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A Non-Redundant Benchmark for Symmetric Protein Docking

Yumeng Yan and Sheng-You Huang�

Abstract: Symmetric proteins play important roles in many biological processes, such as signal transduction

and molecular transportation. Therefore, determining the symmetric oligomeric structure of subunits is crucial

to investigate the molecular mechanism of the related processes. Due to the high cost and technical difficulties

associated with many experimental methods, computational approaches, such as molecular docking, have played

an important complementary role in the determination of symmetric complex structures, in which a benchmark data

set is pressingly needed. In the present work, we develop a comprehensive and non-redundant benchmark for

symmetric protein docking based on the structures in the Protein Data Bank (PDB). The diverse dataset consists

of 251 targets, including 212 cases with cyclic groups symmetry, 35 cases with dihedral groups symmetry, 3 cases

with cubic groups symmetry, and 1 case with helical symmetry. According to the conformational changes in the

interface between bound and unbound structures, the 251 targets were classified into three groups: 176 “easy”,

37 “medium”, and 38 “difficult” cases. A preliminary docking test on the targets of cyclic groups symmetry with M-

ZDOCK indicated that symmetric multimer docking remains challenging. The benchmark will be beneficial for the

development of symmetric protein docking algorithms. The proposed benchmark data set is available for download

at http://huanglab.phys.hust.edu.cn/SDBenchmark/.
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1 Introduction

Symmetry is an important and profound concept and
has played an important role in science from its very
origin. For example, physicists are constantly on the
lookout for the symmetric properties of a physical
system to determine the related conservation laws
characterizing this system[1]. In chemistry, molecular
symmetry is also a fundamental concept. Symmetry
can help predict or explain the chemical properties
of a molecule, such as its dipole moment and
spectroscopic transitions. In addition, since the double-
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helical symmetric structure of DNA was reported by
Watson and Crick in 1953, symmetry has played an
extremely important role in biological science[2].

Proteins are among the most important biological
macromolecules in cells and have evolved to conduct
a variety of cellular functions, from reaction catalysts
to signal transduction and cell regulation[3, 4]. As part
of the biomolecular science, proteins also possess the
property of symmetry. Most soluble and membrane-
bound proteins in vivo conduct their functions by
forming symmetric oligomer complexes[2]. Therefore,
determining the 3D structures of symmetric oligomeric
complexes is crucial to investigate the mechanisms
of self interactions and assembly, understand the
related biological processes, and ultimately develop
therapeutic drugs[5, 6]. However, due to the high
cost and technical difficulties associated with many
experimental methods, the number of experimentally
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determined symmetric complex structures is limited. As
such, molecular docking[7–21], which computationally
samples and ranks putative binding modes through
their binding scores, has played an important role
in predicting the structures of symmetric oligomeric
complexes[22].

An important aspect in docking is the construction
of a good benchmark consisting of appropriately
selected structures, which is critical not only
for the development of docking algorithms and
scoring functions[23, 24], but also for the comparative
assessment of current algorithms to improve the
existing programs and develop new methods[24, 25].
Despite the significant progresses achieved in hetero-
protein docking benchmarks, such as the protein-
protein docking benchmarks developed by the Weng
group[26, 27] and Dockground developed by the Vakser
group[28, 29], however, little effort has been made
toward benchmarking symmetric oligomeric protein
docking. As symmetric docking algorithms are often
developed independently from standard protein-protein
docking algorithms, development of a benchmark
dataset for symmetric homomultimer docking is also
necessary. Therefore, in the present work, we have
developed a non-redundant benchmark of 251 diverse
targets for symmetric oligomeric proteins. Each target
in the benchmark includes a symmetric bound complex
and the unbound structure of its identical subunits.
The unbound structure was obtained from asymmetric
complexes or monomers. This benchmark will be
beneficial for the development and improvement of
homomultimeric protein docking algorithms.

2 Materials and Method

2.1 Symmetry in protein structures

In general, protein symmetry refers to the point
group or helical symmetry of identical subunits and
can be classified into four types: cyclic groups (Cn),
dihedral groups (Dn), cubic groups, and helical
symmetry (H). Cyclic groups have one axis of
rotational symmetry and are formed via a ring of
symmetrically arranged subunits. There are twenty
subtypes of symmetry in cyclic groups: C2–C15, C17,
C22, C24, C31, C38, and C39. Dihedral groups contain
an additional perpendicular axis for forming a two-fold
symmetry and have twelve subtypes of symmetry: D2–
D9, D11, D12, D17, and D48. Cubic groups are
formed with a three-fold symmetry combined with

another non-perpendicular rotational axis and include
three possibilities: tetrahedral (T), octahedral (O),
and icosahedral (I). Helical symmetry (H) combines
translation with rotation around the direction of
translation to create extended filaments[2]. In this work,
all of the symmetry information of the included proteins
is collected from the Protein Data Bank (PDB)[30].

