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Prediction of miRNA-circRNA Associations Based on k-NN
Multi-Label with Random Walk Restart on a Heterogeneous Network

Zengqiang Fang and Xiujuan Lei�

Abstract: Circular RNAs (circRNAs) play important roles in various biological processes, as essential non-coding

RNAs that have effects on transcriptional and posttranscriptional gene expression regulation. Recently, many

studies have shown that circRNAs can be regarded as micro RNA (miRNA) sponges, which are known to

be associated with certain diseases. Therefore efficient computation methods are needed to explore miRNA-

circRNA interactions, but only very few computational methods for predicting the associations between miRNAs

and circRNAs exist. In this study, we adopt an improved random walk computational method, named KRWRMC, to

express complicated associations between miRNAs and circRNAs. Our major contributions can be summed up in

two points. First, in the conventional Random Walk Restart Heterogeneous (RWRH) algorithm, the computational

method simply converts the circRNA/miRNA similarity network into the transition probability matrix; in contrast,

we take the influence of the neighbor of the node in the network into account, which can suggest or stress some

potential associations. Second, our proposed KRWRMC is the first computational model to calculate large numbers

of miRNA-circRNA associations, which can be regarded as biomarkers to diagnose certain diseases and can thus

help us to better understand complicated diseases. The reliability of KRWRMC has been verified by Leave One

Out Cross Validation (LOOCV) and 10-fold cross validation, the results of which indicate that this method achieves

excellent performance in predicting potential miRNA-circRNA associations.
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1 Introduction

A decade ago, biologists discovered that circular
RNAs (circRNAs) are present in human cells and
tissue[1]. Compared with linear RNAs, circRNAs
have tended to draw less attention due to their
unusual nature. Nonetheless, with the development
of identification technology, an increasing number of
studies are providing evidence that circRNAs play
significant roles in the whole biological process[2–4]. A
circRNA is a noncoding RNA structured as a closed
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RNA loop and lacking the free ending 5’ and 3’ ends
that are present in linear RNAs. Due to limitations
in earlier detection technologies[5], researchers were
only able to identify those RNAs that have free
5’ and 3’ ends; therefore, closed loop circRNAs
were neglected. With improvements in detection
methods[6], researchers can now use advanced detection
technologies to identify novel circRNAs. Recently,
some researchers have used expression profiles or
RNA sequence data to conduct tissue specificity
experiments[7, 8]. In addition, a growing number of
studies have shown that circRNAs can work or function
as micro RNA (miRNA) sponges[9–11], and circRNAs
can also regulate and modulate the expression of
their ancestral genes[12–15]. Since the beginning of last
century, miRNAs have gradually attracted attention
because of their biomarking function. In recent years,
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research has revealed that miRNAs play a variety of
roles in biological processes[16–18]. Especially, many
studies have been done based on eukaryotes. There is
also much evidence indicating that miRNAs are closely
related to various diseases[19–22]. Therefore, predicting
the potential associations between circRNAs and the
disease-related miRNAs is important for promoting
future work in disease prediction. Beyond that, these
aforementioned works can help people to obtain a
greater overall comprehension of RNAs and related
diseases. Although high throughput technology and
biological experiments have been applied widely
to identify intricate biological associations, such
techniques remain expensive and time-consuming.
Therefore, to predict potential associations between
different biological molecules, many computational
methods have been suggested in order to sharply
reduce the time and cost. The abundance of research
along these lines includes work on the prediction of
candidate diseases related genes[23–25], miRNA-disease
associations[26–29], long non-coding RNA (lncRNA)-
disease associations[30, 31], drug targets[32, 33], disease-
related environmental factors[34], and miRNA-lncRNA
associations[29, 35]. From previous studies we find that
biological networks have been widely and successfully
applied to predict complicated biological associations.
In this study, we propose a novel computational
method called KRWRMC to predict associations
between miRNA and circRNA. Our method uses
the k-Nearest Neighbor (k-NN) algorithm based on
the Random Walk Restart (RWR) method to predict
miRNA and circRNA interactions. The heterogeneous
network is based on three basic subnetworks: a
miRNA functional similarity subnetwork, a circRNA
functional similarity subnetwork, and a miRNA-
circRNA association subnetwork. Some related
information can be disregarded. Taking the miRNA-
circRNA association subnetwork into consideration,
each miRNA entry may be associated with the same
circRNAs, meaning that we can regard the miRNA-
related circRNAs as labels. The circRNA-related
miRNAs can also be regarded as labels for specific
circRNAs. Based on the above idea, we can obtain
new similarity scores between each miRNA pair,
through which some of the miRNA similarity scores
may increase and some may decrease. This can
highlight some miRNA, which are specific neighbors
of miRNA associated with circRNAs, as an increased
miRNA similarity score will stress the association

