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Spreading Social Influence with both Positive and Negative Opinions
in Online Networks

Jing (Selena) He�, Meng Han, Shouling Ji, Tianyu Du, and Zhao Li

Abstract: Social networks are important media for spreading information, ideas, and influence among individuals.

Most existing research focuses on understanding the characteristics of social networks, investigating how

information is spread through the “word-of-mouth” effect of social networks, or exploring social influences among

individuals and groups. However, most studies ignore negative influences among individuals and groups. Motivated

by the goal of alleviating social problems, such as drinking, smoking, and gambling, and influence-spreading

problems, such as promoting new products, we consider positive and negative influences, and propose a new

optimization problem called the Minimum-sized Positive Influential Node Set (MPINS) selection problem to identify

the minimum set of influential nodes such that every node in the network can be positively influenced by these

selected nodes with no less than a threshold of � . Our contributions are threefold. First, we prove that, under the

independent cascade model considering positive and negative influences, MPINS is APX-hard. Subsequently, we

present a greedy approximation algorithm to address the MPINS selection problem. Finally, to validate the proposed

greedy algorithm, we conduct extensive simulations and experiments on random graphs and seven different real-

world data sets that represent small-, medium-, and large-scale networks.

Key words: influence spread; social networks; positive influential node set; greedy algorithm; positive and negative

influences

1 Introduction

A social network (e.g., Facebook, Google+, and
MySpace) is composed of a set of nodes (such
as individuals or organizations) that share a similar
interest or purpose. The social network is a powerful
medium of communication for sharing, exchanging,
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and disseminating information, and for spreading
influence beyond the traditional social interactions.
Since social networks emerged, they have significantly
enpanded our social circles and become a bridge
to connect our daily physical life and the virtual
web space. With the emergence of social applications
(such as Flickr, Wikis, Netflix, and Twitter, etc.),
a tremendous interest has focused on how social
networks can be utilized effectively to spread ideas
or information within a community[1–6]. Capturing
the dynamics of a social network is a complex
problem, thus, it requires an approach to analyze the
dynamics of positive and negative social influences
that result from individual-to-individual and individual-
to-group interactions. Individuals in a social network
may have both positive and negative influences on
each other. For example, within the context of
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gambling, a gambling insulator has a positive influence
on his friends/neighbors. Moreover, if many of an
individual’s friends are gambling insulators, then the
aggregated positive influence is exacerbated. However,
an individual might become a gambler, who has a
negative impact on his friends/neighbors. For example,
in the social network shown in Fig. 1, social influences
are represented by weights assigned to edges. If Jack
and Bob (marked by the person with a red tie) are
gambling insulators, then they have a positive influence
on their neighbors. To be specific, Jack has a positive
influence on Chris with a probability of 60%. Similarly,
because she is a gambler, Mary has a negative influence
on Tony with a probability of 90%. Moreover, in
the community shown in Fig. 1, only Tony has not
been influenced by any gambling insulator. Hence,
motivated by the aim to alleviate social problems, such
as drinking, smoking, and gambling, this work aims
to find a Minimum-sized Positive Influential Node Set
(MPINS), which positively influences every individual
in a social network with no less than a pre-defined
threshold of � .

MPINS can be applied in various ways, such as
the following: For example, a community wants to
implement a smoking intervention program. To ensure
cost-effectiveness and obtain the maximum effect,
the community seeks to select a small number of
influential individuals in the community who will attend
a quit-smoking campaign. The goal is for all other
individuals in the community to be positively influenced
by the selected users. Constructing an MPINS can
help alleviate the aforementioned social problem, and
promote new products in the social network. The
following scenario is presented as another motivation
example: A small company wants to market a new
product in a community. To ensure cost-effectiveness
and obtain maximum profits, the company wants
to distribute sample products to a small number of
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Fig. 1 A social network with social influences on edges.

initially chosen influential users in the community.
The expectation of this company is that these initial
users will like the product and positively influence
their friends in the community to purchase the product.
The goal is to have other users in the community
be positively influenced eventually by no fewer than
� of the individuals in the community. In sum, we
investigate the following specific problem: Given a
social network and a threshold of � , a minimum-sized
subset of individuals in the network is identified such
that the subset can result in a positive influence on fewer
than � individuals in the network.

A related work[7] found a minimum-sized Positive
Influence Dominating Set (PIDS), D, so that every
other node has at least half of its neighbors in D. In
that work, only the positive influence from neighbors
is considered, and while the negative influence is
ignored. Moreover, the authors in Ref. [7] studied the
PIDS selection problem under the deterministic linear
threshold model, in which the influence from a pair of
nodes is represented by a weight and an individual can
be positively influenced when the sum of the weights
exceeds a pre-determined threshold[8]. Specifically, the
authors in Ref. [7] assumed that the influence of a pair
of nodes is always 1, and an individual can be positively
influenced when at least half of its neighboring nodes
are in D. However, the deterministic linear threshold
model is unable to comprehensively characterize the
social influence between each pair of nodes in an
actual social network because, in the physical world,
the strength of the social influence between different
pairs of nodes may be different and is actually a
probabilistic value[9–13]. Hence, we explore the MPINS
selection problem under the independent cascade model
considering positive and negative influences, where
individuals can positively or negatively influence their
neighbors with certain probabilities.

In this paper, we first formally define the MPINS
problem. Then, we propose a greedy approximation
algorithm to solve this problem. The main contributions
of this work are summarized as follows:
� Taking positive and negative influences into

consideration, we introduce a new optimization
problem called the MPINS selection problem for social
networks. To address this problem, we aim to identify
the minimum-sized set of influential nodes that could
positively influence every node in the network with no
less than a predefined threshold of � . We prove that this
problem is an APX-hard problem under the independent
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cascade model.
� We define a contribution function and propose

a greedy approximation algorithm called MPINS-
GREEDY to address the MPINS selection problem. We
than analyze the correctness of the proposed algorithm.
� We also conduct extensive simulations and

experiments to validate our proposed algorithm.
Simulation and experiment results show that the
proposed greedy algorithm efficiently solves the
MPINS selection problem. More importantly, the
solutions obtained by the greedy algorithm are close to
the optimal solution of MPINS in small-scale networks.

