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High Performance Frequent Subgraph Mining on
Transaction Datasets: A Survey and Performance Comparison

Bismita S. Jena*, Cynthia Khan, and Rajshekhar Sunderraman

Abstract: Graph data mining has been a crucial as well as inevitable area of research. Large amounts of graph data
are produced in many areas, such as Bioinformatics, Cheminformatics, Social Networks, etc. Scalable graph data
mining methods are getting increasingly popular and necessary due to increased graph complexities. Frequent
subgraph mining is one such area where the task is to find overly recurring patterns/subgraphs. To tackle this
problem, many main memory-based methods were proposed, which proved to be inefficient as the data size grew
exponentially over time. In the past few years, several research groups have attempted to handle the Frequent
Subgraph Mining (FSM) problem in multiple ways. Many authors have tried to achieve better performance using
Graphic Processing Units (GPUs) which has multi-fold improvement over in-memory while dealing with large
datasets. Later, Google’s MapReduce model with the Hadoop framework proved to be a major breakthrough in
high performance large batch processing. Although MapReduce came with many benefits, its disk I/O and non-
iterative style model could not help much for FSM domain since subgraph mining process is an iterative approach.
In recent years, Spark has emerged to be the De Facto industry standard with its distributed in-memory computing
capability. This is a right fit solution for iterative style of programming as well. In this survey, we cover how
high-performance computing has helped in improving the performance tremendously in the transactional directed
and undirected aspect of graphs and performance comparisons of various FSM techniques are done based on

experimental results.
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1 Introduction the entire dataset. Due to the rapid growth of the
social networking sites and web logs, graphs became
very abundant and drew a lot of research attention.
Graphs are prevalent in many domains such as protein-
protein interaction network in biological networks,
chemical compound structures, semi structured XML
data, web data, RDF (semantic web), wired or
wireless interconnection networks, and program traces
from software engineering!?!. Graphs are chosen as a

common structure in all these domains as modelling

Frequent pattern mining has become one of the major
research areas since the appearance of the seminal
paper!!! published by Agrawal and Srikant on item sets.
The problem was initially defined for market-basket
analysis, where given a database consisting of a set of
transactions and a user provided frequency threshold,
the goal is to find the frequently occurring items in
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complicated structures via graphs is easy. Mining these
graphs to extract knowledge has become the real
challenge and Frequent Subgraph Mining (FSM) is one
such solution. FSM is divided into two major categories,
one category belongs to a dataset consisting of moderate
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size graphs, and the second category belongs to single
graphs where the dataset contains a single large graph.
In the single graph setting (second approach), the
purpose is to find the embedding which could be
edge-disjoint or share edges (having at least one edge
different) with another in the entire graph. There are
several solutions proposed for single graph mining in
either sequentiall®®! or parallel computing!®~'?! areas.
Our focus is on the first category where the exact
counting is done to find the frequent subgraphs on the
dataset containing a set of graphs!!3-18],

Problem Statement: The problem is defined as
follows: given a dataset (D) consisting of a set of graphs
G1, Ga, G3, Gg,..., Gy, and a minimum support
threshold min_sup, the goal is to find all frequent hidden
substructures (g). A subgraph (g) is frequent if its
support is no less than the minimum threshold level.
The minimum support is provided by the user as a
percentage amount. Support of a subgraph is defined as
the number of graphs that contain the subgraph. When
we discuss about graphs, the graph isomorphism and
subgraph isomorphism are the major aspects that need
to be discussed which is known to be an NP-complete
problem!'”.

Motivation: Rapid improvement in automated data
collection tools have made it possible to generate and
collect massive data. Large amount of data is generated
from areas such as bioinformatics, cheminformatics,
social networks, semantic web, computer vision, etc.
Graph pattern mining is an established area of research
and we have abundant graph data to mine knowledge
from. Knowledge extracted from these data can then
be used to develop or model various applications. In
software engineering area, bugs in programs can be
identified through differential analysis of classification
accuracy in program flow graphs/?’!. In bioinformatics
domain, frequently occurring patterns are introduced as
functional building blocks in transcriptional regulatory
networks?'-22l. In the field of cheminformatics,
the frequent patterns could potentially help to study
the molecules for new drug discovery and chemical
synthesis success prediction where the purpose is to find
molecular features that inhibit a specific reaction!?’!. In
social networks, finding the frequent patterns can help
in understanding the social behavior and relationship
among groups. There are many main memory-based
approaches which assume data to be contained entirely
in memory and computation is done at the same
time. As the data grows exponentially, we cannot rely
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solely on memory-based methods. Memory becomes

a bottleneck as the entire data cannot fit in memory.

To solve this problem, we proposed to use disk-based

approaches which help in large-scale data processing.

During our experiments, we found the disk I/O and
non-iterative style of computing of Object-Oriented

approach to Frequent SubGraph Mining (OO-FSG)?#
and MRFSM!®! were the major drawbacks and this

provided us insight to apply the distributed in-memory

Spark engine.
Our Contribution:
contributions:

The following are

(1) We have provided an extensive survey on FSM in

this paper;

(2) Since our research is on the same line, we have
conducted several different experiments on real life

datasets, and

(3) Provided performance comparisons between them
using different types of high-performance computing

methods.

We categorize our research into two types, the
I'is disk-based where we used the

first category!?*2>

object-oriented database db4o (http://www.db40.
com/) and the Hadoop’s MapReduce model(?®! (http://
hadoop.apache.org/docs/r1.2.1/mapredtutorial.html).
The second category?’! is highly distributed but in-

memory processing, for which we used Apache Spark
engine. All our approaches are based on the industry

standards during the time of publication of the work.
Paper Organization:
follows: Section 2 presents definitions related to FSM

and surveys pioneering works in the area of FSM for
It covers memory-based single
machine techniques (Apriori-based methods and pattern
growth approaches), disk-based techniques (partition-
based approach, traditional database approach, and
parallel and distributed approach), and distributed
in-memory approaches. Section 3 introduces our
contribution to FSM utilizing high performance
techniques. Section 4 presents the ongoing work and

transactional graphs.

provides concluding remarks.

2 Review of Frequent Subgraph Mining
Techniques and Related Work

In this section we present various existing frequent
subgraph mining techniques. We begin our discussion
by providing some notations and definitions used

throughout the text.

our

The paper is organized as
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Definition 1 (Graph) A graph is defined as an
ordered pair G = (V, E). V is a set of vertices (nodes);
E C V xV is aset of edges (links).

Definition 2 (Labeled Graph) A labeled graph is
represented by four tuples G = (V, E, L, I), where V
is a set of vertices (nodes); E C V' x is a set of edges,
where edges can be directed or undirected; L is a set of
labels; I : VU E — L, [ is a function assigning labels
to the vertices and the edges.

Examples of labeled directed and undirected graphs
are shown in Fig. 1. A, B, C, and D are the node
labels, and a, b, ¢, d, and e are the edge labels.
We discuss directed and undirected type of transaction
graphs and performance analysis comparison on both
the categories. The nature of directed graphs varies
from undirected, for example, airline flight information
graphs are directed, and it has a source and a
destination, but the chemical compound structures are
undirected. Since atoms share bonds with each other,
direction has no meaning for chemical compounds.
Our approach to handle isomorphism varies due to the
different nature of the two categories. These will be
explained in detail while covering each approach.

Definition 3 (Subgraph) Given a graph G(V, E), a
graph g(Vg, Eg) is a subgraph of G if V, € V and
E; CE.

Definition 4 (Induced Subgraph) Given a graph
G(V,E), a graph g(Vg, Eg) is an induced subgraph of
G if Vg C gy and E, contains all the edges of E that
connect vertices in V.