2.2 Data selection and curation

A good benchmark for molecular docking should
possess the following features. First, the targets of
the benchmark should be adequately diverse to enable
testing of the robustness of docking programs. Second,
the structures in the benchmark must preferably
be experimentally determined structures rather than
computational models to exclude computational errors.
Third, each target in the benchmark should include
both bound and unbound structures to reflect realistic
conformational changes upon binding[25].

To meet these requirements, we adopted the
following criteria to construct an appropriate
benchmark for symmetric proteins. First, we queried
all X-ray structures with a resolution cutoff of 2.5 nm
but without any RNA/DNA chains for each protein
symmetry type in the PDB[30]. Protein chains with
less than 20 residues were excluded. As of May 2,
2017, the search of the PDB yielded a total of 48 168
entries for all types of symmetry. Proteins with Cn

symmetry yielded the most entries (i.e., 37 351 entries)
while those with helical symmetry yielded the fewest
entries (i.e., 255 entries). Since each subtype of Cn/Dn

symmetry features different rotational angles and
numbers of identical subunits, different constraints and
strategies should be applied during docking. Therefore,
we used the protein symmetry subtype to classify our
targets.

We used biological unit information from the PDB to
distinguish crystal contacts from biological complexes.
For consistency, biological units with a specific number
of chains were retained for a certain type of symmetry.
For example, biological units with two protein chains
were selected for C2 symmetry, and the corresponding
number of protein chains for D2 symmetry was four.
The number of chains for each symmetry type was
reasonably set to retain most of the biological units
for each type. Then, the Structural Classification Of
Proteins (SCOP) database (version 1.75)[31] was applied
to remove redundancies at the family level for each
symmetry type. If more than one target was found
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in the same SCOP family, the target with the best
resolution and the longest chain length was selected. To
remove possible redundancies, targets without SCOP
unique identifers-sunid[32] or with more than one sunid
were excluded from the bound candidate list. We also
checked the interface of bound structures to ensure the
presence of interacting residues within 5 nm between
adjacent chains. All structures were manually checked
to ensure that the interfaces were reasonable and
those ligand-mediated or covalently linked structures
were excluded as our work focuses on protein-protein
interactions. Finally, we obtained a candidate list of
bound structures for each symmetry subtype, including
a total of 1400 bound targets.

We then attempted to identify the corresponding
unbound structures for the 1400 bound targets. We
searched sequences of the bound chain of each target
against all of the protein chains in the PDB using the
Protein Basic Local Alignment Search Tool (BLASTP)
algorithm of the Basic Local Alignment Search Tool
(BLAST) package[33]. A protein chain was defined as
a candidate for the unbound structure if it met the
following criteria: it shared over 95% sequence identity
with the bound structure, alignment covered 95% of
the sequence of the bound subunit, the difference in
length was no more than 5% of the length of the
bound subunit, and the protein chain was from an
asymmetric complex or monomer. If multiple unbound
structure candidates were found for a certain bound
structure, the one with the highest sequence similarity
and highest structure resolution was chosen. If the
highest resolution for X-ray structures was poorer
than 0.4 nm, the Nuclear Magnetic Resonance (NMR)
structure would be selected instead. All unbound
structures were subjected to manual inspection based
on bound structures. Finally, 251 bound targets with
unbound structures available for identical subunits were
obtained, and these targets formed our non-redundant
benchmark for symmetric protein docking.

3 Results and Discussion

3.1 Benchmark dataset

The 251 targets of the benchmark for symmetric
proteins are listed on our website at http://huanglab.
phys.hust.edu.cn/SDBenchmark/. For convenience, the
unbound and bound structures of each target in the
benchmark are named by their PDB code and chain
ID(s). Each target is represented by the PDB code

of its bound structure. The table reveals that the
benchmark covers a wide range of proteins in terms of
symmetric types, chain length, conformational changes,
and complex types. For example, the benchmark
contains all four types of symmetry, as well as most
of their subtypes (Table 1, Fig. 1a). From Fig. 1a,
it can be seen that the cases with the Cn symmetry
are the most with a percentage of 84.46%. Figure 2
shows four representative examples of four types of
symmetry. The chain length of the unbound structures
ranges from 25 residues for the matrix protein M2
of target 3BKD to 843 residues for the glycogen

