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A Multi-granularity Decomposition Mechanism of Complex Tasks
Based on Density Peaks

Ziling Pang, Guoyin Wang*, and Jie Yang

Abstract: There are many algorithms for solving complex problems in supervised manner. However, unsupervised

tasks are more common in real scenarios. Inspired by the idea of granular computing and the characteristics

of human cognitive process, this paper proposes a complex tasks decomposition mechanism based on Density

Peaks Clustering (DPC) to address complex tasks with an unsupervised process, which simulates the multi-granular

observation and analysis of human being. Firstly, the DPC algorithm is modified to nullify its essential defects such

as the difficulty of locating correct clustering centers and classifying them accurately. Then, the improved DPC

algorithm is used to construct the initial decomposition solving space with multi-granularity theory. We also define

subtask centers set and the granulation rules to guide the multi-granularity decomposing procedure. These rules are

further used to decompose the solving space from coarse granules to the optimal fine granules with a convergent

and automated process. Furthermore, comprehensive experiments are presented to verify the applicability and

veracity of our proposed method in community-detection tasks with several benchmark complex social networks.

The results show that our method outperforms other four state-of-the-art approaches.
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1 Introduction

Intelligent mining and analysis of multi-dimensional
mass data is a significant direction for curbing
the challenges faced in data mining, such as the
complexity of problems, uncertainty of information,
and dynamic change of data. These approaches have
been much explored in various fields of complex tasks
decomposition.

To solve complex problems and tasks, it is necessary
to seek answers by considering the combination of
several different granularity spaces. Hobbs!!! presented
a framework of granular theory, which was a simplified
approach to handle complex problems. The theory
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of quotient space provided a method to describe
different granule spaces; it focuses on the conversion
between different granule spaces and optimization of
granule space!?. In Ref. [3], Professor Jang proposed
a fuzzy inference system based on adaptive network,
ANFIS. The system achieved fuzzy reasoning using
five neuron layers. Wang and Shi*l proposed a
multi-layer three/multi-valued logic neural network,
TMLNN, which explicitly represented the logical
knowledge in the neural network and decomposed
complex tasks to a certain extent. Deep learning was
based on deep neural network model!, which includes
several hidden layers to abstract characteristics of fine
grains and coarse grains. In Ref. [5], problems and
tasks were figured out by high-level abstract features.
Therefore, it is a key research issue to study multi-
level and multi-granularity of complex tasks. Complex
tasks decomposition means decomposing complex
tasks into several smaller subtasks for easy solving.
Many classical classification algorithms solve smaller
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subtasks effectively, and by merging these solutions,
the original complex tasks can be solved precisely and
quickly.

The core challenge of tasks decomposition is in
selecting the right method to decompose a large
complex task into several small and simple subtasks.
There are three decomposition methods. One of them
is decomposition by domain experts, whereby experts
first decompose the tasks into a series of subtasks
before machine learning. The neural network structure
based on this method has been used to solve the truck
backer problem®! and in remote sensing information
processing!’!.  Another method is decomposition by
category, whereby the problem is decomposed into a
series of sub-problems before learning. It is based
on the inherent relationship among the categories in
the training data. For instance, OVA (One-Versus-All)
mainly deals with static data sets. Perdisci applied
it to discover the anomaly of computer network!®!.
Reference [9] employs Adaboost, a two-class classifier,
to get good results in handwriting recognition. The
third method is automatic decomposition, which when
learning the original problem, utilizes a classifier to
divide all samples into two parts, learning correctly and
incorrectly, and then retrains the classifier to recursively
learn the incorrect samples before decomposing the
original task into a series of subtasks!!.

However, in the event of complex data in real
world, it is difficult to achieve good results using
the above decomposition methods. For example,
decomposition by domain experts depends on sufficient
prior knowledge, which is difficult to measure
and acquire. For decomposition by category, when
using OVA and OVO (One-Versus-One) strategies,
the former often causes a serious unbalanced sub-
data, which does not reduce the size of sub-
samples, while the latter inevitably produces large and
complex calculations when the data set has plenty
classes. For automatic decomposition, fragments are
produced in the decomposing process, namely sub-
problem of noise, which negatively impacts the correct
decomposition of a task. Moreover, in real world, we
mostly deal with non-labeled data, and unsupervised
learning is critical.

