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Model Error Correction in Data Assimilation by
Integrating Neural Networks

Jiangcheng Zhu, Shuang Hu, Rossella Arcucci, Chao Xu, Jihong Zhu, and Yi-ke Guo�

Abstract: In this paper, we suggest a new methodology which combines Neural Networks (NN) into Data

Assimilation (DA). Focusing on the structural model uncertainty, we propose a framework for integration NN with

the physical models by DA algorithms, to improve both the assimilation process and the forecasting results. The

NNs are iteratively trained as observational data is updated. The main DA models used here are the Kalman filter

and the variational approaches. The effectiveness of the proposed algorithm is validated by examples and by a

sensitivity study.
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1 Introduction and Motivation

Data Assimilation (DA) is an uncertainty quantification
technique by which measurements (see Eq. (1),
Algorithm 1) and model predictions (see Eq. (2),
Algorithm 1) are combined to obtain an accurate
representation of the state of the modeled system[1].
DA was firstly proposed in atmospheric models
and then widely applied in climatology, geophysics,
aerodynamics, and economic models in the past
decades. Recently, DA has also been applied in
numerical simulations of geophysical applications[2]

and medical and biological sciences[3, 4] for improving
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the reliability of the numerical simulations. Today, there
are many DA algorithms. Those which have gained
acceptance as powerful methods in the last ten years
include the variational DA approach and the Kalman
Filter. These approaches assume that the two sources of
information, forecasts and observations, have errors that
are adequately described by stationary error covariance
matrices.

Algorithm 1: A(DA)
Input: A time step tk . Assimilation window A. A

numerical discretization of a dynamic system
Fk W Rnx ! Rnx ; where xk 2 Rnx be a state
estimate vector and an initial condition x0.

M vectors of noisy measurements yj 2 Rny in an
assimilation window time Œtk ; tkCA� such that:

yj D Hj .xj /C vj ; 8 k 6 j 6 k C A (1)

where Hj W Rnx ! Rny is the first order linearization of
the observation function.

1 Model Integration. Compute

xk D F0!k.x0/C �k (2)

where F0!k D Fk�1!k ı Fk�2!k�1 ı � � � ı F0!1

2 Define the covariance matrices Rk and Bk

3 Assimilate xk with yj (for j D 1; : : : ; A), i.e., compute

xDA
k D argmin

x

8<:kx�xkkB�1
k
C

kCAX
jDk

kHjFj .x/�yj kR�1
j

9=;
(3)
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The solution gained by minimizing the cost function
in Eq. (3) is the result of the Kalman Filter[5]. If
the solution is instead using variational �x, it
is called the variational approach. In recent years,
variational approaches and Kalman Filters become
more sophisticated to better fit their application
requirements and circumvent their implementation
issues. Nevertheless, these approaches are incapable
of overcoming fully their unrealistic assumptions,
particularly linearity, normality, and zero error
covariances. The first step in error analysis (also called
sensitivity analysis) is to understand the errors that
arise at the different stages of the solution process,
namely, the uncertainty in the mathematical model,
in the model’s solution, and in the measurements.
These are the errors intrinsic to the DA inverse
problem. Moreover, there are the approximation
errors introduced by linearization, discretization, and
model reduction. These errors occur when infinite-
dimensional equations are replaced by a finite-
dimensional system, or when simpler approximations to
the equations are developed. Finally, there are rounding
errors introduced by working in a finite precision
arithmetic during implementation of the algorithm.

Machine learning algorithms are capable of assisting
or replacing the aforementioned traditional methods in
assimilating data and making forecasts, without the
assumptions of the conventional methods. As NNs can
approximate any linear or nonlinear functions, it has
been integrated with DA as a supplement in various
applications.

In this paper, we consider integrating the NNs into
the conventional DA (hereafter named as “DA+NN”).
In recent years, deep learning shows great advantage
in function approximations which have unknown
model and strong nonlinearity. Here, we use NNs
to characterize the structural model uncertainty. The
NN is implemented in an End-to-End (E2E) approach
and its parameters are iteratively updated with coming
observations by applying the DA methods.