The rest of this paper is organized as follows: In
Section 2, we review related literatures and observe any
differences. In Section 3, we first introduce the network
model and then formally define the MPINS selection
problem and prove its APX-hardness. In Section 6, we
present the greedy algorithm and theoretical analysis
on the correctness of the algorithm. In Section 8,
we present the simulation and experimental results to
validate our proposed algorithm. Finally in Section 9,
we conclude this paper.

2 Related Work

In this section, we first briefly review related works on
social influence analysis. Subsequently, we summarize
related literatures on the PIDS problem and the
influence maximization problem, followed by some
remarks.

2.1 Social influence analysis

Influence maximization was initially proposed by
Kempe et al.[1] and it aims to select a set of users in
a social network to maximize the expected number
of influenced users through several information
propagation steps[14]. Empirical studies have been
performed on influence learning[10, 15], algorithm
optimization[16–18], scalability promotion[19–21], and
influence of group conformity[4, 22]. Saito et al.[23]

predicted the information diffusion probabilities
in social networks under the independent cascade
model. They formally defined the likelihood
maximization problem and then applied an Expectation-
Maximization (EM) algorithm to solve it. Tang et
al.[9, 24, 25] argued that the effect of the social influence
from different angles (topics) may be different. Hence,
they introduced Topical Affinity Propagation (TAP)
to model topic-related social influence on large
social networks. Later, Wang et al.[11] proposed a

Dynamic Factor Graph (DFG) model to incorporate
time information for the analysis of dynamic social
influences. Similarly, Goyal et al.[10] studied the
problem of learning the influence probabilities from
historical node actions.

2.2 Positive influence dominating set problem

Wang et al.[26] first proposed the PIDS problem under
the deterministic linear threshold model, which is to
find a set of nodes D such that every node in the
network has at least half of its neighbor nodes in D.
They proposed a selection algorithm and analyzed its
performance on a real online social network data set.
Subsequently, Wang et al.[7, 27] proved that PIDS is
APX-hard and proposed two greedy algorithms through
approximation ratio analysis.

He et al.[28] proposed a new optimization problem
called the Minimum-sized Influential Node Set (MINS)
selection problem. In this problem, the goal is to
identify the minimum-sized set of influential nodes,
such that every node in the network could be influenced
by these selected nodes at no less than a preset
threshold. However, they completely neglected the
existence of negative influences.

2.3 Influence maximization problem

Domingos and Richardson[29, 30] were the first
to emphasize the node selection problem when
propagating information by using social networks.
They considered the social relations of individuals
and proposed a probabilistic information propagation
model for the problem, as well as several heuristic
solutions. Subsequently, Kempe et al.[1, 31] formulated
the influence maximization problem and studied the
problem under two different models, i.e., the linear
threshold model and the independent cascade model.
They proposed greedy algorithms and analyzed their
performance ratios, which are 1 � 1

e under both
models. To address the scalability problem of the
algorithms in Ref. [1, 31], Leskovec et al.[32] presented
a “lazy-forward” optimization scheme of selecting
initial nodes, which greatly reduced the number
of influence spread evaluations. Chen et al.[33, 34]

presented the problem of computing exact influence in
social networks under both models of #P-Hard and they
also proposed scalable algorithms under both models,
which are much faster than the greedy algorithms in
Refs. [1, 31]. Most recently, considering the data
from both the cyber-physical world and online social



Jing (Selena) He et al.: Spreading Social Influence with both Positive and Negative Opinions in Online Networks 103

networks, Refs. [35–37] proposed methods to provide
a comprehensive solution to the problem of influence
maximization.

On the other hand, Goyal et al.[38] studied the
influence maximization problem from a data-based
perspective. They introduced a new model called
credit distribution, which directly leverages available
propagation traces to learn the manner by which
influence flows in the network and adopt it to estimate
the expected influence spread. Moreover, they showed
that the influence maximization problem under the
credit distribution model is APX-hard and designed
an approximation algorithm. Zou et al.[39] were the
first to add the latency constraint to the influence
maximization problem under the linear threshold model
and called this modified problem the fast information
propagation problem. They further proved that the
fast information propagation problem is APX-hard in
Ref. [40]. Moreover, two heuristic algorithms are given
and their performance ratios are analyzed. Zhang et
al.[41] departed from the previous studies on social
influence maximization or seed minimization because
they considered influence coverage with probabilistic
guarantees instead of guarantees on expected influence
coverage. They proposed a new optimization problem
called Seed Minimization with Probabilistic Coverage
Guarantee (SM-PCG) in Ref. [41], and they presented
comprehensive theoretical analysis and validated the
algorithm by showing the experimental results.

2.4 Remarks

All the above mentioned works fall into three
categories: understanding the properties and
characteristics of social networks, such as exploring
social influences; studying the influence maximization
problem with or without time constraint, which has
gained considerable attention recently, and addressing
the PIDS problem. However, all the aforementioned
works did not consider negative influence when they
modeled social networks. Aside from taking positive
and negative influences into consideration, our work
is different from the influence maximization problem
because we find a minimum-sized set of individuals
that guarantees positive influences on every node in the
network with no less than a threshold of � , while the
influence maximization problem focuses on choosing
a subset of a predefined size k that maximizes the
expected number of influenced individuals. Moreover,
our work is also different from the PIDS problem.

Given that we study the MPINS selection problem
under the independent cascade model and take both
positive and negative influences into consideration,
our problem is more practical. In addition, PIDS is
investigated under the deterministic linear threshold
model.

3 Problem Definition and Hardness
Analysis

In this section, we first introduce the network model.
Subsequently, we formally define the MPINS selection
problem and provide some remarks on the proposed
problem. Finally, we analyze the hardness of the
MPINS selection problem.

3.1 Network model

We model a social network by using an undirected
graph G.V ; E ;P.E//, where V is the set of n nodes,
denoted by ui , and 0 6 i < n. i is called the node
ID of ui . An undirected edge .ui ; uj / 2 E represents
a social tie between the pair of nodes. P.E/ D
fpij j if .ui ; uj / 2 E ; 0 < pij 6 1; else pij D 0g,
where pij indicates the social influence between
nodes ui and uj

�. Notably, social influence can
be categorized into positive influence and negative
influence. For example, for the smoking intervention
program, an individual who initially decided to attend
the quit-smoking campaign has a positive influence
on all its neighbors, whereas smokers have negative
influences on their neighbors. Positive influence and
negative influence are formally defined by Definitions 5
and 6, shown in Section 3.2. For simplicity, we assume
the links are undirected (bidirectional), that is, two
linked nodes have the same social influence (i.e., pij
value) on each other.