between a neighbor miRNA of the specific miRNA
and the specific miRNA-related circRNA. We then
follow the same procedures on the circRNA similarity
subnetwork. Finally, the improved RWR method is
adopted on the reconstructed heterogeneous network.

2 Method

2.1 Network

2.1.1 miRNA-circRNA interaction network
To build the miRNA-circRNA interaction network,
an initial miRNA-circRNA associations dataset is
downloaded from the starBase database[36] (http://
starBase.sysu.edu.cn/index.php). starBase is a
comprehensive bioinformatics database containing
a variety of interactions between different biological
molecules, such as lncRNA-miRNA interactions,
miRNA-pseudogene interactions, and miRNA-sncRNA
interactions. starBase includes 130 000+ miRNA-
circRNA interactions, with 276 miRNA entries and
7018 circRNA entries. We select 226 miRNA entries
and 905 circRNA entries from the initial dataset,
as shown in Table 1. Finally, the miRNA-circRNA
interaction adjacency matrix A is constructed, made
up of 19 000+ interactions. In matrix A, an entry A(i,
j) in row i and column j is equal to 1 if miRNA i and
circRNA j are associated, otherwise it is equal to 0.

2.1.2 miRNA functional similarity network
To calculate the miRNA functional similarity score, the
miRNA and its related gene data are downloaded from
the miRTarBase database[37, 38], containing miRNAs
and their target genes (http://mirtarbase.mbc.nctu.
edu.tw/php/index.php). Gene Ontology (GO) data,
downloaded from the Human Protein Reference
Database (HPRD)[39] (http://www.hprd.org/), is then
used to measure the similarity score between each
pair of miRNAs. Based on our initial dataset, the
miRNA-circRNA interaction network has 226 miRNA
entries to extract. After we pre-process the GO data
obtained from the HPRD database, we obtain GO terms
and related genes entries, which are utilized to calculate
the miRNA functional similarity scores.

Some similarity measuring methods have been

Table 1 Number of experimental data.
Number of miRNA-circRNA interactions 19 644

Number of miRNAs 226
Number of circRNAs 905
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proposed by previous studies[40]. The common-term-
based method[40] is adopted here to calculate the
similarity scores, by which the more GO terms are
shared by two different miRNA target genes Gmi

and
Gmj

, the higher is their similarity score. The matrix MS
is denoted as the miRNA functional similarity network,
in which an entry MS(i, j) can be calculated by Eq. (1):

MS.i; j /D

ˇ̌
Gmi
\Gmj

ˇ̌ˇ̌
Gmi
[Gmj

ˇ̌ (1)

whereGmi
andGmj

are the sets of the whole GO terms
of the target genes which are matched by both miRNAs
i and j.