This paper is structured as follows. In Section 2, we
discuss the related works about machine learning and
DA. We proposed a new methodology in Section 3
where we integrate NNs into DA. In Section 4, we
give a brief discussion on our method. In Section 5,
numerical examples are given to implement and verify
the proposed algorithm. Based on these discussions, we
give an outlook on this field. Finally, conclusions are
drawn and future works are discussed.

2 Related Work and Contribution of the
Present Study

Sensitivity of the four-dimensional variational (4D-
Var) DA model has been studied in Ref. [6] where an
adjoint modeling is used to obtain first- and second-
order derivative information and a reduced-order
approach is formulated to alleviate the computational
cost associated with the sensitivity estimation. This
method makes rerunning less expensive; however,
the parameters must still be selected a priori, and,
consequently, important sensitivities may be missed[7].
It is proved that Algorithm 1 obtains QxDA

k
D xDA

k
C ık

where ık is
kıkk1 D CA.DA/k�kk1 (4)

where CA.DA/ is a parameter that depends on the
condition numbers of the DA numerical model and
the numerical forecasting model implemented in
Algorithm 1[8] and �k is the error in the numerical
forecasting model in Eq. (2). Approaches to reduce
the error propagation are previously proposed[6, 8] and
studies based on adjoint analysis are provided[7]. In
this paper, we study the problem of reducing �k by
estimating the errors using machine learning.

Machine learning algorithms are capable of assisting
or replacing the aforementioned traditional methods in
assimilating data and making forecasts, without the
assumptions of the conventional methods. As NNs
can approximate any linear or nonlinear functions,
they have been integrated with DA as a supplement
in various applications. Babovic et al.[9–11] applied
neural network for error correction in forecasting. In
these literatures, a neural network is trained by the
error of past several steps. This network compensates
the forecasting result from a deterministic model.
Similar approaches are implemented on hydraulic
applications[12–15] and financial applications[16]. While
machine learning capability in approximating any
nonlinear or complex system is promising, it is a black-
box approach, which lacks the physical meanings of the
actual system structure and its parameters, as well as
their impacts on the system. To resolve this problem,
we introduce in Section 3 a neural network model
trained on DA results. This introduces a novelty in
sensitivity analysis techniques used to determine which
inputs in NN are significant. In Ref. [17], a series
of seven different sensitivity analysis methods were
reviewed. As we show in the next section, our approach
can be related to the weights method[18]. The difference
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between our method and the classical weights method
is that, in our approach, the connection weight among
the nodes is provided by the error covariance matrices
computed in the DA process.

3 Data Assimilation with Neural Networks

The overall process of DDA is described as Fig. 1 and
the algorithm description of DDA is as Algorithm 2.
As depicted in Eq. (2), the error �k causes the error in
DA. To compensate such error from model uncertainty,
we introduce an NN G! (as depicted in Fig. 2), and
alternate the model F by a composition G! ı F . The
training target is

xk D G!

�
F.xk�1/

�
(5)

While NN capability in approximating complex
systems is promising, it is often a black-box approach,
which lacks the physical meanings of the actual system
structure and its parameters, as well as their impacts on
the system. To face this problem, in Eq. (5), we use
the values of F.xDA

k�1
/ and xDA

k
as input and output of

network G! , respectively. However, the real value of
state x is unobtainable. To train the G! , we exploit the
result of DA f.xDA

k�1
; xDA

k
/g.

The G! model can be the iterative form G!;i ı
G!;i�1 ı � � � ı G!;1 ı F where G!;i is defined as the
network trained in the i -th stage. Let Mi be the model
implemented in the i -th stage:

Mi D G!;i ı G!;i�1 ı � � � ı G!;1 ı F (6)

from which Mi D G!;i ıMi�1 and M0 D F .
We define the result of DA and DA+NN as xDA

and xDACNN, respectively. For iteration i > 1, the
training set for G!;i is f.Mi .x

DACNN
k�1

/; xDACNN
k

/g,
which exploits the f.xDACNN

k�1
; xDACNN

k
/g from the last

updated model Mi . As for loss function in Eq. (10), it
is defined as in Theorem 1 described in Section 4 and
the network is updated by the gradient loss function on
its parameter:

!iC1  !iC1 C ˛@Li

@!
(7)

The Fully-Connected (FC) network is the earliest and
most basic NN structure. It means that the output of
each neuron in the upper layer becomes the input of
each neuron in the next layer, and it has a structure with
corresponding weight values. There is no cycle or loop
inside the FC network. FC NNs are widely cited in the
fitting of functions, especially the output of continuous
value functions.

