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QoE-Driven Big Data Management in Pervasive Edge Computing
Environment
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Abstract: In the age of big data, services in the pervasive edge environment are expected to offer end-users

better Quality-of-Experience (QoE) than that in a normal edge environment. However, the combined impact of the

storage, delivery, and sensors used in various types of edge devices in this environment is producing volumes

of high-dimensional big data that are increasingly pervasive and redundant. Therefore, enhancing the QoE has

become a major challenge in high-dimensional big data in the pervasive edge computing environment. In this

paper, to achieve high QoE, we propose a QoE model for evaluating the qualities of services in the pervasive edge

computing environment. The QoE is related to the accuracy of high-dimensional big data and the transmission

rate of this accurate data. To realize high accuracy of high-dimensional big data and the transmission of accurate

data through out the pervasive edge computing environment, in this study we focused on the following two aspects.

First, we formulate the issue as a high-dimensional big data management problem and test different transmission

rates to acquire the best QoE. Then, with respect to accuracy, we propose a Tensor-Fast Convolutional Neural

Network (TF-CNN) algorithm based on deep learning, which is suitable for high-dimensional big data analysis in

the pervasive edge computing environment. Our simulation results reveal that our proposed algorithm can achieve

high QoE performance.

Key words: Quality-of-Experience (QoE); high-dimensional big data management; deep learning; pervasive edge

computing

1 Introduction

Various kinds of edge devices, including mobile
phones, iPads, laptops, connected vehicles, smart
cameras, and a range of Internet-of-Things (IoT)
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devices[1, 2] have been deployed in the pervasive
edge computing environment, which refers to the
nearest edge sources of content and data that
offer smart services[3, 4]. These edge devices possess
communication, sensing, computing, and storage
capacities. As a result, they produce pervasive
and ever-increasing volumes of big data regarding
physical phenomena in the pervasive edge computing
environment, which results in the massive scope of
big data evolving from the gigabyte to the exabyte.
The produced data is also referred to high-dimensional
big data[5, 6]. When extracted from these data in the
pervasive edge computing environment, the enormous
amount of accurate data can improve the Quality-of-
Experience (QoE)[7] provided by big data services,
since end-user social groups expect high accuracy and
data transmission rates than are available in the normal
edge environment.

The QoE concept is a well-known measurement
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mechanism for determining the overall perception of the
quality-of-service (QoS)[8, 9], i.e., the evaluation of QoS
as experienced by end-users. Therefore, both academic
and industry researchers have shifted their attention
from QoS parameters like jitter, throughput, packet loss,
and delay to the concept of QoE. The International
Telecommunication Union has defined the QoE concept
as the entire thing of availability of services subjectively
perceived by end-users. The definition of QoE by the
European Qualinet is the degree of satisfaction or
annoyance of the end-users of services because the
utility and/or the expectations regarding services are
based on end-user attitudes and current situations[7].
In summary, the common understanding of QoE is as
follows: QoE is a new measurement for edge computing
services which is based on vital parameters.

Recently, many QoS-based methods have been
developed to optimize the efficiency and performance
of the whole environment, as proposed in Refs. [8, 9].
Even though the parameters of QoS offer good objective
measurement criteria, they can not directly determine
the quality of end-user perceptions. QoE, in contrast,
can refer to both the performance and efficiency of
services as measured by QoS, as well as the subjective
opinions of end-users. Therefore, QoE is more suitable
with respect to end-users than is QoS.

To date, many researchers have devoted their efforts
to high-dimensional big data management in the
pervasive edge environment with respect to QoE.
However, it is not a simple matter to quickly train the
accuracy of high-dimensional big data and establish
an effective transmission rate of accurate data for big
data services with respect to QoE in the pervasive
edge computing environment, which may contain
some constraints, e.g., volume, variety, dimension,
bandwidth, etc. Compared with traditional methods,
machine learning[10, 11] techniques have some unique
advantages in the extraction of big data and many
studies have applied deep learning[12, 13] techniques
in the pervasive edge computing environment. A
typical example of a straightforward solution to
achieving state-of-the-art accuracy in high-dimensional
big data analysis is the use of a Convolutional Neural
Network (CNN) technique[14, 15], such as image/video
processing, speech recognition, or natural language
processing. Another option is to use Deep CNN
(DCNN)[16] to perform high-dimensional big data
analysis, which yields higher accuracy than CNN.
DCNN with a tensor (TCNN)[17] is also used to

obtain satisfactory accuracy in the analysis of high-
dimensional big data.