Definition 5 (Isomorphism) Two graphs G, =
(Va, E,) and Gy, = (V4, Ep) are isomorphic if they are
topologically identical to each other. In other words,
there is a mapping from V, to V;, and each edge of E, is
mapped to an edge of E}, and vice versa.

Definition 6 (Automorphism) Two graphs G, =
(Va, Ey) and Gy = (V4, Ep) are said to satisfy the
automorphism property if there is an isomorphism
mapping where G, = Gy,.

Fig.1 Undirected (left) and directed (right) labeled graphs.
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Definition 7 (Subgraph Isomorphism) Given two
graphs G, = (V,, E,) and Gy, = (W, Eb), the problem
is to find if G, contains a subgraph which is isomorphic
to Gy,

Definition 8 (Transaction Graph) A given graph
database G is called a transaction graph database,
if it contains a set of moderate sized graphs. G =
g1,82,83,84,--.,8n, Where g1, g, ... are individual
graphs.

Definition 9 (Frequent Subgraph Structure) Given
a graph database D = {G1, G2, G3,...,Gy}, let a
subgraph g be contained in |Dg| number of graphs.
Then support of g is defined as sup(g) = |Dg|/|D],
where |D| is the total number of graphs in D and
| Dg| is the number graphs in D which contain g. The
subgraph g is said to be frequent if its support is not
less than the minimum support threshold provided by
the user. The following example in Fig. 2 shows a
database consisting of 3 chemical compounds which
comes under the undirected labeled graph category. If
we take support as 2, then we find two subgraphs shown
in Fig. 3 as the frequent structures.

Frequent pattern mining became a very popular
topic after the invention of several scalable and
efficient techniques in the areas of item set mining.
To mention a few, the very first association rule
mining!"?! introduced the area of frequent pattern
mining. Subsequently, several item-set mining
methods**34, sequential patterns!*>—37!, and trees!38-4"
were developed. With the motivation from apriori
algorithm!!!, Tnokuchi et al.l'3! proposed AGM which
mines the association rules among the frequently
occurring subgraphs. Following the apriori model,
PATH!"! and FSGM! algorithms were developed.
Another group of researchers used a non-apriori-based
approach [Mofa, gSpan, FFSM, GASTON] where
the subgraphs were extended by adding a single
edge each time. With the growing size of databases

0
S—C—|C|—N $—|C|—N—C C—S—C|—C
@) S N—O

Fig. 2 A sample chemical compound dataset'*%!,
$—C—C=0

I
N

Fig.3 Frequent subgraphs (left: support 2, right: support 3).
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and availability of larger disk space and cloud-based
technologies, some researchers proposed traditional
database-based and cloud-based approaches for
scalability. The following subsections describe each
category in detail.

2.1 Memory-based single machine techniques

The algorithms developed around early 2000’s did not
have much flexibility except running in single machine
setting. There are many major algorithms developed
around this time. We categorize them into apriori and
pattern-growth approaches.

2.1.1 Apriori approach

Most apriori-based approaches follow the breadth-first
method of traversal. Figure 4 shows the growth pattern
of apriori method. P,Q, and R are three n-edge
subgraphs, the apriori algorithm merges two n-edge
subgraphs if they share same (n — 1)-edge core and the
resulting (n + 1)-edge subgraphs are G1, G3, G3, ...,
G,. The apriori-based frequent subgraph algorithms
follow the downward closure property which states that
if a graph is frequent then all its subgraphs must be
frequent. The “Apriori” algorithm is given in Algorithm
1, which is adapted from Ref. [28].

Algorithm 1 works as follows: in the beginning, all

n-edge (n+1)-edge

O, @D
C>

® @

Fig.4 Apriori-based extension.

Algorithm 1 Apriori

Input: A graph dataset G, min _sup

Output: Frequent subgraphs Fj
1: Populate F; by removing all infrequent edges and vertices

from G

k=1

: while (Fi! = 0)

. forall frequent S; € Fy

: forall frequent S; € Fy

. forall size (k + 1) subgraph(s) generated from merging S;
and S;

7. if support(s) > min _sup and s ¢ Fi + 1

8: add s to Fyx + 1

9: k =K =+ 1

10: return

=Y T NV R N
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the infrequent edges and vertices are removed from the
database. In each iteration, the frequent subgraphs of
size k are merged which have common size (k — 1)
cores. The generated size (k) structure is checked for
frequency and added to the frequent subgraph set.
Those that do not comply with the frequency are pruned
from the input dataset. The algorithm terminates when
there are no more newly formed subgraphs.

We will discuss four very well-known apriori-based
algorithms, PATH!!, AGM!!'*, FFSM!!'7]| and FSG!*!l,
AGM!"*! takes a vertex-oriented approach, in each
iteration of the above apriori algorithm, AGM adds a
new node. The newly formed structure of size (k + 1)
contains the core which has (k — 1) vertices and two
new vertices from the merged structures. In AGM size,
Fig. 5 shows the candidate generation of AGM.

Kuramochi and Karypis!**! developed the frequent
subgraph mining algorithm “FSG” in which they took
an edge-based approach where the size of the subgraph
represents the number of edges it contains. They
followed the same approach as shown in the “Apriori”
algorithm. In FSG, a new size (k + 1) structure is
formed by merging two size k structures which share a
common core. Here core means both the subgraphs have
same size (k — 1) edges. The newly formed subgraph
contains the core size (k — 1) and two new edges from
the merged subgraphs. Figure 6 illustrates the candidate
generated when two subgraphs with common cores are
merged.

Vanetik et al.l”l proposed a path approach in which
candidate generation follows Apriori strategy where
the building blocks are edge-disjoint paths. Two paths
of length (k) are joined if they share the same core.
Figure 7 shows three paths of graph G to the right.
The pseudocode of PATH!”! is given in Algorithm 2.
Initially, all frequent single edge paths are found. Size-2

o} o O 0 0O
g"cS""E'j‘g {00 OO0 0O
i9____95 (eme) oO—0 OO0

Fig.5 AGM©8I,
@) ¢) ¢ O O O O
O 0O OO0 O 0 O 0O OO0
+ —>
OO OO OO O 0 0O

(@)
Fig. 6 FSG? 8,
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al bl cl v, v, v,
b2
y y ) j
v,
a3 b3 3 v, v,

Fig. 7 Graph and 3 edge-disjoint paths.

Algorithm 2 PATH
1: Find all frequent single edge paths.
2: Construct (k 4+ 1)-th candidate path by joining two k-th
candidates which share the same core.
3. Evaluate the frequency of the newly formed path and add that
to the candidate set if it satisfies the support threshold.
4: Repeat the process until there is no new frequent paths.

edge-disjoint paths are constructed from size-1 edges,
Vanetik et al. proposed a table structure which stores
paths as columns and the vertices as the rows. A few
paths together build a composition relation.

An example of composition relation for Fig. 7 is
given in Table 1. Two composition relations are joined
if they have (n — 1) paths in common.

The subgraph extension is described in two different
ways. The first approach is a bijective sum on two
composition relations having k paths where both share
k — 1 paths. The other method is splice method, which
is defined as a merger of two nodes belonging to two
different paths in a graph into a single node. Let C;
and C; be two composition relations. A splice of two
composition relations Ci(P;, P, P3, ..., P,) and
Cy(P;, Pj), 1 < i, j < n,is a composition relation
that turns every node common to P; and P; in C; into
the node common to P; and P; in C; as well.

Huan et al.l'”! proposed a novel data structure called
Canonical Adjacency Matrix (CAM) to store the graph.
The rows and columns in a CAM represent the vertices
in the graph. The diagonal entries represent the node
labels, all other entries are the edge entries. Figure 8
represents two graphs and Fig. 9 represents their
canonical adjacency matrices.