The purpose of this paper is to process some
complex problems in real world with the proposed
decomposition mechanism based on multi-granularity
and density peaks theories. Our contribution consists of
two stages:
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(1) Global tasks leading tree: Based on the idea
of leading tree proposed in Ref. [11], we generate
links between task nodes and map the whole nodes to
construct a global tasks leading tree. This global tasks
leading tree is considered as a primal solving space
in which coarse grain layer contains global concepts
information.

(2) Multi-granularity task solving space: Based on
the first stage, we refine the primal coarse grain layer.
By selecting redundant center subtasks, measuring the
similarity of subtasks set, and defining granulation
rules, we generate several multi-granularity task solving
spaces, and then, according to practical complex issue,
we proceed with granularity optimization to obtain the
best layer to solve the corresponding problem.

The rest of this paper is organized as follows: Section
2 describes some related works about research on
density peaks and the leading tree; Section 3 defines
the proposed method in details; Section 4 shows the
experiment results to prove our mechanism, and we
conclude in Section 5.

2 Related Work

2.1 Clustering by fast search and find of density
peaks

In 2014, Alex Rodriguez and Alessandro Laio
published an article titled “Clustering by fast search and
find of density peaks!!?1”
and efficient clustering algorithm that requires few
parameters and does not involve iteration. The density

peak algorithm has attracted widespread attention

in Science. It provided a novel

in academic circles and has been applied in many
fields, including remote sensing image analysis/'3],
age estimation in image characters!'*, fundamental
matrix estimation in computer vision!'3!, chemical

16] 17] 18] and

analysis!'®!, text discovery!!”), social network!
image classification!!"!,

The idea of DPC algorithm is based on two
assumptions: First, each cluster center has relatively
high local density; Second, each cluster center keeps
a relatively large distance from another point with a
higher local density. Next, we note a brief introduction
of the algorithm. According to the definition of local
density, the local density of each node is computed as

Eq. (1) and Eq. (2).

1
pi =y x(dij —de) (1)
J
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For small data sets, local density calculated by Eq.
(1) is prone to large statistical. Hence, Gaussian kernel
is adopted to improve the calculation of local density,
which is defined as Eq. (2).

1 d2

- Y
pi = ;eXp (d3> (2)
where p; is the local density of node 7, d;; is the relative
distance between node i and node j, d. is the cutoff

distance. The minimal distance between a node and the
higher local density nodes is calculated by Eq. (3).

min{dij}, jely I # @

8 = -
| max{ay). jeth =0

3)

where Ig = {k els | pr > p,-}.

However, the DPC algorithm cannot avoid several
vital problems, such as the difficulty to locate correct
clustering centers and accurately classify them, and
a high time-consumption. For the defects of DPC,
scholars carry out heated research from different
perspectives. Xu and Wang!'!! proposed a way to
generate a global concept problem map by the
intermediate results of DPC; they named the map
“leading tree” which could improve the operating time
when classifying halo data. Based on the leading
tree concept, Xu et al.l?*2!l adopted linear regression
method to select clustering centers to improve the
problem of center selection difficulty, and proposed
a hierarchical clustering algorithm to process LSHD
data sets. In DPC, another problem is selection
threshold dc. In Ref. [22], authors combined physical
theories with DPC according to different data features.
They used data field to adaptively generate applicable
threshold dc and got more objective results. In
Refs. [23, 24], peak density based on the KNN
algorithm could explore and efficiently discover the
densities of peak samples, and the corresponding
experiments proved that these methods had achieved
outstanding results. Furthermore, preprocessed data sets
by PCAP* resulted in good performance of DPC in
low-dimensional and high-dimensional data sets. In
Ref. [25], the geodesic distance used to calculate
the distance matrix made DPC more suitable for
high-dimensional data clustering. In Ref. [26], DPC
was improved by chameleon hierarchical clustering
algorithm. It allows DPC divide the data set into several
subcategories, which offsets its weakness. Through
custom connectivity and closeness measure formulas
sub-classes were evaluated for similarity and the most

