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Effective Variational Data Assimilation in Air-Pollution Prediction

Rossella Arcucci�, Christopher Pain, and Yi-Ke Guo

Abstract: Numerical simulations are widely used as a predictive tool to better understand complex air flows and

pollution transport on the scale of individual buildings, city blocks, and entire cities. To improve prediction for air

flows and pollution transport, we propose a Variational Data Assimilation (VarDA) model which assimilates data from

sensors into the open-source, finite-element, fluid dynamics model Fluidity. VarDA is based on the minimization

of a function which estimates the discrepancy between numerical results and observations assuming that the two

sources of information, forecast and observations, have errors that are adequately described by error covariance

matrices. The conditioning of the numerical problem is dominated by the condition number of the background error

covariance matrix which is ill-conditioned. In this paper, a preconditioned VarDA model is presented, it is based

on a reduced background error covariance matrix. The Empirical Orthogonal Functions (EOFs) method is used

to alleviate the computational cost and reduce the space dimension. Experimental results are provided assuming

observed values provided by sensors from positions mainly located on roofs of buildings.
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1 Introduction and Motivation

Numerical simulations are widely used as a predictive
tool to better understand complex air flows and
pollution transport on the scale of individual buildings,
city blocks, and entire cities. For these complex
phenomena, knowledge about the state of a system and
the governing physical processes is often incomplete,
inaccurate, or both. The current approach in numerical
modeling (which includes air pollution predictions)
consists in simulating explicitly only the largest-scale
phenomena, while taking into account the smaller-
scale ones by means of physical parameterizations.
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Due to the inability to resolve the full spectrum
of physical mechanisms involved as well as the
fundamentally stochastic nature of the turbulent
processes, all numerical models introduce uncertainty
through the selection of scales and parameters
that are somewhat ambiguous. Additionally, any
computational methodology contributes to uncertainty
due to discretization, finite precision, and the
consequent accumulation and amplification of round-
off errors. Taking into account these uncertainties
is essential for the acceptance of any numerical
simulation.

Uncertainty quantification is then permeating
the science workload. The demand for predictive
science results is driving the development of
improved approaches for establishing levels of
confidence in computational predictions using Data
Assimilation (DA) methodologies. Data Assimilation
is an uncertainty quantification technique used to
incorporate observed data into a prediction model in
order to improve numerical forecasted results[1].

There are many DA methods which have been
mostly custom-developed on the forecasting model
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with which they are combined. Those which have
gained acceptance as powerful methods in the last ten
years are the variational DA approaches[2, 3] based on
the minimization of a function which estimates the
discrepancy between numerical results and observations
assuming that the two sources of information, forecast
and observations, have errors that are adequately
described by error covariance matrices.

Variational approaches essentially implement a
standard Tikhonov (or L2) regularization[4]. To solve
a VarDA problem means to compute the minimum of
a Tikhonov function which includes the choice of the
Tikhonov regularization parameter. The most popular
DA software, which implements a VarDA model, is
used to fix the regularization parameter equal to one.
It means that the forecasted and the observed data have
the same weight. In operational forecasting, real-time
utilization of DA to improve predictions is needed.
As there is insufficient time to restart a run from the
beginning with new data, the information provided
by observations must be incorporated on the fly. Data
assimilation has to enable real-time utilization of data
to improve predictions. In DA, one makes repeated
corrections to data during a single run, to bring the code
output into agreement with the latest data. The most
popular DA software computes the minimum of the
DA function by a Conjugate Gradient (CG) algorithm.
The main computational kernel is then the solution
of a linear system[1, 5]. Caused by the background
error covariance matrices, this system is strongly ill
conditioned[5, 6]. This mandates the introduction, in a
DA software, preconditioning methods.

In summary, the necessity to run DA in real-time
mandates a proper choice of numerical algorithms
to regularize the ill posed problem, to compute the
minimum as well as to introduce preconditioning.