The two-layer FC network contains a hidden layer
and an output layer. If w1 is the weight of the hidden
layer, b1 is the bias of the hidden layer. w2 is the
weight of the output layer and b2 is the bias of the output
layer. The hidden layer has one activation function (tanh
function or relu function) per neuron, and the output
layer does not have an activation function. The input

Fig. 1 Schematic diagram of DA+NN.
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Fig. 2 Fully-connected neural network.

and output relations of this neural network are
y D w2.tanh.w1x C b1//C b2 (8)

In training, in the framework of data assimilation
with neural network as previously described, the
training set is the DA result over a period of time.
Taking the first cycle (i D 0) as an example, the training
set is xDA

0 ; xDA
1 ; xDA

2 ; : : : ; xDA
M (consecutive time series

results), and the model is generated from this set of
data. The next estimate is f OxDA

k
DM.xDA

k�1
/jk D 1; 2;

: : : ;M g. The input of NN is OxDA
k

and the output tag
value is xDA

k
(DA result). This resulted in a total of M

training sets. Since this network is a feedfoward neural
network and cannot handle time series, we consider that
theM group training sets are independent of each other.

In the execution, taking the stage i D 1 as an
example, we have already trained the feedfoward NN
G!;1 as described in the previous paragraph. Therefore,
during the DA of period i D 1, we will modify the
model to the modified neural network model M1 D
G!;1 �M0. Then we need to use the model M1 to
update the system when each step DA needs a model
update.

4 Mathematical Analysis

We can then prove the improvement in DA results
introduced by our proposed algorithm by Theorem 1
and Theorem 2.

Theorem 1 Let f.Mi .x
DA
k�1

/; xDA
k
/g be the training

set for G!;i , which exploits the f.xDA
k�1

; xDA
k
/g from the

last updated model Mi . The loss function by the back-
propagation, defined as the Mean Square Error (MSE)
for the DA training set, is such that
Lk.!/D



BkD
T
kA
�1
k dk�G!;k.Bk�1D

T
k�1A

�1
k�1dk�1/




2

(9)
where dk D yk �Hkxk is the so-called misfit between
observed and background data, Dk D diag fMkHk;

: : : ;MkCAHkCAg and Ak D DkBkD
T
k
CRk is the

Hessian of the DA system in Eq. (3).
Proof: The loss function by back-propagation,

defined by the MSE, is as
Lk D jjxDA

k � G!;i ıMi .x
DA
k�1/jj2 (10)

Let beDk D diag fMkHk; : : : ;MkCMHkCM g, the
solution of the DA system in Eq. (3) is[1]

xDA
k D BkD

T
k.DkBkD

T CRk/
�1.yk �Hkxk/ (11)

Let dk D yk �Hkxk and Ak D DkBkD
T
k
C Rk ,

Eqs. (10) and (11) give Eq. (9).
We estimate the error �k in Eq. (2) by the deep NN.

Even if some error’s sources cannot be ignored (for
example, the round-off error), the introduction of the
proposed method which exploits the benefit from both
NN and DA methods allows us to reduce �k . Let Oxk be
the solution of the dynamic system (Eq. (2)) modeled
by the NN, it is Oxk DMk.x0/C O�k where O�k denotes
the error in the NN model such that

kO�kk1 6 k�k1 (12)
This introduces the possibility to reduce the error in

the dynamic system by deep NN impact on the solution
of the DA. The following result held:

Theorem 2 Let ık be the error in the DA solution as
defined in Eq. (4), and let Oık be the error in the solution
of proposed methodology:

OxDACNN
k

D xDACNN
k

C Oık;

it is
kOıkk1 6 kıkk1 (13)

