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A Semi-Supervised Attention Model for
Identifying Authentic Sneakers

Yang Yang, Nengjun Zhu, Yifeng Wu, Jian Cao, Dechuan Zhan�, and Hui Xiong�

Abstract: To protect consumers and those who manufacture and sell the products they enjoy, it is important

to develop convenient tools to help consumers distinguish an authentic product from a counterfeit one. The

advancement of deep learning techniques for fine-grained object recognition creates new possibilities for genuine

product identification. In this paper, we develop a Semi-Supervised Attention (SSA) model to work in conjunction

with a large-scale multiple-source dataset named YSneaker, which consists of sneakers from various brands and

their authentication results, to identify authentic sneakers. Specifically, the SSA model has a self-attention structure

for different images of a labeled sneaker and a novel prototypical loss is designed to exploit unlabeled data within

the data structure. The model draws on the weighted average of the output feature representations, where the

weights are determined by an additional shallow neural network. This allows the SSA model to focus on the most

important images of a sneaker for use in identification. A unique feature of the SSA model is its ability to take

advantage of unlabeled data, which can help to further minimize the intra-class variation for more discriminative

feature embedding. To validate the model, we collect a large number of labeled and unlabeled sneaker images

and perform extensive experimental studies. The results show that YSneaker together with the proposed SSA

architecture can identify authentic sneakers with a high accuracy rate.
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1 Introduction

The popularity of online retailing increases the
importance of distinguishing between authentic and
counterfeit goods. European Union statistics show that
counterfeit shoes, clothes, and accessories accounted
for about 10% of online shopping transaction volume
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in 2017, resulting in a loss of 43.3 billion Euros.
Romania is losting as much as 403 million Euros
from the sale of counterfeit products each year, which
affects 27 000 jobs. Furthermore, research has shown
that after a consumer purchases a counterfeit product,
his spending on the online shopping platform will
fall by a factor of almost 4. Counterfeiting is a
particularly acute problem in the sneaker market,
because of high profit margins and relatively easy
replicability. Therefore, there are a large number of
authentication requirements, which also generate large-
scale data: one authentication platform generated nearly
4 TB of images in only 7 months. As shown in Fig. 1,
the differences between authentic and counterfeit
sneakers are often subtle and it can be extremely
difficult to distinguish them. Current authentication
methods are inefficient and expensive as they require
specialized organizations or domain experts. Because
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(a)
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Fig. 1 Sampled examples in YSneaker for same class
sneaker. Can you distinguish them? Answer: (a) counterfeit
sneakers; (b) authentic sneakers.

of the difficulty of the task, there remain no effective
semi-automatically methods to assist in authentication.
Deep Convolutional Neural Networks (DCNNs) have
achieved state-of-the-art results on a number of
benchmarks[1–3] and are being applied to a wide
range of practical applications: biomedical detection[4],
recommender systems[5], intelligent agents[6], talent
management[7], etc. Advancements have been made in
unsupervised and semi-supervised DCNNs, with the
development of variational autoencoders[8], adversarial
networks[9], and semi-supervised generative adversarial
networks[10]. With these demonstrations of the power
of DCNN, much attention is now being directed
toward challenging classification datasets, such as
Fine-Grained object Recognition (FGR) tasks, with
DCNN architecture being exploited to better learn
discriminative image part localizations and part-based
features[11, 12]. The task of sneaker authentication is
similar in the need to recognize fine-grained categories,
which requires the ability to handle objects with subtle
inter-class difference and large intra-class variations.
However, existing fine-grained labeled data is usually
insufficient; for example, CUB-200-2011[13] only
contains about 30 training images for each class.
Furthermore, the FGR datasets mainly consist of the
animal breeds (e.g., bird species[14] and dog species[15])
or objects (e.g., car models[16]) that are not easily
transferable to a product identification task. More
importantly, the existing fine-grained datasets only
have a single source image for each instance, but in
real applications it is extremely difficult to make an
accurate product identification from single-source data,
as Fig. 1 demonstrates, previous FGR methods also
require additional information in the form of a bounding
box. To the best of our knowledge, there are no public
datasets especially designed for product identification
tasks.