Table1 Composition relation.

Node P 1 P 2 P 3
141 al 0 0
Va a2 b2 0
Vs a3 0 0
Va 0 bl 0
Vs 0 b3 c3
Ve 0 0 cl
V7 0 0 c2
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(2) Graph Q

Fig. 8 Example graphs7],
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Fig. 9 Canonical adjacency matrices!'”),

The paper has discussed several cases for joining and
extension. Here, we show one case. Figure 10 shows
joining of two CAMs (corresponding graphs G, G3)
both of size m x m, all the edge entries are same except
the last edge. The resultant matrix shown to right of
Fig. 10 is also of size m x m. FFSMU7! defines a
canonical code for the adjacency matrix as the sequence
formed by concatenating lower triangular entries of
the matrix. If the matrix M is of m x m size, then
the sequence of lower triangular entries will constitute

P1 p1

(@) @)
7y 2
(b) s OO (b)P2
P4 Pa N\

1. Y A y

(b)Y ()

P3 P3

Gl G2
a a a
y|b y| b y|b

+ —

¥ (¥ [b ¥ ¥ & LAl
Y|y |O0]|b y| 0| v[ b y|y |y |b

Fig. 10 Example of join!'7),
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ma,1, Me,1), M@2,2)s «--» Mm,1)> Mn,2)> ---> Mn,n)
where m; ;) is the entry of the i -th row and j -th column
in M assuming the rows and columns are numbered 1
through n.

2.1.2 Pattern growth approach

We broadly categorized all non-apriori based
algorithms as pattern growth-based approach. The
general idea in these algorithms are to add an additional
edge to the existing frequent subgraph. The newly
added edge may or may not add a new vertex.
Figure 11 shows the pattern growth graph.

In this category, there are quite a few efficient
algorithms, which are nearly comparable to each
other w.r.t. efficiency. We will discuss three significant
algorithms!'®18:231 " In pattern growth algorithms, the
subgraph extension can be both breadth-first and depth-
first, whereas the DFS approach is best suited for better
memory usage. Algorithm 3 gives a general idea of
pattern growth approach adapted from Data Mining
Concepts and Techniques'®®).

The first algorithm in this category is known as
MoFal?*!, in which the candidate generation happens
by adding a new edge. Extension is restricted to
the fragments that actually appear in the database.
Embedding is stored for faster support calculation.
Second algorithm in this category is popularly known

(n+2)-edge
O
(n+1)-edge O
é Q) Duplicate
n-edge o structure
© @ o
O
® o
o

Fig. 11 Pattern growth-based extension.

Algorithm 3 Pattern_Growth(s, GDB, min_sup, G)
Input: A frequent subgraph s, graph dataset GDB, Minimum
Support (min _sup)
Output: A frequent subgraph set G
1. if s € G then return
2: elseadd s to G
3: scan GDB once to find all edges e where s can be extended
tos #£e
4: forall frequent s # e
5. call Pattern_Growth(s # ¢, GDB, G)
6: return
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as “gSpan”'®%?l. The authors proposed a DFS

lexicographic ordering and minimum DFS code to
support DFS search. Figure 12 shows three graphs b,
¢, and d isomorphic to a, but only one of them have the
potential to grow.

Given the DFS codes for different DFS trees, gSpan
algorithm chooses the minimum code. From Fig. 12,
following the minimum DFS code rule, a < b < c.
In order to eliminate duplicate generation, gSpan
approach adapts a similar methodology like FREQT’s
rightmost expansion'*®! and TreeMinerV’s equivalence
class extension*! in frequent tree discovery. Rightmost
extension for the candidates follows a preorder of tree
traversal and restricts the expansion to only the nodes
in the rightmost path for forward edges and rightmost
vertex for the back edges. Forward edges are the edges
which add a new vertex to the DFS tree. Back edges
only add an edge which connects the rightmost vertex
to an existing vertex in the rightmost path. Back edges
are not included in the DFS tree!*l. Figure 13 shows
the rightmost expansion of graphs.

The last algorithm in this category is GASTON!3],
Nijssen and Kok!'8! defined a partial order consisting
of paths, free trees, and cyclic graphs. Path is on top
of the partial order in which two nodes have degree
1, while all other nodes have degree 2. A graph
without cycles is considered as a free tree. A free tree

(b.0) (b.1)

(b.2) (b.3) (e.0) (el) (e2)

Fig. 13 Rightmost expansion'®,
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becomes a cyclic graph when an edge is added between
two existing nodes. They proposed an efficient data
structure to store the embedding of a structure and
its ancestors in the partial order. The embedding list
consists of all occurrences of a particular label in the
database. The embedding tuple consists of (1) a pointer
to an embedding tuple of the parent structure, (2) the
identifier graph in the graph database and (3) a node
in that graph. Figure 14 shows two example graphs
in the database and Fig. 15 shows the embedding of
the ancestors. Individual row in the embedding lists
table denotes the embedding list of an ancestor of the
database graphs shown in Fig. 15.

2.2 Disk-based techniques

The major drawback of memory-based technique is that
data must be small to fit into main memory. We have
reached a time where we have plenty of data available,
but we cannot process all of them at one time in main
memory. We categorized the disk-based approaches into
three categories. The first category belongs to disk-
based approach where the data is partitioned such that
the chunks will fit in memory, after which the memory-
based algorithms are applied on the chunks to find
frequent patterns. The second category belongs to the
traditional database-based approach where the entire
data is stored in databases such as relational databases
(DB2, Oracle, MySQL) and object-oriented databases
like db4o. The third approach consists of parallelizing
the data mining process. In summary, the idea is to
partition the data between the worker nodes and find
the frequent subgraphs at each node.

Fig. 14 Database graphs.

| 1 2 3 4 5 6 7 8

A,G,V2 (AGLVi) (A,G1V5) (AGLV4) (A,G,V)

(1,G1,Va) (1,GV5) (2,G1, Vo)  (2,G1,Vs) (3,Gy,Va) (3,Gi,Va) (4,Go,Va) (5,G2,V4)
(1,G61,V6) 3.GLM) (5,G,V1) (6,G,V,) (7,G,V3) G G
(1,G1,v1) (2,G1,Ve)
(LGpve) (2.G1,Vs)
1 2

2

G G
G G
G G

Nou b wN —

Fig. 15 Embedding.
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2.2.1 Partition-based approach

A horizontal data partitioning approach on transaction
databases was first introduced by Savasere et al.[*¥]
Wang et al.l*! proposed a partition-based approach,
ADI-Mine, in which they created an index structure
ADI (adjacency index). For each edge, they maintained
the graph ids in a linked list. A graph id is entered once
per edge irrespective of multiple occurrence of same
edge. Figure 16 shows the example of the graph and
its adjacency index. They adapted the famous gSpan!'¢]
algorithm methodology for frequent subgraph-mining.
In Ref. [46], Wang et al. proposed a partitioning
algorithm called PartMiner, which takes the transaction
database, the number of partitions k& and minimum
support as input. PartMiner works in two phases: in
the first phase, the database is divided into k subunits
such that each unit data fits in memory, the memory-
based algorithm GASTON!!'®! is called on all subunits.
The minimum support threshold used in their approach
is the fraction of user provided support divided by k.
After local mining is complete, a merge-join procedure
is called to combine the results. Figure 17 shows the
phasel and phase2 of their procedure. Nguyen et al.[*”]
proposed to use data partition technique on graphs that

Gl G2
Edges Graph—ids (on disk) Adjacency (on disk)

(A,a,B) Gl
G2

(A, d, O L
(B.b,D) Gl

B.c,O)
B,d, D) — GIL |
(C.d.D) G2

Fig. 16 An ADI structurel*s],
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I
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P(U) " P(Uk
melge -join

Fig. 17 PartMiner partition method*¢!,

are an extension of their previous work, which was
applied on frequent item sets!*¥l. In their work!*”!, K-
means algorithm is used to partition the data. Figure 18
shows the general idea behind their partitioning

approach. Their algorithm is given below in Algorithm 4.

