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Bayesian Analysis of Complex Mutations in HBV, HCV,
and HIV Studies
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Abstract: In this article, we aim to provide a thorough review of the Bayesian-inference-based methods applied to

Hepatitis B Virus (HBV), Hepatitis C Virus (HCV), and Human Immunodeficiency Virus (HIV) studies with a focus on

the detection of the viral mutations and various problems which are correlated to these mutations. It is particularly

difficult to detect and interpret these interacting mutation patterns, but by using Bayesian statistical modeling, it

provides a groundbreaking opportunity to solve these problems. Here we summarize Bayesian-based statistical

approaches, including the Bayesian Variable Partition (BVP) model, Bayesian Network (BN), and the Recursive

Model Selection (RMS) procedure, which are designed to detect the mutations and to make further inferences

to the comprehensive dependence structure among the interactions. BVP, BN, and RMS in which Markov Chain

Monte Carlo (MCMC) methods are used have been widely applied in HBV, HCV, and HIV studies in the recent years.

We also provide a summary of the Bayesian methods’ applications toward these viruses’ studies, where several

important and useful results have been discovered. We envisage the applications of more modified Bayesian

methods to other infectious diseases and cancer cells that will be following with critical medical results before long.
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1 Introduction

Per historical data, there are up to 30 million people
across the world who are infected with Hepatitis
B Virus (HBV) and up to 600 thousand die every
year[1, 2]. According to World Health Organization
(WHO), among infected adults, “less than 5% of
otherwise healthy persons who are infected as adults
will develop chronic infection, and 20% – 30% of adults
who are chronically infected will develop cirrhosis
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and/or liver cancer”; and rate is higher in younger
populations: “80% – 90% of infants infected during
the first year of life develop chronic infections, and
30% – 50% of children infected before the age of 6
years develop chronic infections.”[2] There are about
1/3 of chronic infected subjects will have irreversible
outcome as liver damage, and it leads to cirrhosis and
hepatocellular carcinoma; and the other 2/3 infected
subjects will retain the virus in their body and become
highly infectious though asymptomatic[3]. In total, up
to 25% of subjects with chronic infected HBV die from
the complications due to the disease[3].

HBV is a member of the Hepadnaviridae family, and
it comprises an icosahedral protein capsid surrounding
the viral DNA, with a lipoprotein viral envelope[4–7].
The virus DNA is organized in 4 Open Reading
Frames (ORF): S, which stands for surface and encodes
HBsAg; C, which stands for core and encodes HBcAg
and HBeAg; P, which stands for polymerase and



146 Big Data Mining and Analytics, September 2019, 2(3): 145–158

encodes DNA polymerase; and X, which encodes
an X protein, and currently we are not clear of its
exact function[5, 7]. Two highly immunogenic proteins,
HBcAg and HBeAg, consist of the nucleocapsid,
and a less immunogenic surface antigen HBsAg is
in the viral envelop[5–7]. In patients with chronic
infection, serum HBV-DNA reflects the disease
progression and the transition across the different
stages of the disease[8]. “Identifying HBsAg mutations
correlated with different levels of serum HBV-DNA in
HBV chronically infected patients naive to anti-HBV
drugs”[8] is one of the interests of HBV studies. In
the meantime, “Occult HBV Infection (OBI) is a threat
for the safety of blood-supply, and has been associated
with the onset of HBV-related hepatocellular carcinoma
and lymphomagenesis.”[9] “The genetic markers in
HBsAg (particularly in D-genotype, the most common
in Europe) significantly associated with OBI in vivo are
missing”, so the correlation between HBaAg-mutations
and OBI and its impact on HBsAg detection are also
important[9]. The above problems can be solved by
using Bayesian framework.

Hepatitis C Virus (HCV) is a single-strand RNA
virus and has been classified into at least six genotypes
with several subtypes in each. The response patterns
of different genotypes to interferon-based therapy are
diverse with them spreading in different regions[10].
In previous clinical experience, Interferon (IFN) and
ribavirin combined therapy has a significantly higher
rate of sustained response in chronic HCV patients
compared with interferon-based therapy which has only
less than 20% sustained response[11, 12].

Some variations in the HCV sequences have the
ability of interfering the effective functioning of IFN-
based therapies. Among all these variations, the ones
in the NS5A region[13, 14] are the main subject in our
review. NS5A is a nonstructural protein that can lead
to IFN therapy resistance by impacting the function of
an important mediator of IFN response called dsRNA
dependent Protein Kinase (PKR)[15, 16]. NS5A region
has 1344 base pairs linking to 448 amino acid and
constitutes several regions: “the membrane attachment
region (aa 1 – 236), the carboxyl region (aa 237 – 448),
and the regions within the carboxyl end, such as
PKRbd (aa 237 – 302), Variable region 4 (V4; aa 310 –
330), Variable region 3 (V3; aa 381 – 409), the region
between V3 and V4 (aa 331 – 380), and the downstream

region of V3 (aa 410 – 448).”[17]

In general, mutations in NS5A region have been
proposed to be related to therapy resistance by Enomoto
and Sato[18] and other researchers[19, 20]. However, the
relation between mutations in NS5A region and IFN
resistance remains ambiguous because of contradictory
results obtained in studies concerning PKR binding
domain in NS5A[21]. Thus, a better and deeper
comprehension of the role of NS5A region in antiviral
resistance to IFN therapy will contribute greatly to the
development of treatment strategies against HCV.