Proof: Let CA.DA/ and CA.DACNN/ be the error
propagation parameters which depend on the numerical
methods implemented in DA and DA+NN algorithms,
respectively, as defined in Eq. (4). It can be proved that

CA.DA/ ' CA.DACNN/ (14)
In fact CA.DA/ ' �.ADA/, where ADA is the Hessian

of the DA system (Eq. (3)) and CA.DACNN/ '
�.ADACNN/ where ADACNN is the Hessian of the DA
system (Eq. (3)). As the condition number of both
Hessian matrices ADA and ADACNN are proportional
to the condition number of the background error
covariance matrix Bk (as in Ref. [19]) then Eq. (14)
holds. From Eqs. (12) and (14) it follows that
kOıkk1 D CA.DACNN/kO�kk1 6 CA.DA/k�kk1 D kıkk1

(15)

5 Numerical Examples

In this section, we address two different applications of
DA+NN in case of known or unknown system model
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inaccuracy �. Our interest is the modeling uncertainty
effect in real applications. Uncertainty widely exists in
the modeling of natural processes such as turbulence in
fluid dynamics or aircraft design. Also, mis-modelling
of chemical or biological process has not been clearly
investigated. These processes can be interpreted as a
general dynamic system. In these situations, DA is
not sufficient in reducing the modelling uncertainty in
approaching the true models. The DA+NN algorithm
we have proposed is applicable in solving this problem.

5.1 Double-integral mass dot system

We first use a double-integral particle system, which
is widely used for the physical representation of
a simplified motion system. The system can be
understood as the motion of a particle under the
influence of a controlled acceleration. The affected state
includes position and velocity. Due to the existence of
a Proportion-Integral-Derivative (PID) controller in the
feedback control system, the position as a controlled
state eventually converges upon a relatively stable
value. The output of the controller is the acceleration
acting on the system, or it can be understood as a force
that linearly relates to the acceleration.

A double-integral system is a mathematical
abstraction of Newton’s Second Law which is a
simplified model of many controlled systems. It can be
represented as a continuous model as

Px D Ax C BuC �;
y D Cx C v (16)

where the state x D Œx1; x2�
T is a two-dimensional

vector containing position x1 and velocity x2

information, and u D Px2 is the controlled input.
The coefficient matrices A,B , and C are time-invariant
system and observation matrices. v is the observation
noise, which is a two-dimensional Gaussian. w is the
system disturbance including two aspects: random
system noise and structural model uncertainty.

To implement DA on this system, model (16) is
discretized to a discrete form F , G, and H as Eqs. (2)
and (1). We introduce a disturbance in system Eq. (16)
so that

�k D �smu.xk/C �iid;k (17)

in which �smu.�/ is the structural model uncertainty and
�iid is the i.i.d random disturbance.

We test two kinds of model uncertainty �smu.�/. They
represents two typical structural error compositions:
parallel and serial. Please note error �smu.�/ is added

in the real system, which is continuous.
The error from parallel composition is

�smu.xk/ DM
exkC1

1C exkC1
(18)

whereM D Œm1; m2� is the amplitude vector which can
be adjusted according to the reality.

The error from serial composition is
�smu.xk/ D .M � I /Axk (19)

which describes the condition that the real system is
Px DM.A.x/C B.u//, while the model in DA is Px D
A.x/C B.u/.

To achieve the model simulation, we design a cascade
controller to avoid the system from divergence. The
tracking signal is set as a step function. We obtain 1000
samples from a 10-second simulation with the sample
frequency of 100Hz. This simulation is implemented
on the Simulink of Matlab 2016a.

First, we run a Kalman filter based on a discretized
model F , G, and H . The algorithm of DA+NN is as
Algorithm 2. The training set is built by the time series
fF.xDA

k�1
/; xDA

k
g:

For the dynamic system Eq. (16), we first run the
system and record the observation y, control input u.
A corresponding Kalman filter runs along the system
updates, and outputs a sequence of prediction xDA. In
the first stage (the left area divided by vertical dashline)
of Fig. 3, there is an error between the black line and
blue line. The network G!;1 is trained by the dataset of