Aiming at the practical application of the sneaker
authentication task, we introduce a large-scale dataset

named YSneaker, which consists of different brands of
authentic and counterfeit sneakers. For each sneaker
extracts, there are labels at two levels, a coarse label
(i.e., the sneaker category) and a fine-grained label (i.e.,
authentic/counterfeit), multiple image representations
and a contextual description. The dataset includes 14
coarse sneaker categories, covering almost all common
brands, and contains 240 625 unlabeled sneakers and
568 769 labeled sneakers from the authentication results
of 7 domain experts. There are nearly 7 million
images in total, which makes YSneaker much larger
than previous fine-grained datasets and gives it greater
practical application value.

YSneaker can be exploited for many machine
learning and data mining problems: basic classification
problems, including counterfeit detection and
classification into categories; semi-supervised learning
with unlabeled data; crowdsourcing problems that
need to consider different expert capabilities and
instance difficulties; online learning issues; meta-
learning; transfer learning; active learning; novel
class detection; anomaly detection; issues of data
and computational efficiency; large-scale distribution
optimization; opportunities for logical reasoning[17],
etc. In this paper, to verify the application value of
YSneaker, we mainly consider the identification task
for authentication purposes. We implement a Semi-
Supervised Attention architecture (SSA), including a
self-attention structure for different images of a sneaker,
and a novel prototypical loss approach for the data
structure containing unlabeled data. This architecture
is ideally suited to YSneaker because of the multi-
source data. Specifically, different source images have
different levels of importance for identification, which
means that the attention mechanism will be confused
if all of the multi-source images are treated equally.
To solve this problem, the SSA uses a weighted
average of the output feature representations, where
the weights are determined by an additional shallow
neural network. While the previous methods are always
supervised, SSA takes advantage of unlabeled data,
which can further minimize the intra-class variations
for more discriminative feature detection.

In summary, the main contributions of this paper are
as follows.
� We present the YSneaker dataset, which has

practical applications and prospects for large-scale
research projects. As well as the full dataset YSneaker
is made available in a reduced size (YSneaker-small)
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for model exploration;
� We propose SSA as an architecture for semi-

supervised attention-based fine-grained classification
tasks, which is well-suited to YSneaker;
� We comprehensively evaluate SSA against other

methods and find that it achieves superior performance
in real-world applications.

2 YSneaker Dataset

2.1 Details of YSneaker

The data in YSneaker is collected from HuPu, which is
one of the largest and most authoritative sporting goods
websites, and has professional experts to provide the
specialized anthentication services. In the identification
module of the website, there are 7 professional experts
involved in our dataset collection. To become a
professional expert needs to pass a strict examination,
which includs identifying 50 pairs of sneakers from
different brands correctly and supplying reasons for the
judgement of authenticity. After becoming an expert,
a long internship takes place, during which time the
platform will randomly inspect authentication results.
After the internship, site users also can challenge an
expert’s judgements on the platform. Consequently, it
is difficult to become an expert and the identification
results can generally be trusted.

Considering the fact that authentic and counterfeit
sneakers are often very similar, even domain experts
cannot normally identify authenticity from just a single
source image (i.e., the way the sneakers are shown in
Fig. 1). Therefore, in general, sneaker identification
usually takes different local information of the sneakers
into account, such as appearance, tag, midsole, insole,
box logo, stamp, and addisional images (optional)
shown in Fig. 2. To proceed with an authentication, a
user first selects one of the 7 experts, then submits the
above six images of the sneaker taken from specific

(a) Appearance (b) Tag (c) Midsole

(d) Insole (e) Box logo (f) Stamp

…
(g) Extra images

Fig. 2 An illustration of the YSneaker with multiple source
images. Each instance includes: (a) appearance; (b) tag; (c)
midsole; (d) insole; (e) box logo; (f) stamp; (g) extra images
(not indispensable).

angles. Optionally, additional photos can be submitted
to provide extra information. After examining the
multiple source images, the domain expert will give
one of three identification results: authentic, counterfeit,
or uncertain. Uncertainty can occur for a number of
reasons: the expert may be unfamiliar with the brand;
the data provided may be incomplete; the images
could be noisy, etc. Of these, the first reason is the
most common. We consider sneakers given a result of
uncertain to be unlabeled. Users are charged 5 RMB for
each authentication, and can submit the same sneaker to
different experts. When the same sneaker is submitted
by the same user to a different expert, that expert cannot
see the results of previous authentications.