Human Immunodeficiency Virus (HIV) is an
enveloped virus with a single-stranded RNA genome
and is the cause of the Acquired Immunodeficiency
Syndrome (AIDS) which killed more than 20 million
people since 1980s (www.who.int/hiv/en/)[22, 23].
The replication cycle of HIV-1 virus consists of 13
important steps[24], beginning with the attachment
step and ending with the protease-mediated mutation
process. The attachment step marks the entry of virus
into host cell by the fusion of membranes of the cell and
virus[25, 26]. A trimer of gp120 and gp41 heterodimers
forms the only protein envelope on the viral surface.
The HIV-1’s delivery of genome into the host cell is
an extremely intricate process in which a collaborative
interaction of the envelope glycoprotein gp120 with
the CD4 receptor and with chemokine receptors is
required. The chemokine receptors mainly refer to
CC chemokine Receptor type 5 (CCR5) and C-X-C
chemokine Receptor type 4 (CXCR4)[27].

These receptors can be used to classify HIV-1
virus since the ability of virus to use the CCR5
and CXCR4 co-receptor differs from each other. It
has been proposed by previous studies that R5-reopic
viruses which can only use the CCR5 co-receptor
are the predominant in majority of newly HIV-1
infected patients and are generally responsible for
the initial infection. Meanwhile, CXCR4 co-receptor
usage is observed more often in advanced stages of
disease[27, 28]. And among the domains of HIV-1 gp120,
the V3 loop is the primary determinant for HIV-1
co-receptor usage[29]. Thus, in order to provide more
valuable information for the development of anti-HIV-
1 drugs targeting on inhibiting the entry of CCR5-
tropic HIV-1 strains into host cell, we keep our
focus on defining the V3 genetic determinants and the
structural features underlying the ability of HIV-1 to
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use the CCR5 and CXCR4 co-receptors[30]. Moreover,
understanding the detailed interaction mutation patterns
related to drug-resistance in V3 is also of great
importance to develop effective treatment against
HIV[24].

Genomic data can be studied using various methods
including Bayesian methods and data mining methods.
Some encoding schemes may also be very useful
in genomic representation and feature learning[31].
Zagordi et al.[32] developed a Bayesian approach
to detect minority variants for estimating HIV
quasispecies[33]. Zhang et al.[34] proposed an innovative
Bayesian method for investigating mutation interactions
of HIV after certain drug treatment. This method has
been used in detecting genome-wide associations on
HBV and HCV as well. The inference of Bayesian
Network (BN) has been applied to model the drug
resistance of HBV and HIV[35, 36]. Thai et al.[35]

confirmed that lamivudine resistance is a complex
trait encoded by the entire HBV genome using a
set of Bayesian networks of polymorphic amino acid
sites of pre- and post-treatment from HBV patients.
Beerenwinkel et al.[36] used isotonic conjunctive
Bayesian networks, a class of BN, to model the
evolutionary escape dynamics of HIV-1. Recently,
Chaillon et al.[37] used Bayesian-based statistical
modeling to access the likelihood of sexual transmission
and persistence of drug resistance mutations in HIV
infection. In this article, we will provide a thorough
review of the Bayesian Variable Partition (BVP) model,
BN, the Recursive Model Selection (RMS), and their
real applications in HBV, HCV, and HIV studies.

2 Introduction of Bayesian Inference

Bayesian inference is a technique of statistical inference
which is specifically based on the use of Bayesian
theorem. It has been widely applied to update the
probability estimate for a hypothesis as evidence or
information becomes available, and it’s the formal
methods for combining prior beliefs with observed
information to answer the questions that researchers
are usually interested in. It is not complicated to
build a model by using the combination of multiple
experiments’ information. This natural way can also
fit realistic. With all the benefits, Bayesian inference
however often comes with a high computational cost
and it needs to express subjective prior beliefs into a

mathematical prior formula or function.
Bayes’ rule (http://en.wikipedia.org/wiki/Bayesian

inference). When � is a discrete random variable with a
probability mass function, the Bayes’ rule is

p.� jx/ D
p.xj�/p.�/P
i

p.xj�i /p.�i /
:

When � is continuous with a probability density
function, the Bayes’ rule becomes

p.� jx/ D
p.�; x/

p.x/
D
p.xj�/p.�/

p.x/
D

p.xj�/p.�/R
p.xj�/p.�/d�

:

Bayes’ rule is often written as p.� jx/ / p.�/p.xj�/,
when treated as a function of � for a fixed x, where
p.xj�/ is the likelihood L.xj�/. Bayes’ rule can be
considered as

Posterior / Prior � Likelihood,

p.� jx/ / p.�/p.xj�/:

This is expressed in words as “the posterior is
proportional to the product of the prior and the
likelihood.”

Basics of the Bayesian inference. When we use
Bayesian statistics to make inferences, consider

(1) Setting up a probability model;
(2) Applying the probability theory and the Bayes’

rule.
For example, let x1; x2; : : : ; xn be an independent

sample from Binomial distribution Bin.n; �/, where
n is the sample size and � is the probability of
success. We have xj� � Bin.n; �/. The likelihood can
be written as

p.xj�/ D

 
n

x

!
�x.1 � �/n�x; � 2 Œ0; 1�:

If we want to make inference on � given x and n, a
prior distribution p.�/ for � is needed. We can use a
uniform distribution � � U.0; 1/:

p.�/ D

(
1; 0 6 � 6 1I

0; otherwise.