Algorithm 2: A.DAC NN/
Input: Observation yj for n �M temporal steps, F , H , G! ,

assimilation window A

1 Initialize the M0 D F by the DA modelling with the
training set Di D fF.xDA

k�1
/; xDA

k
g

2 Initialize stage i D 0
3 while i < n do
4 Run the DA for the first M steps with model Mi and

record estimation fxDACNN
k

jk 2 ŒM � i;M � .i C 1/�g
xDACNN

k
D argmin

x

n
kx � xkkB�1

k
C

kCAX
k

kHjMj;i .x/ � yj kR�1
j

o
(20)

5 Generate the training set Di D fF.xDACNN
k�1

/; xDACNN
k

g
with k 2 Œi �M; .i C 1/ �M�

6 Train a neural networks G!;iC1 with Di

7 Put trained G!;k in the model:
MiC1  G!;iC1 ıMi

8 Count up i for the next stage
9 end

Output: xDACNN
k
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these K steps.
After that, the system and Kalman filter continue to

update from the .K C 1/-th step to the 2K-th step. Now
the system-update step in Kalman filter integrates the
trained NN G!;1 as

xk D G!;1.F xk�1 CGuk/ (21)
Figure 3a is the result of these numerical examples.

Two vertical dashed lines are at point which the NN
is trained. We can see that after the first training,
the Kalman filter with NN outperforms the standard
one. After the second training, its performance is even
further improved.

Figure 3b shows the result and comparison of this
algorithm. By training twice, the result of DA+NN got
close to the real value. However, biased estimation still
exists and overfitting is also likely to occur in this case.

5.2 Lorenz system

To describe the atmosphere behavior in a simple
mathematical model, Lorenz[20] developed a simplified

mathematical model for atmospheric convection. It is
a popular test case for DA algorithms. The model
is a system of three ordinary differential equations
(the Lorenz equations). It is notable for exhibiting
a chaotic behaviour for certain parameter values and
initial conditions. The Lorenz equations are given by
the nonlinear system:

dp
dt
D ��.p � q/;

dq
dt
D �p � q � pr;

dr
dt
D pq � ˇr (22)

where p, q, and r are coordinates, and � , �, and ˇ
are parameters (in this test case, � D 10, � D 8=3,
ˇ D 28). This Lorenz system can be discretized by the
second order Runge-Kutta method as in Ref. [21].

Given a state xk D Œpk; qk; rk�
T and the discrete

function Fk.�/, we define a Lorenz system with
structural model uncertainty as
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Fig. 3 Simulation result of DA+NN on double-integral system. The vertical dash-lines refer to the training windows.
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xk D Fk.xk�1/C �smu;k (23)

in which the structural model uncertainty is �smu;k D
Mxk�1 (in this case M D 0:01), and Fk.�/ is

pkC1 D pk C �
�t

2
Œ2.qk � pk/C

�t.�pk � qk � pkrk/ � ��t.qk � pk/�;

qkC1 D qk C
�t

2
Œ�pk � qk � pkrk C �.pkC

��t.qk � pk// � qk ��t.�pk � qk � pkrk/�
.pk C ��t.qk � pk//.rk C�t.pkqk � ˇrk//�;

rkC1 D rk C
�t

2
Œpkqk � ˇrk C .pk C�t�.qk � pk//�

.qk C�t.�pk � qk � pkrk//�
ˇrk ��t.pkqk � ˇrk/�:

For the dynamic system as Eq. (22), we firstly run
the system and record the system true value x. Then,
the observation y is generated by adding Gaussian noise
on the true value x. After that, a 4D-Var algorithm is
applied to generate a sequence of DA result xDA with
length K. The training set is built by the time series
fFk.x

DA
k�1

/; xDA
k
g. Then the NN G! is trained.

The forecasting results based on the DA model and
DA with the NN model are then compared. For DA, the
system update model is formed as

xk D Fk.xk�1/ (24)
For DA+NN, the system update model is

xk D G!.Fk.xk�1// (25)
We compare the forecasting results in Fig. 4. The

training set generated by k 2 Œ0; 1000� is not plotted
in complete. The forecasting begins at k D 1000. We
can see the forecasting errors of DA model in all three
axes are big. The trajectories of DA model cannot track
the real state, while the trajectories of DA+NN model
track the real value very well.