We collected all sneakers identified by the 7 domain
identification experts over a period of 7 months, which
can be represented as fEig

7
iD1. Because of the different

ability levels of the experts, each identified a different
number of sneakers in this period:E1 identified 116 606
sneakers, E2 identified 119 449, E3 identified 60 021,
E4 identified 137 100, E5 identified 106 160, E6

identified 132 680, and E7 identified 137 378. Each
sneaker example includes 6 localized source images
(i.e., Figs. 2a–2f), with any additional images defined
as the seventh source (i.e., Fig. 2h). A contextual
description of the sneaker given by the user is also
collected. Two ground truth labels are created: the
“authentic/counterfeit” label as given by the experts,
and the sneaker brand tagged by users from 14 options
(Nike, Adidas, Jordan, Converse, Puma, Li Ning,
Anta, Reebok, Under Armour, Skechers, New Balance,
Kappa, Asics, or other). The raw pictures are uploaded
in different sizes, so all images are resized to 448�448
for convenience. Table 1 gives a quantitative summary
of the dataset.

Compared to the most widely used representative
fine-grained datasets (i.e., CUB[13], Dogs[15], and
Stanford Cars[16]), YSneaker covers a novel domain,
and is highly associated with practical applications. It
therefore presents a broad range of research prospects.
YSneaker is a large-scale dataset with multiple source
images, and is made available in two benchmark forms:
one is of reduced size with the data from a single
expert for model exploration (YSneaker-small); the
other comprises of the complete authentication results
from all experts (i.e., fEig

7
iD1). Our model is trained

on the YSneaker-small dataset, on which we split the
labeled set into 60% training, 10% validation, and 30%
testing, with all unlabeled instances used for training.
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Table 1 Dataset description. “Instance” is the number of sneakers; “Image” is the number of total images considering all
sources.

Expert
Authentic Counterfeit Unlabel All

Instance Image Instance Image Instance Image Instance Image
E1 43 892 394 926 47 514 362 477 25 200 237 259 116 606 994 662
E2 45 647 417 633 36 488 274 141 37 314 328 691 119 449 1 020 465
E3 33 989 296 626 10 720 80 216 15 312 129 895 60 021 506 737
E4 43 680 378 321 48 220 373 212 45 200 390 038 137 100 1 141 571
E5 50 240 414 378 25 000 186 829 30 920 263 286 106 160 864 493
E6 41 440 378 149 51 120 394 387 40 120 369 165 132 680 1 141 701
E7 45 640 445 997 45 179 352 835 46 559 411 096 137 378 1 209 928
All 304 528 2 726 030 264 241 2 024 097 240 625 2 129 430 809 394 6 879 557

2.2 Issues with the data

There are three main problems with the collected
data and labels: anomalies, disorder, and overlapping
examples. In regard to the first, there are a small number
of anomalous items that are not sneakers (i.e., clothes,
sport pants, bags, etc.), as shown in Fig. 3a. In regard
to the second, the multi-source data may be incomplete
or in an incorrect order, as shown in Fig. 3b. In regard
to the third, a sneaker may be submitted multiple
times for anthentication by the same user, thus creating
duplication or overlap.