2 Related Work and Contribution of the
Present Work

During the last 20 years, algorithms for DA have been
investigated by a number of federal research institutes
and universities. Up to now, the main efforts towards the
development of Variational DA systems were achieved
in numerical weather prediction applications, namely
by the ECMWF (European Center for Medium-Range
Weather Forecasts), in Reading (UK) and by the
NCAR (National Center for Atmospheric Research), in

Colorado (USA). Also, variational DA models, namely
IS4DVAR and NEMOVAR, have been developed for
the most used ocean general circulation models: the
Regional Ocean Modeling System (ROMS)[7] and the
Nucleus for European Modeling of the Ocean (NEMO),
respectively. These software have been mostly custom-
developed on the forecasting model with which they
are combined. The strong dependencies of the codes
from the application domains, the data, and the type of
assimilated observations do not allow a simple use of
these codes in general cases.

In this paper, the problem to assimilate data to
improve prediction for air flows and pollution transport
is faced by a Variational DA model for the first
time. Simulations are here performed using the open-
source, finite-element, fluid dynamics model Fluidity
(http://fluidityproject.github.io/). The details of the
equations solved and their implementation can be
found in Refs. [8, 9]. The state variable consists of
values of pressure and velocities. Observed values
of the state variable from positions mainly located
on the roof of the buildings were assimilated. In
operational forecasting, there is insufficient time to
restart a run from the beginning with new data, then
data assimilation should enable real-time utilization
of data to improve predictions. This mandates the
choice of an efficient method to compute the minimum
of the data assimilation function. Here we adopt the
L-BFGS (Limited Broyden-Fletcher-Goldfarb-Shanno)
method which has been proved to be the fastest
for large scale optimization problems[10]. L-BFGS
method is a Quasi Newton method[11] that can be
viewed as extension of conjugate-gradient methods in
which the addition of some modest storage serves
to accelerate the convergence rate. The convergence
rate of L-BFGS depends on the conditioning of
the numerical problem[10] which is dominated by
the condition number of the background covariance
matrix[12]. In order to reduce the ill conditioning of
the background covariance matrix and remove the
statistically less significant modes which could add
noise to the data assimilation estimate, we use here the
Empirical Orthogonal Functions (EOFs) method. EOFs
implement a Truncated Singular Value Decomposition
(TSVD) method. In order to improve the conditioning,
only the Empirical Orthogonal Functions of the first
largest eigenvalues of the error covariance matrix
are considered. The EOFs (introduced by Edward
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Lorenz[13]) are the eigenvectors of the error covariance
matrix, its condition number is reduced as well. Even if
the employment methods as the TSVD, which strongly
reduce the dimension, alleviate the computational cost
as they make the running less expensive, nevertheless,
a consequence is that important informations are
missed[14]. This issue introduces a severe drawback to
the reliability of the EOFs truncation if the truncation
parameter is not properly chosen. We face the problem
concerning the selection of an optimal truncation
parameter picked to minimize both the condition
number of the problem after the preconditioning and
a relative Preconditioning Error we define to provide
an estimate of how much the preconditioned problem
differs from the starting problem.

In summary, in developing our DA model and
algorithm both Efficiency and Accuracy are been
required.
� Efficiency: In order to alleviate the computational

cost we use in this paper the EOFs method based
on a TSVD method. EOFs allow to strongly reduce
the dimension of the problem making the running
less expensive.
� Accuracy: The use of EOFs reduces the ill

conditioning and remove the statistically less
significant modes which could add noise to the
data assimilation estimate. The proper choice of
the truncation parameter is usually related to a
reference exact solution[15] or, it is statistical
related to the variance of the full spectrum of the
error covariance matrix. However, in operational
Data Assimilation, the knowledge of this reference
solution represents a strong condition. Also, as
the error covariance matrix has a dimension
.N �N/ related to the size N of the domain,
to compute the spectrum for big domains which
require O

�
.N �N/3

�
is often a too expensive

operation. Here we face the problem concerning
the selection of an optimal truncation parameter
picked to minimize both:

- condition number of the problem after the
preconditioning;

- a relative Preconditioning Error defined to
provide an estimate of how much the
preconditioned problem differs from the
starting problem.