Table 1 Numbers of targets with different symmetries.
Symmetry type
(Total number)

Symmetry
subtype

Number
of targets

Cyclic groups (212)

C2 178
C3 20
C4 5
C5 4
C6 4
C7 1

Dihedral groups (35)

D2 24
D3 6
D4 2
D5 1
D6 2

Cubic groups (3) T 3
Helical symmetry (1) H 1

Fig. 1 Statistics of the symmetric targets in the benchmark.
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Fig. 2 Four representative targets for four symmetry
types. Unbound structures (blue) are superimposed onto
the subunits of the bound structures (red). The figure was
prepared using UCSF Chimera[34].

phosphorylase of target 2GJ4. Root-Mean-Square
Deviation (RMSD) and Template Modeling (TM)-score
calculated by the TM-score program[35] were used to
characterize conformational changes between bound
and unbound structures. First, sequence alignment was
performed using BLASTP[33]. Then according to the
alignment result, the residue number in the bound
and unbound structures was updated to ensure that
the corresponding residues had the same number.
Second, the TM-score program was used to calculate
the RMSD and TM-score. To improve the usability
of the benchmark, the “unbound complex structure”
constructed by superimposing unbound protein chains
onto bound chains was also provided in the benchmark.
The unbound structures showed a wide range of
conformational changes with a maximum RMSD of
2.279 nm for target 2CN4 and minimum TM-score
of 0.30 for the target 1ET1. The structures in the
benchmark only retained heavy atoms. Other atoms,
such as water, hydrogen, and alternative atoms, were
removed from the structures. Information on important
HETATM atom, such as ligands and nonstandard amino
acids, for the unbound structures are also listed in the
benchmark.

3.2 Difficulty classification

To assign the difficulty levels of the targets, we
classified the 251 targets into three categories of
“easy”, “medium”, and “difficult” cases according
to the interface RMSD (Irmsd) between bound and
unbound structures after optimal superimposition of
their interfaces[36]. Here, Irmsd was defined as the
RMSD of the C˛ atoms at the interface after
optimal superimposition between bound and unbound
structures; the interface refer to those residues within
1 nm of each other for the two partners of the bound
complex. If multiple interfaces are available for a target,
the interface with the largest conformational change
was used to represent the conformational change of

the target. The criteria used to categorize the targets
and the statistics of targets with different properties
are shown in Table 2 and Fig. 1b, respectively.
Three representative examples corresponding to “easy”,
“medium”, and “difficult” cases are shown in Fig. 3.

Figure 3 reveals that the conformational change is
very small for the “easy” target 5P21 and that the
backbones between the bound and unbound structures
nearly overlap. For the “medium” target 1MKK,
significant conformational changes are observed at the
interface. A large conformational change can be seen in
the backbones of the “difficult” target 1HRU, especially
at the interface between the bound and unbound
structures. For different levels of conformational
changes, the degree of docking difficulty differs, and
the appropriate docking strategies should be used. For
“easy” targets, rigid-body docking may achieve good
results; however flexibility must be considered when
docking “difficult” targets.

A docking benchmark helps objectively evaluate
the performance of docking algorithms. Through
successful and, in particular, failed predictions and the
different performances of existing docking programs,
users may gain useful insights into the problems,
find the advantages and disadvantages of different
algorithms, and furthermore improve or develop novel
docking programs. Therefore, the benchmark should
be diverse, reflect realistic applications, and thus be
challenging enough for the existing docking algorithms.
Hence, we conducted a preliminary docking test

Table 2 Criteria for classifying targets by interface RMSD.
Category Criterion Number of targets

Easy Irmsd 6 0:15 nm 176
Medium 0:15 nm6 Irmsd 6 0:3 nm 37
Difficult Irmsd > 0:3 nm 39

Fig. 3 Three representative targets for three difficulty
levels. Bound structures are colored red/cyan and the
corresponding unbound structures are colored in blue/yellow.
(a) “Easy” target 5P21 (IrmsdD 0:067D 0:067D 0:067 nm); (b) “Medium”
target 1MKK (I rmsd D 0:218D 0:218D 0:218 nm); and (c) “Difficult” target
1HRU (IrmsdD0:303D0:303D0:303 nm).
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for the targets of Cn symmetry in both bound
and unbound docking by using M-ZDOCK, a Fast
Fourier Transformation (FFT)-based approach for Cn

symmetric multimer docking. The scoring function of
M-ZDOCK consists of three energy terms: surface
complementarity, electrostatics, and desolvation[8].

