr and Høyer[25] proved that the expected query
complexity of the algorithm is O.

p
R � L/ and the

error probability is 0:5 at most. The “minimum”
problem can be defined similarly and the algorithm is
the same, but with hm.x/ D f .x/ < f .m/.

Algorithm 7 Grover max .L;R; f/
m L FWe assume that m is the answer
m0  m

while m ¤ �1 do
m0  m FWe store m in m0 and try to improve the

answer.
m Grover.L;R; hm0/ FWe search index of the

element that is smaller than f .m0/
end while
return m0 F No element is greater than f .m0/.
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4.3 SWAP-test

The SWAP-test is the known quantum procedure for
the equality test of two unknown quantum states j i
and j 0i. The SWAP-test is used in different areas,
including quantum cryptography[26, 27] and the quantum
nearest neighbors algorithm.

“Standard” SWAP-test. The SWAP-test procedure
is described by the following quantum circuit (see
Fig. 11).

PrswapŒj i D j 
0i� is the probability that the SWAP-

test has quantum states j i and j 0i output the result
“j i D j 0i”.

Property 8. For any two different states j i and
j 0i, it is true that

P rswapŒj i D j 
0
i� D

1

2

�
1C j

˝
 
ˇ̌
 0
˛
j
2
�
:

4.4 Distance computing algorithms

Different quantum subroutines can be used for
computing the Euclidean distance between two n-
dimensional vectors. These are used, for example,
in the nearest-neighbor algorithm. Below are some
assumptions.

(1) The input vectors x1; : : : ; xm and x are d -sparse
for some 1 6 d 6 n.

(2) Quantum oracles are provided in the form

Ojiijj ij0i ! jiijj ijxij i;
F jiijli ! jiijpos.i; l/i;

where pos.i; l/ is the position of l-th non-zero element
of xi .

(3) There is rmax such that 0 6 xij 6 rmax for any
i 2 f1; : : : ; mg; j 2 f1; : : : ; ng.

(4) Each vector is normalized to 1, for convenience.
(5) The running time of the algorithm is dominated

by the number of queries made to oracles O and F .

4.4.1 Inner product method
Property 9[24]. Let v1; : : : ; vm 2 Cn be d -sparse unit
vectors such that

max
j2f1;:::;mg; i2f1;:::;ng

jvj;i j 6 rmax; u 2 Cn:

Then the task of finding max
j2f1;:::;mg

jhujvj ij
2 with error

of at most " and with success probability at least 1� ı0

j0i H � H

j .w/i �

j .v/i �

Fig. 11 Quantum circuit.

requires an expected number of combined queries to O
and F that is bounded above by

O

�
.
p
m logm/ � d2 � r4max

"

�
:

If d and rmax are small enough, we have quadratic
speed-up comparing to the classical algorithm.
Additionally, if rmax D �.1=

p
d/, the running time

does not depend on d or rmax .
Before presenting the algorithm, we introduce some

unitary transformations and subroutines. We combine
the results of majority voting for the amplitude
estimation and maximum finding algorithms to obtain
the following result.

Property 10. Assuming that for any j D 1; : : : ; m

and integers y1; : : : ; ym, a unitary transformation
jj ij0˝ni ! jj i

�
p
ajyj i C

p
1 � jajjy?j i

�
for 1=2 <

ja0j 6 jaj 6 1 can be performed using Q queries, then
the expected number of queries made to find min

j
yj

with failure probability of at most ı0 is bounded above
by

O

�
p
mQ

logM � log ı0
ja0j2

�
We can efficiently prepare the sates that store the

inner products for vectors and then apply the algorithm
from Property 10.

Property 11. For any fixed " > 0 and any pair
of d -sparse unit vectors u 2 Cn and vj 2 Cn (where
j 2 f1; : : : ; mg, r0;max > max

i2f1;��� ;ng
ui and rj;max >

max
i2f1;��� ;ng

vj;i ), a state of the form
p
Aj ijyi Cp

1 � jAjj ijy?i can be efficiently prepared where y
encodes jhujvj ij2 within error " and jAj > 8= 2 using
a number of queries

Q 6 12

&
4 . C 1/d2r20;maxr

2
j;max

"

'
:

4.4.2 Other methods
There is another way to compute the distances between
vectors[24], based on computing Euclidean distances
rather than inner products. This alternative method
gives approximately the same speed-up.

4.5 Implementation of the algorithms

There are a range of quantum Software Development
Kits (SDKs) and languages, some of which already
contain implementations of the algorithms that we have
covered in this paper (see Table 1).

Languages and SDKs:
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Table 1 Algorithms implemented in SDKs.
Library GS AA AE MAX

Project Q + � � �

Qiskit (Aqua) + � + �

Rigetti forest SDK + + + �

Microsoft Q# + + + �

Quipper � � � �

� Project Q[28];
� Qiskit[29];
� Rigetti forest SDK[30];
� Microsoft Q#[31];
� Quipper[32].
Algorithms:
� Grover’s Search (GS)—In some languages,

Grover’s search is considered as a partial case of
amplitude amplification;
� Amplitude Amplification (AA);
� Amplitude Estimation (AE);
� Maximum Search Algorithm (MAX).

5 Conclusion

This paper presents preliminary knowledge of quantum
computing, including qubits, quantum registers,
quantum states, basic transformations, quantum
circuits, and information extraction. The fundamental
quantum tools for quantum classification algorithms
are also discussed.
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