Then by applying the Bayes’ rule, we get

p.x; �/ D

 
n

x

!
�x.1 � �/n�x;

p.x/ D

Z 1

0

 
n

x

!
�x.1 � �/n�xd� D

1

nC 1
;

p.�jx/ D
p.x; �/

p.x/
D .nC 1/

 
n

x

!
�x.1 � �/n�x :
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3 Bayesian Methods in HBV, HCV, and HIV
Studies

In this section, we will first summarize and generalize
the Bayesian statistical models applied to HBV, HCV,
and HIV studies in terms of finding the virus sequence
mutations and the difference in two (or three) different
groups of patients. Then a summary of important and
interesting results found by applying these methods will
be carried out for HBV, HCV, and HIV studies.

3.1 Bayesian variable partition model

Zhang et al.[34] first developed the BVP model to
detect and understand combinatorial mutation patterns
responsible for HIV drug resistance. Up to now, this
method has been successfully applied in various virus
studies[38–41].

Following the notations in Ref. [42], generally,
suppose we have two data sets in the form of matrices,
say A D ŒA1; : : : ; Am� (of dimension nA�m/ and B D
ŒB1; : : : ; Bm� (of dimension nB�m/, respectively (each
row is a sequence and each column is a position of
amino acid sequence). The numbers of sequences in
two groups are denoted using nA and nB , andm denotes
the number of positions. On top of that, we establish
the following four assumptions for the distribution of
the positions from the two groups:

H1: The identity of the independent positions, where
group A and group B data share the same probability
distribution.

H2: The identity of the independent positions, where
group A and group B data have different probability
distributions.

H3: The identity of the dependent positions, where
group A and group B data share the same probability
distribution.

H4: The identity of the dependent positions, where
group A and group B data have different probability
distributions.

From these hypotheses, we are interested in positions
from H2 and H4 particularly. Therefore, we will start
with the positions from H2. Given that the position i
is from H2, and we assume there are ci possible values
(amino acids) at position i, and for every sequence in
group A, we have p1 for the first value, p2 for the

second, . . . , pci
for the last value, and

ciX
jD1

pj D 1.

Then we can calculate the likelihood for data set A at
position i is

P.Ai jp1; p2; : : : ; pci
;H2/ D

ciY
jD1

p
nj

j ;

where nj denotes the number of sequence with the j-th
value in Ai . At the same time, we have p0j for the j-th

value in group B, and
ciX
jD1

p0j D 1. So the likelihood for

group B at position i is

P.Bi jp
0
1; p
0
2; : : : ; p

0
ci
;H2/ D

ciY
jD1

.p0j /
n0

j ;

where n0j is the number of sequence with the j-th value
in Bi .

Under the assumption of H2, pj ¤ p0j , since we do
not know the true values of pj or p0j , we assume they
are random and a Dirichlet prior is applied on them.

p �Dirichlet.˛1; ˛2; : : : ; ˛ci
/ W

P.p1; p2; : : : ; pci
jH2; ˛1; ˛2; : : : ; ˛ci

/ D

1

B.˛/

ciY
jD1

p j̨�1

j ;

where B.˛/ D
Qcj

jD1
� . j̨ /

�

 
cjP

jD1
j̨

! ; ˛ D .˛1; ˛2; : : : ; ˛ci
/, and

� .x/ D

Z 1
0

tx�1e�tdt �

p0 �Dirichlet.˛01; ˛
0
2; : : : ; ˛

0
ci
/ W

P.p01; p
0
2; : : : ; p

0
j jH2; ˛01; ˛

0
2; : : : ; ˛

0
ci
/ D

1

B.˛0/

ciY
jD1

.p0j /
˛0

j
�1
;

where B.˛0/ D
Qcj

jD1
� .˛0

j
/

� .
Pcj

jD1
˛0

j
/
; ˛0 D .˛01; ˛

0
2; : : : ; ˛

0
ci
/,

and � .x/ D
Z 1
0

tx�1e�tdt:

Then we have
P .Ai ; p1; p2; : : : ; pci

jH2/ D
ciY
jD1

p
nj

j � Dirichlet.˛1; ˛2; : : : ; ˛ci
/ D

1

B.˛/

ciY
jD1

p
njC j̨�1

j ;

P .Bi ; p
0
1; p
0
2; : : : ; p

0
ci
jH2/ D

ciY
jD1

p0j
n0

j � Dirichlet.˛01; ˛
0
2; : : : ; ˛

0
ci
/ D

1

B.˛0/

ciY
jD1

p0j
n0

j
C˛0

j
�1
:
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By integrating out p and p0, respectively, we get

P .Ai jH2/ D
Z
P.Ai ; p1; p2; : : : ; pci

jH2/dp D

cjY
jD1

� .nj C j̨ /

� . j̨ /

� .
Pcj
jD1 j̨ /

� .
Pcj
jD1.nj C j̨ //

;