To minimize these problems, we exclude problematic
items based on several rules, including the presence

Context:

Brazil 18 

World Cup 

home jersey

Appearance Tag   Midsole

     Insole Box logo Stamp
(a) Anomalous data

Context:

Shoe box stamp 

not found

Appearance Tag Midsole

Insole  Box logo Stamp
(b) Incomplete data

Fig. 3 Noise data: (a) Anomalous data, which can be
identified as clothing from the context and (b) incomplete
data, missing the stamp image, which causes the order
confusion of different source images.

of certain keywords in the contextual description (i.e.,
clothes, bags, sport pants, etc.) and the inclusion of
less than six source images. A sneaker with images
uploaded in a disordered sequence will be treated
as anomalous and its images denoted as duplicates.
The problem of duplicate sneakers submitted by the
same user is dealt with by excluding cases of repeated
combinations of User ID and contextual description.
This is done on the basis that users normally enter
the same information into the description field when
uploading the same sneaker. The number of items
excluded by this preliminary data cleaning is limited.
For example, E1 still has 115 412 valid examples after
these rules are applied.

However, there are still some issues with the
remaining data that could benefit from further research.
Some outliers remain due to miscellaneous products
that are not removed by the detection of keywords in the
contextual information, and some images are of poor
quality due to noisy backgrounds, lack of sharpness, etc.
There is also the possibly of errors in the fine-grained
labeling. Different experts have different identification
capabilities, and even the ability level of the same expert
will change over time. For the purposes of this paper,
considering the strict expert assessment mechanism,
user feedback mechanism, and platform supervision
mechanism, we assume that the majority of labeled
examples are correct.

3 Proposed Method

3.1 Notations

In this paper, without any loss of generality, it
is supposed that there are N instances, including
Nl examples labeled as “authenticity or counterfeit”,
denoted as fxi ; yig

Nl

iD1, and Nu unlabeled instances,
denoted as fxig

NlCNu

iDNlC1. Meanwhile, each instance has
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7 different source images, where the seventh source is
optional and may contain a number of images for each
instance. Thus, a sneaker can be denoted by xi D fxi1 ;

xi2 ; : : : ; xiK g, with a various number of instances.

3.2 Semi-supervised attention model

Accompanying the dataset, we propose SSA, an end-
to-end deep network to conduct the identification task,
as illustrated in Fig. 4. The motivation of SSA is to
exploit the importance of different instances in the
bag (sneaker), and utilize the unlabeled data to better
maintain the manifold structure, which can further
verify the application value of YSneaker.

Specifically, identification through the multiple-
source images can be regarded as a case of Multiple
Instance Learning (MIL), where the label is assigned
at bag level. We propose an attention mechanism-based
invariant aggregation operator, which learns the bag
label probability using the neural networks to solve the
MIL problem by learning the Bernoulli distribution of
the bag label[18]. Meanwhile, we utilize the unlabeled
data to minimize the intra-class variation, which is
used to dynamically update the class center to maintain
the global structure information. In conclusion, the
SSA undertakes two tasks: (1) learning fine-grained
feature representation with the attention-based deep
network; and (2) calculating the loss with the labeled
and unlabeled data.

Previous multi-instance learning pooling operators
(max or mean pooling) have the clear disadvantage
of being pre-defined and difficult to train. Therefore,
an adaptive multi-instance pooling could potentially
achieve better results by adjusting the importance of
different instances. Thus, we operate the attention
mechanism, as shown in Fig. 4, with a weighted average
of instances, where the weights are determined by an

Convolution Pooling

…

Fully connected

Multi-instance 
input

𝒙
𝒊𝟏
𝒍𝒑

…

....

𝑎

⊗

⊕

Fully 
connected

Attention network

𝒙
𝒊𝟐
𝒍𝒑 𝒙

𝒊𝑲
𝒍𝒑 𝒙

𝒊𝑲
𝒍𝒑

Fig. 4 Illustration of the proposed SSA. Specifically,
sneaker is denoted as a bag with various number of instances.
Then, SSA calculats the instance-level representations with
the deep network, and utilizes additional attention-based
network to get the final bag-level representation, which is
used for semi-supervised fine-grained identification.

