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Distributed Storage System for Electric Power Data Based on HBase

Jiahui Jin, Aibo Song�, Huan Gong, Yingying Xue, Mingyang Du, Fang Dong, and Junzhou Luo

Abstract: Managing massive electric power data is a typical big data application because electric power systems

generate millions or billions of status, debugging, and error records every single day. To guarantee the safety and

sustainability of electric power systems, massive electric power data need to be processed and analyzed quickly

to make real-time decisions. Traditional solutions typically use relational databases to manage electric power data.

However, relational databases cannot efficiently process and analyze massive electric power data when the data

size increases significantly. In this paper, we show how electric power data can be managed by using HBase, a

distributed database maintained by Apache. Our system consists of clients, HBase database, status monitors, data

migration modules, and data fragmentation modules. We evaluate the performance of our system through a series

of experiments. We also show how HBase’s parameters can be tuned to improve the efficiency of our system.
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1 Introduction

Electric power systems are essential to modern
society. As a core subsystem, the Power Dispatching
Automation System (PDAS) processes runtime
information and makes real-time control decisions,
which guarantees the safety and substantiality of
electric power systems[1]. With the increasing scale
of PDAS, system-generated data, including status,
debugging, and errors, have increased dramatically in
recent years. For example, a city-tier PDAS generates
millions of records every day, while a province-tier
PDAS needs to collect data from tens of city-tier
PDASs, and make global decisions in real time.

The electric power data processed by PDAS are
typical 4Vs data (data with characteristics of volume,
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variety, velocity, and veracity), which are difficult
to process, query, and analyze within a tolerable
time. Recently, the fast development of electric
power systems has significantly increased the size
of electric power data. According to a report from
IBM (https://www-935.ibm.com/services/multimedia/
Managing big data for smart grids and smart meters.
pdf), “going from one meter reading a month to smart
meter readings every 15 minutes works out to 96 million
reads per day for every million meters. The result is a
3000-fold increase in data that can be overwhelming
if not properly managed.” Traditionally, electric
power data are stored in relational databases, where
maintenance costs can explode due to the increasing
data sizes and requirements of real-time processing. To
address this problem, companies like IBM, Oracle, and
General Electric, have brought their big-data projects
to the power industry. Scientists have also proposed a
series of techniques including optimization and data
mining to efficiently analyze, process, and visualize
electric power data.

Cloud computing is one of the key solutions
to process massive electric power data[2, 3]. With
cloud computing, distributed file systems and data
management technologies such as Google File
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System[4], Hadoop Distributed File System (HDFS)[5],
BigTable[6], and Apache HBase[7] can be used to
store large amounts of electric power data. Parallel
processing technologies, such as MapReduce[8] and
Spark[9, 10], make real-time processing of electric power
data possible.

On the basis of cloud computing, many emerging
scalable and distributed architectures and frameworks
have been proposed in the power grid area. The
Tennessee Valley Authority (http://www.tva.gov/)
built a power grid information processing architecture
using MapReduce and Hadoop to detect power
grid anomalies, creating power grid maps and
evaluating power consumption history. In Japan,
Kyushu Electric Power Company has developed a
big data platform to meet the requirements of rapid
analysis of vast amounts of power consumption
data collected from residences, offices, factories,
and other sectors in a power grid[11]. This big
data platform is based on a Hadoop cluster and is
deployed in a cloud computing environment that
utilizes server visualization technology. OpenPDC
(https://github.com/GridProtectionAlliance/openPDC)
is an open-source project based on Hadoop, which
contains a set of applications for processing streaming
time-series data from power management units.
Overall, most existing information systems are based
on Hadoop for batch processing electric power data
offline.

However, as a batch processing system, Hadoop
would not work for real-time queries. To address
this problem, we propose a big data platform that
uses Apache HBase distributed database to store and
query electric power data. HBase is an open source,
non-relational, distributed database running on top of
HDFS and providing BigTable-like capabilities for
Hadoop. Unlike Hadoop, HBase is well-suited for
faster read and write operations on large datasets
with high throughput and low input/output latency
(https://en.wikipedia.org/wiki/Apache HBase).