P .Bi jH2/ D
Z
P.Bi ; p

0
1; p
0
2; : : : ; p

0
ci
jH2/dp0 D

cjY
jD1

� .n0j C ˛
0
j /

� .˛0j /

� .
Pcj
jD1 ˛

0
j /

� .
Pcj
jD1.nj C ˛

0
j //
:

And then

P.Ai ; Bi jH2/ D P.Ai jH2/P.Bi jH2/:

Now under H1, we have pj D p0j , so we can obtain

P.Ai ; Bi jH1/D
Z
P.Ai ; Bi ; p1; p2; : : : ; pci

jH1/dpDZ
1

B.˛/

ciY
jD1

p
njCn

0
j
C j̨�1

j dp D

ciY
jD1

� .nj C n
0
j C j̨ /

� . j̨ /

� .
Pcj
jD1 j̨ /

�

 
cjP
jD1

.nj C n
0
j C j̨ /

! :
For hypothesis H4, we assume there are c

possible value combinations of the dependent positions.
Likewise, suppose for every sequence in group A, we
have p1 for the first combination, p2 for the second
combination, . . . , pc for the last combination, andPc
jD1 pj D 1; for every sequence in group B , we

have p01 for the first combination, p02 for the second
combination, . . . , p0c for the last combination, andPc
jD1 p

0
j D 1. Then, we have

P .dependent positions in AjH4/ D
cY

jD1

� .nj C j̨ /

� . j̨ /

� .
Pc
jD1 j̨ /

� .
Pc
jD1.nj C j̨ //

;

P .dependent positions in BjH4/ D
cY

jD1

� .n0j C ˛
0
j /

� .˛0j /

� .
Pc
jD1 ˛

0
j /

� .
Pc
jD1.n

0
j C ˛

0
j //
;

where nj and n0j are the numbers of the j-th combination
in A and B, respectively, and then

P .dependent positions in A, BjH4/ D

P .dependent positions in A/�

P .dependent positions in B/:

Now under H3, we have pj D p0j , so similarly we
have

P .dependent positions in A, BjH3/ D
cY

jD1

� .nj C n
0
j C j̨ /

� . j̨ /

� .
Pc
jD1 j̨ /

�
�Pc

jD1.nj C n
0
j C j̨ /

� :
We define an indicator vector I D ŒI1; I2; : : : ; Im� to

indicate the hypothesis group of m different positions
belong to, where Ii D 1 means position i is from H1,
Ii D 2 means position i is from H2, Ii D 3 means
position i is from H3, and at last Ii D 4 means that the
position i is from H4.

Then, as we are interested in the inference of I, so
we want to find the posterior distribution of I, given the
data sets A and B, i.e., P.I jA;B/: Applying the Bayes’
theorem, we obtain

P.I jA;B/ D
P.I /P.A;BjI /P

all possible I P.I /P.A;BjI /
:

Therefore,
P.I jA;B/ / P.I /P.A;BjI /:

Based on H1, H2, H3, and H4, we have
P.A;BjI / D

Y
IiD1;2

P.Ai ; Bi jIi /�

P.dependent positions from H3/�

P.dependent positions from H4/:

In practice, we also need to assume the prior for I .
For example, we may assume most positions should be
in H1 and H3, then we set P.Ii D 2/ D P.Ii D 4/ D

0:01, and P.I / D
mY
iD1

P.Ii /.

3.2 Dirichlet process mixture

Zagordi et al.[32] developed a probabilistic Bayesian
approach to minimize the effect of errors on
the detection of minority variants when estimating
HIV quasispecies[33]. This approach assumes that
sequencing reads tend to cluster around the true
haplotypes[43], with a distribution depending on the
error process, while these haplotypes can be separated
by their true evolutionary distance. Although general-
purpose clustering algorithms can be used to do the read
clustering, they face the problem of choosing the right
number of clusters. To overcome this issue, Zagordi et
al.[32] used a Bayesian fashion with a Dirichlet Process
Mixture (DPM)[44], which defines a prior distribution
on the unknown number of haplotypes. DPM is
capable to capture the uncertainty in the number of
clusters and the phylogenetic structure of unknown
haplotypes. The prior on mixing proportions then leads
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to a few dominating classes and is controlled by
a hyperparameter ˛. This prior is expressed in the
following equation:
p.ci D cjcj W j ¤ i/ D8̂<̂
:

nc

n � 1C ˛
; read i is assigned to class cI

˛

n � 1C ˛
; read i is assigned to a new class;

where nc is the size of class c, and n is the total number
of reads.

In addition to the prior on the assignment of
observations, the generation of reads from different
haplotypes is modeled by

p.RjC;H/ D

KY
kD1

!mk

�
1 � !

jOj � 1

�m0
k

;

whereR D fr1; : : : ; rng denotes a set of the given reads,
C D fc1; : : : ; cng is the assignments of the given reads,
H D fh1; : : : ; hKg is the set of haplotypes determined
eventually by the data, ! is the probability that a
base is drawn without error, O is the alphabet of the
bases, and mk and m0

k
denote the number of matched

and unmatched bases between reads and assigned
haplotypes, respectively. When the read i is assigned
to a new class, the generation process is formulated the
following equation:

p.ri jh0/ D

�
! � 
 C .1 � 
/

1 � !

jOj � 1

�mi;0

��
1

.jOj � 1/2
.! C 
 C jOj .1 � ! � 
/ � 2/

�m0i;0

;

where h0 is the known reference genome, 
 is the
mutation probability of a base, andmi;0 andm0i;0 denote
the number of matched and unmatched basesetween the
reads i and h0. The intuition of this equation is that the
reads generated by the reference genome are affected by
both sequencing error and mutation. Based on the above
three models, a Markov chain Monte Carlo algorithm
performing Gibbs sampling was used to sample the joint
posterior distribution haplotype sequences, assignment
of reads to haplotypes, and error rate of the sequencing
process to obtain estimates of the local haplotype
structure of the population. More details about this
Gibbs sampling can be found in Ref. [32].