additional neural network. xi D fxi1 ; xi2 ; : : : ; xiK g are
the K input images for the i -th sneaker, xlp

i1 is the
feature embedding learnt from the lp-th layer by the
deep network for xi1 (i.e., the 2048 dimension feature
output for ResNet18). Thus, xlp

i D fx
lp

i1 ; x
lp

i2 ; : : : ; x
lp

iK g

is the bag of the K instances with feature embedding.
A weight ˛k is determined for each embedding xlp

ik

by an additional shallow neural network that is fully
connected to our framework. The weights must sum to
1, which is invariant to the size of a bag. The weighted
average fulfills the requirements of the fundamental
theorem of symmetric functions[19]. Consequently, the
attention mechanism and fine-grained classification are
conducted in a unified end-to-end framework. The
attention-based pooling can be represented as

xlp

iA D

KX
kD1

˛kxlp

ik (1)

where xlp

iA is the bag representation, and ˛k D h.xlp

ik /=PK
jD1 h.x

lp

ij /, h.�/ is the neural network for calculating
the weight for each instance-level embedding, and can
discover the relationships between instances.

The large amount of unlabeled data must still be
dealt with, so the scenario must be extended to a semi-
supervised process. The unlabeled data is handled by
calculating the class center adaptively. Without any loss
of generality, for Eq. (1) the semi-supervised multi-
instance fine-grained loss (L) is determined as follows,

LD
1

Nl

NlX
iD1

yi log.f .xlp

iA//C
�

NlCNu

NlCNuX
iDNlC1

Ò.xlp

iA ;p/

(2)
where the first term is the loss for supervised
“authentic/counterfeit” identification, f .xlp

iA/ is the
output prediction with weighted bag embedding. The
second term is the semi-supervised prototypical loss
for minimizing the intra-class variation, p is the class
center representation, and Ò can be represented as

Ò.xlp

iA ; p/D

2X
cD1

log

0BBB@ exp.�kxlp

iAzci
� Opck

2
2/X

j

exp.�kxlp

j Azci
� Opck

2
2/

1CCCA (3)

where

Opc D

NlX
iD1

xlp

iAzci
C

NlCNuX
kDNlC1

xlp

kA Ozck

NlX
iD1

zci
C

NlCNuX
kDNlC1

Ozck

;
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Ozck
D max

0BB@ exp.�kxlp

kA � pck
2
2/X

c

exp.�kxlp

kA � pck
2
2/

1CCA ;

pc D

NlX
iD1

xlp

iAzci

NlX
iD1

zci

;

where zci
is 1 if the i -th instance belongs to the c-th

identification class, otherwise it is 0, and Ozck
is the

weight for the k-th unlabeled instance of the class
with the highest probability. FGR differs from previous
recognition tasks in its subtle inter-class differences
and large intra-class variations, which cause difficulties
for classification. In relation to these difficulties, the
prototypical loss designed into SSA addresses two
issues. The first term loss maximizes the inter-class
distance for better classification, while the second
term minimizes the intra-class differences by clustering
the same class examples, noting that we utilize the
unlabeled data to calculate the class center more
accurately. Furthermore, SSA can be intuitively and
conveniently integrated into a bilinear CNN[11], where
the bilinear pooling aggregates the two-stream DCNN
features for fine-grained visual recognition. In fact,
xlp could utilize the bilinear CNN model in SSA, but
the bilinear pooling operation cost is extremely high
and makes the training phase very slow and demanding
on memory resources. Surprisingly, although SSA
only uses ResNet18 in the fine-grained network, the
identification performance is also superior to a bilinear
CNN, which validates the effectiveness of our model. In
the future, we could further integrate the bilinear CNN
model constrainted by low rank.

4 Related Work

Fine-grained classification: The classification task
undertaken by proposed SSA is similar in spirit to
FGR[11, 14, 20], which can generally be classified into
two dimensions: fine-grained feature learning and
discriminative part localization. To better model subtle
visual differences in FGR, Ref. [11] proposed a bilinear
structure to compute the pairwise feature interactions
using two independent CNN, while Ref. [21] proposed
to unify a CNN with a spatially-weighted representation
using a Fisher vector[22]. A large number of works
have proposed to leverage annotations in the form of

bounding boxes and parts to localize significant regions.
However, the heavy involvement of human effort makes
this impractical for real-world large-scale applications.
Thus, Ref. [12] proposed a novel Multi-Attention
Convolutional Neural Network (MA-CNN), in which
part generation and feature learning are mutually
reinforcing, and Ref. [23] proposed a novel Recurrent
Attention Convolutional Neural Network (RA-CNN),
which recursively learns discriminative region attention
and region-based feature representation at multiple
scales in a mutually reinforcing manner. However, these
methods come with high training demands. Meanwhile,
the existing datasets for FGR are for limited tasks
and have insufficient quantities of labeled data, making
them impossible to transfer to the identification task or
to carry out large-scale model validation. Besides, to
the best of our knowledge, the state-of-the-art methods
cannot effectively make use of unlabeled data.