To improve training speed, Fast Region-based CNN
(FR-CNN) has been proposed for the analysis of high-
dimensional big data, although its results are less
accurate than those of TCNN[18]. In general, Refs. [14–
17] have presented solutions for gradually improving
accuracy, and the authors in Ref. [18] were able to
increase the training speed using CNN. However, none
of these methods can guarantee the accuracy of high-
dimensional big data or improved training speed. Our
investigations indicate that there is as yet no effective
technology for enhancing the data transmission rate
and accuracy of big services with respect to QoE.
That is, despite the presence of high bandwidths, not
all service requirements can be met. Nor can the
satisfaction of end-users be guaranteed with respect to
their experience.

Motivated by the above facts, in this paper, we
focus on the issue of QoE in the pervasive edge
computing environment. To achieve effective high-
dimensional big data management in this environment,
we propose a Tensor-Fast CNN (TF-CNN) algorithm
that can guarantee accuracy and increase training speed
with high-dimensional data. Then, we address the
high-dimensional big data management problem using
different accurate data transmission rates to identify
which yields the best QoE. Our results indicate that
our proposed big data management technique using the
TF-CNN algorithm achieves better end-user QoE than
existing methods. The major contributions of this paper
are as follows:
� In the context of the pervasive edge computing

environment, we propose a model to improve
the QoE of end-users. Through a comprehensive
consideration of the accuracy of high-dimensional
big data and corresponding transmission rate, we
seek a trade-off between the quality of big data
services and the experience of end-users.
� To enhance the QoE in the pervasive edge

computing environment, we devise a big
data management technique based on the TF-
CNN algorithm to solve our proposed QoE-
maximization problem. This technique involves
a carefully considered trade-off between the
accuracy of high-dimensional big data and the
training speed.
� We conducted an extensive series of experiments

to compare the performance of our method with
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those of several existing methods, and the results
demonstrate the effectiveness of our proposed
method.

The remainder of this paper is organized as follows.
In Section 2, we review related works and, in Section
3, we discuss big data services with respect to QoE and
formulate the QoE-maximization problem. In Section
4, we propose an algorithm for managing big data. We
present our experimental results in Section 5, and draw
out conclusions in Section 6.

2 Related Work

2.1 QoE

The common understanding of QoE is that it is a
novel measurement technique for use by services and
is determined based on the quality of the whole service
environments and the experience of end-users. QoE has
been applied to a variety of scenarios. For instance,
Chen et al.[19] examined the current demands of
end-users ranging from transmission technologies to
heterogeneous devices and offered a heterogeneous
QoE technique that supports a wide variety of
multimedia devices critical to video broadcasting in
wireless networks. Similarly, Zhao et al.[20] introduced
selected issues including QoE modeling of the video
transmission point-to-point chain, subjective QoE
management and objective QoE monitoring, and the
QoE assessment of video transmission in different
network features. Kim et al.[21] summarized the latest
video transmission technologies with regard to scalable
video coding in multiple-input-multiple-output systems
with cross-layer designs and proposed unequal error
protection solutions with respect to QoE in the delivery
of video over massive multiple-input-multiple-output
systems with respect to content characteristics. Liang et
al.[22] then proposed a novel mechanism for bandwidth
provisioning and proactive caching as well as joint
adaptive video streaming. This mechanism can enhance
caching with respect to QoE in wireless software-
defined networks. Lastly, Wang et al.[23] presented
a data architecture to enhance personalized QoE in
5G networks and proposed a two-step QoE modeling
method that capitalizes on the relationship between end-
users and services.

2.2 Big data analysis in pervasive edge computing
environment

To the best of our knowledge, only a few studies
have investigated the various strategies used in high-

dimensional big data analysis. Regarding the intensive
computing of massive data by data centers, Ji et al.[24]

conducted a wide-ranging study of the MapReduce
paradigm based on its low cost, large-scale data
parallelism, and ability to analyze fault tolerance in
the pervasive edge computing environment. The most
popular implementation is the Hadoop framework
proposed by Zhao and Methi[25], which allows
applications to make large scale clusters and offers
transparent reliability as well as data transfer. Shi et
al.[26] later determined that the greater is the effect of
the CNN algorithm at the edge, the greater accuracy
is achieved. Similarly, Zhang et al.[27] considered
the accuracy of high-dimensional big data analysis
and concluded that most accuracy enhancements are
achieved by the use of effective algorithms at the edge
alone. However, most studies cannot guarantee the
accuracy of big data analysis or increase in training
speed. Our proposed algorithm for high-dimensional
big data analysis differs from the above methods in
that it analyzes high-dimensional big data using a
tensor representation model[17] and truncated Singular
Value De-composition (SVD)[18] simultaneously to
ensure accuracy and increased training speed for high-
dimensional big data in the pervasive edge computing
environment.