2.1.3 circRNA functional similarity network
To calculate the circRNA functional similarity score,
circRNA target genes are downloaded from the
circBase database[41] (http://www.circbase.org/). There
are 90 000+ circRNA target genes collected in the
circBase database. 905 circRNA entries are derived
from the initial miRNA-circRNA interactions dataset
and its GO terms. Simultaneously, the circRNA-related
gene GO terms are downloaded from the HPRD
database. The circRNA functional similarity network
is denoted as CS, with the entry CS(i, j) calculated by
the following equation:

CS.i; j / D
jGci
\Gcj

j

jGci
[Gcj

j
(2)

where Gci
and Gcj

are the sets of the whole GO terms
of the target genes which are matched by both circRNA
i and j.

2.1.4 Heterogeneous network
Our initial heterogeneous network is constructed based
on three subnetworks: the miRNA-circRNA association
network, miRNAs functional similarity network, and
circRNA functional similarity network.

According to the aforementioned processes,
we know that A D fa.i; j /g

n;l
iD1;jD1 denotes the

miRNA-circRNA association network, AT denotes
the transposed matrix of the miRNA-circRNA
association matrix, MSD fM.i; j /gl;l

iD1;jD1 denotes
the miRNA functional similarity network, and CS D
fC.i; j /g

n;n
iD1;jD1 denotes the circRNA functional

similarity network, where a represents a miRNA-
circRNA node in the miRNA-circRNA association
network, M represents a node in the miRNA functional
similarity network, and C represents a node in the
circRNA functional similarity network. Based on the
above three subnetworks, we realize the heterogeneous

network H as established by Eq. (3):

H D

"
MS A

AT CS

#
(3)

2.2 KRWRMC model

In this study, we propose a computational method
with a heterogeneous network based on the improved
RWR algorithm. The random walk algorithm has been
widely applied to heterogeneous networks for a variety
of biological applications, such as for predicting the
potential associations between diseases and candidate
genes[42–44], miRNA[23, 45, 46] and lncRNA[47–49], and
for seeking drug targets[50, 51]. Therefore, we have
developed KRWRMC to predict associations between
miRNA and circRNA, using the k-NN algorithm based
on the RWR method. The process of building a
KRWRMC model is shown in Fig. 1. Firstly, the
miRNA-circRNA association network is used to build
a k-NN based link graph for miRNA and circRNA,
which are depicted as Km and Kc , respectively, and
calculated in accordance with the below Eqs. (5) and
(6). Secondly, we integrate the functional similarity
network of miRNA/circRNA with the k-NN based
link graph for miRNA/circRNA, denoting the final
miRNA/circRNA similarity network as Wm and Wc ,
respectively. When all of the above steps are complete,
the heterogeneous network H is converted into a
transition heterogeneous network with a multi-label
learning algorithm using the k-NN based link graphs
of miRNA and circRNA. The initial heterogeneous
network only has the weighted relationship between
edge pairs. The greater the weight of the edges, the
higher is the possibility of turning to the node during
the transfer process. After we convert the weighted
matrix into a transition matrix, the RWR algorithm is
applied to the heterogeneous network; this step can
be described as the beginning of the iteration process
on the seed nodes in the graph. Each iteration makes
a choice between selecting adjacent nodes based on
their transition potential or returning to the starting
(seed) node. In this algorithm, the parameter 
 is
used to indicate the restart probability and 1 � 
 to
represent the probability of moving to adjacent nodes.
The probability distribution remains stationary after the
iteration. After converting all the weighted matrixes
and adjacency matrices into transition matrixes, the
heterogeneous network is reconstructed and is defined
as follows:
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Fig. 1 Flowchart of KRWRMC framework. There are
four main steps to construct the model (m is represented
miRNA and c is represented circRNA.). Step 1: Based on
the GO data to establish the miRNA/circRNA similarity sub-
network. Step 2: Based on the miRNA-circRNA network to
build the k-NN based link graph of miRNA/circRNA. Step
3: integrating GO similarity sub-network and its related link
graph. Step 4: Based on the integrated miRNA/circRNA sub-
networks and the miRNA-circRNA sub-network, the final
heterogeneous network was set up. It is clear that the
green lines denote the inferred novel similarity scores, the
yellow ones denote the changing weight scores between the
initial associations, and the black ones represent the initial
association weight scores.