The rest of the paper is structured as follows. In
Section 3 some preliminary definitions are introduced.

In Section 4, the Data Assimilation problem is
described and the definition of Variational approaches
to solve it is presented. The Reduced order space
and the preconditioning by EOFs are introduced and
described in Section 5. Experimental results are shown
in Section 6. Conclusion and future works are drawn in
Section 7.

3 Preliminary Definitions

Here we assume some definitions we will use on next
sections.

Definition 1 (Variance-Covariance Matrix) Let
assume X be a matrix of measurements of pv physical
variables at spatial location D D fxj gjD1;:::;np , and at a
correlation time window Œ0; T1� D f�kgkD1;:::;M :

X D

264 X1
:::

XNP

375 2 RNP�M (1)

where each of NP row is a time series for a given
location and NP D Œpv� � np. Let assume that each
row Xi of X has mean EŒXi � D fmigiD1;:::;NP and let
m D .mi /iD1;:::;NP . Let

V D X �m 2 RNP�M (2)

be the deviation matrix. The variance-covariance matrix
B 2 RNP�NP of X is defined via the expected value�

of the outer product:
B D VVT (3)

Definition 2 (Singular Value Decomposition, SVD)
Let A 2 RN�M where M > N and let

A D U˙̇̇WT (4)

be the SVD of A where U 2 RN�N and W 2 RM�M

are orthogonal (or orthonormal) matrices and
˙̇̇ D diag.�j /jD1;:::;N (5)

where singular values �j appear in decreasing order:
�1 > �2 > � � � > �N > 0 (6)

Definition 3 (Condition number) Let A 2 RN�M

where M > N and let
A D U˙̇̇WT (7)

be the SVD of A in Definition 2. Then the condition
number of A is such that

�.A/ D
maxf�j gjD1;:::;N
minf�j gjD1;:::;N

(8)

�If each vector Xi has a distribution with probability density
function P , then the expected value of Xi is defined by

E.Xi / D
1

M � 1

X
jD1;:::;M

xijP.Xj /:
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as singular values �j appear in decreasing order, from
Formula (6), it is

�.A/ D
�1

�N
(9)

If A is a matrix of an over-determined linear system
then the discrete problem is ill posed, it is needed to
filter out the contribution to the solution corresponding
to the smallest singular values[15, 16]. Filtering can be
introduced by recurring to the Truncated Singular Value
Decomposition as given in the following definitions:

Definition 4 (Truncated Singular Value
Decomposition) Let A D U˙̇̇WT be the SVD
of A as in Formula (7). Let ˚̊̊ � 2 RN�N be a matrix
such that

˚̊̊ � D diag.�1; �2; : : : ; �� ; 0; : : : ; 0/ (10)

with 1 6 � 6 N . Then the matrix

A� WD U˚̊̊ �WT (11)

is the Truncated SVD (TSVD) matrix for A.

4 DA Problem and the VarDA Formulation

The method we describe here is the most general
VarDA method. It is called four-dimensional (4D)
VarDA because it takes into account observations that
are distributed in space and over an interval of time
Œti ; tiC�t �. If �t D 0, i.e., the time window is reduced
to one instant, the method is called three-dimensional
(3D) VarDA[1, 14, 17]. Let us give the mathematical
settings describing the VarDA problem.