Multi-instance learning: The previous multi-
instance approaches have all utilized the mean pooling
or max pooling[24–26]. These operators are non-trainable
which limits their applicability. On the other hand,
attention mechanisms are widely used in deep learning
for computer vision[27], natural language processing[28],
etc. Recent proposals have been put forward to
adopt adaptively trainable multi-instance pooling.
For instance, Ref. [29] proposed an attention-based
multi-instance method, in which the attention weights
are trained as the parameters of an auxiliary linear
regression model, while Ref. [18] proposed the use
of a two-layered neural network to learn the MIL,
and experiments showed this approach outperforms
commonly used multi-instance pooling operators.
However, these methods are supervised and thus
disregard the unlabeled data.

5 Experiments and Discussion

5.1 Datasets and configurations

YSneaker-small contains 14 brand categories, of
which most data belong to 8 categories (Nike,
Adidas, Jordan, Converse, Puma, Li Ning, New
Balance, Under Armour) with other brands only
adding up to 1600 instances. We therefore examine
these 8 categories in our authentication experiments.
DCNN is considered the state-of-the-art method
for learning discriminative features. Therefore, to
comprehensively evaluate YSneaker, we adopt the
representative DCNN architecture, ResNet18[30], to set
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baselines. The images are randomly flipped before
being passed into the network, but no other data
augmentation is utilized. The base learning rate is set
to 0.001 and optimized with Adam. Finally, Accuracy,
Precision, Recall, and F1-Measure are taken as the
four criteria to measure identification performance.
The parameter � in the training phase is tuned
within f10�6; 10�5; : : : ; 105; 106g. When the variation
between the objective value of Eq. (2) is less than 10�5

in an iteration, we consider the SSA to be convergent.
We run the following experiments on an environment
implemented on NVIDIA K80 GPUs.

5.2 Alternative methods for comparison

Based on the data characteristics, we first set three
baselines: CNN built with all images, MS-CNN, and
MS-Bilinear. Considering that SSA is related to MIL
and fine-grained classification, several multi-instance
methods are used for comparison (DeepMIML[25], MI-
CNN[26], MIL-Att[18], and MI-Net[31]) and two state-
of-the-art fine-grained methods (Bilinear[11] and MA-
CNN[12]) are also compared. These methods are all
supervised, so for the purpose of comparison we train
all of the networks as a regression problem, setting the
confidence of unlabeled data as 0.5, and test with the
labeled authentic and counterfeit instances. In detail,
the compared methods are as follows.
� CNN: Trains a single CNN network with all

source images, with the results being the ensemble of
separate tests.
� MS-CNN: Trains a CNN network for each

source image independently, with the results being the
ensemble of separate tests.
� MS-Bilinear: Trains a bilinear network for each

source image, with the results being the ensemble of
separate tests.
� DeepMIML: Exploits a deep neural network to

generate instance representation for MIML with max
pooling.
� MI-CNN: Trains YSneaker as a multi-instance

network considering label correlation with max
pooling.
� MI-Net: A neural network that aims at solving

MIL problems with 4 extensions (mi-Net, MI- Net, MI-
Net-DS, and MI-Net-RC).
� MIL-Att: A deep attention-based multi-instance

network with attention pooling.
� Bilinear: Models local pairwise feature

interactions in a translational invariant manner, which
is particularly useful for fine-grained categorization.
� MA-CNN: Reinforces part generation and feature

learning with each other, based on convolution, channel
grouping, and part classification sub-networks.