2.3 Management of transmission rate for big data

Transmission rate management methods for big data,
such as high bandwidth, have been adopted to address
the transmission rate challenges posed by big data.
Li and Wang[28] explored a strategy for optimizing
bandwidth allocation based on the relationships
between satisfaction and data rate, with respect to the
delay experienced by the end-user. Similarly, Borujeny
et al.[29] studied the effect of pairing on the sum
rate and general rate of a multi-way relay channel
using a functional decode-forward relaying strategy
in which end-users experience asymmetric channel
conditions. The authors proposed a graphical model
in their pairwise transmission strategy to maximize the
data rate. A number of studies[30–33] have proposed
methods based on code-shifted differential chaos switch
importance that modulate code index to realize a high
data transmission rate and high speed transmission
scheme that supports data rate faster than 100Mb/s. In
summary, most researchers have focused exclusively on
the high bandwidth issue. However, high bandwidth
alone cannot meet all service requirements nor enhance



Qianyu Meng et al.: QoE-Driven Big Data Management in Pervasive Edge Computing Environment 225

the satisfaction of the end-user’s experience in the
pervasive edge computing environment.

In this paper, we focus on the quality of big
data services with respect to QoE in the pervasive
edge computing environment. We propose a novel
QoE model for big data services and compare the
performance of our proposed advanced algorithm in the
management of high-dimensional big data with those
used in other models.

3 System Model and Problem Formulation

In this section, we propose a QoE model for achieving
accuracy in high-dimensional big data as well as an
effective and accurate data transmission rate. Then,
we formulate the QoE-maximization problem to be
investigated.

3.1 System model

Figure 1 shows a schematic high-dimensional big data
system in the pervasive edge computing environment.
The system components include the data servers,
Services Providers (SPs), data analysis units, and end-
users. Table 1 lists the important notations we used
in this study. The data servers collect the raw data
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Fig. 1 Big data in the pervasive edge computing
environment.

generated by various sensors and edge devices. The
data analysis units analyze the data in each time slot
i , i 2 NC, and return accurate data. We denote the
accuracy of high-dimensional big data by pi , i 2 NC.
End-users can then transmit their requirements and
feedback to the SP. As such, the data analysis units
continuously adapt their data presentation, taking into
account the QoE of the end-users of different services.
In this manner, our big data scenario yields accurate
data, and transmits this data accurately to end-users to
achieve a high QoE. We denote the transmission rate in
each time slot i , i 2 NC, of this accurate data by r i ,

Table 1 Important notations.
pi Accuracy of high-dimensional big data in each time slot i , i 2 NC

r i Transmission rate of accurate data in each time slot i , r i 2 Q, i 2 NC

Q Set of k division point values of r i 2 Q, i 2 NC

r imin Minimum transmission rate in each time slot i , i 2 NC

r imax Maximum transmission rate in each time slot i , i 2 NC

� QoE weighting parameter between the accuracy of high-dimensional big data and transmission rate of accurate data
� QoE-maximization as our formulation
� Symbol of equivalence indicating that the value of QoE is equivalent to the value of pi , i 2 NC

ade.:/ Choice function of r i referring to the fact that the value of r i can meet requirements of each end-users, i 2 NC

UTF�CNN Loss function related to TF-CNN
.x; y/ Tensor object
s� Dimensions of TF-CNN
@UTF�CNN.�/

@k.t/
Partial derivative of TF-CNN concerning �

˛ Learning rate
k D D;B; ˇ; b D is the .M C 1/-order weight tensor, B is the M -order tensor, b is the bias tensor, ˇ is the weight
QFM qfm � l matrix comprising the first l left-singular values of XP
l l � l diagonal matrix including the top l singular values of X

QIM qim � l matrix comprising the first l right singular matrix of X
zj Element of the tensor X
w
.t/

i1���imf1���fm
Weight difference between the unit f 1 � � � f m of layer t and the unit i1 � � � im of layer t C 1

k
.t/

f1���fm
Weight of kernel L

up.".tC1/
i1���im

/ Upsampling operation that uses factor sci to tile the input element of each dimension
Z Unsorted sum tree
5

@UTF�CNN.�;x;y/

@k.t/
.k D D;B; ˇ; b/
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i 2 NC.