2.2.2 Traditional database approach

Traditional databases such as relational databases and
object-oriented databases became the second choice

Fragments

Given k=3; Output 3 fragments

Graph Database

Fig. 18 Data Partition scheme for PartGraphMining*"l.

Algorithm 4 PartGraphMining
Input: Graph database GDB, Minimum support, Number of
partitions (k)
Output: Frequent subgraph set
1: Partition the graph database into k fragments (G1, G2,
G3,...,Gy) such that every fragment can be loaded into
memory
2: Call GASTON or gSpan on each fragment and find the
locally frequent subgraphs f(G;) wherei = 1,2,3,...,k
3: Compute the union of all f(G;), add them to LY
4: Compute the intersection for all Globally frequent sets, add
to GO
5. Scan the database again to verify if (LY
or not, output all frequent subgraphs

— G9) is frequent
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for large data storages. DB-subdue®”! is the very
first attempt using relational database approach for
subgraph mining. DB-subdue implements the idea
of SUBDUEPY, which is one of the early frequent
subgraph mining algorithms on single graph that detects
the best structure using minimum description length
principlel®!. The minimum description length principle
states that the best theory to describe a set of data
is a theory which minimizes the description length
of the whole data set. DB-subdue!*’! stores graphs
as relations in database. Evaluation of best structures
is done by counting the frequency of the instances
of the substructure within the single graph.
standard SQL where subgraph expansion is done by the
join operation and counting is performed by the group
by operation. Enhanced DB-Subduel? and HDB-
Subduel®* is an improvement over DB-Subdue. They
handle cycles in graph and multiple edges between
vertices. HDB-Subdue allows unconstrained expansion
of substructures.

It uses

The drawback of unconstrained
expansion is that it generates duplicates as the same
structure is generated from instances in different
orders. HDB-Subdue keeps track of the duplicates and
eliminates them by maintaining an order of vertex
numbers and connectivity map. Frequency counting
is done by arranging the vertex labels and their
connectivity maps. All the above traditional database
approaches are based on SUBDUEDPY idea. These
implementations surely provided some ideas to apply
on transaction graphs.

DB-FSGP¥ is the first relational database-based
approach which implements frequent subgraph-mining
algorithm on a set of transaction graphs. Graphs are
represented in relational databases as relations. All
the vertices and edges of the individual graphs are
stored in the vertex and edge table maintaining their
graph id as the identifier. Initially, vertex and edge
tables are constructed with corresponding vertex/edge
labels, numbers assigned to them, and the graph id that
contains them. Figure 19 shows the example graph
based on which Table 2 is constructed. Table 2 shows
the vertices, their labels, and graph id. Table 3 contains
the edges, their labels, and graph id.

Once the vertex and edge tables are formed, an
edge table is created by joining both vertex and edge
tables at the matching vertex numbers and keeping
the graph id the same. Two-edge substructures are
formed by joining single edges with itself. Similarly,
size-k subgraphs are generated by joining size (k — 1)
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Graph 1
1 2
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AB
AD BC
4 3
Graph 2
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AD
Graph 3

3

Fig. 19 DB-FSG example graph.

Table 2 Vertex table.

Vertex No. Vertex Name Graph ID
1 A 1
2 B 1
3 C 1
1 A 2
2 B 2
3 C 2
4 D 2
1 A 3
2 B 3
3 D 3
Table 3 Edge table.
Vertex 1 Vertex 2 Edge Label Graph ID
1 2 AB 1
1 3 BC 1
1 2 AB 2
1 4 AD 2
2 3 BC 2
1 2 AB 3
1 3 AD 3

subgraphs with single-edge subgraphs. Since the
expansion is unconstrained, a particular substructure
could be generated multiple times from two different
instances joined in different manner. Hence, duplicates
are handled carefully. As multiple edges and cycles are
considered, DB-FSGP*¥ imposes that the new edge that
is added should not have same edge number as in the
instance edges. Frequency counting is done based on
the node label, edge label, graph id, and the connectivity
map. DB-FSG encouraged us to implement frequent
subgraph mining on object-oriented databases (db4o).
Our method!?* is discussed in Section 3.1.
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2.2.3 Parallel and distributed approach

With the advancement of multi-core technologies,
Graphic Processing Units (GPUs), and Google’s
MapReduce model®®!, many researchers tried to
apply the parallel and distributed approach to data
mining. There are quite a few parallel computing-based
approaches in the area of frequent itemset mining. Li
and Zhang!>! used bitmap to represent the itemsets.
Each item is represented as ‘0’ or ‘1’ based on the
appearance in the transaction set. To explain it briefly,
let us consider Table 4. Item ‘a’ is represented as 11000
which means ‘a’ appears in transactions T1 and T2. In
Ref. [56], the items are organized in a tri-based structure
which is basically the prefix tree. Lil®’! presented an
inverse tree structure with bitmap representation to find
frequent maximal itemset over stream data.

A novel data structure is introduced by Amossen
and Pagh8! called BATMAP, which provides all
advantages of bitmap along with space compression
for sparse data sets using hash tables. Teodoro et
al.;b% used tree-projection based structure. Instead of
bitmaps, the authors proposed to store the transactions
in a vector. Cheung et al.'%"! proposed FDM to mine
association rules using distributed approach. They
found locally frequent items on each machine and
broadcasted them to all machines. Both local and
global pruning are applied to have lesser number of
candidates at individual sites. Liu et al.'®!! proposed
a parallel version of FP-Growth!*?!, a memory-based
algorithm on multi-core system. They proposed a
cache-conscious frequent pattern array and a lock-free
dataset tiling parallelization mechanism. A MapReduce
based parallel FP-Growth is proposed in Ref. [62]. In
their approach, data is partitioned, and each machine
performs the mining task independently. This way
they reduce the communication cost between machines.
Instead of depending on user support, they find top-k
frequent patterns. Miliaraki et al.l®*! proposed MG-
FSM, a sequence pattern mining using MapReduce.
Their partitioning approach is based on the concept of
“projected database”.

Table 4 Example transaction/itemsets.
Tid Item sets
abcde
abcd
becd
be
cde

n A~ W N =
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After the development of many memory-based
algorithms in the area of frequent subgraph mining,
the focus is on parallelizing the algorithms to increase
the efficiency and handle large-scale graph data. Wu
and Bail'”! implemented a parallel subgraph mining
algorithm using MapReduce framework where motif
network diameter and degrees of vertices are taken as
standard for motif matching. Liu et al.[%* proposed
a MapReduce-based pattern-finding algorithm, MRPF,
for network motif detection from complex networks.