5.3 YSneaker identification results

The single source experimental results are shown
in Table 2. These results validate the effectiveness

Table 2 Baselines on YSneaker-small. All results are evaluated on the test set and reported with Accuracy, Precision, Recall,
and F1-Measure. The results of best performance are bolded.

(%)

Method
Accuracy

Source1 Source2 Source3 Source4 Source5 Source6 Source7 Ensemble
CNN 72.13 78.45 78.12 77.18 82.08 73.87 73.31 82.59

MS-CNN 74.05 79.10 78.76 76.82 82.04 73.84 71.26 82.36
MS-Bilinear 74.15 80.24 79.84 78.05 84.14 75.06 71.46 83.57

Method
Precision

Source1 Source2 Source3 Source4 Source5 Source6 Source7 Ensemble
CNN 70.10 76.24 76.21 74.92 79.07 71.08 75.04 82.48

MS-CNN 73.06 79.78 79.15 74.15 81.57 72.67 72.28 82.98
MS-Bilinear 73.71 79.62 79.74 76.04 83.74 74.23 72.51 83.33

Method
Recall

Source1 Source2 Source3 Source4 Source5 Source6 Source7 Ensemble
CNN 79.30 83.69 82.82 77.52 84.29 75.13 88.22 81.13

MS-CNN 77.97 78.84 79.05 78.01 82.90 71.38 90.39 83.57
MS-Bilinear 76.81 82.16 80.90 78.04 82.35 72.11 90.27 83.27

Method
F1-Measure

Source1 Source2 Source3 Source4 Source5 Source6 Source7 Ensemble
CNN 74.42 79.79 79.38 76.20 81.59 73.05 81.10 81.80

MS-CNN 75.43 79.31 79.10 76.03 82.39 72.19 80.33 82.76
MS-Bilinear 75.23 80.87 80.32 77.03 83.04 73.16 80.42 83.30
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of a multi-source ensemble on the main criteria
(Accuracy and F1-Measure), ensemble performance
is mostly superior to single source performance. The
results of comparisons with multi-instance methods
are shown in Table 3. All of the methods achieve
reasonable performance, which validates the reliability
of YSneaker-small. These results demonstrate that
several state-of-the-art multi-instance methods (MI-
CNN, DeepMIML, and MIL-Att) are superior to the
ensemble methods presented in Table 2, which indicates
the existence of a certain degree of crossed sources
(single source images may contain images from other
sources). The attention-based multi-instance method
(MIL-Att) is superior to the traditional untrainable
methods. However, considering the presence of
unlabeled data, it is still necessary to develop more
advanced models for identification. To explore the
effect of fine-grained methods, we conduct further
experiments. We utilize the state-of-the-art fine-
grained architectures (Bilinear and MA-CNN) modified
as multi-instance methods with unlabeled data for
comparison. SSA-Max and SSA-Mean denote SSA
with max pooling or mean pooling. The results are
recorded in Table 3, and reveal that SSA achieves
superior performance to other fine-grained methods,
and is better than max/mean pooling on most criteria
except Recall, which indicates that the use of unlabeled
data will further improve the performance. The details
are released with the code.

5.4 Investigation of attention

Alongside the test of accurancy, we conduct a

Table 3 Comparison on YSneaker-small. All results are
evaluated on the test set and reported with Accuracy,
Precision, Recall, and F1-Measure. The results of best
performance are bolded.

(%)
Method Accuracy Precision Recall F1-measure

DeepMIML 86.95 81.40 93.51 87.12
MI-CNN 85.52 82.12 88.89 85.37
mi-Net 71.98 81.24 52.69 63.92
MI-Net 76.91 75.64 75.23 75.43

MI-Net-DS 74.52 79.08 62.44 69.79
MI-Net-RC 74.28 71.71 75.02 73.32

MIL-Att 87.00 83.63 91.34 87.31
Bilinear 87.01 86.94 87.48 87.21

MA-CNN 86.33 83.19 91.50 87.14
SSA-Mean 86.82 80.20 92.78 86.03
SSA-Max 88.87 87.41 90.12 88.73

SSA 88.75 90.00 86.64 88.29

recognition performance analysis on the correctly
classified sneakers of Bilinear and SSA (considering
that Bilinear has the second highest performance).
The attention localization is marked as the same as
that in Ref. [12]. The analysis results are presented
in Fig. 5. We find that SSA pays attention to more
discriminative fine-grained localized features (tags and
midsole) in the specified images.