similar ones were merged until there was none to merge.
2.2 Leading tree in DPC

The concept of leading tree was first proposed by
Xu and Wang!'!l. Careful investigation reveals that
the intermediate result Nneigh in DPC essentially
represents a tree, where each node, except the root, is
led by its parent to join the same cluster. Nneigh is
the index of the nearest neighbor with larger p for data
points. By assigning the non-center data points into the
parent center, we can get a lot of small families. By
splitting the small families into branches, we can get the
clusters in the form of subtrees. We show an example in
Ref. [11] to improve understanding of the leading tree
process. The example is to cluster 13 2D points, named
DS, as shown in Fig. 1a.

First, compute the intermediate result Nneigh of DS
with DPC, as shown in Table 1. The leading tree of DS
is shown in Fig. 1b. According to the greatest p x §
value, points 13, 11, and 6 have been selected as centers,
and the leading tree of DS is split into 3 subtrees (shown
in Fig. 1c), which corresponds to the clusters CL in
Table 1.

Additionally, the leading tree connects the nodes with
correlative parent-child links, which is an excellent way
to map the global nodes. However, the leading tree can
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Fig. 1 (a) Dataset DS which contains the latitude and
longitude of 13 cities; (b) Leading tree of DS; and (c)
Clustering result of DS.
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Table 1 The intermediate results of DS.
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trace back to the original DPC algorithm, so the defect
of DPC algorithm still exists. Fortunately, by consulting
the leading tree, we improve the problem to a certain
extent.

3 Proposed Method

In this paper, we simulate the characteristics of the
multi-granule observation and analysis of human being,
consider the information granulation method based
on unsupervised clustering learning, construct the
complex tasks decomposition mechanism based on
multi-granularity and clustering method, and then we
demonstrate the efficiency of our model in complex
social networks. First, we must note that since there
are countless and diverse kinds of complex tasks, our
proposed method aims to explore the properties of
discrete tasks. Our method consists of two stages:
global tasks leading tree and multi-granularity task
solving spaces.

3.1 Global tasks leading tree

As mentioned above, we first utilize leading tree idea
based on DPC algorithm to construct a global tasks
leading tree, which connects all nodes in the coarse
grain layer. Additionally, the leading tree algorithm
inherits the demerits derived from DPC, which leads
to Domino effect, whereby if an incorrect center
is chosen, classification error would occur among
the whole neighbors with local densities less than
the one. Fortunately, our proposed method minimizes
the problem and has achieved high accuracy in
experiments.

Since we prove our method in complex social
networks and the discovery of latent communities, we
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show the process of detecting Dolphin network whose
statement details are in the experimental section. Figure
2 displays the real social structure of Dolphin network.
Before presenting the process, we improve the original
DPC algorithm because it is used to cluster two-
dimensional discrete points; it is improper to cluster
the social network nodes whose edges represent link
relationships.

In Eq. (2), the relative distance d;; between node
i and node j is calculated by Euclidean metric.
Euclidean metric represents a two-dimensional distance
of horizontal and vertical axes. In social complex
networks, there are no distinct two-dimensional
distances because the nodes indicate social members
and the members connect to each other with certain
relations. Therefore, we adapt the topology of social
network to improve the computing of distance between
node i and node j, which is defined as Eq. (4).
r@)|x|ra)|
FONTG) @
where I'(i) and I"(j) represent neighbor sets of i and
j, respectively, and neighbors are defined by edges
between nodes. If i and j are not accessible to each
other, their distance cost would be infinite. If they are
accessible, but have no other common neighbor node,
their distance cost would be 1. Additionally, if they are
accessible and possess several mutual neighbor nodes,
their distance would be less than 1 since they have

more ways to contact each other. We computed the
local density by Eq. (2) and Eq. (3) and the relative
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Fig. 2 The real social structure of Dolphin network.
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distance of higher density node by Eq. (4). Then we
selected the cutoff distance around 1% to 2%. We
choose d. = 2%. Thereafter, we took note of each
node i and their distance to higher local density node
Nneigh;. The node i will be the child and higher local
density nodes Nneigh; will play their parents. The child
node when linked to the parent node would construct
a branch of leading tree structure. We recorded the
meaningful intermediate results of DPC, as shown in
Table 2, and presented the global tasks leading tree, as
shown in Fig. 3.