This paper is organized as follows: We first introduce
the basic concepts of HBase in Section 2. We then
show the architecture of our system in Section 3 and
we present the data storage model of electric power
data when considering the characteristics of power
system data in Section 4. In Section 5, we evaluate
the factors that affect HBase performance and propose
optimization techniques for tuning HBase for electric
power data. We show the related works in Section 6

and conclude the paper in Section 7.

2 Apache HBase

Apache HBase (short for HBase) is a distributed
database based on Google’s BigTable, which is the
storage layer of the Hadoop ecosystem. HBase takes
advantage of HDFS as the underlying file system and
the distributed programming framework MapReduce as
its implementation framework[12].

The basic unit of the HBase data table is column
family, which consists of one or more columns. Figure
1 shows a column family, namely, bil l , which contains
columns total and balance. The row key identifies
the data for each row and is used as a primary key for
retrieving records in HBase. In physical storage, each
column family corresponds to a file. The columns that
are visited frequently are placed in the same column
family to reduce query time when related data are in
the column family. In addition, the data columns in a
column family can be dynamically updated according
to the needs of applications.

The architecture of HBase follows a master-slave
structure, which consists of an HMaster and multiple
HRegionServers (see Fig. 2). HMaster is a cluster
manager which is to operate the data table and balance
the loads of the HRegionServers. In a distributed
database, the data is distributed over multiple storage
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servers. HRegion is a HBase database data management
unit. A Column Family within HRegion corresponds
to a Store instance. In the current HBase design, each
Store instance can, in turn, have one or more StoreFile
instances, which are lightweight wrappers around the
actual storage file called HFile. A Store also has a
MemStore which represents the memory cache.

3 Our System Architecture

Our system manages the data that come from PDAS,
which consist of many clients and a data processing
platform (or platform for short). Figure 3 depicts the
design of our system. PDASs can upload data through
clients, then the servers use platform to store and
analyze data.

Data Format. Different PDASs use different formats
to store data. Thus, exchanging data among PDASs
and our storage system is challenging, thereby
reducing the efficiency of data processing and data
collection. To solve the data exchange problem, we use
CIM/E, a standard based on the Common Information
Model (CIM) (http://www.dmtf.org/standards/cim), to
describe power grid model data. CIM is a standard
developed by the electric power industry, which
has been officially adopted by the International
Electrotechnical Commission to allow application
software to exchange information about an electrical
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network. CIM/E is an extension of CIM and is designed
for more efficient data exchange. Each PDAS describes
model data and runtime data as CIM/E files and then
posts these files to the storage system. When querying
the data, our system will parse the queried data into
CIM/E files and then send them to PDASs. In such a
way, we solve the data exchange problem, and allow
data sharing among PDASs and our storage system.

Client. Two kinds of clients exist: storage clients
and query clients. After collecting data from PDAS, the
storage clients parse the data into data records and then
call the platform-side storage interface to store the data.
Query clients are responsible for answering the queries
that are submitted by PDASs and the power system
analysts. To answer a query, the query clients search for
data through the platform-side interfaces, convert the
platform-returned data as a CIM/E file, and then send
the CIM/E file to users. Clients are deployed in power
plants, city-tier PDASs, or province-tier PDASs.

Platform. The platform is the core part of our
system and is responsible for storing and analyzing
data. The platform consists of database, status monitor,
data migration, data fragmentation, and other modules,
which are introduced in the following.
� Database. The database is responsible for storing

and managing data. We use HBase to store and
manage these data. When storing power data, the
data should be split and stored across different
computers. However, improper data fragmentation
may increase the overhead of querying. Our data
fragmentation strategy takes the graph partitions of
the power grid network into account.
� Status monitor. The status monitor collects real-

time CPU, memory, network, and disk I/O
information of the servers in our platform,
and sends the data to the workload balance
controller. The traditional systems typically use
open-source monitor software to aquire the status
information[13], but the open-source software itself
may introduce considerable running overhead.
Instead of using the open-source softwares, our
status monitor collect the server status by calling
the operating system APIs.
� Workload balance controller. To determine the

time to migrate data, the workload balance
controller detects each server’s collected status.
Our system adopts a straightforward approach
based on threshold detection method according to
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the extent of workload unbalance. When the extent
of workload unbalance reaches the threshold, data
migration will start.
� Data migration. When the servers’ workloads are

unbalanced, the data migration module generates
a migration plan based on the server status. It
then transfers data among servers according to
the migration plan. The traditional data migration
strategies are time-costly, because they need to re-
distribute all the data. To address this problem,
our system first calculates the number of data
fragments that need to be migrated and then
generates a corresponding data migration plan.