T D

"
Tmm Tmc

Tcm Tcc

#
(4)

If only miRNA functional similarity is taken into
account, some potential associations are neglected in
the miRNA function similarity network. Accordingly,
we could regard circRNA entries which are in the
predicted circRNA-miRNA associations as miRNA
related item labels, which means that when predicting
the probability of associations between a specific
miRNA and circRNA entries, each circRNA entry
can be regarded as a label. Here, a classification
algorithm, multi-label k-NN[52], is adopted to calculate
the potential similarity score between each miRNA-
miRNA pair. Thereby, we build a k-NN based on
the link graph[53] of miRNA. The main idea of
the link graph is that we see the instances that
are being predicted as the labels; for each instance
.mi ; Li / 2 A, mi represents the miRNA items and
Li represents the related labels found in the miRNA-
circRNA associations matrix. On the basis that different
items have different labels, we can use this to measure
the similarity between two items.

The definition of a k-NN based link graph can be
described as follows:

Gm
DfV m; Em

g;

V m
Dfvi j.mi ; Li / 2 Ag;

Em
Df.vm

i ; v
m
j jv

m
i ; v

m
j 2 V

m;

vm
i 2 kNN.vm

j /; v
m
j 2 kNN.vm

i /; i ¤ j /g:

Based on the above definition, we can calculate
the weight of the k-NN based link graph. According
to the k-NN based link graph of miRNA, some
potential associations are created between each miRNA
pairs, which can show or highlight some significant
interactions as follows:

Km.i; j / D
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:̂
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i ; v
m
j / … E

mI

dis.vm
i ; v

m
j /P
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p 2kNN.vm

i
/

dis.vm
i ; v

m
p /
; .vm

i ; v
m
j / 2 E

m

(5)
Euclidean distance is adopted to measure the distance

between the vertices vm
i ; v

m
j , Km; Km is a normalized

matrix based on the row. It is worth remarking that
Km is not a symmetrical matrix. The hidden circRNA
association matrix Kc can be obtained in the same way,
as follows:



Zengqiang Fang et al.: Prediction of miRNA-circRNA Associations Based on k-NN Multi-Label with Random Walk : : : 265
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After we obtain two k-NN based link graphs of

weighted matrixes Km and Kc , some extra edges
can be extracted or additional weighting scores added
to measure the probability of miRNA to miRNA
transition and circRNA to circRNA transition. Finally,
the networks Km and MS are integrated to establish
a fusion miRNA similarity matrix Wm, which can be
described as follows:

Wm.i; j / D
MS.i; j /CKm.i; j /

2
(7)

Equally, we can gain the final similarity matrix from
circRNA to circRNA named Wc with same way which
can be described as follows:

Wc.i; j /D
CS.i; j /CKc.i; j /

2
(8)

There are four different kinds of transition
matrices[47, 54] in Eq. (4): Tmm and Tcc are intra-
subnetwork transition matrixes and Tmm and Tcm are
inter-subnetwork transition matrixes. The transition
probability matrix from miRNA to miRNA Tmm can be
defined as follows:

Tmm D

8̂̂̂̂
<̂
ˆ̂̂:
Wc.i; j /

,
nP

kD1

Wc.i; k/; if
nP

kD1

A.i; k/D0I

.1 � �/Wc.i; j /

,
nP

kD1

Wc.i; k/; otherwise

(9)
The transition probability matrix from circRNA to

circRNA Tcc can be defined as follows:

Tcc D
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<̂
ˆ̂̂:
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,
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Wc.i; k/; otherwise

(10)
The transition probability from miRNA to circRNA

matrix Tmc can be defined as follows:

Tmc D

8̂̂̂<̂
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,
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The transition probability matrix from circRNA to
miRNA Tcm can be defined as follows:

Tcm D

8̂̂̂<̂
ˆ̂:
0; if

nP
kD1

A.k; i/ D 0I

�A.i; j /

,
nP

kD1

A.k; i/; otherwise
(12)

where the parameters � and � represent the possibility
that one seed node jumps from miRNA subnetwork
to circRNA subnetwork, or vice versa. We then apply
the RWR algorithm on the final rebuilt heterogeneous
transition network T. The algorithm can be described
as starting from seed nodes and walking with an equal
probability to its neighbor nodes or, with a different
probability, returning to itself. The formal formula for
this algorithm is as follows[23]:

ptC1 D .1 � 
/T
Tpt C 
p0 (13)

where T is the final transition matrix calculated from
the aforementioned context and 
 2 .0; 1/ is the restart
probability, meaning that the walker will hold a
probability of 
 to return to itself during each iteration.

The initial vector is p0 D

"
.1 � �/m0

�c0

#
and the sum

of the probabilities is equal to 1. The vector m0 can
be initialized as follows. We set starting seed node i
equal to 1 and other neighbor nodes are assigned as 0.
Equally, the dimension of vector c0 will be initialized
at an equal probability for the seed nodes, thus c0 D�

1
n

1
n

1
n
� � �

1
n

�
. After several iterations, each

value of the vector ptC1 will remain stable, which
denotes that result has converged[55, 56]. We adopt L1-
norm to measure whether the probability has reached a
stable state, which is assumed if the value of ptC1�pt is
less than 10�10. The value of each ptC1 is the transition
probability from seed node i to its neighbor nodes.

3 Results

3.1 Leave One Out Cross Validation (LOOCV)

In this study, we adopt LOOCV and 10-fold
cross validation to evaluate the performance of our
computational method. For a given miRNA i, there
are many associations between circRNA and miRNA.
We select one miRNA i related circRNA j each time
to serve as the hidden associations, using this hidden
data as a test dataset and treating the rest of the known
associations as training data to predict the excluded
data. For example, if there are n associations between
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miRNA i and the entire set of circRNAs, each remaining
known association is regarded as test data. In addition,
an extra iteration is carried out where we let all of the
unknown associations serve as test data. Each time,
we obtain the probability of miRNA i being related
to circRNA j. Finally, the results we obtain from each
iteration can be combined into a probability vector,
and then the probability values ranked in descending
order to change the threshold. When the probability is
greater than the threshold, there could be an association
between miRNA i and circRNA j. According to the
changing threshold value, we can draw the Receiver
Operating Characteristic (ROC) curve and calculate the
Area Under Curve (AUC) value, which can then be
utilized to measure the accuracy of each prediction
result.

Using this method, after ranking all of the association
scores between each miRNA and circRNA, we
obtained a final AUC value of 0.920, which is
shown in Fig. 2 to be superior to other computational
methods[57–59]. Some disease-related miRNA-circRNA
prediction results are denoted in Fig. 3, which show that
the performance of our proposed algorithm is far better
than conventional network algorithms. To obtain more
reliable evaluation results, a 10-fold cross validation
is also adopted to illustrate the performance of our
computational method, the results of which is shown
in Fig. 4.

To further investigate the performance of our
proposed method, we adopt the prediction rate of
associations between some special diseases related
miRNAs and circRNAs, such as hsa-miR-200b-3p,
hsa-miR-30e-5p, and hsa-miR-320b. We compare
the number of correct miRNA-circRNA associations
achieved in the top 10, 20, and 50 predictions
using different computational methods, obtaining the

Fig. 2 AUC value and AOC curve of our method. TPR
represents true positive rate and FPR represents false
positive rate.

results shown in Figs. 5 – 7. The results show that
our method’s prediction of miRNA hsa-miR-107,
which has strong connection with breast cancer[60, 61],
is superior to other computational methods; in the
top 50 predictions, KATZ, Bi-RWR, NTS, and
RWRKNN pick out 30, 33, 37, and 40 existing
associations, respectively. Additionally, our method
also achieves excellent results in the prediction of
hsa-miR-30e-5p, which has a strong relationship with
schizophrenia[62, 63]; in the top 50 predictions, KATZ,
Bi-RWR, NTS, and RWRKNN pick out 14, 13, 21,
and 37 real associations, respectively. According to
these biological experiment results, we can conclude
that our proposed computational method performs
reliably in predicting the potential miRNA-circRNA
associations.