3.3 Bayesian partition on dual usage of co-receptor
model

To detect and understand genetic and structural features
in HIV-1 B subtype V3 underlying HIV-1 co-receptor
usage, Chen et al.[30] developed a Bayesian Partition

on Dual Usage of Co-receptor Model (BPDUCM) to
define V3 genetic determinants either independently
or interactively associated with the usage CCR5 co-
receptor only, CXCR4 co-receptor only, or dual of
CCR5/CXCR4 co-receptor.

This method was applied to analyze three datasets —
CCR5 only, CXCR4 only, and dual usage. To clearly
show the method, the notations from Chen et al.[30]

are directly employed here. Suppose there are Nt
sequences from CXCR4-using viruses,Nu from CCR5-
using viruses, and Nw from dual-using. Each sequence
is of q-residues long. LetX D fX1; X2; : : : ; Xqg be the
observation of sequences. Xj is a column vector that
contains N D Nt CNu CNw observations at the j -th
position. Set dataset indicator Y D fY1; Y2; : : : ; YN g
represents the status of co-receptor usage of each
sequence: Yi D 0 if i -th sequence is from CCR5,
Yi D 1 if CXCR-4, and Yi D 2 if dual-using. The goal
is to describe the complicated relationship between the
sequence observations (X) and the dataset indicator
(Y). Basically, we partitioned the q positions into K
groups according to their relationship to Y. Each of
the K groups represents one relationship between X
and Y. Denote with I D fI1; I2; : : : ; Iqg as the group
indicator, Ij D k .j D 1; : : : ; q and k D 1; : : : ; K/

means j -th position is partitioned into the k-th group.
Given Y, we want to infer I when X is observed and
when we have q and K as fixed. The likelihood is
P.X jI; Y /, and the posterior probability is P.I jX; Y /,
we have

P.I jX; Y / / P.I jY /P.X jI ; Y /:

Assume I is independent from Y, P.I jY / D P.I /.

3.4 Bayesian networks

To further explore the relations between variables and
improve the outcome predictive accuracy, recent studies
used BNs to model evolutionary escape dynamics
of virus during the antiretroviral therapies[35, 36]. BNs
represent a set of variables, for instance, sequence
mutations and drug resistance phenotypes, and their
conditional dependencies via a Directed Acyclic Graph
(DAG). The learning of the BN structure can be
accomplished using many methods, which can be
categorized into three groups, i.e., constrain-based,
score-based, and tree-based[45, 46]. The Peter and Clark
(PC) algorithm is one of the most commonly used
constrain-based approach to construct causal network,
which can be treated as a BN. Once we know the BN
structure, the estimation of the conditional probabilities
can be obtained using maximum likelihood estimation,
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Bayesian estimation, and Expectation-Maximization
(EM) algorithm when we have incomplete data.
Because a BN is a complete model for the variables
and their relationships, it can be used to answer
probabilistic queries about them. For example, find
out the probability that variable has a specific value,
or the most likely explanation for some evidence.
In the context of HBV and HIV studies, we can
employ BN to investigate epistatic connectivity of drug-
resistance mutations or to predict how likely the virus to
become resistant to a certain drug. Next, we will briefly
introduce the PC algorithm and maximum likelihood
estimation for BN inference, and cover some case
studies of BN shortly.

PC algorithm. Assume that we have a set of
variables X D .X1; : : : ; Xn/ with a global probability
distribution about them. a, b, and c represent subsets
of variables of X . Ind.a; bjc/ denotes that a and b

are conditionally independent given c. PC algorithm
assumes faithfulness, which means that a DAG can
exactly represent the independence relationships among
the variables in X by the d-separation criterion[47].
PC first tries to find the underlying undirected graph
(Algorithm 1) and on a posterior step makes the
orientation of the edges.

In Algorithm 1, AdjXj
is the set of nodes adjacent to

Xj in Graph G0. The intuition is that if there is no link
between Xj and Y , SXjY will contain a set that makes
Ind.Xj ; Y jS/, and this set will be used in the orientation
stage. The orientation step proceeds by checking sets
of three variables fa; b; cg where only two edges exist
among these three. For example, we have edge(a; c/
and edge(b; c/. If c … Sab , then it orients the edges
from a to c and from b to c as known as a v-structure.
Next it tries to orient the rest of the edges similarly but
not to create cycles or new v-structures. Note that it is

Algorithm 1 PC algorithm used to find the underlying
undirected graph

1: Start with a complete undirected graph G0

2: i  0

3: For each Xj 2 X

4: For each Y 2 AdjXj

5: SXj Y  ∅
6: Test 9S � AdjXj

=Y , and jS j D i , and Ind.Xj ; Y jS/

7: If S existis
8: SXj Y  SXj Y [S

9: Remove edge between Xj and Y from G0

10: i  i C 1, repeat Step 3, until jAdjXj
j 6 i;8Xj

possible that the orientation of some of the edges may
be arbitrarily determined.