Subsequently, we made some statements about the
Table 2 and Fig. 3. In Table 2, for instance, when
node i = 1, p; = 2.21, and Nneigh; = 48, this
means that the local density of node i = 1 is 2.21
and the parent node of node i = 1 is node 48. In
Fig. 3, the first statement is the root node 46, which
is calculated by multiplying p by §. If the node whose

Table 2 The intermediate results of DPC in Dolphin
network.

i 8; Pi Nneigh;
1 2.21 0.75 48
2 2.42 0.79 55
3 1.08 0.81 11
4 0.92 0.79 60
31 1.76 0.73 48
32 0.20 1.00 18
62 0.60 11.00 38
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Fig.3 The global task leading tree of Dolphin network.

value ord y = p x § is maximum, it is a likely core of
the social network and regarded as the root of the global
tasks leading tree. The leading tree is constituted by
nodes set and their parents set. Afterwards, we generate
the global tasks leading tree of Dolphin network and
form the initial solving space in the coarsest grain layer.

3.2 Multi-granularity task solving space

In this stage, to find the optimal task solving space,
we will refine the initial solving space of coarsest
grain by the theory of multi-granularity. If we solve
a problem in a fine grain layer, we can gain more
efficiency and consume less time. Based on first stage,
we utilize similarity of subtasks to partition the initial
coarse grain layer into several fine grain layers, and
then, estimate the optimal task solving layer through
the rules of optimizing of solving layers. Additionally,
the steps of our method, the MrGDM (Multi-granularity
decomposition mechanism of complex tasks based on
density peaks), are described in Algorithm 1. Our
proposed method contains three aspects which are
arranged in the following sequence.

3.2.1 Initial subtask centers set

Firstly, for initial subtask centers set, it consists of
the latent core nodes which can organize other non-
core nodes to be a small subtask entirety. Besides,
what calls for special attention is that the initial
subtask centers set is not the final subtask centers set.
For DPC algorithm, in the decision graph, there is

Algorithm 1 MrGDM

Input: distance matrix D, cut off distance dc, number of
redundant centers N, granulating threshold thres
Output: multi-granularity task solving space

1: use distance matrix D and dc to compute p by Eq. (3), § by
Eq. (4);

2: construct leading tree according to N, N comes from p and
8

3. compute ord y = p x 38, CT = ordy(N);

4: // granulating procedure

5. while similarity < thres do

6: fori = 1tosizeof(CT) do

7 SC@)=find(Nn == CT(i));

8: similarity(i) = Similarity(SC(i), T — SC(i));

9: if similarity(i) < thres and max
|similarity(i) — thres| then

10: FCT(j) =1i;

11: trigger granulation rule;

12: remove FCT(j) from CT;

13: return multi-granularity task solving space
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some remarkable information for choosing the subtask
centers set. For nodes set 7', calculating the value
ord y = p x § and descending y;, which is shown
in Table 3. The nodes more closer to ord y; would
more likely to be the centers, because they possess
the criterion of higher local density and relatively far
distance according to DPC algorithm. Considering the
problem of omitting any center, we select advisable
and redundant center nodes from ord y;, as the initial
subtask centers set CT'.

3.2.2 Similarity measure of subtasks

After choosing advisable and redundant center tasks,
the center tasks with their oriented subtask sets can
be clearly observed from the global tasks leading tree.
The oriented subtask nodes set SC can be obtained by
traversing the nodes of subtask centers set in the global
tasks leading tree.

SC(@i)={t € T|Nneigh(t) == CT(i),
i €(l,sizeof(CT))} (5)

We assume that the subtask nodes set can split
from the global task leading tree. Computing the
similarity between SC and T — S'C, if their similarity
is less than the user-specified threshold zhres which
is set according to the actual situation, it means SC
is not close or interconnected with the initial tasks
T. And it illustrates that SC satisfies the condition
to be an autocephalous subtask set. Therefore, by
splitting the global tasks leading tree, several small and
isolated subtrees would be generated. On the basis
of splitting process, the solving space of the coarse
granular layer will be segregated and form a solving
space with fine granular layer which is composed by
a series of polybasic and independent subtask sets.
If the small subtask entireties have been processed
altogether, the original complex task would be answered
by synthesizing the answers of subtask entireties.