4.1 DA model: Set-up and problem definition

Let ˝ � R3 be a spatial domain and let8̂<̂
:
u.ti ; x/ DMŒu.tj ; x/�; 8 x 2 ˝; ti ; tj 2 Œ0; T �;

.ti > tj > 0/I

u.t0; x/ D u0.x/; t0 D 0; x 2 ˝

(12)
be a description of the forecasting model of interest
where

u W .t; x/ 2 Œ0; T � �˝ 7! u.t; x/ (13)

is the state function of M. Let

v W .t; x/ 2 Œ0; T � �˝ 7! v.t; x/ (14)

be the observations function and

H W u.t; x/ 7! v.t; x/; 8 .t; x/ 2 Œ0; T � �˝

(15)
denote the nonlinear observations mapping. According
to the applications of model-based assimilation of
observations, we will use the following discrete
formulation for the VarDA problem. Given

(1) NP points of ˝ � R3: fxj gjD1;:::;NP ;
(2) nobs points of ˝ � R3, where nobs << NP :
fyj gjD1;:::;nobs;
(3) N points of Œ0; T �: ftkgkD0;1;:::;N�1;
(4) the background estimate, i.e., vector
u0 D fu

j
0gjD1;:::;NP � fu.t0; xj /gjD1;:::;NP 2 RNP

(16)
which is the state at time t0;
(5) the operator

Mk�1;k 2 RNP�NP ; k D 1; : : : ; N;

representing a discretization of a first order
approximation of M from tk�1 to tk;
(6) the vector

vk � fv.tk; yj /gjD1;:::;nobs 2 RN�nobs

consisting of the observations at tk , for k D 0; : : : ;

N � 1;
(7) the linear operator

Hk 2 Rnobs�NP ; k D 0; : : : ; N � 1
representing a linear approximation of the Jacobian of
H;
(8) a block diagonal matrix G 2 R.N�nobs/�.NP�N/

such that

G D

8̂<̂
:

diagŒH0;H1M0;1; : : : ;HN�1MN�2;N�1�;

if N > 1I

H0; if N D 1
(17)

(9) the measurements error covariance matrix R 2
R.N�nobs/�.N�nobs/ which describes the probability
distribution function (pdf) of measurement errors.
Here we assume R to be defined as follows:

R D diag .Rk/kD0;:::;N�1; Rk WD �20 I (18)

with 0 6 �20 6 1 and I 2 Rnobs�nobs be the identical
matrix.
(10) the background error covariance matrix B 2
RNP�NP which describes the pdf of background
errors. Here we assume that B, defined as in
Definition 1 where T1 > T , is such that

B D �2bC (19)

where the matrix C denoting the correlation structure
of the background error, is homogeneous, and the
correlations depend only on distance between states
and not position, i.e.,

C.NP;h;L/ D .cij / (20)

cij D exp
�
�
1

2
.j � i/2 � kxj � xj�1k

2
1

�
;

with length scale L D NP � kxj � xj�1k1.
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Given the DA problem set-up, we now define the DA
inverse problem.

Definition 5 (The DA inverse problem) Given the
vectors

v D .vk/kD0;:::;N�1 2 RN�nobs; u0 2 RNP

and the block diagonal matrix

G 2 R.N�nobs/�.NP�N/;
a DA problem concerns the computation of

uDA D .uDAk /kD0;:::;N�1 2 RNP�N ;
such that

v D G � uDA (21)

subject to the constraint that

uDA0 D u0 (22)

Since G is typically rank deficient, the DA is an
ill posed problem[5, 18]. In next section we define the
variational formulation which leads to an unconstrained
least square problem, where the term in Formula (22)
ensures the existence of a solution of Formula (21).

4.2 VarDA model

In this section, descriptions of the VarDA model of the
incremental VarDA model and of the preconditioned
VarDA formulation are provided.

Definition 6 (The VarDA problem) VarDA
problem can be described as follows:

uDA D argminu2RNP�N J.u/ (23)

with

J.u/ D ˛ku � u0k2B�1 C kGu � vk2R�1 (24)

where, for any vector w 2 RNP and q 2 RN�nobs ,
kwkB�1 D wTB�1w and kwkR�1 D wTR�1w.
Parameter ˛ > 0 denotes the regularization parameter.
In general, operational DA software assumes ˛ D 1.
Choosing ˛ D 1 can be considered as giving the same
relative weight to the observations in comparison to the
background state.

If Formula (24) is linearized around the background
state[19], the VarDA problem is formulated by the
following form.