3.2 Problem definition

The objective of the MPINS selection problem is to
identify a subset of influential nodes as the initialized
nodes, such that all the other nodes in a social network
can be positively influenced by these nodes with no
less than a threshold of � . For convenience, we call
the initial nodes that were selected as active nodes,
otherwise, inactive nodes. Therefore, determining how
to define positive influence is critical to solve the
MPINS selection problem. In the following, we first

�This model is reasonable because many empirical studies
have analyzed the social influence probabilities between
nodes[10, 11, 23].
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formally define some terminologies, and then give the
definition of the MPINS selection problem.

Definition 1 Positive influential node set (I). For
social network G.V ; E ;P.E//, the positive influential
node set is a subset I � V , such that all the nodes in I
are initially selected to be the active nodes.

Definition 2 Neighboring set (B.ui /). For social
network G.V ; E ;P.E//, 8ui 2 V , the neighboring set
of ui is defined as B.ui / D fuj j .ui ; uj / 2 E ; pij >
0g:

Definition 3 Active neighboring set (AI.ui /). For
social network G.V ; E ;P.E//, 8ui 2 V , the active
neighboring set of ui is defined as AI.ui / D fuj j uj 2

B.ui /; uj 2 Ig:
Definition 4 Non-active neighboring set (N I.ui /).

For social network G.V ; E ;P.E//, 8ui 2 V , the non-
active neighboring set of ui is defined as N I.ui / D

fuj j uj 2 B.ui /; uj … Ig:
Following by Definitions 3 and 4, we know that

the set AI.ui / includes all the active neighboring
nodes of ui and the set N I.ui / includes all the non-
active neighboring nodes. How those neighboring nodes
collaboratively influence each individual is critical to
solve the MPINS selection problem. Next, we define
other terminologies.

Definition 5 Positive influence (pui
.AI.ui //). For

social network G.V ; E ;P.E//, a node ui 2 V , and
a positive influential node set I , we define a joint
influence probability of AI.ui / on ui , denoted by
pui

.AI.ui // as pui
.AI.ui // D 1�

Q
uj2AI.ui /

.1�pij /.

Definition 6 Negative influence (pui
.N I.ui //).

For social network G.V ; E ;P.E//, a node ui 2 V , and
a positive influential node set I , we define a joint
influence probability of N I.ui / on ui , denoted by
pui

.N I.ui // as pui
.N I.ui // D 1�

Q
uj2NI.ui /

.1�pij /.

Definition 7 Ultimate influence (%I.ui /). For
social network G.V ; E ;P.E//, a node ui 2 V , and a
positive influential node set I , we define an ultimate
influence of B.ui / on ui , denoted by %I.ui / as
%I.ui / D pui

.AI.ui // � pui
.N I.ui //. Moreover, if

%I.ui / < 0, we set %I.ui / D 0. If %I.ui / > � , where
0 < � < 1 is a predefined threshold, then ui is said to
have been positively influenced. Otherwise, ui has not
been positively influenced.

Notably, we assume that the ultimate influences
of all active nodes are greater than or equal to � ,
i.e., 8ui 2 I; %I.ui / > � . Moreover, if I D ∅, then

8ui 2 V ; %I.ui / D 0. Finally, we can provide the
formal definition of the MPINS selection problem.

Definition 8 MPINS. For social network G.V ; E ;
P.E//, the MPINS selection problem is to find a
minimum-sized positive influential node set I � V ,
such that 8ui 2 V n I , ui is positively influenced, i.e.,
%I.ui / D pui

.AI.ui //�pui
.N I.ui // > � , where 0 <

� < 1.

3.3 Problem hardness analysis

In general, given an arbitrary threshold � , the MPINS
selection problem is APX-hard. We prove the APX-
hardness of MPINS by constructing an L-reduction
from Vertex Cover problem in Cubic Graph (denoted by
VCCG) to the MPINS selection problem. The decision
problem of VCCG is APX-hard which is proven in Ref.
[42]. A cubic graph is a graph where the degree of every
vertex is exactly three. Given a cubic graph, VCCG
aims to find a minimum-sized vertex cover�.

First, consider a cubic graph G.V ; E ;P.E//, where
P.E/ D f1 j .ui ; uj / 2 E Iui ; uj 2 Vg, as an instance
of VCCG. we construct a new graph bG as follows:
� We create jVj C jE j nodes with jVj nodes vui

D

fvu1
; vu2

; � � � ; vujVjg representing the nodes in G and
jE j nodes vei

D fve1
; ve2

; � � � ; vejEjg representing the
edges in G.
� We add an edge with influence weight p between

nodes vui
and vej if and only if node ui is an endpoint

of edge ej .
� We attach additional dlog1�p..1 � p/

jVj � �/e

active nodes to each node vui
, denoted by set vAui

D

fv
j
ui
j 1 6 j 6 dlog1�p..1 � p/

jVj � �/eg. Obviously,
jvAui
j D dlog1�p..1 � p/

jVj � �/e.
� We attach additional dlog1�p.1�p��/e�1 active

nodes to each node vej , denoted by set vAej D fv
j
ej j 1 6

j 6 dlog1�p.1 � p � �/e � 1g. Obviously, jvAej j D
dlog1�p.1 � p � �/e � 1.
� bG D fbV ;bEg, where bV D fvu1

; � � � ; vujVjg [ fve1
;

� � � ; vejEjg [
SjVj
iD1 vAui

[
SjEj
iD1 vAei

, bE is the set of all
the edges associated with the nodes in bV , and P.bE/ D
fp j for every edge in bEg.