Given the predicted structures, we calculated the
success rates and average number of hits (i.e.,
successful predictions) of M-ZDOCK in Cn symmetric
binding mode predictions for both bound and unbound
docking. Here, we used the criteria in the Critical
Assessment of Prediction of Interactions (CAPRI)
experiments[23, 37, 38] to evaluate the predicted binding
modes. According to the criteria, the accuracies of the
binding modes can be grouped into four categories:
high, medium, acceptable, and incorrect. In this work,
a prediction with an at least acceptable accuracy was
considered as a “hit”. The success rate was defined
as the number of targets with at least one successful
prediction divided by the total number of targets in the
benchmark when a certain number of top predictions is
considered.

Figure 4 shows the results of M-ZDOCK in both
bound and unbound docking. Figure 5 shows the
docking results of the three different types.

Fig. 4 Success rates (a) and average number of hits per
complex (b) obtained by M-ZDOCK as a function of the
number of top predictions for unbound and bound docking.

The bound docking results can serve as a primary
test of the performance of scoring functions because
no conformational change occurs in bound structures
during docking. It can be observed from Fig. 4a
that M-ZDOCK achieves a satisfactory performance
in bound docking with a success rate of 46.7% for
top 1 prediction and 62.3% for top 10 predictions.
Figure 4a also shows that nearly all of the test
cases are successfully predicted when the top 1000
predictions are considered. This result indicates that
the sampling process was able to search near-native
conformations for all targets but that the scoring
function was not good enough to rank the correct
binding modes within top predictions. Such a finding
suggests that a more accurate scoring function for
symmetric protein interactions is needed. Binding
mode prediction for unbound docking was much more
challenging with a success rate of only 30.2% for top 1
prediction and 39.2% for top 10 predictions. The poorer
performance of unbound docking compared with that
of bound docking indicates the significant impact of
conformational changes and the necessity to consider
protein flexibility during realistic docking. Figure 4b
shows the average number of hits per complex for
bound and unbound docking. The results of bound
docking are clearly better than those of unbound
docking, as expected. When the top 100 predictions
were considered, M-ZDOCK obtained an average of
28.6 hits per complex for bound docking compared with
16.6 hits for unbound docking. The smaller number
of hits of unbound docking compared with that of
bound docking again indicates that the Cn symmetric
multimer docking problem is challenging and requires
the development of advanced docking programs with
more accurate scoring functions.

Similar trends can also be seen in Fig. 5. For the three
types of cases in the benchmark, the results of bound
docking are better than those of unbound docking
in terms of both success rate and average number of
hits. In addition, the difference in performance between
bound and unbound docking becomes more significant
as the degree of docking difficulty increases in our
benchmark. The difference in success rates for top 1
prediction between bound and unbound docking for
“easy”, “medium”, and “difficult” cases is 4.76%,
21.88%, and 63.64%, respectively. This trend in
performance is similar for average number of hits. The
difference in number of hits for top 1 prediction for
“easy”, “medium”, and “difficult” cases is 0.047, 0.219,
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Fig. 5 Docking results of easy (a), medium (b), and difficult (c) cases. The left column shows the results of success rate for these
three types, and the right column shows the corresponding results of average number of hits.

and 0.637, respectively. Such a trend indicates that larger
conformational changes cause greater difficulties in
docking and poorer docking results, which is consistent
with the difficulty classification of our benchmark.

4 Conclusion

We have constructed a comprehensive and non-
redundant benchmark of 251 diverse targets for
symmetric protein docking. The benchmark consists
of 212 test cases of Cn symmetry, 35 test cases of
Dn symmetry, 3 test cases of cubic groups symmetry,
and 1 test case of H symmetry. According to the
conformational changes observed at their interfaces,
the 251 targets of the benchmark were grouped into

176 “easy”, 37 “medium”, and 38 “difficult” cases. A
preliminary docking test on the targets of Cn symmetry
showed that the symmetric multimer docking problem
remains a challenge and requires the development
of more accurate docking algorithms and scoring
functions. The benchmark also includes the targets of
other types of symmetry, such as Dn symmetry and
H symmetry. The present benchmark is of value for
symmetric multimeric protein docking and scoring. The
benchmark will be updated annually and is available at
http://huanglab.phys.hust.edu.cn/SDBenchmark/.
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