There are many algorithms to measure the similarity
between objects, such as Euclidean metric, Cosine,
and Jaccard in vector space model. We select the
similarity measure method in Ref. [27], which is based
on graph partitioning theory and fully considers relative
interconnectivity and closeness, thereby manifesting
great results in clustering.

Thus, the relative interconnectivity R/ between SC
and T — SC is
RI(SC. T — SC) = 2X|EC(SC, T—-SC)|

|[EC (SC) |+ |EC(T —SC)|
(6)
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where EC(SC,T —SC) denotes the absolute
interconnectivity between SC and T —SC and
represents the total weights of the edges that
straddle the nodes in SC and T —SC. EC(SC)
and EC(T — SC) represent the sum weight of the
edgesin SC and T — S C, respectively.

The relative closeness RC between SC and T — SC
is
RC (SC.T—SC) = —— SEC(SC,T_—SC)
XISEC(SC)+X2SEC(T—S(C;))

SC| _|T-sC]

[scl+[T —sc|""* ~ |scl+|T —sc|
where RC is the normalization of RI . SEC(SC, T —
SC) is the average weight of the edges that connect
nodes between SC and T —SC. SEC(SC) and
SEC(T —SC) denote the average weights of the
edges that pertain to the min-cut bisector of SC and
T — SC, respectively. Terms |SC| and |T — SC| are
the numbers of nodes in SC and T — S C, respectively.

The similarity of SC and T — SC is measured by

Similarity (SC,T —SC) = RI(SC,T — SC)x
RC(SC,T — SC)~ (8)

and X; =

where the user-specified parameter « is to control the
relative importance between R/ and RC. If « = 1, it
means that relative interconnectivity and closeness have
the same importance.

3.2.3 Optimizing grain layer of solving spaces

By calculating the similarities of task subsets generated
by C T, we set a user-specific threshold ¢ res to control
the progress of separating the initial coarse granular
layer into fine granular layers. Here, we formalize some
notions and rules for optimizing grain layer of solving
spaces.

Definition 1 (Final tasks center set) Given a task
T, a redundant center task set denoted by CT, SC(i)
is the subtask set of 7. For each node of CT to
calculate the Similarity(i) = Similarity(SC(i),
T — SC(i)), select the nodes where Similarity(i) <
thres, and then, pop up the node which occupies
maximum |Similarity(i) —thres| to belong to the
final tasks center set FCT. When there is no node in
CT that satisfies the condition Similarity < thres,
the process of popping up center node is to terminate.

Definition 2 (Granulating rule) Within Definition 1,
for each granulating operation, if there is a node popped
up, granulate from on top coarse grain layer to under
fine grain layer; granulation is to be terminated when
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Table 3 The redundant centers CT of Dolphin network.

i 8; Pi Nneigh; ord y;
1 2.21 0.75 48 46
2 242 0.79 55 15
3 1.08 0.81 11 14
4 0.92 0.79 60 38
.. 34
31 1.76 0.73 48 52
32 0.20 1 18

62 0.61 1 38 61

center popping terminates.

In Definition 1, the paramount idea is that for each
granulation the most likely center of subtask will
be popped up, as conforms to the ideas of priority
of majority. For every processing of popping, it is
the processing of task decomposition; thus, we can
obtain an accurate center of subtask. Via the method
in Definition 2, we get a precise fine grain layer of
solving space, since the terminal optimal decomposition
of task has been captured. Our method can pop up
the potential subtask centers and automatically generate
the optimal fine granularity task solving space where
we can decompose the complex task into undemanding
subtask sets.