With the cubic graph shown in Fig. 2a taken as an
example to illustrate the construction procedure from G
to bG, four nodes and six edges are found in G. Therefore,
we first create fvui

g4iD1 and fvej g
6
jD1 nodes in bG. Then

�A vertex cover is defined as a subset of nodes in a graph G
such that each edge of the graph is incident to at least one vertex
of the set.
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Fig. 2 Illustration of the construction from GG to bGG.

we add edges with influence weight p between nodes
vui

and vej on the basis of the topology shown in G.
Subsequently, we add additional vAui

D fv
j
ui
j 1 6 j 6

dlog1�p..1�p/
jVj��/eg active nodes to each node vui

(marked by upper shaded nodes in Fig. 2b. Similarly,
we add additional vAej D fv

j
ej j 1 6 j 6 dlog1�p.1 �

p � �/e � 1g active nodes to each node vej (marked by
bottom shaded nodes in Fig. 2b. The influence weights
on all the additional edges are p. Finally, the new graphbG is constructed as shown in Fig. 2b.

Before we prove that the MPINS selection problem
is APX-hard, the following important lemma is
introduced.

Lemma 1 G has a VCCG D of size at most d if and
only if bG has a positive influential node set I of size at
most k by setting k D jVjdlog1�p..1 � p/

jVj � �/e C

jE j.dlog1�p.1 � p � �/e � 1/C d .

4 Proof of Lemma 1

Proof ): If G has a Vertex Cover (VC) D of size at
most d , then we define a set I in bG consisting of:
� All the additional jVjdlog1�p..1 � p/

jVj � �/e

active nodes,
SjVj
iD1 vAui

(marked by upper shaded nodes
in Fig. 2b;
� All the additional jE jdlog1�p.1 � P � �/e � 1,SjEj
jD1 vAej nodes (marked by bottom shaded nodes in

Fig. 2b;
� All the nodes vui

representing the nodes ui in the
VC D in G, i.e., fvui

j ui 2 D in Gg.
Therefore, we have jIj D jVjdlog1�p..1 � p/

jVj�

�/e C jE j.dlog1�p �e � 1/C d 6 k. Now, we need
to check whether I satisfies 8vk 2 bG; %I.vk/ D
pvk

.AI.vk// � pvk
.N I.vk// > � .

� For 8vk 2 bG, if vk 2 I , then %I.vk/ > �
according to the assumption.

� For an inactive node vui
2 vui

, because it
connects to dlog1�p..1 � p/jVj � �/e active nodes
vAui
D fv

j
ui
j 1 6 j 6 dlog1�p..1 � p/

jVj � �/eg, we
have %I.vui

/ D pvui
.AI.vui // � pvui

.N I.vui // D

Œ1 � .1 � p/log1�p..1�p/
jVj��/� � Œ1 � .1 � p/di � >

.1�p/di � .1�p/jVjC � > � , where di represents the
degree of each node vui

.
� For every vej , it must connect to at most one

non-active node and at least one active node vui
2

fvul
j ul 2 Dg, which is an active node. Moreover,

it also connects to another dlog1�p.1 � p � �/e � 1
active nodes, vAej D fv

j
ej j 1 6 j 6 dlog1�p.1 � p �

�/e � 1g. Thus, we have %I.vui
/ D pvei

.AI.vei // �

pvei
.N I.vei // D Œ1 � .1 � p/dlog1�p.1�p��/e�1C1� �

Œ1 � .1 � p/� > .1 � p/ � .1 � p � �/ D � .
In summary, if G has a VC of size d , then bG has a

positive influential node set I with a size of at most k.
(: Suppose that bG has a positive influential node set I
with a size of at most k. The set I must include all the
nodes in

SjVj
iD1 vAui

, and all the nodes in
SjEj
iD1 vAej . This

result occurs because 8v 2 .
SjVj
iD1 vaui

/ [ .
SjEj
iD1 vaej /,

v only has one neighbor in bG with the edge between
them of influence weight p. Furthermore, p < � .
Therefore, we must include v in I . As a result, without
adding more nodes into I , all vui

nodes are positively
influenced already, given that they have dlog1�p..1 �
p/jVj � �/e active neighbors in I . Now, to make I
a feasible solution of the MPINS selection problem,
ensuting that each vej either belongs to I or has at least
one neighbor vui

in I is sufficient. If vej belongs to I ,
then we may exchange vej with its connected vui

. This
approach does not increase the size of set I and retains
the feasibility of the solution. Therefore, we assume
that I does not contain any vej so that every vej has a
neighbor vui

in I . Given that the current size of set I
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is jVjdlog1�p..1� p/
jVj � �/e C jE j.dlog1�p.1� p �

�/e � 1/, the number of vui
that must be included in I

is d . Let D D fui jvui
2 I in bGg. Consequently, D is a

vertex cover with a size of at most d for G. �
Next, we prove the complexity of the MPINS

selection problem in a general graph in the following
theorem.

Theorem 1 The MPINS selection problem is APX-
hard.

5 Proof of Theorem 1

Proof An immediate conclusion of Lemma 1 is that G
has a minimum-sized vertex cover of size OPTVCCG.G/
if and only if bG has a minimum-sized positive influential
node set of size

OPTMPINS.
bG/ D jVjdlog1�p..1 � p/

jVj
� �/eC

jE j.dlog1�p.1�p��/e�1/COPTVCCG.G/ (1)

Note that in a cubic graph G, jE j D 3jVj
2

. Hence, we
have

jVj
2
D
jE j
3
6 OPTVCCG.G/ (2)

On the basis of Lemma 1, plugging

jVj D OPTMPINS.bG/�OPTVCCG.G/
dlog1�p..1�p/

jVj��/eC 3
2 .dlog1�p.1�p��/e�1/

(3)
into Formula (2), we have

OPTMPINS.
bG/ 6 Œ2dlog1�p..1 � p/

jVj
� �/eC

3dlog1�p.1 � p � �/e �
1

2
�OPTVCCG.G/ (4)

This means that VCCG is L-reducible to MPINS.
In conclusion, we proved that a specific case of

the MPINS selection problem is APX-hard, because
the VCCG problem is APX-hard. Consequently, the
general MPINS selection problem is also at least APX-
hard. �

On the basis of Theorem 1, we conclude that MPINS
cannot be solved in polynomial time. Therefore, we
propose a greedy algorithm to solve the problem in the
next section.