11]

Reinhardt and Karypis! proposed an algorithm

using OpenMP that finds connected edge-disjoint

embedding. Wang and Parthasarathy!®

presented
parallel algorithm for their previously developed Motif
Miner Toolkit!®® that mines structural motifs in a
wide range of bio-molecular datasets. SUBDUE!
system has been improved a lot since it was
developed. The parallel version!®”! applies three
partitioning schemes such as Functional Parallel
approach (FP-SUBDUE), Dynamic Partitioning (DP-
SUBDUE), and Static Partitioning (SP-SUBDUE). FP-
SUBDUE divides the search for candidates among
processors, in DP-SUBDUE, each processor evaluates
a disjoint set of the input data, and SP-SUBDUE
uses a static data partitioning approach. Meinl et al.[6®]
parallelized the memory-based algorithm, MoFal?*!,
with a substantial speed-up gain. Kang et al.[l”
presents “PEGASUS”, an open source graph mining
library built using MapReduce framework on Hadoop
platform. PEGASUS handles typical mining tasks

[69-711 " diameter of the

such as connected component
graph!’2l, and computing the radius of node. Zhao
et all”3! proposed “SAHAD”, a MapReduce-based
algorithm, which is in fact a Hadoop version of the
color-coding algorithm!"* 73!, Afrati et al..’® proposed
a MapReduce-based approach for finding all instances
of a given sample graph in a larger graph. They

77

used the techniques from their paper!’” for computing

multiway joins to reduce communication cost. Xiang

et al.[’8l

presented a MapReduce-based scalable and
fault-tolerant solution for the maximum clique problem.
They used a graph coloring-based partitioning approach
which recursively partitions the data into smaller units
while maintaining load balance. The maximum cliques
of different partitions are computed independently.
Fatta and Berthold!”®! used a search tree partitioning
strategy, along with dynamic load balancing and a
peer-to-peer communication framework for efficient
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mining. Luo et al.® proposed a MapReduce-based
“subgraph query search method”. The idea is that,
given a subgraph, find all graphs containing that
particular query sub-graph. Buehrer et al.!'8!! proposed
parallelizing FSG algorithms on CMP architecture. We
proposed a MapReduce-based FSG!*! which is covered
in our contribution section of the paper. A few more
works are published following our implementation
on MapReduce. Aridhi et al.!®?! proposed a density-
based data partitioning approach on MapReduce
framework. Bhuiyan and Hasan!®*! proposed MIRAGE,
a MapReduce-based approach in which they adopted
idea from gSpan!'®! for right-most extension to prevent
duplicate generation and a gSpan style dfs code for
counting and isomorphism checks. In Ref. [84], the
authors introduced a novel technique to make the
distributed embedding exploration more scalable. Lin
et al.®! made use of a memory-based algorithm,
GASTON!'8! for their mining task. Data is partitioned
between the machines and GASTON is applied to
find locally frequent substructures. Then they perform
a final scan to find all globally frequent subgraphs.
Later, two subsequent sections describe our disk-
based methods towards frequent subgraph mining in
transaction databases.

2.3 Distributed in-memory techniques

MapReduce model had a few drawbacks like disk /O,
and especially due to the iterative style requirement
for subgraph mining, it proved to be inefficient. Spark
evolved based on the shortcomings of MapReduce
model (though MR model is still one of the best models
for huge batch processing). Over the past years, Spark
(http://databricks.com/spark/) has become the major
industry standard for its in-memory processing of big
data. As per our knowledge and findings, there are
not many publications utilizing the power of Spark.
Authors in Ref. [86] used Spark to find the frequent
subgraphs from single large graphs, which is not the
major focus of the paper. In this study, our focus is
on the transactional setting. Authors in Ref. [87] used
Apache Flink, which is similar to Spark but mostly used
for real-time processing. In their paper, the focus is on
directed multi-graphs. To the best of our knowledge for
the first time, we have introduced the ability of Spark
engine on undirected transactional graphs. Leveraging
the same utility, we could see tremendous improvement
on our previous MapReduce-based approach>>! on
directed graphs. Algorithm 5 describes DIM Span’s
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Algorithm 5 Distributed FSM Dataflow
Input: G ={(G,pu")i}ic, fuin

1. F<«— ¢

2 FK «— ¢

3: repeat

4 PX «— G flatmap(report)

5: ¢>k «— P¥ combine(count)

6: ¢k <« ¢§,.reduce(sum)

7. FC < PX filter(¢"(P) > fin)
8  broadcast(F¥)

9: G «<— G.map(patternGrowth)
10 G<«—Gfilter(QP:||>=0)

11: FK«—FUF*

12: until F¥ £ ¢

13: return F

distributed dataflow.

3 Our Contribution

We started our research journey in the FSM area
following a research work!>*!
RDBMS potential to overcome the single machine main
memory bottleneck. In the following sub-sections, we
introduce our complete work based on several types of
high-performance computing techniques. As per our
findings, all three categories are first ever introduction
to this area of research. We would like to categorize
our work in Refs. [25,27] under the high-performance
category as per the paper’s title. We would like to begin
with our initial work[?*!,

3.1 OO-FSG*4

We chose the db4o (http://www.db4o.com/), an open-
source object database for java and .NET applications.
The interesting aspect of db4o is that the user does not
need to create a separate data model. The applications
class model defines the structure of the data in db4o

where authors utilized the

database. db4o database provides persistence to objects
automatically. Object persistence is the capability of
the system to hold objects even after the system stops
running unlike main memory applications which die
when the program stops.

3.1.1 Details of OO-FSG algorithm

OO-FSG algorithm has two major aspects. One is
generating candidates and another one is pruning the
insignificant edges from the graphs. Each step of the
algorithm is discussed in detail. In the algorithm, first
step is for the construction of SingleEdge class from
Vertex and Edge classes. In the second step, the distinct
single edges are separated to get rid of isomorphic
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structures and stored in Subgraph—1 class. The OO-
FSG algorithm is given in Algorithm 6.

Counting of the distinct edges is done using MultiKey
and MultiValueMap on the whole dataset with the user
provided minimum support (min_sup). In the third step,
we remove the edges that fail to satisfy the minimum
support value from the SingleEdge class. Step 4 is
the looping condition, looping occurs from Step 4(a)
through Step 4(e) until size n, which is Step 5 for our
experiment. Step 4(a) combines the SingleEdge class
with itself based on the matching vertices and graph
id. Step 4(b) removes the redundant subgraphs to find
the distinct instances and stores in the temporary class
Subgraph—Distinct—2 class. In Step 4(c), we count the
subgraphs. In this context, subgraphs mean only the
edge labels and vertex labels not the numbers given
to the nodes and edges. Step 4(d) and Step 4(e) are
self-explanatory. In the second iteration of the loop,
we combine TwoEdge class with SingleEdge class and
follow the steps accordingly. We keep repeating the
loop until we get a subgraph of size 5.

3.1.2 Performance comparison of DB-FSG vs. OO-
FSG

The experiments were conducted on a Linux machine
with 2GB memory. The OO-FSG algorithm used

Algorithm 6 OO-FSG
Input: Graph database GDB, Minimum support, Number of
partitions (k)
Output: Frequent subgraph set
1: construct SingleEdge class by joining Vertex and Edge class.
2: select distinct single edges and store the subgraphs which
satisfies min_sup in Subgraph—1 class.
3: remove the edges with count less than the min_sup from
SingleEdge.
4: repeat steps a through e until a candidate subgraph of
size—N with min_sup is generated.
(a) join (N — 1)Edge class with SingleEdge class to
generate *(N )Edge.
(b) eliminate the redundant subgraphs from (N )Edge and
store the size— N subgraphs in Subgraph—Distinct—N class.
(c) count the unique vertex and edge labels in the
Subgraph—Distinct—N class.
(d) eliminate the subgraphs from Subgraph—Distinct—N
with count less than min_sup and store it in Subgraph—N

class.
(e) remove the edges with count less than min_sup from
(N )Edge class.
5: end loop.

*(N)Edge: represents the TwoEdge, ThreeEdge, FourEdge
and FiveEdge classes etc.
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Java. Table 5 shows the performance metrics for both
approaches.