Figure 4b is a 3D plot of this Lorenz system
forecasting part. It shows the DA model fails to forecast
the right hand part of this butterfly. In this test,
the DA+NN model outperforms the DA model in
forecasting, for the trajectory of the right wing of this
butterfly.

6 Conclusion and Future Work

In this article, we discuss a new methodology that
integrates NN into data assimilation and validates the
algorithm by numerical examples of model uncertainty.

So far, the effectiveness of this algorithm still remains
to be verified in various specific domains having huge
state space and more complex internal and external
mechanisms.

Future work should include the implementation of a
DA+NN under more general conditions. For example,
we will investigate the combinatorial case of parametric
model inaccuracy and structural model uncertainty.
Also, modern deep learning tools (e.g., CNN, RNN)
can be introduced into data assimilation to improve the
adaption and performance in more divergent conditions.
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Given a state xk D Œpk; qk; rk�
T and the discrete

function Fk.�/, we define a Lorenz system with
structural model uncertainty as

xk D Fk.xk�1/C �smu;k (23)

in which the structural model uncertainty is �smu;k D
Mxk�1 (in this case M D 0:01), and Fk.�/ is

�t.�pk � qk � pkrk/ � ��t.qk � pk/�;

qkC1 D qk C
�t

2
Œ�pk � qk � pkrk C �.pkC

��t.qk � pk// � qk ��t.�pk � qk � pkrk/�
.pk C ��t.qk � pk//.rk C�t.pkqk � ˇrk//�;

rkC1 D rk C
�t

2
Œpkqk � ˇrk C .pk C�t�.qk � pk//�

.qk C�t.�pk � qk � pkrk//�
ˇrk ��t.pkqk � ˇrk/�:
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(a) Trajectories of the 4D-Var and DA with neural network on three axes.
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(b) Trajectories of DA and DA with NN forecasting. It is the 3D-plot of Fig. 4a for timestep ∈(1000, 1176).

Fig. 4 Result of data assimilation with NN on Lorenz system.

in Singapore regional model, Ocean Dynamics, vol. 62, no.
5, pp. 661–669, 2012.

[13] O. Makarynskyy, Improving wave predictions with
artificial neural networks, Ocean Engineering, vol. 31, nos.
5&6, pp. 709–724, 2004.

[14] D. I. Gopinath and G. Dwarakish, Wave prediction using
neural networks at new Mangalore port along west coast of
india, Aquatic Procedia, vol. 4, pp. 143–150, 2015.

[15] P. Jain and M. Deo, Artificial intelligence tools to forecast
ocean waves in real time, Open Ocean Engineering
Journal, vol. 1, pp. 13–20, 2008.

[16] A.-S. Chen and M. T. Leung, Regression neural network
for error correction in foreign exchange forecasting and
trading, Computers & Operations Research, vol. 31, no.
7, pp. 1049–1068, 2004.

[17] M. Gevreya, I. Dimopoulosb, and S. Leka, Review

and comparison of methods to study the contribution of
variables in artificial neural network models, Ecological
Modelling, vol. 160, no. 3, pp. 249–264, 2003.

[18] Y. W. Foo, C. Goh, and Y. Li, Machine learning with
sensitivity analysis to determine key factors contributing
to energy consumption in cloud data centers, in 2016
International Conference on Cloud Computing Research
and Innovations (ICCCRI), 2016, pp. 107–113.

[19] N. Nichols, Mathematical concepts of data assimilation, in
Data Assimilation, W. Lahoz, B. Khattatov, and R. Menard,
eds. Springer, 2010.

[20] E. N. Lorenz, Deterministric nonperiodic flow, in the
Theory of Chaotic Attractors, B. R. Hunt, T. Li, J. A.
Kennedy, H. E. Nusse, eds. Springer, 2004.

[21] A. S. Lawless, Data assimiliation with the Lorenz
equations, University of Reading, UK, 2002.