6 Greedy Algorithm and Performance
Analysis

MPINS is APX-hard; thus, we propose a greedy
algorithm to solve this problem. The proposed
algorithm is named MPINS-GREEDY. Before
introducing MPINS-GREEDY, we first define a
useful contribution function as follows:

Definition 9 Contribution function (f .I/). For
a social network represented by graph G.V ; E ;
P.E//, and a positive influential node set I , the
contribution function of I to G is defined as

f .I/ D
jVjP
iD1

maxfmin.%I.ui /; �/; 0g.

On the basis of the defined contribution function, we
propose a heuristic algorithm, which has two phases.
First, we find the node ui with the maximum f .I/,
where I D fuig. Afterward, we select a Maximal
Independent Set (MIS)� induced by a Breadth-First-
Search (BFS) ordering starting from ui . Second, the
pre-selected MIS denoted by M is used as the initial
active node set to perform MPINS-GREEDY, as shown
in Algorithm 1. MPINS-GREEDY starts from I DM.
Each time, it adds the node that has the maximum f .�/

value into I . The algorithm terminates when f .I/ D
jVj� .

To better understand the proposed algorithm,
we use the social network represented by the
graph shown in Fig. 3a to illustrate the selection
procedure as follows. In the example, � D 0:8. Given
that u1 has the maximum f .fuig/ value, we
construct a BFS tree rooted at u1, as shown in
Fig. 3b. With the help of the BFS ordering, we
find the MIS set which is M D fu1; u6g. Next, we
go to the second phase to perform Algorithm 1.
(1) First round: I DM D fu1; u6g. (2) Second round:
We first compute f .I D fu1; u2; u6g/ D 4:45; f .I D
fu1; u3; u6g/ D 3:018, f .I D fu1; u4; u6g/ D 3:65,
f .I D fu1; u5; u6g/ D 3:65, and f .I D fu1; u6,
u7g/ D 3:778. Therefore, we have I D fu1; u2; u6g,
which has the maximum f .I/ value. However, f .I D
fu1; u2; u6g/ D 4:45 < 7� 0:8 D 5:6. Consequently,

Algorithm 1 MPINS-GREEDY Algorithm
Require: A social network represented by graph G.V; E ;P.E//;

a pre-defined threshold � .
1: Initialize I DM
2: while f .I/ < jVj� do
3: choose u 2 V n I to maximize f .I

S
fug/

4: I D I
S
fug

5: end while
6: return I

�MIS can be defined formally as follows: given a graph G D
.V;E/, an Independent Set (IS) is a subset I � V such that for
any two vertex v1; v2 2 I , they are not adjacent, i.e., .v1; v2/ …

E. An IS is called an MIS if we add one more arbitrary node to
this subset, the new subset will not be an IS any more.
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Fig. 3 Illustration of the MPINS-Greedy algorithm.

the selection procedure continues. (3) Third round: We
first computer f .I D fu1; u2; u3; u6g/ D 4:45, f .I D
fu1; u2; u4; u6g/ D 5:6, f .I D fu1; u2; u5; u6g/ D
5.6, and f .I D fu1; u2; u6; u7g/ D 4:45. Therefore,
we have I D fu1; u2; u4; u6g�. Given that f .I D fu1;
u2; u4; u6g/ D 7 � 0:8 D 5:6, the algorithm terminates
and outputs set I D fu1; u2; u4; u6g as shown in Fig.
3c, where black nodes represent the selected influential
nodes.

We can easily check that u3; u5, and u7 are all
positively influenced. Hence, the constructed I is a
feasible solution for the MPINS selection problem.

The proposed algorithm starts searching from an MIS
set (M) instead of an empty set, thereby shortening
the algorithm convergence time. Next, we theoretically
show the correctness of Algorithm 1 in the following
theorem.

Theorem 2 Algorithm 1 produces a feasible
solution of the MPINS selection problem. To be
specific, (1) Algorithm 1 terminates for certain. (2)
f .I/ D jVj� if and only if I is a positive influential
node set, such that every node (i.e., 8ui 2 V) is
positively influenced by nodes in I no less than � .

7 Proof of Theorem 2

Proof For (1), on the basis of Algorithm 1, in each
iteration, only one node is selected to be added into the
output set I . In the worst case, all nodes are added
into I in the jVj-th iteration. Then, f .I/ D f .V/ D
jVj� and Algorithm 1 terminates and outputs I D V .
Therefore, Algorithm 1 terminates for certain.

For (2),): if f .I/ D jVj� , then8ui 2 V , %I.ui / >
� followed by Definition 9. Therefore, all nodes in the
network are positively influenced.
(: if 8ui 2 V ; %I.ui / > � , then we obtain 8ui 2

V ;min.%I.ui /; �/ D � . According to Definition 9,

�If a tie exists on the f .I/ value, we use the node ID to break
the tie.

f .I/ D
jVjX
iD1

maxfmin.%I.ui /; �/; 0g D jVj�:

On the basis of the above two aspects, Algorithm
1 must produce a feasible solution for the MPINS
selection problem. �

8 Performance Evaluation

Given that no existing work studies the MPINS
selection problem under the independent cascade
model, the simulation and experimental results of
MPINS-GREEDY (denoted by MPINS) are compared
with the most related work[7] denoted by PIDS, and the
optimal solution of MPINS, which is obtained by an
exhaustive searching, denoted by OPTIMAL. To ensure
fairness of comparison, the condition of termination
to the algorithm proposed in Ref. [7] is changed to
find a PIDS such that every node in the network
is positively influenced with no less than the same
threshold of � in MPINS. We use both real world data
sets and synthetic data to demonstrate the effectiveness
and efficiency of our proposed model and algorithm.
All simulations and experiments were performed on a
desktop computer equipped with Intel(R) Core(TM) 2
Quad CPU 2.83 GHz and 6 GB RAM.

8.1 Simulation results

8.1.1 Simulation setting
We build our own simulator to generate random graphs
based on the random graph model G.n; p/ D fG jG
has n nodes, and an edge between any pair of nodes
is generated with probability pg. For G D .V;E/ 2
G.n; p/; ui ; uj 2 V , and .ui ; uj / 2 E, the associated
social influence 0 < pij 6 1 is randomly generated.
Notably, social influence can be categorized into
positive influence and negative influence. If one node
is selected as the active node, then it has a positive
influence on all its neighbors. Otherwise, it has
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only a negative influence on its neighbors. For each
specific setting, 100 instances are generated. The results
are the average values of these 100 instances. In
the following, we show the simulation results under
different scenarios.