In Table 3, ord y descends from y = p x §. As we
mentioned in Algorithm 1, we select the first to sixth
nodes in ord y as advisable and redundant centers, so
CT = {46,15, 14, 38,34, 52}. According to Definition
1 and Definition 2, we explore the final optimal
task solving space of Dolphin social network. We set
thres = 0.5, because if the Similarity between two
communities is less than 0.5, it means that they are less
connected to each other, so we consider that segregating
the two communities is meaningful and ponderable.

According to Definition 1, for the first round shown
in Table 4, node 14 is the most likely center of a
community. Node 14 and its child nodes should be split
from the global leading tree, and then, the popped node
14 should be removed from redundant CT to FCT.

Table 4 Popping process for the first member of final center
task set.

i Similarity (i)

46 —

15 0.436
14 0.129
38 0.291
34 0.290
52 0.290

Next, consulting with Definition 2, we can granulate the
initial coarse granular layer to a particular fine granular
layer, which is shown in Figs. 4a and 4b. After the first
popping, the terminal condition has not been triggered,
so we continue executing the popping process until the
terminal condition takes effect.

In the second process shown in Table 5, we can see
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Fig.4 (a) Global leading tree structure of Dolphin network;
(b) Progress of the first granulation, where node 14 is one of
the community center, so the tree splits two sub trees, and
they are constituted as a fine granularity task solving layer;
(c) Granulating process triggered by center node 52, and they
form a fine granular solving layer with three subtask sets.
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Table 5 Popping process for the second member of final
center task set.

i Similarity (i)
46 —
15 0.559
38 0.500
34 0.529
52 0.317

that the node 52 is popped up as the second latent
community center, and an operation like first popping
process is repeated until the terminal condition occurs.
The granulating progress is presented in Figs. 4b and
4c.

In the third process shown in Table 6, the terminal
condition has been triggered automatically, because
there is no node whose similarity is less than threshold.

In the Dolphin network, we select the second solving
space to reveal the communities detected by our
method. Compared to the real structure of Dolphin
network, the results obtained by method MrGDM can
ultimately conform to real communities, this proves that
the MrGDM is practicable and meaningful, and can
provide decent validity simultaneously. Figure 5 shows
MrGDM results.

4 Experiment

4.1 Compared methods

Table 7 briefly introduces the description of four state-
of-the-art algorithms (such as ENBC?®!, Local-T*],
CDERSPY, and LICODB!) for detecting community
and describes the core concepts of each method.

4.2 Data sets

Dolphin network Dolphin social network is commonly
used in testing a method for detecting community.
Lusseau et al.’?! observed and recorded the contacts
of a bottlenose Dolphin group in the New Zealand

Table 6 Popping process for the third member of final
center task set.

i Similarity (i)
46 —
15 0.559
38 0.500
34 0.529
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Fig. 5 The structure of Dolphin network by MrGDM.

Doubtful Sound Fjord for 7 years. The group consists
of two families and 159 edges of 62 nodes. Edges
between the nodes represent frequent contact between
two dolphins. The large family includes 42 members,
while the small one contains only 20 members.

Zarchary‘s karate club network Zachary social
network is a complex network whose background is
American University Karate Club in 1970s. Zachary!*3
spent 3 years (1970-1972) to clarify the real structure
of the club. The network consists of 34 nodes and 78
edges, where each node represents a member of the
club. Links between the nodes represent two members
often appear together in some occasions out of the club
activities (such as karate training, club meeting, etc.),
that is to say, out of the club, they can be called the
friends. During the investigation, due to the dispute
between the club director John A and the coach Mr. Hi,
the club split into two small clubs. John A convened
number 18 members, while Mr. Hi possessed the rest
members.

NCAA college-football network The social
network of the National Collegiate Athletic
Association (NCAA) College-football®*!  consists

of the conferences of the football teams in American
colleges, which contains 115 college football teams,
613 edges, and 12 conferences. The links between
teams described that they played a football with
each other in 2000s season. Additionally, the teams
conducted more games in group phase than that in area
phase; therefore, there were more links between the
teams of a conference.
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Table 7 Compared methods and their description.

Method Description

By utilizing personal views and redefined
community structure, this algorithm presents a
notion of common interest in the relationship
of social network. The method proposes two
key measures reachability and isolability, where
the reachability evaluates the ability of each
node to reach out members of community and
the isolability accounts for the ability of any
community to isolate itself from the rest of the
network.