Definition 7 (The incremental VarDA problem)
The incremental VarDA problem can be described as
follows:

ıuDA D argminıu2RNP�N J.ıu/ (25)

with

J.ıu/ D
1

2
˛ıuTB�1ıuC

1

2
.Gıu � d/TR�1.Gıu � d/

(26)

where d D Œv � Gu0� is the misfit, G is here the
linearized observational and model operators evaluated
at u D u0 and ıu D u � u0 are the increments.

In Formula (26), the minimization problem is defined
on the field of increments. In order to avoid the
inversion of B and to precondition the minimization of
the cost function it is assumed that B can be written
in the form B D VVT (see Formula (3)) and the cost
function can be minimized using a new variable[19].

Definition 8 (The preconditioned VarDA problem)
The preconditioned VarDA problem can be described
as follows:

wDA D argminw2RNP�N J.w/ (27)
with

J.w/ D
1

2
˛wTwC

1

2
.GVw� d/TR�1.GVw� d/ (28)

where w D VCıu and VC denotes the generalized
inverse of V.

5 Reduced Order Space and
Preconditioning

Some of the relevant DA operative software[2, 3]

adopt the EOFs method in order to reduce the ill
conditioning and remove the statistically less significant
modes which could add noise to the data assimilation
estimate. EOFs implement a TSVD method. In order
to improve the conditioning, only the Empirical
Orthogonal Functions of the first largest eigenvalues of
the error covariance matrix are considered. The EOFs
(introduced by Edward Lorenz[13]) are the eigenvectors
of the error covariance matrix, its condition number is
reduced as well. By the EOFs method, the matrix V
in Eq. (28) is replaced with the matrix V� which is
obtained by the TSVD of V as in Eq. (11).

Even if the employment methods as the EOFs
which strongly reduce the dimension, alleviate the
computational cost, nevertheless, a consequence is
that important informations are missed[14]. This issue
introduces a severe drawback to the reliability of the
EOFs truncation if the truncation parameter is not
properly chosen.

The problem concerning the selection of an optimal
truncation parameter is here faced. As it is known
that the numerical error which propagates into the
DA solution is influenced by the condition number[12],
a proper value of the truncation parameter should
minimize the condition number. However, to be
sure that the preconditioned problem does not differ
too much from the original problem, the optimal
truncation parameter should also minimize a Relative
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Preconditioning Error (RPE) which provides an
estimate of how much the preconditioned problem
differs from the starting problem as defined in
Definition 9.

Definition 9 (RPE) Let E� be the relative
Preconditioning Error which provides an estimate of
how much the preconditioned problem differs from the
starting problem and defined as

E� D
k˙̇̇ � ˚̊̊ �k1

k˙̇̇k1
(29)

The proper choice of the truncation parameter
is usually related to a reference exact solution[15].
However, in operational Data Assimilation, the
knowledge of this reference solution represents a strong
condition. Here we provide an estimation of the
truncation parameter which is independent from a
knowledge of an exact solution.

An optimal truncation parameter �opt should be
picked to minimize both:

- the condition number of V after the
preconditioning[16]

�.V� / '
�1

��
(30)

- the Relative Preconditioning Error (Formula (29)).
In examining the asymptotic behaviour, for the

condition number in Formula (30), it is
lim
��!0

�.V� / D C1; lim
��!C1

�.V� / D 0 (31)

for the Relative Preconditioning Error, it is instead

lim
��!0

E� D
k˙ � Ik1

k˙k1
' 1 �

1

�1
;

lim
��!C1

E� D
k˙k1

k˙k1
D 1 (32)

As �� is subject to the constraints[15] �1 > �� > �N ,
we have that, from Formula (31), the smallest value of
the condition number is obtained for �� ' �1. From
Formula (32), however, the smallest error is obtained
for �� ' �N .