Maximum likelihood estimation. Given a BN
structure G.V;E/ on a set of variables V and a data set
D 2 dom.V / of cases, learning the parameters of the
BN means to find vertex potentials po.v/v2V subject
to some optimality criterion with regard to G and D
holds. The simplest criterion is the maximum likelihood
criterion, i.e., the probability of the data given the
BN is maximal. Instead of the likelihood p, often
logp is used, called log-likelihood. Here, we take a
BN with each node corresponding to discrete variables
as an example. Given samples D D fx1; : : : ; xM g

from unknown BN that factors over the DAG G,
the parameters of a Bayesian model are simply the
conditional probabilities that define the factorization.
For each node vi 2 G, we need to learn p.vi jPa.vi //
which is governed by the parameter �vi jPa.vi /, where Pa
means the parent and Pa(vi ) means the parent of node
vi . The log-likelihood we want to maximize is defined
by

log l.�/ D
MX
m

X
v2V

log �v.xm/jPa.v.xm//:

It is easy to prove that log l.�/ is maximal if and only
if

�vDxjPa.v/DyD
jfd 2Djd where vDx and Pa.v/Dygj
jfd 2 Djd where Pa.v/ D ygj

:

3.5 Metropolis-hastings algorithm

The Markov Chain Monte Carlo (MCMC) is used to
sample from the posterior probability like P.I jA;B/
(or P.I jX; Y // via the Metropolis-Hastings (M-H)
algorithm to infer which variables are associated
with the treatment status, group indicators, etc. The
procedure of M-H algorithm is as follows:

(1) Initialization. Randomly assign a starting value
I .t/ to I , here t D 0;

(2) Proposal. Propose a new I as follows: randomly
choose one I .t/i and change it to other values with equal
probabilities, set new I as y;

(3) Evaluation. Evaluate the posterior. Since the
proposal is symmetric, the acceptance probability is
˛.I .t/; y/ D minf1; P.I D yjA;B/=P.I D I .t/jA;

B/g;
(4) Update. Generate u from standard uniform

distribution U.0; 1/ and set

I .tC1/ D

(
y; if u 6 ˛.I .t/; y/I

I .t/; otherwiseI

(5) If t > N (N is the total number of iterations),
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stop; otherwise, set t D t C 1 and go to Step (2) and
repeat this procedure.

3.6 Recursive model selection

RMS procedure is applied to make inferences on the
detailed dependence structure among the interacting
positions generated by the Bayesian variable partition
model[34]. The idea is to select a model from two
unrefined models recursively until the data does not
support more detailed models. One of the two models
is the chain-dependence model and the other is the V-
dependence model.

Chain-dependence model[24]. Set of variables XG
follows a chain-dependence model if the index set G
can be partitioned into three subsets U , V , and W ,
such that XU and XW are independent given XV ,
e.g., XU ! XV ! XW (shown in Fig. 1). The joint
distribution of the chain-dependence model is given as

p.XG/ D p.XU /p.XV jXU /p.XW jXV / D

F.XV ; XU /F.XW ; XV /

F.XV /
;

where F.XV ; XU ; : : :/ is the joint probability function
of .XV ; XU ; : : :/.

V-dependence model[48]. A set of variables XG

follows a V-dependence model if the index set G can
be partitioned into three subsets U , V , and W , such
that XU and XW are mutually independent, i.e., XU !
XV  XW (shown in Fig. 2). The joint distribution of
the V-dependence model is

p.XG/ D p.XU /p.XW /p.XV jXU ; XW / D

F.XU /F.XW /
F.XU ; XV ; XW /

F.XU ; XW /
:

Fig. 1 Chain-dependence model structure.

Fig. 2 V-dependence model structure, in which the
variables in U are marginally independent of the variables
in W.

Note that in these two models, only set W can be
empty, in which case these models become the saturated
model.

A model indicator ICV D .ICV1 ; ICV2 ; : : : ; ICVL /

can be used to imply the membership of the L positions
with ICVj D 0 representing the chain-dependence
model and ICVj D 1 indicating the V-dependence
model. If we use S to denote the set partition, then the
posterior distribution of S and ICV is
P.S; ICV jdata/ / P.datajS; ICV /P.S/P.ICV /:

One can set equal priors for ICV and S. Then we
can use the MCMC algorithm again to sample from the
posterior and find the optimal model type and variable
selection. The procedure is applied recursively until
only single-variable nodes are available.

Then we can apply BVP and RMS sequentially to the
data of the different groups to make inferences on the
mutations.

3.7 Applications of Bayesian methodology to HBV,
HCV, and HIV studies

3.7.1 Applications in HBV studies
The Bayesian methods described have been applied
to multiple HBV related studies including detecting
correlation between specific mutations in the C-
terminus domain of HBV surface antigen and low
level of serum HBV-DNA in patients with chronic
HBV infection, HBV amino acid sequence mutations in
occult infections, and the correlation between HBsAg
markers and occult HBV infection and detection. A
summary of the results from these studies can be found
in Table 1. Note that one of the advantages is that the
Bayesian-based method showed the ability of analyzing
high-order combinations of positions[48].