4 Managing Electric Power Data on HBase

The electric power data contain the model data and the
runtime data. The model data are generated by PDAS
and the runtime data are collected by sensors. This
subsection first introduces how the data are generated
and then show how the data are stored on HBase.

The model data include region, reference voltage,
plant station, and voltage level, each of which contains
identification, location, class, impedance, reactance,
and other attributes. The model data are generated
by the real-time system and future system in PDAS.
The real-time system stores each power equipment’s
current running status, and the future system stores
each equipment’s future operating parameters. Figure 4
shows the process of generating model data. When
predicting the future parameters, PDAS will obtain the
latest real-time model from a future system, and import
the model into a real-time system in an incremental
manner. Afterwards, PDAS generates, stores, and
publishes a new model. The original model will be
stored as the historical model in the database. As soon
as the new model has been published, PDAS sends the
published incremental model data to the storage system.

The runtime data include running parameters of all
kinds of power grid equipment such as breakers, knife
gates, and alternators, each of which contains electric
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Fig. 4 Process of generating model data.

current, voltage, active power, and inactive power. The
runtime data are generated by the sensors in the power
grid. The sensors obtain runtime data from equipment,
and then send the data to the database of PDAS in near-
real time. The transformer substation is an example that
illustrates the process of collecting the runtime data,
which is shown in Fig. 5.

Our system uses HBase to store the model data and
the runtime data. In Fig. 6a, we define the mapping rules
that migrate the model data from the relational database
(see Fig. 7) to HBase according to the structure features
of model data, access patterns and compatibilities. The
runtime data are generated in an incremental manner,
which has features of low value density and large
quantity. Figure 6b shows how the runtime data are
stored in HBase. Three column families are present in
the runtime data table. The first column family is used
to store the values of electric current and voltage. The
second family is used to store the values of active power
and inactive power. The last one stores the status of the
equipment.

5 Evaluation

5.1 System settings

We evaluate our system on a computer cluster. The
cluster contains 15 Dawning CB60 servers with
2.60 GHz Intelr Xeonr E5-2670 CPU, 32 GB memory,
and 300 GB SAS disk, which are connected by gigabit
switches. Figure 8 shows how our system is deployed
on the servers. We deploy Red Hat Linux 6.2 operating
system, Hadoop 1.0.4, and HBase 0.94.6.1 on the
servers. We use two servers to deploy the management
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nodes, Namenode, JobTracker, and HMaster. We also
deploy the data migration and data fragment storage
module on the two servers. The remaining 13 servers
are used as storage nodes, where we deploy DataNode,
TaskTracker, and HRegionServer services. The running
status of these servers is monitored by status monitor
module.

5.2 Comparison with existing system

We compare our system with a MySQL-based PDAS
data storage system on the 15-server cluster. In our
experiment, we use eight electric power datasets whose
sizes vary from 1 million tuples to 128 million
tuples. We also perform a query that selects the
error information of station 1 issued in January 2016
(select * from net gk where station id=1 and time
between “2016-01-01 00:00:00” and “2016-01-31
23:59:59”) on the datasets, and measure the query
response time of our system and the MySQL-based
system. From Fig. 9, we can see that our system
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is four times faster than the MySQL-based system
(0.53 s vs 2.31 s) on the 1-million-tuple dataset, and 2.3
times faster than the MySQL-based system (73.82 s vs
173.86 s) on the 128-million-tuple dataset. Our system
stores the error information in a column family; thus,
it can efficiently respond to a query. The performance
gap between our system and the MySQL-based system
is smaller when the dataset is larger. When the dataset
is larger, the data will be distributed on more servers,
so the communication overhead cannot be ignored.
Nevertheless, our system is faster than the existing
MySQL-based system when we perform queries on
large datasets.

5.3 Performance of data storage

We evaluate the running time for storing the model data
on the storage system by using the collected station
model, the PDAS model, and the business model.
Figure 10 shows the data format. In our experiment, the
size of the data set is about 200 MB. We write the data
set to HBase through the interfaces provided by HBase.
For each of the station model, the PDAS model, and the
business model, we perform 10 tests and measure the
writing time of each test. Figure 11 shows the results.
In the power system, the time used to write all of the
models of one station is less than 30 s. The average
time used to write the station models and a full model
is about 19 s and 38 s, respectively. The time used to
publish business models is less than 35 s.