ENBCI28]

By considering the number of internal and
external triads, the main idea of this method is
the T metric, which computes the relative quality
of a community. The authors propose an intuitive
statistical method based on the T metric, which
can identify outlier and hub nodes within each
discovered community.

Local-T?

The authors utilize an expanding ring search
starting from the individual of interest and treat
it as the seed node, and then according to
their definition of a community, they iteratively
contain the nodes at increasing number of hops
from the seed user. If there is no further
nodes can be appended, the iterative process is
terminated. Furthermore, the social communities
are organized by the list of added nodes.

CDERSP

This method adopts a leader-follower approach,
whereby the leader nodes create social
communities in which local communities
can be calculated. The nodes whose degree is
higher percentage compared to their neighbors
would be selected as leader nodes. And then
the leaders with a certain percent of common
neighbors are considered a community. By
computing the shortest distance of every node
to the leader and considering the decision of
neighbors, each node can be added to advisable
community.

LICODE!

LFR datasets For exploring the effect of network
configuration parameters on detecting community
algorithm, this artificial dataset is proposed by
Lancichinetti et al.!®®! For the situation of our
method, we generate two LFR benchmark graphs
with a software package that can be downloaded
from the website http://santo.fortunato.
goolepages.com.

4.3 Evaluation

In this paper, to better evaluate the performance of the

proposed method in comparison with other approaches,
well-known measures are employed, such as NMI, F-
measure, and Modularity measure (defined in Refs. [34,
36, 37], respectively). Additionally, index C in Table 8
includes the number of communities computed by these
compared algorithms.

4.4 Comparison of results

Here, we compare the proposed approach, MrGDM,
with other state-of-the-art methods such as CDERS,
Local-T, LICOD, and ENBC by the selected datasets.
The performance and efficiency of these algorithms
have been presented in Table 8.

Firstly, in Karate club network, for the NMI and
F-Score measures, ENBC and Local-T have the same

Table 8 Experimental applications of the compared
methods for the selected datasets.

Dataset Method NMI F-Score Modularity
(rank)
0.358 2
ENBC 0.837 0.939 0.358 2
Karate Local-T  0.837 0.939 0.372 2
LICOD 0.677 0.882 0.372 2
CDERS 0.649 0.832 0.312 2
MrGDM 1(1) 1(1) 0.371 (2) 2
0.360 2
ENBC 0.530 0.671 0.491 3
. Local-T 0.434 0.605 0.510 4
Dolphin
LICOD 0.442 0.471 0.494 7
CDERS 0.627 0.890 0.374 2
MrGDM 0.889 (1) 0.970 (1) 0.379 (2) 2
0.551 12
ENBC 0.906 0.810 0.592 10
Local-T  0.864 0.722 0.545 10
Football
LICOD  0.900 0.850 0.603 11
CDERS 0.762 0.644 0.634 12
MrGDM 0.890 (3) 0.829 (2) 0.555(1) 12
0.784 15
ENBC 0.992 0.992 0.781 15
LER1 Local-T  0.992 0.992 0.781 15
LICOD  0.965 0.922 0.777 13
CDERS 0.922 0.867 0.634 15
MrGDM 0.970 (3) 1(1) 0.857 (4) 15
0.859 30
ENBC 0.998 0.997 0.858 30
LFR? Local-T  0.777 0.504 0.706 19
LICOD 0.997 0.995 0.853 31
CDERS 0.942 0.913 0.780 30
MrGDM 0.959 (3) 0.957 (3) 0.837 (3) 31
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maximum when compared. Besides, in Table 8, we can
see that the Modularity of MrGDM is 0.371 which is the
second close to real Modularity 0.358 of social network,
and MrGDM performs perfectly in NMI and F-Score.
Secondly, as we can see, CDERS had the maximum
NMI and F-Score and a great modularity in Dolphin
network. For MrGDM, it has the better performance
in the first two measures than that of CDERS
with tiny difference in Modularity. Subsequently, in
American football team network, MrGDM has a better
performance regarding Modularity. However it fails
to achieve desirable values for NMI and F-Score.
LICOD and ENBC fail to detect either one or two of
the communities. Finally, for the two LFR networks,
MrGDM cannot keep prominent performance in these
artificial datasets compared to the performance in real
social networks, which is because the community
detecting algorithm by MrGDM is based on the
topology of real networks which considers the true
meanings of links. Furthermore, the hierarchical
notions of communities are well demonstrated naturally
by multi-granularity theory. In artificial networks,
it fails to consider the real hierarchical notions of
communities since they are simple maps which only
set up the number of nodes, edges, and degrees but
ignore the true meanings of links. Thus, by assessing
comprehensively, the community detecting method
based on MrGDM generally performs better for the
selected datasets in comparison to other approaches.