3.2 An iterative MapReduce-based approach to
frequent subgraph mining!**!

MapReduce framework by Google!?s! motivated us
to implement the frequent subgraph mining method
on graph databases. There are a few researches
that have applied MapReduce for graph mining,
which provided us with some motivation that we
can apply the framework on frequent subgraph
mining for transactional graphs. Finding frequent
substructures from transaction databases in particular
has a typical pattern such that, in the first step,
we find all frequent subgraphs of size 1 and then
step into subsequent iterations. While analyzing the
compatibility of MapReduce model with this particular
mining method, we figured out that the process of
counting the frequency of isomorphic structures could
be done easily with the help of key-value pairs. With
respect to one key, which is a particular subgraph in
our case, the respective values are the graph ids that
contain the subgraph. Since we have so many machines
available for our use, we can easily handle large amount
of data in each step that used to be a bottleneck in
our previous traditional database approach. The next
subsections define our approach.

3.2.1 Subgraph construction

This section elaborates on the process of subgraph
construction. We explain in detail the process of map

Table 5 Example transaction/itemsets.
Dataset size (x103) Min_sup (%) DB—FGS OO—FSG

50 1 357 353
100 1 1349 731
100 3 1220 656
100 5 1061 563
100 7 827 484
200 1 2439 1331
200 3 2002 1206
200 5 1717 1117
200 7 1622 1030
300 1 5887 2221
300 3 5394 2141
300 5 5137 2019
300 7 4164 1863
400 1 9502 2879
400 3 8228 2457
400 5 7156 2426
400 7 6962 2313
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functions and reducer functions within each job of each

iteration.
3.2.1.1 Map function for gathering subgraphs with

similar graph ID
Hadoop sends single lines from the input file to the

mappers, to which each applies a map function to
those lines. This initial map function will have the
responsibility of sending the subgraph encoded in the

input string to the correct reducer using the graph id.
For the first iteration, the encoded input string will

represent a single edge of the graph. For all other

iterations, we have an encoded input string representing
a subgraph of size k —1.
Input key: offset of the input file for the string;
Input value: string representing a subgraph of size
(k—1) and graph id;
Output key: graph id;
Output value: string representing the input subgraph.
3.2.1.2 Reducer for constructing subgraphs

All of the subgraphs of size k — 1 with the same graph id
are gathered for the reducer function. We note all of the
single edges in these subgraphs and use that information
to generate the next generation of possible subgraphs of

size k. We encode this subgraph as a string just as was

outputted from the previous map function. We keep all
labels alphabetized and use special markers to designate
different nodes with the same labels. The results of this

step are written out to the Hadoop File System.
Input key: graph id;
Input value: list of subgraphs of size (k — 1) encoded
with graph id;
Output key: encoded subgraph of size k and graph
id;
Output value: none.
3.2.1.3 Map function for gathering subgraph
structures
Similar to the process involving the first map function,

Hadoop sends lines of input to the mappers. This second
map function will have the responsibility of outputting
the label-only subgraph encodings as a key and the node

identification numbers and graph ids as values.
Input key: offset of the input file for the string;

Input value: encoded string representing subgraph of

size k and graph id;
Output key: label-only string encoding subgraph;
Output value: corresponding node ids and graph id.
3.2.1.4 Reducer for determining frequent subgraphs

The last reducer function per iteration will gather on
label-only subgraph structures. The main task is to
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count the unique instances of the specific subgraph by
iterating through the input values, incrementing a count,
and ignoring subgraphs with previously seen graph ids.
The label markers are removed at this point. In the
end, if the count agrees with the given user defined
support, it is written to the Hadoop File System for the
next iteration, and otherwise it is ignored or effectively
pruned. The output of iteration k is all subgraphs of size
k that meet the support.

Input key: label-only string encoding subgraph of
size k;

Input value: list of corresponding node ids and graph
ids;

Output key: encoded subgraph and graph id;

Output value: corresponding node ids and graph id.

3.2.2 Details of MapReduce-FSG

MapReduce-FSG is an iterative algorithm that relies
on two heterogeneous MapReduce Jobs. The first job
(denoted as Ay) constructs size-k subgraphs from
size-(k — 1) subgraphs, while the second job (denoted
as By) will check whether a subgraph meets the
use-defined support. The algorithm starts with single
edges and runs until there are no longer any frequent
subgraphs constructed. Algorithms 7 and 8 highlight the
tasks of Ag. Algorithms 9 and 10 outline the important
steps of By. These algorithms are essential for pruning
unnecessary subgraphs for the next iteration. Without
them, we would quickly weigh down the disk and
network.

Algorithm 7 Map A,

Input: (offset, subgraph)
parse subgraph for graph id
EMIT: (graph id, subgraph)

Algorithm 8 Reduce Ay
Input: (graph id, subgraphs s1,s2,53,...)
Edges < ¢
newSubgraphs < ¢
for all s € subgraphs do
Retrieve all edges from s and add to edges
end for

for all s € subgraphs do
Construct k-sized subgraphs using Edges and add to
newSubgraphs
end for
for all s € newSubgraphs do
EMIT: (encoding for subgraph, empty text)
end for
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Algorithm 9 Map B;

Input: (offset, encoded subgraph)
parse encoded subgraph for label-only subgraph
EMIT: (label-only subgraph, subgraph)

Algorithm 10 Reduce By
Input: (label-only subgraph, subgraphs s1, s2,53,...)
GraphlDs < ¢
count < 0
for all s € subgraphs do
if s.graphid ¢ GraphlIDs
count <— count + 1
GraphIDs «— GraphIDs U s.graphid
end if
end for

if count > user support then
for all s € subgraphs do
EMIT: (subgraph, empty text)
end for

3.2.2.1 Canonical ordering of elements

As we are using Hadoop’s Text to encapsulate a string
object representing a subgraph, it is important to be able
to differentiate between repetitive labels. We sort the
outgoing nodes lexicographically based on label, and
then use the unique id numbers if it is still ambiguous.
The sorting will help us with key matching, which is
essential for our MapReduce approach. Reducer A will
dynamically mark all node labels in the encoding Text
so that we may distinguish between identical labels that
belong to different nodes during Reducer B.

3.2.2.2 Tllustrative example

Here we illustrate our implementation of the
MapReduce-FSG algorithm by showing outputs
generated in various steps. We use the three sample
graphs of Fig. 20. We will assume user-support is 2,
meaning that we want all subgraphs that appear in
at least 2 different graphs. The strings generated by
both Ai and Bi steps are coded as three-part strings
separated by “—". The first part represents the graph id,
the second part represents a label-only subgraph, such
as (A:B-C) standing for “node A has an edge B to node
C”, and the third part represents the subgraph using
node id numbers, such as (1:3) standing for “node with
id 1 has an edge to node with id 3.”

Step B1: As we are using single edges as the initial
input, we do not need an A1, and can proceed directly
to B1. We show the output below, represented in
Fig. 21.
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Fig. 20 Example graphs.

Graph 1

DD,
DO
Graph 2

Graph 3

G5 (Do)

Fig. 21 Single-edge subgraphs that meet support.

Step A2: The worker for A2 will read input from the
file system corresponding to the job of B1. The output
strings are as follows:

1_(A"1:B-C"1)(C"1:H-G"1)(1:2)(2:4)

1.(C"1:H-G"1)(E"1:F-G™1)_(2:4)(3:4)
2_(A"1:B-C"1)(E"1:D-C"1)_(1:3)(2:3)
2_(E"1:D-C"1,D-C"2)(2:3,5)
2_(E"1:D-C"1,F-G"1)_(2:3,4)
2_(E"1:D-C"1,F-G"1)_(2:5,4)
3_(A"1:B-C"1)(C"1:H-G"1)_(1:3)(3:4)
3_(A"1:B-C"1)(E"1:D-C"1)_(1:3)(2:3)

3 (C"1:H-G™"1)(E"1:D-C"1)_(3:4)(2:3)

3(C'I:H-G"1)E"1:F-G"1)_(3:4)(2:4)

3(E'1:D-C"1,F-G"1)_(2:3,4)
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Notice the “"” used are markers for the correct
placement of labels. Dealing with repetitive labels
and subgraphs, we have to deal with a lot of
ambiguity. In graph 2 of Fig. 20, we have (E"1:D-
C"1,D-C"2)_(2:3,5)_2. Without the marker, we would
have (E:D-C,D-C). To make sure we are following the
substructure through multiple graph ids, we need those
markers to remove confusion.