5.4 Effects of data fragmentation

The whole power grid network model is large; thus it
needs to be fragmented. We adopt a data fragmentation
strategy based on graph partitioning[14]. Data are
divided into multiple data blocks and placed randomly
into multiple storage nodes. Figure 12 shows the
results of partitioning the IEEE300 power grid network
(http://www.ee.washington.edu/research/pstca/index.htm).
In HBase, the data from the same sub-network are

<！Entity= Fuzhou type=power grid model  time= 2012-08-10 11:18:48 >
<ControlArea::Fuzhou>
@Num mRID name Parent p q
#1   113715891 Fuzhou power grid  NULL NULL NULL
#2   113715892 virtual area 1137158922 NULL NULL
</ControlArea::Fuzhou>
<BaseVoltage::Fuzhou>
@Num mRID name nomKV
#1  112871873 220kv 230
#2    
</BaseVoltage::Fuzhou>
  

Fig. 10 Format of model data.
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Fig. 12 Partitioning power grid network.

stored in the same data fragment. The row key of a data
fragment is designed as regionkey C name C ID C
timestamp.

We partition 10 GB data that are generated according
to the model data format and write it to the storage
system. Then we query the data of the power-generator
stations within the same sub-network. The average
querying time of the two types of fragmentation
strategies is shown in Fig. 13. Experimental
results show that the average querying time of
random fragmentation is much longer than that of
graph-partition based fragmentation. The random
fragmentation strategy distributes data randomly to
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multiple nodes, causing multiple nodes that need to be
queried, while the graph partition-based fragmentation
strategy reduces querying time greatly by storing the
data of each sub-network in the same data block.

5.5 Effects of data migration

Data migration affects system performance because
the power grid data are divided into multiple data
blocks and randomly placed in multiple servers.
Figure 14a shows the effect of data migration on the
performance of the system. The running time is reduced
significantly after data migration, thereby illustrating
the effectiveness of data migration. As shown in
Fig. 14b, the load of storage server 3 is higher than
that of other storage servers before data migration.
After data migration, the load of each storage server
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is basically the same. Experimental results show that
data migration strategy can balance the loads of storage
servers and improve the efficiency of data management.

5.6 Scalability

We first increase the number of storage servers in the
cluster to evaluate the performance of our system when
the server number scales. Then, we increase the number
of write clients to evaluate the performance of our
system when the client number scales.

The experimental results shown in Fig. 15 illustrate
that the storage performance is significantly improved
when the number of storage servers increases. The
running time is reduced by half when there are
three storage servers. However, when the number of
servers increases further, the performance improves
slightly due to the server communication. Furthermore,
the number of clients has a great impact on
system performance. Given the advantage of the
distributed storage architecture, the write speed
improves significantly when the number of clients
increases.

5.7 Effects of HBase parameters

We evaluate how the HBase parameters affect the
performance of HBase. Here we show the effects of
Java Virtual Machine (JVM) heap size, HBase region
size, HBase cache size, and automatic flushing function.

JVM heap size. HBase is developed based on Java
language; thus the performance of HBase is affected by
JVM heap size. We evaluate the read-write performance
of HBase with different heap sizes. As shown in Fig. 16,
when the amount of data increases, (1) the throughput
first increases, but then decreases, and (2) the read-write
delay first decreases, but then increases.

HBase region size. In Fig. 17, we show the read-
write performance of different region sizes when
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reading and writing 100 000 tuples. When the region
size increases, the throughput increases and the read-
write delay decreases. The reason for this situation is
that our systems will generate more data fragments
when the region size is smaller. A large number of data
fragments will introduce a large overhead.

Cache size and data flushing: After the client
sends the request to write data, RegionServer finds the
corresponding region and writes the data to the HLog.
HBase caches this part of data in MemStore, and writes
the data into HDFS’s HFile when MemStore is full.
When the data in MemStore is lost, HBase uses HLog
to complete the data recovery. If not enough space
is left for new data, JVM will recover heap space
and compress the data. Therefore, caching plays an
important role in reducing heap space compression.