Due this difference in the asymptotic behaviour of
the two functions E� and �.V� /, an optimal value �� D
�opt is such that

�opt ' mean.�1; �N / (33)

where mean.�; �/ denotes the mean values function.
This assumption will be also experimentally validated
on a consistent test case in Section 6.

6 Experimental Results

The VarDA model presented in the previous sections

is applied to the pollutant dispersion within an urban
environment. Hence, the VarDA model is coupled with
Fluidity, an open-source, finite-element, fluid dynamic
software (http://fluidityproject.github.io/). The basic
Large Eddy Simulation (LES) equations describing the
turbulent flows are based on the filtered incompressible
Navier-Stokes equations (momentum equations and
continuity of mass). The dispersion of the pollution is
described by the classic advection-diffusion equation
such that the concentration of the pollution is seen
as a passive scalar. The equations are solved using
second order schemes in time and space. Details of
the equations solved and their implementations can be
found in Refs. [20–22].

We consider a 2D scenario and, for our studies, we
consider a domain with three buildings as we know this
does not affect the generality. We set-up the problem
and we face all the computational issues concerning the
ill conditioning of the background covariance matrices
and the distribution of the observed data.

6.1 Set-up of the test cases

A 2D case is presented in this paper and the geometry
is shown in Fig. 1. This 2D case represents an
idealized case used to test the ability of Fluidity to
be coupled with the VarDA model and to evaluate
the improvements in accuracy provided by the use of
a reduced background error covariance matrix. The
2D case represents 3 buildings and the mesh includes
852 nodes (Fig. 1). The mesh is unstructured as it
is implemented in operational simulations. The inlet
boundary condition is a constant velocity equal to 1 m/s.
No-slip boundary conditions are applied on all building
façades and the bottom surface of the domain. The
outlet boundary condition is defined by a zero pressure.

Fig. 1 2D case representing 3 buildings. The mesh is
unstructured as it is implemented in operational simulations.
It includes 852 nodes.
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A background of pollution is set up as a sinusoidal
function as expressed by Formula (34):

C.t/ D
1

2

�
sin
�
2 t

T

�
C 1

�
(34)

where C is the pollutant concentration, t is the time
(in seconds) and T is the period (in seconds). Even
if this background pollution is not based on real data,
it mimics waves of pollution in an urban environment.
The kinematic viscosity is set equal to 1:10�5 m2=s�1.

We set-up our Data Assimilation problem following
the points described in Section 4.1, then we have fixed:
� NP which is the number of grid points such that
NP D 852, then the complexity of our test case is
O.108/I
� we assume the observations given by sensors on

the roofs of the three buildings and we consider
nobs (which is the number of observed data) such
that

– nobs D 6, i.e., we have chosen few data from
sensors, just two grid points on each roof of
the three buildings;

– nobs D 60, i.e., a reasonable number of data
from sensors, twenty grid points on each roof
of the three buildings;

– nobs D 852, i.e., we assume data from
sensors in all the grid points;

� for the time steps, we have assumed N D 1 and
M D 300;
� the operator M is provided by FLUIDITY;
� the background u0 is obtained by truncating the

resulting data from FLUIDITY;
� the error covariance matrix R D N�oI with N�o D
0:5;
� the background error covariance matrix such that

B D VVT and we have computed matrix V. by
considering a temporal sequence of data collected
by FLUIDITY. Then we have applied the EOFs
regularization method and we have computed the
condition number of V� as function of � .

In this section an evaluation of the results has been
provided in term of
� Section B: Improvement in conditioning by using

the background error deviance matrix V instead of
the background error covariance matrix B into the
VarDA formulation and introducing the reduced
dimension matrix V� ;
� Section C : the trend of the error defined as

distance of the solution computed by the VarDA
with V D V� and a control variable uC :

uDA � uC (35)

The error is evaluated for different numbers of
observed data nobs D 6, nobs D 60, and nobs D
852.