The inference of BN has been applied to model the
drug resistance of HBV[35]. Thai et al.[35] confirmed that
lamivudine resistance is a complex trait encoded by the
entire HBV genome rather than by a single mutation
based on the investigation of epistatic connectivity
using a set of BNs of polymorphic amino acid sites
in HBV proteins of pre- and post-treatment viral
populations from HBV patients[35]. In most of the
patients, drug-resistant HBV variants were evolved
from minority subpopulations, the number of sites in
BN varied from 76% – 100% of all polymorphic sites.

3.7.2 Applications in HCV studies
By applying BVP model and RMS method to multiple
controlled datasets, some interesting findings were
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Table 1 A summary of results from applications of Bayesian methods to HBV studies. IQR represents interquartile range.
HBV genotype Mutation discovered

by Bayesian methods
Correlation Comment

D (and/or A) M197T, -S204N-
Y206C/H-F220L

Serum HBV-DNA<2000 IU/mL[8]

These mutations were localized in the
HBsAg C-terminus, known to be involved in
virion and/or HBsAg secretion[8].

D (and/or A) Y206C/H and/or F220L Lower median (IQR) HBsAg-levels and
lower median (IQR) transaminases[8]

C (HBV and OBI) RT mutation V173L Drug resistance in patients receiving
antiviral treatments, such as adefovir
and lamivudine[49]; HBV vaccine
escape[50].

Details results can be found in Ref. [48].

C (HBV and OBI) H126Q, H126Q+138R OBI samples[48]

D 20 HBsAg-mutations Occult HBV D-genotype infection in
vivo[9]

Details results can be found in Ref. [9].

discovered to help understanding the HCV drug
response and resistance related mutations.

Fu et al.[17] concentrated on NS5A region particularly
for HCV genotype 1a. In NS5A region there are
1344 base pairs, linking to 448 amino acids. The
Bayesian methods were applied to the pretreatment
sequences of response (47 sequences) and non-response
(29 sequences) samples. “The result gives us a reliable
idea of the mutation mechanism of positions 49, 349,
and 199, 209, 242, 398 which have the highest
frequencies.”[17] Detailed results can be found in Table 2.

They also found that a lot of positions are not
mutating independently. Figure 3 shows the interacting
positions detected by BVP in response samples and
Fig. 4 shows the interacting positions detected by
BVP in non-response samples. Figures 3 and 4 are
reproduced with permission from the authors based on
their original findings. And some significant discoveries
can be found in Table 3.

3.7.3 Applications in HIV studies

The Bayesian methods summarized in previous
subsections have also been successfully applied to
multiple HIV studies in both single-drug treatments and
multiple-drug treatments. A summary of the results of
such Bayesian analysis was carried out in Table 4[34, 41].

Fig. 3 Flowchart of detected mutation positions and
position combinations in the pretreatment sequence of
patients who respond to the treatment[42].

Fig. 4 Flowchart of detected mutation positions and
position combinations in the pretreatment sequence of
patients who do not respond to the treatment[42].

Table 2 Single positions result summary.
Position Result Comment

49, 349
Positions 49 and 349 are statistically different
in response and non-response patients and
independent of other positions[17].

Position 49 is in membrane attachment region; Position 349 is
in the region between V3 and V4; Positions 199 and 209 are
in membrane attachment region; Position 242 is in Interferon
Sensitivity Determining Region (ISDR); Position 398 is in V3
region. These positions may have some biological influence
on drug resistance to IFN and ribavirin[17].

199, 209, 242, 398
Positions 119, 209, 242, and 398 are dependent
and demonstrate significant difference in
response and non-response patients[17].
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Table 3 Dependence structure inferred by RMS in detail.
Position Amino acid Result Comment

285 E
Frequency is 13.8% in non-response
samples and 8.5% in the response
samples[42]

199 L
Frequency decreases from 100% to 87.2%,
from non-response samples to response
samples[42]

226 M
Frequency decreases from 20.75% to 14.9%,
from non-response samples to response
samples[42]

107, 226, 288,
410, 439

EMIAE Does not exist in response samples[42]
Those positions combined may be a
distinguishing factor for response and
non-response patients[42].

107, 226, 288,
410, 439

KEIAG, TMVAG,
TLIAE

Only exist in non-response samples[42]

Table 4 A summary of results from applications of Bayesian methods to HIV drug resistance studies[24].

Drug Antiretroviral effect Mutation interaction discovered by
Bayesian methods

Comment

Indinavir (IDV) Protease inhibitor f24, 47 f32f46? 54 j 82gggf10, 71gf73, 90g Interesting group f46, 54, 82g 1


Nevirapine Non-nucleoside
RT inhibitor

f106gf188gf103 ? 181gf190g Weak interactions

Zidovudine Nucleoside analog
RT inhibitor

f41, 210, 215gf67, 219gf70g Further biochemicalinvestigations needed 2


IDV, NFV Protease inhibitors f24, 54, 82gf30, 88gf73, 90g 6 positions disappeared 3


IDV, SQV Protease inhibitors f61, 71gf46, 54, 82gf73, 90g Other details ambiguous
IDV, NFV, SQV Protease inhibitors f30, 88gf73, 90gf24, 46, 54, 82g Ambiguous structure in 3rd group

Notes: Epistatic mutations discovered with BVP approach are partitioned using RMS algorithm. Independence groups are enclosed in
brackets. “?” indicates inconclusive result.