8.1.2 Simulation results on random graphs
The objectives of MPINS and PIDS are to minimize the
size of the constructed subsets. In this subsection, we
check the size of the solutions of MPINS, PIDS, and
OPTIMAL under different scenarios in random graphs.
In this simulation, we consider the following tunable
parameters: the network size n, the possibility to create
an edge p in the random graph model G.n; p/, and
the user pre-defined influence threshold � . We adopt
exhaustive searching to find the OPTIMAL solution
of MPINS, thus testing on large scale networks is
impractical. Hence, we first run a set of simulations on
small-scale networks, with the network size changing
from 10 to 20. Results are shown in Fig. 4.

The impacts of n, p, and � on the size of the
solutions of MPINS, PIDS, and OPTIMAL are shown
in Figs. 4a, 4b, and 4c, respectively. Figure 4a indicates
that the sizes of the solutions of all the three algorithms
increase when n increases. The results occurs because
more nodes need to be influenced when the network
size increases. In addition, for a specific network size,
PIDS produces a larger sized solution than MPINS.
This condition occurs because MPINS tries to find the
most influential Maximal Independent Set (MIS) of
the network first and then adds the node that has the
largest f .�/ value in each iteration, while PIDS gives
the node with the largest degree the highest priority
instead. However, a large degree does not necessarily
imply a high ultimate influence on the individuals in
a social network, because some neighbors may have
high negative influences on the individuals. Moreover,
MPINS selects an MIS first, which avoids the node
selection bias in some specific regions so that more
nodes need to be added to the subset to influence all
the nodes in the whole network. Furthermore, the size
of the MPINS solution is very close to the OPTIMAL
result. To be specific, on average, MPINS produces
1:07 more nodes than the OPTIMAL solution, while
PIDS produces 3:75 more nodes than the OPTIMAL
solution. The results imply that the proposed greedy
algorithm MPINS-GREEDY can produce a very close
approximation solution to the OPTIMAL solution in
small-scale networks.
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Fig. 4 Size of solutions on small scale networks. The default
settings are n = 15, p = 0.5, and ��� = 0.5.

From Fig. 4b, we can see that no obvious trend exists
in the solution sizes of all the three algorithms when
p increases because the increase in p means more
edges in the network so that one specific node may
have more negative or positive neighbors. In a very
crowded network, distinguishing the pattern of the sizes
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of selected influential node sets is difficult. By contrast,
for a specific p, PIDS produces larger sized solutions
than MPINS because the objective of PIDS is not aimed
to obtain the most influential and no-regional-biased
nodes in the network. Again, MPINS can construct the
solution with a similar size of the OPTIMAL solution.
On average, MPINS produces only 1:6 more nodes
than the OPTIMAL solution, while PIDS produces 3:16
more nodes than the OPTIMAL solution.

Figure 4c shows that the sizes of all the solutions
increase when � increases, because a large � value
means that more nodes need to be placed in the
initial active node set to influence all the other nodes.
Furthermore, MPINS has a similar performance with
OPTIMAL, and has a better performance than PIDS
because the greedy criterion of PIDS is the node with
the highest degree first. On average, MPINS produces
1:3 more nodes than the OPTIMAL solutions, while
the sizes of PIDS solutions are far from the OPTIMAL
results. On average, PIDS produces 3:7more nodes than
the OPTIMAL solution. The reason is the same as we
mentioned before.

In addition, we run a set of simulations on medium-
scale networks with a network size changing from
100 to 1000. The impacts of n, p, and � on MPINS
and PIDS are shown in Fig. 5. Figure 5a indicates
that the solution sizes of MPINS and PIDS increase
when n increases because more active influential nodes
are needed for larger social networks. Moreover, as n
increases, the difference between the sizes of MPINS
and PIDS also increases. At a specific n, MPINS can
find a positive influential node set that is smaller than
that of PIDS because in a small-scale network (i.e.,
n < 500), the initial active node set size is small (no
more than 30 from Fig. 5). Hence, the differences
between the two methods are not obvious. However,
in a medium-scale network, n D 1000 for example, our
proposed MPINS provides a significant improvement
in the size of the initial active node set compared
with PIDS. The reason for this scenario is the same
as we mentioned earlier. On average, MPINS produces
a positive influential node set of size 22:5% less than
PIDS.

From Fig. 5b, we can see that the solution sizes
of PIDS and MPINS decrease when p increases. p
increases, which means the number of edges in the
network increases, thereby further implying that the
average number of neighbors of each node increases.
Hence, one selected active node may influence more
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Fig. 5 Size of solutions on large scale networks: The default
settings are n = 15, p = 0.5, and ��� = 0.5.

nodes when p increases. For a specific p, PIDS again
produces a larger-sized solution than MPINS. When
the solution size is small, determining which method
outperforms the other is difficult. However, MPINS
clearly outperforms PIDS in sparse networks, such as
p D 0:1. Notably, the decreasing trend of PIDS is very
fast when p increases because the degrees of all nodes
are small when p is small. Hence, PIDS may find a
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solution through many iterations until it finds a solution
that ensures that every node in the network is positively
influenced by the solution with a threshold of no less
than � . When p is large, larger degree nodes could be
added to the solution first so that PIDS might terminate
more quickly and is followed by a positive influential
node set of a small size. On average, PIDS produces
31:52% more nodes than MPINS.

From Fig. 5c, because of similar reasons analyzed for
Fig. 4c, we can see that the solution sizes of solutions of
PIDS and MPINS increase when � increases. Moreover,
PIDS outputs an increasing number of nodes than
MPINS as � increases. On average, PIDS produces
23:2% more nodes than MPINS does.