5.5 Investigation of embedding

To explore learned feature representations, we
randomly select 1000 examples for each class and use
t-SNE[32] to visualize the embedded feature. Figure 6
shows the projected feature maps of DeepMIML,
Bilinear, and SSA for the sampled data. From Fig. 6c,
it appears that instances are effectively clustered
by SSA, which validates the assumption that semi-
supervised information would be particularly valuable
for reducing intra-class variation and enlarging inter-
class differences. Furthermore, for the projected feature
maps of SSA, we zoomed into two dense cluster
margins of authentic and counterfeit examples, and
sampled 5 � 5 patches to show the raw images (i.e.,
green points for counterfeit examples and yellow points
for authentic examples) as shown in Fig. 6d. This
reveals that SSA reduces the intra-class variation, as
demonstrated by its capacity to cluster the same class
of counterfeit sneakers, while enlarging the inter-class
difference, as demonstrated by its capacity to correctly
distinguish authentic and counterfeit sneakers even

(a) Bilinear (b) SSA

Fig. 5 An illustration of the local attention learning. The
attention localization is marked with blue shadow.
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Counterfeit
Authentic

(a) DeepMIML

Counterfeit
Authentic

(b) Bilinear

Counterfeit
Authentic

(c) SSA

(d) SSA-Example

Fig. 6 t-SNE visualisation of the sampled data for (a) DeepMIML, (b) Bilinear, (c) SSA, and (d) SSA-Example, where each point
in the patch corresponds to a sneaker. Each instance (sneaker) is with 2048-dimension vector, then they are projected by t-SNE
to two dimensions. For SSA, we have zoomed into two dense cluster margins of authentic (marked with yellow) and counterfeit
(marked with green) examples, and sampled 5���5 patches to show the raw images. The same examples are also displayed for
DeepMIML and Bilinear.

of the same class. However, Figs. 6a and 6b reveal
that DeepMIML and Bilinear have more difficulty to
distinguish the same examples.

5.6 Investigation of convergence

To investigate the convergence of SSA iterations
empirically, the objective function value (i.e., the value
of Eq. (2)) and the classification performance of SSA
in each iteration are recorded in Fig. 7. This clearly
reveals that the objective function value decreases as the
iterations increase, and the classification performance
is stable after several iterations. Moreover, these
additional experimental results indicate that SSA
converges very fast after only 10 epochs.

Fig. 7 Objective function value convergence and
corresponding classification accuracy vs. number of
iterations of SSA.

5.7 Parameter stability

To explore the influence of parameter �, we tune �
in the range of f10�6; 10�5; : : : ; 106g, and record
the average performance in Fig. 8. The results show
that SSA achieves increasing performance as �

decreases, which reflects the trend of using unlabeled
data. Unlabeled data presents more difficulties
for classification, so increasing � will decrease
performance.

6 Conclusion

We introduce the large-scale YSneaker dataset in
the hope of encouraging machine learning research
on a practical, difficult, and important dataset.

106 104 102 100 10− 2 10− 4 10− 6 10−8
0.50

0.55

0.60
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0.70
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0.90

Accuracy
Recall
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Fig. 8 Influence of the parameters ���.
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Accompanying this dataset, we provide a benchmark
method (SSA) for comparison. SSA adopts a self-
attention-based semi-supervised multi-instance CNN
architecture for product identification, which can
exploit the instance correlation and both the inter-class
differences and intra-class variations simultaneously.
The experimental results indicate the promise of
SSA, as sneaker authentication shifts from manual
identification to semi-automatic identification. Only a
fraction of the data is used in this paper, and further
interpretation and a more robust architecture could be
expected to result in better performance and improved
understanding of the data. YSneaker is made available
to encourage further advanced research into many other
machine learning topics.
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