1
 Sequential mutation acquisition in this group leads to conditional independence. The results were confirmed by the Molecular
Dynamics (MD) simulations.

2
 It is not possible to study the structural basis of mutations using MD simulations for Zidovudine.
3
When compared to single-drug treatment profiles.

One can observe that several statistically significant
interaction patterns among resistance causing mutations
have been discovered using the Bayesian methods.
It is important that the molecular basis of multiple
interacting mutations found by RMS was analyzed
with MD simulations and free energy calculations[41].
“Therefore, this is an example of the statistical study
where biological processes underling drug resistance
can be extracted from the discovered independence
groups.”[24]

In addition, Beerenwinkel et al.[36] used isotonic
conjunctive Bayesian networks, a class of BN, to
model the evolutionary escape dynamics of HIV-1.
The partial order constraints among viral resistance
mutations were employed to generate to a limited
number of mutational pathways, and phenotypic drug
resistance was modeled as monotonically increasing

along these escape pathways. Using this model, the
individualized genetic barrier[51, 52] which means the
probability of the virus is not acquiring additional
mutations that confer resistance to each drug was
derived and used to quantify the virus’ genetic potential
for developing drug resistance under combination
therapy. The experimental results showed that this
data-derived predictor, individualized genetic barrier
of treatment outcome, has the potential to advance
the understanding of genotypic drug resistance tests.
Recently, Chaillon et al.[37] used Bayesian-based
statistical modeling to access the likelihood of sexual
transmission and persistence of Drug Resistance
Mutations (DRM) regarding HIV infection. Their goal
was to assess the rate at which a drug resistance
mutation was transmitted from original partners to
their receivers and whether the transmission was
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affected by the relative frequency or the absolute
copy numbers of each mutation[37]. For modeling the
between-pair variability and between-site variability,
they fitted Bayesian hierarchical Bernoulli logistic
regression models with within-pair fixed effect, and two
random intercepts for pairs and sites as crossed random
effects[53]. They assessed the model convergence with
the Gelman-Rubin convergence statistic OR[53]. The
Bayes factor, which is a ratio of the probability of
obtaining data under null and alternative hypotheses,
was used for null-hypothesis significance testing[54].
Bayes Factors (BFs) of 1 to 3, 3 to 10, 10 to 30, 30
to 100, and >100 are considered anecdotal, moderate,
strong, very strong, and extreme evidence for against
a null hypothesis[55]. One key conclusion from this
Bayesian analysis is that the majority of DRM (the
relative frequency of DRM > 20%) were consistently
transmitted from source to recipient, the probability of
detecting a minority DRM (the relative frequency of
DRM < 20%) in the recipient was not increased when
the same minority DRM was detected in the source
(BFD 6.37).

4 Summary and Discussion

In this review article, we presented and summarized
important applications of the Bayesian inference
paradigm in three types of studies. We reviewed
Bayesian-based statistical approaches including BVP,
BN, and RMS procedure and their applications in
HBV, HCV and HIV studies. Firstly, in HBV studies,
the evidence has been provided that there exists
some specific HBsAg-mutations which correlate with
its replicative potential, particularly, the state of
low level serum HBV-DNA and HBsAg[8, 9, 40, 48, 56].
Secondly, several independent HCV-drug-resistance-
related mutations and interacting mutation patterns have
been detected[17, 42]. Moreover, a detailed understanding
of complex interacting mutation patterns and new
genetic determinants underlying co-receptor usage in
HIV-1 have been revealed[30, 34, 41, 57].

The Bayesian statistical analysis of viral genetic
characteristics summarized in the review is an
advanced and innovative analytical approach that can
connect statistical modeling with molecular dynamic
simulations[42], thus to detect interacting mutations.
However, certain significant issues should be addressed
in more detailed and be paid more attention to,

such as the emergence of bias caused by multiple
subpopulations in the data and the decreased sensitivity
of the BVP caused by the transmitted resistance
occurrence[24]. Moreover, many factors that may affect
the results of the above studies about the three viruses
have been ignored since the summarized BVP method
is only designed as a baseline analysis. For instance,
further studies might be needed to strengthen the
correlation between HBsAg mutations and low serum
HBV-DNA due to the overlapping of HBsAg and RT
genes[8].

Extensions to the summarized Bayesian methods
and different Bayesian approaches have also been
developed and applied to related research areas. Guo
et al.[58] introduced a “simple, fast and powerful
method, named DAM, using Bayesian inference to
detect genome-wide multi-locus epistatic interactions in
multiple diseases”. Wang et al.[59] proposed a Bayesian
model for detection of high-order interactions among
genetic variants in genome-wide association studies.
Random forest and Bayesian prediction have also
been used for HBV reactivation analysis[60]. Bayesian
analysis has also been applied to cancer research[61, 62]

and neuroscience[63–67].
Despite all other ignored possibilities, the Bayesian

methods summarized here have given us some valuable
information that will contribute to not only further
studies in related areas but also the development of
antiviral treatment.
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