6.2 Reduced background error covariance matrix
and choice of the truncation parameter �

Figure 2 shows the spectrum of the background error
covariance matrix, such that, the computed condition
number is �.B/ D 1:191 599 809 890 142eC 17.
Figure 3, instead, shows the spectrum of the background
error deviance matrix and Fig. 4 shows the strong
improvement in conditioning for the background error
deviance matrix V with respect the background error
covariance matrix B.

The trend of the computed condition number in Fig. 4
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Fig. 4 Condition numbers of the reduced dimension
matrices V��� obtained by EOFs for different values of ������ .

confirms the qualitative evaluation of the asymptotic
behaviour provided in Formula (31). Figure 5, instead,
shows the values of the relative Preconditioning Error
defined in Formula (29). Also in this case, the trend
of the values confirms the qualitative evaluation of the
asymptotic behaviour provided in Formula (32).

Even if the employment methods as the EOFs
which strongly reduce the dimension, alleviate the
computational cost, nevertheless, a consequence is
that important informations are missed[14]. This issue
introduces a severe drawback to the reliability of the
EOFs truncation if the truncation parameter is not
properly chosen.

Figure 6 and Fig. 7 show that, for small value of � ,
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Fig. 5 Relative error EOFs.

Fig. 6 Results of the VarDA algorithm with ���=5 EOFs for
Pressure field.

Fig. 7 Results of the VarDA algorithm with ���=5 EOFs for
Velocity field.

the numerical error propagates into the solution such
that we do not have any impact of the observed data.
Comparing results shown in Figs. 8 and 9 with Figs. 10
and 11, we observe that the choice of � which satisfy

Fig. 8 Results of the VarDA algorithm with ���=155 EOFs for
Pressure field.

Fig. 9 Results of the VarDA algorithm with ���=155 EOFs for
Velocity field.

Fig. 10 Results of the VarDA algorithm with ��� =295 EOFs
for Pressure field.
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Fig. 11 Results of the VarDA algorithm with ��� =295 EOFs
for Velocity field.

the condition in Formula (33) allows us to properly
assimilate observed data even if the problem is solved
in a reduced dimension space, i.e., by alleviating the
computational cost.

6.3 Results

From the evaluations provided in the previous section,
we assume here the value of the parameter � such
that the condition (Formula (33)) is satisfied, i.e.,
� D 155. We evaluate the error as defined in Formula
(35) for different numbers of observed data: nobs D 6,
nobs D 60, and nobs D 852 as described in Figs. 12–
14. Figures 15–17 confirm our expectation, i.e., they

Fig. 12 Number of observations nobs = 6.

Fig. 13 Number of observations nobs=60.

Fig. 14 Number of observations nobs=852.

Fig. 15 Results comparison with a control variable uC for
nobs = 6.

Fig. 16 Results comparison with a control variable uC for
nobs=60.

Fig. 17 Results comparison with a control variable uC for
nobs=852.

show that the error (i.e., the distance of the DA
solution by the control variable) strongly decreases as
the number of observed data increase.

7 Conclusion

Numerical issues faced in developing a VarDA
algorithm include the ill-conditioning of the
background covariance matrix and the choice of
the regularization parameter. The EOFs method has
been here used in order to reduce the ill-conditioning
and remove statistically less significant modes that
could add noise to the data assimilation estimate.
EOFs strongly reduce the dimension, alleviating
the computational cost as they make the running
less expensive, but a consequence is that important
information can be missed. This can be a severe
drawback in the reliability of the EOFs truncation if
the regularization parameter � is not properly chosen.
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We proved that an optimal regularization parameter
is the mean value of the maximum and minimum
singular values of the background error covariance
matrix. Results provided show this choice allows
minimization of the running time without significant
loss in the solution accuracy. The forecast data were
produced by Fluidity and the state variable consists of
values of pressure and velocities. Observed values of
the state variable from sensors located on the top of the
three buildings were assimilated. We have seen that for
small value of � , the numerical error propagates into
the solution with impact of the observed data and that
the choice of � as the mean value allows the observed
data to be assimilated, even if the problem is solved
in a reduced dimension space, i.e., by alleviating the
computational cost.
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