Step B2: The worker for B2 will read input from
the file system corresponding to the job of A2. This
input is an unfiltered group of size-2 subgraphs, and B2
will filter out results that do not agree with the user-
support, as well as remove special markers. As a result,
we obtain the subgraphs shown in Fig. 22.

Here we are showing only subgraph generation until
three edges. The final output from Fig. 20 with support
threshold 50% is displayed in Fig. 23.

3.2.3 Experimental details

Experiments were conducted on synthetic datasets,
obtained from http://www.cse.ust.hk/graphgen/ and on
the biological datasets obtained from http://www.
cs.ucsb.edu/xyan/dataset.htm. The real-life datasets
contain data extracted from PubChem website which
contains the bioassay records for anti-cancer screen
tests with different cancer cell lines. Table 6 shows the
performance analysis.

3.3 SPARKFSM: A highly scalable frequent
subgraph mining approach using Apache
Spark!?”}

In our recent work, we have handled the undirected
transaction graphs utilizing the power of Spark engine.
After our MapReduce implementation'®!, many

Graphl

@ror®
Or@Or®

_ overe
Dr@+®

Fig. 22 Double edge subgraphs that meet support.
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Graph 1 Graph 2
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Fig. 23 Triple-edge subgraphs that meet support.

Table 6 MRFSM?*! performance on biological datasets
using a support of 50% and clusters of size 2 and 4 (in
seconds).

Dataset active: 2 active: 4  inactive: 2 inactive: 4
MCEF-7 833 587 1092 683
MOLT-4 922 556 1279 815
NCI-H23 815 516 1537 889
OVCAR-8 861 552 1257 844
P388 743 483 976 683
PC-3 857 546 1150 752
SF-295 936 528 1217 817
SN12C 813 502 1474 883
SW-620 959 568 1454 898
UACC257 836 536 1333 883
Yeast 710 607 1282 812

authors tried to handle directed graphs differently,
but none experimented on the undirected graphs.
There is a big semantic difference between directed
and undirected graphs. When
flight information graphs, those are directed and
isomorphism detection is different in them than
the chemical compound structures. The biological
datasets (http://www.cs.ucsb.edu/xyan/dataset.htm) we
experimented on are chemical compound structures.
Isomorphism plays a little different role here, for
example, water (H,O), two hydrogen atoms share one
electron each with the oxygen atom forming the single
covalent bond structure, and if we remove one H-O
structure, then essence will be lost and we may lose
many expected subgraps. This is the reason we preserve
the isomorphic structure during the first iteration while
creating the single-edge structures, but do not count
while determining frequency in undirected biological
graphs. Similar is the case with NH3, a compound
consisting of nitrogen and three hydrogen atoms. We

consider airline

High Performance Frequent Subgraph Mining on Transaction Datasets: A Survey and . .. 173

do prune the structures in the subsequent iterations.
We provide here a comparison of both types of graphs
with three sample graphs and show how the structure
retention is essential in the chemical compounds.
Figure 24 shows the undirected sample graphs. Figures
25 and 26 show the retained and pruned structures for
undirected graphs from Fig. 24.

The algorithms are given below for undirected and
directed graphs. In Algorithm 11 for undirected, the
major difference is the unique code captured for each
subgraph. The difference between the two is Step 4
of directed graphs in Algorithm 12 where multiple
scenarios are caught due to the direction constraint.

The sample directed graphs are shown in Fig. 27.
We observed a very interesting pattern from both the
directed and undirected graphs shown in Fig. 24 and
Fig. 27, even though the undirected graphs resulted in
multiple intermediate subgraphs due to the isomorphic
structure retention, the final 5-edge FSGs are same for
both as shown in Fig. 28. The left sugraphs “a” belong
to graphs G and G3, and the right ones “b” belong to
Gy, Gs.

Graph 2

Graph 3

Fig. 24 Undirected graphs.

Fig. 25 Structures retained (G;, G»).

Fig. 26 Pruned subgraphs (G, G).
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Algorithm 11 Undirected Graphs
Input: Graph (G1), Frequency (f)
Output: Qualified Subgraph Edge list
Process:
1) Gi1.map = Load RDD_I]
2) RDD1 filter(count > f) = RDD_1
3) RDD_I1.map = SingleEdgeRDD
(For each single edge in RDD_I, append reverse_single_
edge to RDD_1)
4) Assign unique code to each unique node label
5) k EdgeRDD.join(SingleEdgeRDD) = k + 1_EdgeRDD
e Unidirection — join RDDA.secondNode === RDDB.
firstNode
o Filter (RDD 4.graphID === RDD g .graphlD)
o Generate unique code for each edge
e Filter isomorphic structures
6) k + 1_EdgeRDD.groupby(code).count()
7) k + 1_EdgeRDD.filter(count > f) = k + 1EdgeEDD
8) Repeat steps 5 — 7 for k + 1 EdgeRDD
9) Repeat step 8 for 1 to n edge subgraphs

*RDD4 and RDDp represent the alias for SingleEdgeRDD
for initial round, and it represents the future n-egde RDDs as
RDD/4 and SingleEdgeRDD as RDD g for subsequent steps.

Algorithm 12 Directed Graphs
Input: Graph (G1), Frequency (f)
Output: Qualified Subgraph Edge list
Process:
1) Gy.map = Load RDD_1
2) RDD_l filter(count > f) = RDD_I
3) RDD_l filter(duplicate edges) = SingleEdgeRDD
4) kEdgeRDD.join(SingleEdgeRDD) = k+1_EdgeRDD
e Unidirection — join RDD 4.secondNode === RDDp.
firstNode
e Converge — join RDD 4.secondNode === RDDp.

secondNode
e Diverge — join RDD 4.secondNode === RDDp.
firstNode
o Filter (RDD 4.graphID === RDD g.graphlD)
e Eliminate isomorphic structures
e Eliminate duplicates within same graphlD
e Assign Node labels according to the orientation of the join
to maintain directional pattern

5) k+1_EdgeRDD.groupby(NodeLabel and edgepatttern).
count()

6) k+1_EdgeRDD filter(count > f) = k+1EdgeEDD

7) Repeat steps 4 — 6 for k + 1 EdgeRDD

8) Repeat step 7 for 1 to n edge subgraphs

*RDD,4 and RDDpg represent the alias for SingleEdgeRDD
for initial round, and it represents the future n-egde RDDs as
RDDj4 and SingleEdgeRDD as RDDp for subsequent steps.

All our tests were conducted on AWS EMR
with 1 master node and 2 slave nodes with m4
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Graph 2

Fig. 27 Directed graphs.

Fig. 28 Five-edge subgraphs from undirected and directed
graphs.

large configuration. We used Spark 2.3 for all our
experiments. Both directed and undirected jobs ran in
parallel on the same cluster and this was an evaluation
criterion for the experiments.