3.2 QoE model in the pervasive edge computing
environment

3.2.1 Measurement of QoE
To improve the quality of the end-user experience
in the pervasive edge computing environment, we
measure QoE as the quality perceived based on the
accuracy of high-dimensional big data, which refers
to the value of the data and transmission rate of
accurate data generated by the data analysis units.
Two methods are commonly used to assess QoE. The
first is based on the QoE value, which is related to
the accuracy of the high-dimensional big data. The
lower the accuracy of the high-dimensional big data,
the poorer is the experience of the end-users. The
second method is based on the transmission rate of
accurate data particularly for different applications
whereby, the faster the transmission rate, the better the
experience of the end-users. The QoE in the pervasive
edge computing environment is jointly influenced by
these two factors. In the next section, we describe our
assessment methods in detail.
3.2.2 QoE model
We consider the accuracy of high-dimensional big data
as one QoE factor in the pervasive edge computing
environment. When the accuracy of big data is not
high, end-users will demand that it be improved.
In the pervasive edge computing environment, the
transmission rate r i , i 2 NC, of accurate data in each
time slot i for big data services can also be considered
as a QoE term. Then, we can define the transmission
rate function r i as ade.r i /, i 2 NC, and thereby obtain
the QoE in the pervasive edge computing environment:

QoE.pi ; r i / D a � ed �p
i

C �ade.r i / (1)
where � > 0 is a weighting parameter between
the accuracy of high-dimensional big data and the
transmission rate of accurate data. a and d are model
coefficients. ade.�/[34, 35] is the choice function of r i ,
i 2 NC, which refers to the fact that the value of r i ,
i 2 NC, can meet the requirements of each end-users.

3.3 Problem formulation

QoE is one of the most crucial performance metrics
for determining the quality of big data services in the
pervasive edge computing environment. As well known
that, many factors can affect QoE. In this study, we
consider QoE from two perspectives: the accuracy of
high-dimensional big data and the transmission rate

of the accurate data. On one hand, we consider
that the accuracy of high-dimensional big data can
be determined based on whether the accurate data is
positively proportional to the QoE. On the other hand,
to meet the requirements of each end-user, in each time
slot i , i 2 NC, the transmission rate r i , i 2 NC, can not
be less than the minimum r imin, i 2 NC, value or higher
than the maximum r imax, i 2 NC, value of each end-user.
In other words, we must realize transmission rate of r i ,
i 2 NC, to enhance the end-user QoE. We consider the
above factors to enhance the quality of big data services
in the pervasive edge computing environment. Finally,
we employ the objective function �, which represents
the QoE and present the formulation of our QoE-
maximization problem as follows:
� D max QoE.pi ; r i / � .max pi / [ ade .r i /

(2)

where � is an equivalence symbol indicating that the
value of QoE is equivalent to the value of pi with the
subscription of end-users in each time slot i , i 2 NC.

4 Algorithm Design in the Pervasive Edge
Computing Environment

Many methods have been used to manage the high-
dimensional big data being generated in industry
and academia, including big data analysis and
data transmission rate management. However, deep
learning[12, 13] is a well-known dependable tool that is
most often applied in big data analysis. Specifically,
CNN, which is a branch of deep learning. In this
section, to solve our second problem, we design a TF-
CNN algorithm using tensor representation models[17]

and truncated SVD[18] to extract accurate data while
also improving the training speed. We also need a
discrete method[36] for discretizing r i , i 2 NC, since
the second term of the objective function is continuous
according to the authors of a previous study addressing
the QoE-maximization problem in the pervasive edge
computing environment.

4.1 TF-CNN construction

More than any other methods, the TCNN[17] technique
has been proposed as a way to improve training
efficiency and ensure the accuracy of high-dimensional
big data in the pervasive edge computing environment.
Truncated SVD was introduced within CNN as a
means for accelerating the training speed of high-
dimensional big data analysis[18]. In fact, to complete



Qianyu Meng et al.: QoE-Driven Big Data Management in Pervasive Edge Computing Environment 227

the training process, the training of a TCNN with
truncated SVD requires the accumulation of a sufficient
number of samples by the algorithm proposed in
Ref. [37]. Samples are deposited in an unsorted sum
tree Z[38]. Based on these samples, we constructed the
TF-CNN algorithm, the outline of which is provided by
Algorithm 1.