One significant difference between MPINS and
PIDS is that MPINS starts the greedy searching on
a pre-selected influential MIS set, while PIDS starts
searching from an empty set. Moreover, PIDS uses node
degree as the greedy search criterion, which might lead

to finding some regional-biased nodes so that the final
size of the solution may be increased. Our proposed
MPINS method selects an MIS first, which avoids
the aforementioned dilemma. Figures 6–8 show
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Fig. 6 Size of the node set: The default settings are p = 0.5
and ��� = 0.5.
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Fig. 7 Size of the node set: (a) n=20 and ��� = 0.5; (b) n = 500 and ��� = 0.5.
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Fig. 8 Size of the node set: (a) n = 20 and p = 0.5; (b) n = 500 and p = 0.5.
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comparisons of the sizes of MIS, MPINS, and PIDS
when n, p, and � change. These results indicate that
only a few iterations of MPINS-GREEDY need to be
run to find a solution for MPINS after selecting an
influential MIS. However, the iterations for the greedy
algorithm proposed for solving PIDS are considerably
larger than those of MPINS-GREEDY.

8.1.3 Simulation results on large scale networks
The number of users in social networks has increased
explosively. Hence, we run a set of simulations on
large-scale networks. The network size changes from
10 000 to 50 000. The impacts of n, p, and � on
MPINS and PIDS are shown in Fig. 9. Figure 9a
shows that the solution sizes of MPINS and PIDS
both increase when n increases. This increase occurs
because more active influential nodes are needed for
larger social networks. Moreover, as n increases, the
difference between the sizes of MPINS and PIDS also
increases. From Fig. 9a, we can clearly see that, in
a large-scale network, n D 50 000 for example, our
proposed MPINS achieves a significant improvement
in the size of the initial active node set compared
with PIDS. On average, MPINS produces a positive
influential node set with a size 42:1% less than
PIDS. From Fig. 9b, because of similar reasons
analyzed for Fig. 5, we can see that the solution
sizes of PIDS and MPINS increase when � increases.
Moreover, PIDS outputs an increasing number of nodes
than MPINS when � increases. On average, PIDS
produces 41:82% more nodes than MPINS does.

From Fig. 9c, we can see that the solution sizes
of PIDS and MPINS decrease when p increases. The
increase in p means that the number of edges in
the network increases, which further implies that the
average number of neighbors of each node increases.
Hence, one selected active node may influence more
nodes when p increases. Similar results can be
concluded. (1) For a specific p, PIDS again produces a
larger-sized solution than MPINS does. MPINS clearly
outperforms PIDS on a very sparse network, such as
p D 0:1. (2) The decreasing trend of PIDS is very fast
when p increases. On average, PIDS produces 34:82%
more nodes than MPINS does.

8.2 Experimental results on real data sets

8.2.1 Experimental setting
We also implement experiments run on different kinds
of real-world data sets. The first group of data sets,
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Fig. 9 Size of the node set: (a) ��� = 0.02 and p = 0.2, (b) n =
50 000 and p = 0.2, (c) ��� = 0.02 and n = 50 000.

which is shown in Table 1, comes from the Stanford
Large Network Dataset Collection (SNAP)‘, which is
a platform for open network data sets collected and
maintained by Stanford University. The network

‘http://snap.stanford.edu/data/.
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Table 1 Data set 1 in our experiment.
Data set Number of nodes Number of edges LWCC(N) LWCC(E) LSCC(N) LSCC(E) Diameter

A1 262 111 1 234 877 262 111 1 234 877 241 761 (0.922) 1 131 217 (0.916) 29
A2 400 727 3 200 440 400 727 3 200 440 380 167 (0.949) 3 069 889 (0.959) 18
A3 410 236 3 356 824 410 236 3 356 824 390 304 (0.951) 3 255 816 (0.970) 21
A4 403 394 3 387 388 403 364 3 387 224 395 234 (0.980) 3 301 092 (0.975) 21

Note: N stands for nodes, E stands for edges.

statistics are summarized by the number of nodes and
edges, the number of nodes and edges in the Largest
Weakly Connected Component (LWCC), the number
of nodes and edges in the Largest Strongly Connected
Component (LSCC), and the diameter (i.e., longest and
shortest path). The data collected in Table 1 are based
on the Customers Who Bought This Item Also Bought
feature of Amazon.com. Four different networks are
composed of data collected from March to May in
2003 in Amazon. In each network, for a pair of nodes
(products) i and j , an edge exists between them if
and only if a product i is frequently co-purchased with
product j [43].

Aside from the Amazon product co-purchasing data
sets shown in Table 1, we also evaluate our algorithm in
the following additional real data sets:

(1) WikiVote: a data set obtained from Ref. [44],
which contains the vote history data of Wikipedia‖.
The data set includes 7115 vertices and 103 689 edges,
which contain the voting data of Wikipedia from the
inception until January 2008. If user i voted on user
j for the administrator election, then an edge will exist
between i and j .

(2) Coauthor: a data set obtained from Ref. [45],
which holds the coauthors’ information maintained by
ArnetMiner��. We chose the subset that includes 53 442
vertices and 127 968 edges. When the author i has a
relationship with author j , one edge will exist between
i and j .

(3) Twitter: a data set obtained from Refs. [46, 47],
which stores the information collected from Twitter��.
We selected the subset that includes 92 180 vertices and
188 971 edges, which represent the Twitter account and
its follower relationship, respectively.

Moreover, the social influence on each edge .i; j / is

calculated by
1

deg.j /
[48], where deg.j / is the degree of

node j . Similarly, if one node is selected as the active
node, then it has a positive influence on all its neighbors.

‖http://www.wikipedia.org/.
��http://arnetminer.org, an academic search system.
��https://twitter.com/.

Otherwise, it has only a negative influence on its
neighbors.

To better understand the properties of the data in the
real-world data sets, Fig. 10 shows the average degree
of each data set. Figure 11 summarizes the distribution
of the social influence between each pair of nodes in the
data sets. Figure 11a shows that most of the edges have
social influences that fall in the range Œ0:005; 0:05� in
the Amazon co-purchase data sets (i.e., A1–A4). On
the basis of this observation, we let � change from
0:005 to 0:02 for the Amazon co-purchase data sets
in the experiments. Figure 11b shows that most of
the edges have social influences that fall in the range
Œ0:02; 0:10� in the WikiVote, Coauthor, and Twitter data
sets. Similarly, we let � change from 0:02 to 0:08 for
these three data sets in the experiments.