Jiangcheng Zhu et al.: Model Error Correction in Data Assimilation by Integrating Neural Networks 91

Jiangcheng Zhu received the BEng
degree from Zhejiang University (ZJU),
China in 2012, and the MS degree in
intelligent system, robotics and control
from University of California, San Diego
(UCSD), USA in 2014. He is currently a
PhD candidate in ZJU. He was a visiting
researcher in the Data Science Institute

(DSI) of Imperial College London (ICL), UK during October
2017 to July 2018. He leaded ZJU Micro Aerial Robotics Team
(ZMART) won the 7th champion of the International Aerial
Robotics Competition (IARC) from 2014 to 2018. His current
research interests include reinforcement learning and deep
learning in robotics.

Shuang Hu received the BE degree
from Beijing University of Posts and
Telecommunications in 2013. He is
currently a PhD student in the Department
of Computer Science and Technology,
Tsinghua University. He had been a
visiting researcher of the Data Science
Institute at Imperial College London,

UK, during October 2017 to April 2018. His current research
interests include system identification, data assimilation, and
aerodynamic modeling.

Chao Xu received the PhD degree of
mechanical engineering from Lehigh
University in 2010. Currently, he is the
TRUTH Associate Professor and Associate
Director in the Institute for Cyber-Systems
& Control (CSC), Zhejiang University.
Dr. Xu also serves as the Managing-Editor
of Journal of Industrial and Management

Optimization (JIMO), the Associate Editor of the Numerical
Algebra, Control and Optimization (NACO), the Associate
Editor of Information & Control Technology (a Chinese Journal).
His main research interests include bio-inspired locomotion &
robotics, optimal control, and PDE techniques in informatics.

Jihong Zhu received the PhD degree
in automatic control from Nanjing
University of Science and Technology
in 1995. He is currently a professor in
the Department of Computer Science
and Technology, Tsinghua University,
China. He won the title of Changjiang
Distinguished Professor in 2014. Prof.

Zhu was awarded several prizes including one Second-Class
of State Technological Invention Award, one First-Class of
MOE Technological Invention Award, one First-Class and one
Second-Class of Military Science and Technology Progress

Awards, one Grand Prize and four-Second Class of Provincial
Science and Technology Progress Awards. His current research
interests include unmanned aerial vehicle, flight control, and
avionics.

Rossella Arcucci received the master
degree (cum laude) in mathematics in
2008 from the University of Naples
Federico II (UNINA), Italy, and the PhD
in computational and computer science
from the same university in 2012. She
is a Research Associate of the Data
Science Institute (DSI) at Imperial College

London (ICL) in UK. Her area of expertise is in numerical
analysis, scientific computing and development of methods,
and algorithms and software for scientific applications on high
performance architectures including parallel and distributed
computing. She works on numerical and parallel techniques
for accurate and efficient data assimilation by exploiting the
power of machine learning models. She also achieved computing
efficiency by designing models specifically to massive parallel
computers and graphics processing units. During her post doc
at UNINA, she coordinated the H2020 project “iNnovative
Approaches for Scalable Data Assimilation in oCeanography”
(NASDAC) as PI until September 2017, when she joined the DSI.
She received the acknowledgement of Marie Sklodowska-Curie
fellow from European Commission Research Executive Agency
in Brussels on the 27th of November 2017.

Yi-ke Guo received a first-class honours
degree in computing science from
Tsinghua University, China, in 1985 and
received the PhD degree in computational
logic from Imperial College in 1993
under the supervision of Professor John
Darlington. He founded InforSense, a
software company for life science and

health care data analysis, and served as CEO for several years
before the company’s merging with IDBS, a global advanced
R&D software provider, in 2009. He is founding director of
DSI at ICL as well as leading the Discovery Science Group
in the department. Professor Guo also holds the position of
CTO of the tranSMART Foundation, a global open source
community using and developing data sharing and analytics
technology for translational medicine. His research area is in
data analysis and e-science. The projects he has contributed
have been internationally recognised, including winning the
“Most Innovative Data Intensive Application Award” at the
Supercomputing 2002 conferencefor Discovery Net, and the
Bio-IT World “Best Practices Award” for U-BIOPRED in 2014.
He is a Senior Member of the IEEE, a Fellow of the British
Computer Society, and a Fellow of the Royal Academy of
Engineering.