4.5 Complexity analysis

In the section, we present a comparative analysis of
the complexity of computing MrGDM algorithm. The
merits of MrGDM, which inherit from the original
DPC algorithm, include its lucid simplicity, great
accuracy, and strong adaptability in decomposing
different complex. In the first stage of our method,
we certified the distance measure of different complex
tasks. Choosing an appropriate distance measure
according the real structure of tasks is crucial for
optimizing final optimal solving space. Selecting
different distance matrixes leads to different calculating
complexity. The original DPC algorithm chooses
Euclidean matrix to compute the distance of two
dimension data, which brings O (nz) time complexity,
while, in social network, for instance, in the community
detecting of Dolphin network, the distance matrix
is evaluated by its topology structure and the time
complexity approximately is O (n?), where n is the
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total nodes of social network. In the granulating stage,
it generates the initial global tasks leading tree by
one traverse of node set Nneigh, and costs O(n) time
complexity. Granulating the initial coarse solving space
to fine grain solving spaces approximately costs O (s?),
where s stands for the number of initial advisable
and redundant initial center tasks and ¢ is the cycle
index of automatic algorithm termination. Therefore,
the complexity of the whole algorithm is O (n?) +
O(n) + O (st) approximately and it actually depends
on the complexity of distance metric.

The complexities of other exiting algorithms are
summarized in Table 9. Local-T, LICOD, and
LeadF algorithms are more complex and far less
accurate in identifying communities than MrGDM.
SCAN is averagely complex, but is inaccurate in
identifying communities. For ENBC, communities are
identified very accurately, but it is time-consuming.
Our algorithm, MrGDM, detects communities as
accurately as ENBC, making these two algorithms
the most accurate, which is their main strength.
Moreover, MrGDM possesses a unique advantage
over other algorithms in that it is hierarchical and
comprehensible for every intermediate process of
detecting communities, and as such, it is one of the best
options for seeking accurate hierarchical communities.
However, each algorithm has its own advantages and
disadvantages.

Granular computing theory combined with MrGDM
method improves DPC algorithm and explores a
decomposition mechanism based on simulation of
human cognitive process and clustering technique. It
offers a new perspective to detect communities in social

Table 9 Summary of complexity of community detection
algorithms.

Algorithm Complexity Remark

ENBCI2S] 0 (n2) Accurate communities, but still bound
by cost

Local-TI2%) 0 (n3) Identiﬁe§ . outliers, but for local
communities

CDERS10! 0(n?) Accurate communities in  small
network

311 3 Smaller and  very inaccurate

LICODY o(n?) L.
communities

SCANDS! 0(m) Identiﬁe§ . outliers, but inaccurate
communities

LeadF3! 0(nm) Smaller communities in  dense
network

MrGDM o (n2) Accurate communities, but for dense

network
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network, and it can quickly and accurately find stable
communities with hierarchical structure.

5 Conclusion and Future Work

This paper proposes a complex task decomposition
mechanism based on the GrC (Granular Computing)
and DPC, which simulates the characteristics of human
multi-granule thinking. We examine the applicability
and veracity of our proposed method in complex social
networks, where it performed better than several state-
of-the-art approaches. Additionally, it seems almost
inevitable that MrGDM has a lot of applications where
it would yield desirable results. Furthermore, for future
study, we will investigate further on the decomposition
mechanism based on MrGDM and apply it to more
complex tasks and investigate the time-consumption.
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