8.2.2 Experimental results
The impacts of � on the size of MIS, the solutions
of MPINS, and the solution of PIDS on Amazon co-
purchase data sets, when � change from 0:005 to 0:02,
are shown in Fig. 12a. As shown in Fig. 12a, the
solution sizes of PIDS and MINS increase when �

increases, because when the pre-set threshold becomes
large, more influential nodes are required to be chosen
to influence the whole network. For one specific � ,
MPINS produces smaller influence node sets than
PIDS. Moreover, the solution size of MPINS is close
to the size of the MIS. Those results are consistent with
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Fig. 11 Probability distribution of (a) Amazon co-purchase
data sets and (b) WikiVote, Coauthor, and Twitter data sets.

the simulation results. For the data set A2, our proposed
method MPINS outperforms PIDS significantly. To be
specific, MPINS selects 41:31% less influential nodes
than PIDS does. On average, the difference between
the size of PIDS and MPINS solutions is 37:23%.
This result occurs because MPINS chooses the most
influential node first instead of the node with the largest
degree first. Moreover, the growth rate of the solution
size of PIDS is higher than that of MPINS. To be
specific, the growth rate of the solution sizes of PIDS
is 62:38% on average, while the rate of MPINS is
54:47% on average. Again, the results show that a
larger degree does not mean higher influence in a social
network. Similarly, the impacts of � on the size of
MIS, the solutions of MPINS, and the solution of PIDS
on WikiVote, Coauthor, and Twitter data sets when �
changes from 0:02 to 0:08 are shown in Fig. 12b. As
shown in Fig. 12b, the solution sizes of PIDS and MINS
increase when � increases as well. For one specific
� , MPINS produces a smaller influence node set than
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Fig. 12 Size of influential node set in (a) Amazon co-
purchase data sets and (b) WikiVote, Coauthor, and Twitter
data sets.

PIDS. Moreover, the solution size of MPINS is close to
the size of the MIS. For the Twitter data set, MPINS
outperforms PIDS significantly, i.e., MPINS selects
45:45% less influential nodes than PIDS does. On
average, the difference between the sizes of PIDS and
MPINS solutions is 36:37%. Moreover, the growth rate
of the solution size of PIDS is higher than that of
MPINS. To be specific, the growth rate of the solution
size of PIDS is 54:1% on average, while that of MPINS
is 43:6% on average.

Figure 13 shows how many nodes are selected as the
influential nodes represented by the ratio over the total
number of nodes in the network. Figure 13a shows the
impacts of � on the ratio of MIS, MPINS, and PIDS
on the Amazon co-purchase data sets, while Fig. 13b
shows the impacts of � on the ratio of MIS, MPINS, and
PIDS on the WikiVote, Coauthor, and Twitter data sets.
We do not repeat the same observed results mentioned
earlier. However, one interesting observation here is
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Fig. 13 Percentage of the total influential node set size in (a)
Amazon co-purchase data sets and (b) WikiVote, Coauthor,
and Twitter data sets.

that much fewer nodes are selected as the influential
nodes for Amazon co-purchase data sets compared
with the WikiVote, Coauthor, and Twitter data sets. To
be specific, in the worst case (for the data set A1
with � D 0:02), PIDS and MPINS select 0:047% and
0:035% nodes as the influential nodes, respectively. For
the WikiVote data set with � D 0:08, PIDS and MPINS
select 11:2% and 7% nodes as the influential nodes,
respectively. The results imply that social influences
can be more easily propagated in the Amazon co-
purchase data sets than in the WikiVote, Coauthor, and
Twitter data sets. Amazon usually recommends similar
products to users based on users’ purchase history,
thereby accelerating the influence diffusion process.

Finally, we compare the performance of our proposed
method MPINS with that of PIDS and the method
denoted by “Random”, which randomly chooses a node

as the influential node. The impacts of � on the sizes
of the solutions of MPINS, PIDS, and Random when
� changes from 0:02 to 0:08, are shown in Fig. 14
for the WikiVote, Coauthor, and Twitter data sets. As
shown in Fig. 14, the solution sizes of Random, PIDS,
and MPINS increase when n increases. Moreover, for
a specific � , MPINS produces a smaller influential
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Fig. 14 MPINS vs. PIDS vs. Random in (a) WikiVote data
set, (b) Coauthor data set, and (c) Twitter data set.
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node set than PIDS. This result is consistent with
the simulation results and the previous experimental
results. Furthermore, both PIDS and MPINS produce
much smaller influential node sets than Random
does for a specific � because Random picks a node
randomly without any selection criterion. However,
PIDS’s selection process is based on degree and our
MPINS greedy criterion is based on social influence.
Intuitively, both PIDS and MPINS should outperform
Random considerably. For the WikiVote data set (shown
in Fig. 14a), MPINS selects 48:33% less influential
nodes than PIDS does on average. MPINS selects
61:19% less influential nodes than Random does on
average. For the Coauthor data set (shown in Fig. 14b),
MPINS selects 15:32% less influential nodes than PIDS
does on average. MPINS selects 77:13% less influential
nodes than Random does on average. For the Twitter
data set (shown in Fig. 14c), MPINS selects 23:21% less
influential nodes than PIDS does on average. MPINS
selects 67:6% less influential nodes than Random does
on average.

From simulations on random graphs and experiments
on real-world data sets, we can conclude that the
constructed initial active node set of MPINS is smaller
than that of PIDS. Moreover, the solution of MPINS
is very close to the OPTIMAL solutions in small-scale
networks.

9 Conclusion

In this paper, we study the MPINS selection problem
in social networks, which has useful commercial
applications. Through reduction, we show that MPINS
is APX-hard under the independent cascade model.
Subsequently, a greedy algorithm called MPINS-
GREEDY is proposed to solve the problem. We
validate our proposed algorithm through simulations on
random graphs and experiments on seven different real-
world data sets. Simulation and experimental results
indicate that MPINS-GREEDY can construct smaller
satisfied initial active node sets than the latest related
work PIDS. Moreover, for small-scale networks, the
performance of MPINS-GREEDY similar to that of
the optimal solution of MPINS. Furthermore, MPINS-
GREEDY considerably outperforms PIDS in medium-
and large-scale networks, sparse networks, and for a
high threshold � .
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