Dataset Preparation: We used the chemical
compound dataset retrieved from the repository
(http://www.cs.ucsb.edu/xyan/dataset.htm). The dataset
contains the bioassay records for anti-cancer screen
tests with different cancer cell lines;

they are
categorized as active and inactive. Our initial round
of experiments is conducted on the graphs as they
appear on the site. Later, the data preparation was
the most important criteria to test the scalability. A
few authors concatenated the graphs from biological
set to produce the larger sizes. After our analysis, we
found that the graph sizes would not help much for
proper evaluation if concatenated as is. The isomorphic
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subgraphs are eliminated during the very first step, as
the graph numbers remain same across the larger set.
We wrote a script to generate the larger graphs like
OVCARSI and OVCARBSHI. The script reads the last
graph number and generates the next generation single
edges and produce equal number of graphs. This way
we can make sure that the evaluation is accurate for
frequency determination. In addition, as the biological
graphs contain only vertices, edge numbers, and
labels, we have written a Perl script that helps with the
preprocessing steps to create the single edges. After the
initial load, the data load is not required for the several
runs, so the time taken by the initial load is ignored
(approx. 15-20 seconds).

Comparison: Exact comparison with DIMSpan/®7!
would not be appropriate, as we have covered the
undirected graphs in this research. The graphs generated
for our evaluation are very complex due to the way they
are created. It is not mere concatenation, rather every
graph has millions of unique edges and the frequencies
of new undirected graphs are massive. We did one
level comparison with the biological directed graphs
that shows somewhat comparable results. However, we
see improvements over DIMSpan. Since the original
biological graph sizes are not very large, the time
between DIMSpan and SparkFSM?”! would not differ
much. Matching the MRFSM'?*! computation time with
the SparkFSM would not be fair as the technologies
are different and Spark is in-memory computation.
Table 7 provides the computation time in seconds,
size of graphs, number of approximate edges present.
As observed, the original graphs take a few seconds
for frequencies 10%, 20%, 25%, and 50%. The

Table 7 SparkFSM!?”! performance analysis on biological
graphs (time in seconds, threshold frequency: 50%).

Graph Size - Number —Number Undir Directed
(MB) of graphs of edges

MCF7A 1.3 2293 18 5 30
MCF7HA 23 2293 31 34 49
MCF71I 120 25475 36 40 74
MCF7HI 20.0 25475 59 91 77
MOLT4A 1.7 3139 43 33 55
MOLT4HA 3.0 3139 60 76 37
MOLT4I 170 36624 36 84 63
MOLT4HI  29.0 36624 59 74 75
NCIH231I 18.0 38295 36 78 65
NCIH23HI 31.0 38295 59 73 86
OVCARSI  18.0 38436 36 56 56
OVCARSHI 20.0 38436 48 45 33
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comparison is based on both the undirected and directed
implementations.

MRFSM vs. SparkFSM: We skipped the synthetic
graphs’ performance evaluation for this work, as those
graph generators do not produce proper transaction after
a certain point. As we observed, beyond 1 x 10 limit,
the number of new edges and vertices combination was
very limited. The minimum support level was not able
to match beyond 7%, which is not very practical in
real life graph scenarios. Table 8 indicates our previous
evaluation MRFSM!?! on the biological graphs with
2/4 node cluster using MapReduce model. It is evident
from Table 7, with similar number of nodes (3 nodes) in
SparkFSM, the time has reduced to 5 seconds compared
to the 587 seconds in the MRFSM approach.

DIMSpan vs. SparkFSM: We used DIMSpan'®’! as
one of our evaluation standards, but DIMSpan has
focused on the multi directed graphs as opposed to our
SparkFSM?”!, which is more focused on undirected
graphs. From their Data Sets in Section 5.2, we
noticed that they are simply copying the graphs several
times to create the larger volume. For this reason, the
comparison between DIMSpan and SparkFSM will not
provide any valuable insight.

Table 9 shows our evaluation on undirected graphs.
As described in the dataset preparation section, the
graphs span from 50-100 edges. It became more
complex after the graphs were duplicated with a new
number assigned to each graph. We created graphs up
to 4 million and captured the time in minutes. Graph

Table 8 MRFSM™3! performance analysis on biological
graphs (time in seconds, threshold frequency: 50%).

Dataset active: 2 active: 4 inactive: 2  inactive: 4

MCEF-7 833 587 1092 683
MOLT-4 922 556 1279 815
NCI-H23 815 516 1537 889
OVCAR-8 861 552 1257 844

Table 9 SparkFSM?”' performance analysis on large
undirected datasets (time in minutes).

Graph Support (%) Number of graphs Time (min)

OVCARSHI 75 153180 2.20
OVCARSHI 90 153180 0.70
OVCARSHI 75 306366 4.00
OVCARSHI 90 306366 0.96
OVCARSHI 75 1225465 13.00
OVCARSHI 90 1225465 2.00
OVCARSHI 75 2450931 26.00
OVCARSHI 90 2450931 4.00




176

sizes range from 124 MB to 2.1 GB.

4 Concluding Remarks

In this paper, we have tried our best to provide extensive
survey on the frequent subgraph mining on transactional
graphs. We hope the readers will get a good idea
on the concept starting with its inception and on the
status as of now. Also, for the first time we have
introduced the undirected transaction graphs mining
using the high-performance technology Spark. With the
rapid progress in big data technologies, many issues are
easily handled. We provide some analysis based on our
experience while experimenting different approaches
on transactional FSM.

Single machine memory based vs. RDBMS: The
major difference between these two are that RDBMS
can contain more data during processing making it
more scalable. Memory based approaches are very
efficient if the dataset size is small enough to fit the
data structure in use. Certain built-in functions such
as groupBy and distinct can help to a greater extent,
the problem can be solved via SQL query and can
potentially reduce the programming. Intermediate
results can be available even after the job is no longer
active which not the case for memory-based approach
is where if the job is complete, the results will be
removed from memory.

RDBMS vs. Object-Oriented Approach: Being
motivated by the RDBMS based paper®*, we used
db4o while experimenting on FSM, and it is an open
source object db. The interesting aspect of db4o is that
the user does not need to create a separate data model,
the applications class model defines the structure of
the data in db4o database. dbd4o database provides
persistence to objects automatically. Object persistence
is the capability of the system to hold objects even after
the system stops running. We observed improvement
with our db4o approach over the RDBMS based
approach, DB-FSGP4.

Object-Oriented Approach vs. Hadoop MapReduce:
Our second experiment on FSM was motivated by
Hadoop/MapReduce which came as a savior for very
big data processing with its additional benefit of the
reducer concept in MapReduce model. The reduce
function has in-built capability of accumulating all
the key-value pairs and summing it on the go, and
this helped us with the frequency counting. Since then
cluster computing has become a normal standard and
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comparing the database-oriented approach with the
MapReduce model felt like comparing apples with
oranges. We could work on the real life complicated
anti-cancer datasets and tremendous improvement gain
was observed.

Hadoop MapReduce vs. Spark/Scala: During the
experiment with MapReduce model, we faced some
drawbacks of disk I/O due to the intermediate results
being written to disk and then read again, which
added two extra layers of I/O. All our issues are
easily resolved with the Spark engine using Scala
language. Many benefits are achieved by this: (1) It
is distributed computing which happens in-memory;
(2) The need for iterative style of algorithm for FSM
comes as a well-built functionality with the concept
of Spark’s RDD (Resilient Distributed Dataset); (3)
Scala, being a functional style language, has many
advantages over any verbose programming and being
the language base for Spark, and comes with many
compatible functions that make several lines of code to
a few lines. Performance improvements are multifold as
observed from our experiments. The same graph with
3 nodes with MapReduce took 500 seconds, but the
Spark/Scala implementation took about 5 seconds.

As part of our ongoing research on FSM, we are
exploring on utilizing the high-performance computing
on the single large graphs such as social network,
protein-protein interaction graphs, and neural network
graphs.
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