Figure 18a shows the read-write performance of
HBase with different cache sizes. We can see that
a large cache can lead to a higher throughput and
a lower read-write delay because when the cache is
larger, HBase flushes data to the disk less frequently,
thereby greatly reducing the cost of reading and writing.
Figure 18b shows that the performance of HBase is
greatly improved when the automatic flushing function
is turned off. Therefore, a large cache size, as well
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as turning off the auto flush, will enhance the HBase
performance and improve the query efficiency.

6 Related Work

With the fast development of electric power systems,
the size of generated electric power data has increased
dramatically[2]. Conventional technologies store
massive electric power data on traditional relational
database, but report generation and analytic can
become painfully slow due to high volumes of data. To
support fast decision making, many organizations
and companies, such as the Tennessee Valley
Authority (http://www.tva.gov/), Kyushu Electric
Power Company[11], IBM, and General Electric, have
proposed big-data solutions in the power grid area.
Furthermore, scientists have proposed a variety of
techniques, including big data processing, data mining,
and security protection, to store, analyze, and protect
massive data.

Many big data processing frameworks are proposed
to support the massive electric power data. Lyu et
al.[15] addressed a load forecasting problem in a smart
grid by using a massive data storage platform. On
the platform, the electric power data are described
by CIM/XML and stored on HBase, which is similar
to our solution. However, the goal of our system is
different; we focus on PDAS systems rather than load
forecasting. We have systematically shown the design
and performance of our system. Rusitschka et al.[16]

proposed a distributed data processing framework for
geodistributed smart grid meters, leveraging distributed
data management for real-time data gathering, parallel
processing for real-time information retrieval, and
ubiquitous access. Medjroubiet al. [17] proposed a novel
power grid model based on open and publicly available
data from an online map, namely OpenStreetMap,
using open source software tools. This model can
be applied to our system to enhance the schema of
electric power data by using accurate geo-information.
Meier et al.[18] proposed a data processing system for
synchrophasor data, which processes high-granularity
and high-cardinality data gathered from synchrophasor
sensors, i.e., Phasor Measurement Units (PMUs), using
a correlation method. The deployment of PMUs could
improve the measurements of voltages and currents
with accurate timestamps[19]. Thus, the use of PMU
data is helpful for more accurate measurement[2].
However, this system uses the common correlation

method, which is suitable only for data with low
diversity and volume[20, 21]. For the data that could
not be correlated in space and time, correlating to
a unified and generalized power system model is
difficult[22]. Unlike special-purpose systems, our system
is based on a general purpose big-data processing
system, which can be extended to support both
correlated and anti-correlated data.

Security is another important issue in electric power
storage systems. User privacy is a well-known security
problem when big data processing is applied in power
systems, and researchers have proposed many solutions
to solve security problems. Ruj and Nayak[23] proposed
a new decentralized security framework to keep the
whole aggregation process safe. Yan et al.[24] proposed
a decentralized security framework for data aggregation
and access Control in smart grids. Their approach
divides the power network into home area network,
building area network, and neighboring area network,
so data can be aggregated in each sub-network, thereby
protecting customers’ privacy. Li et al.[25] proposed a
distributed incremental data aggregation approach by
using homomorphic encryption. Kalogridis et al.[26]

suggested that home electrical power routing can be
used to moderate a home’s load signature to hide
appliance usage information. Rastogi and Nath[27]

proposed a private aggregation algorithm for distributed
time-series data; this algorithm offers good practical
utility without any trusted server. Attacks are another
security problems for electric power data storage
systems. To address this issue, Tan et al.[28] studied
the impact of integrity attacks on real-time pricing and
employed control theory-based approaches to analyze
the attack effect on pricing stability. Tan et al.[29] studied
the problem of attackers controlling real-time electrical
markets by manipulating meter measurements. We
can apply these security techniques to our system to
enhance the safety of storing and processing massive
electric power data.

7 Conclusion

In this paper, we introduce our system, which uses
HBase to store electric power data. The system
consists of clients, HBase database, status monitors,
data migration modules, and data fragmentation
modules. We introduce the designs of the modules and
evaluate their performance through experiments. We
also present a series of parameter tuning strategies to
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improve the efficiency of our system.
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