3.2 Parameter effects

There are several parameters that need to be set in this
study, some of which have been already mentioned
above. The parameter � controls the trend of one
subnetwork conveying to another. For instance, if � is
more than 0.5, the seed node has a higher probability
to walk on the miRNA subnetwork; otherwise, the seed
node may prefer to walk on the circRNA subnetwork.
The parameter 
 is the restarting probability, which
controls the likelihood of returning to the beginning
node. Poor results will be obtained if 
 is less than
0.5. The final parameter K is the number of neighbors
of miRNA or circRNA, which be applied to the
multi-label based on k-NN algorithm. To optimize the
model parameters, Fig. 8 shows the results obtained
using different K values, with the values of other
parameters fixed. From this we see that KRWRMC
achieves optimal performance when the K value is 6.
From previous work[47, 54], we find that different restart
probability values have very small effects on the results.
Parameter � being set to 0.7 has demonstrated excellent
performance in prior work. Therefore, we set the five
parameters to the following values: � D 0:9; � D 0:8;

� D 0:1; 
 D 0:7; and K D 6.

4 Conclusion

In this study, we propose a novel computational
method called KRWRMC to predict associations
between miRNA and circRNA. KRWRMC is based
on a heterogeneous network consisting of three
subnetworks: the miRNA similarity subnetwork based
on GO similarity, the circRNA similarity subnetwork



Zengqiang Fang et al.: Prediction of miRNA-circRNA Associations Based on k-NN Multi-Label with Random Walk : : : 267

Fig. 3 KRWRMC is compared with other methods by LOOCV.

based on GO similarity, and the miRNA-circRNA
association subnetwork. An essential factor behind
the superior performance of KRWRMC compared
to traditional computational methods is that we

take miRNA-circRNA associations into consideration,
which means that we not only measure the similarity
between the miRNAs and circRNAs based on GO data
but also take the effects on their similarity of miRNA or
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Fig. 4 KRWRMC is compared with other methods by 10-fold cross validation.

Number of correct predictions in the top 10 miRNA-circRNA associations

Fig. 5 Number of correct predictions in the top 10 miRNA-circRNA associations.

circRNA neighbors into account, applying a multi-label
learning algorithm to evaluate how much influences are
made by these neighbors. Considering the influence
of biological molecules that can enhance associations
upon the same class provides greater capacity to predict
some potential associations. The performance of our
method is evaluated by LOOCV and 10-fold cross
validation, results of which show KRWRMC to be
an accurate and reliable computational method for
predicting miRNA-circRNA associations.

Although the results of LOOCV and 10-fold cross
validation are much better than existing computational
methods, there are still some limitations in our model.
First and foremost, many parameters need to be
confirmed in this model, and future work is needed to
identify the most suitable parameter values. Second,
based on the basic property of the RWR algorithm,
KRWRMC would not be suitable for a situation in
which there is no known association, and it cannot
be used to infer associations which do not have any



Zengqiang Fang et al.: Prediction of miRNA-circRNA Associations Based on k-NN Multi-Label with Random Walk : : : 269

Fig. 6 Number of correct predictions in the top 20 miRNA-circRNA associations.

Fig. 7 Number of correct predictions in the top 50 miRNA-circRNA associations.

Fig. 8 According to the top 50 average AUC values based
on the different K values, the influence of parameter K of the
model performance is analyzed.

GO data. Furthermore, we will take more biological
data into account in future work, which can help
our model become more reliable and provide a better
comprehension of the biological perspective.
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