4.2 TF-CNN training

First, we pretrain TF-CNN with Z using a high-order
forward-pass[17] to obtain the output of each layer.
Then, we compress the matrixQIM andQFM [18], both
of them comprise the output of the layers. Lastly, the

N
N

max QoE

Update

up

TF-CNN

TF-CNN is trained to perform fine-tuning by reducing a
sequence of the loss function UTF�CNN to its minimum.
Specifically, the loss function is denoted as follows:

UTF�CNN D
1

2

MX
mD1

.s� .x
m/ � ym/ (3)

where .x; y/ is a tensor object, and s� refers to the
dimensions.

To obtain the minimum UTF�CNN, we first assign the
weight of the tensors as random numbers. Then, the
weight of the tensor is updated, and the implementation
of the stochastic gradient method is as follows:

D
.t/

f 1���fm
D D

.t/

f 1���fm
� ˛

@UTF�CNN.�/

@D
.t/

f 1���fm

;

b
.t/
i1���im D b

.t/
i1���im � ˛

@UTF�CNN.�/

@b
.t/
i1���im

;

B
.t/

f 1���fm
D B

.t/

f 1���fm
� ˛

@UTF�CNN.�/

@B
.t/

f 1���fm

;

ˇ
.t/
i1���im D ˇ

.t/
i1���im � ˛

@UTF�CNN.�/

@ˇ
.t/
i1���im

(4)

where @UTF�CNN.�/

@k.t/
, k D D;B; ˇ; b represents the

partial derivative, ˛ is the learning rate, D is the .M C
1/-order weight tensor, b is the bias tensor, B is M -
order tensor, and ˇ is the weight.

In the training process, the computation of each of the
key steps is divided into three parts. First, the following
sequence is computed using high-order forward pass:

q
.t/

f 1���fm
D D

.t�1/

f 1���fm
�X C b

.t�1/

f 1���fm
;

q
.tC1/
i1���im D D

.t/
i1���im � g.z

.t/

f 1���fm
/C b

.t/
i1���im (5)

Then, the output layers are compressed using
truncated SVD to accelerate the training speed[18]:

X � QIM
X
l

QT
FM (6)

where QFM is an qfm � l matrix comprising the first l
left-singular values ofX ,

P
l is an l� l diagonal matrix

including the top l singular values of X , and QIM is
qim� l comprising the first l right singular matrix ofX .

The last step is the computation of the partial
derivatives during the updating process. The high-
order partial derivatives are computed by performing
efficient high-order backward propagation[17]. Then,
the partial derivatives @UTF�CNN.�;x;y/

@k.t/
, k D D;B; ˇ; b

are implemented by the application of a tensor object
.x; y/ by the high-order backward propagation
algorithm[17]. Lastly, the ultimate total partial
derivatives @UTF�CNN.�;x;y/

@k.t/
; k D D;B; ˇ; b are
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computed if those partial derivatives are obtained
by the following:

@UTF�CNN.�/

@D
.t/

f 1���fm

D
1

M

MX
mD1

@UTF�CNN.�; x
.i/; y.i//

@D
.t/

f 1���fm

;

@UTF�CNN.�/

@ˇ
.t/
i1���im

D
1

M

MX
mD1

@UTF�CNN.�; x
.i/; y.i//

@ˇ
.t/
i1���im

;

@UTF�CNN.�/

@b
.t/
i1���im

D
1

M

MX
mD1

@UTF�CNN.�; x
.i/; y.i//

@b
.t/
i1���im

;

@UTF�CNN.�/

@B
.t/

f 1���fm

D
1

M

MX
mD1

@UTF�CNN.�; x
.i/; y.i//

@B
.t/

f 1���fm

(7)

4.3 Discrete transmission rate

After training high-dimensional big data using TF-
CNN, we can obtain accurate data. Then, we discretize
the transmission rate r i , i 2 NC, of the accurate data to
meet the requirements of each end-users.

To solve our second problem, we propose a method,
shown in Fig. 2 for discretizing r i , i 2 NC, since the
second term of the objective function is continuous
as reported by the authors of previous studies[39–41].
Because the range of r i , i 2 NC, is Œr iminI r

i
max�,

we divide it into h intervals, each of which has
the same size H , and use the h division points as
the discrete values of r i , i 2 NC. We include all
the division points in set Q. We can see that when
h!1, H ! 0, the values of r i , i 2 NC, are close
to continuous. For example,Q4; i D 4, consists of five
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Fig. 2 The rmin and rmax components belong to every set Q,
Q includes the i division point.

elements, including rmin; rmax and three division points.
Q4 D frminI rmin C .rmax � rmin/=4I rmin C 2.rmax �

rmin/=4I rmin C 3.rmax � rmin/=4I rmaxg:

In general, the management process for Algorithm
1 includes a training process for the high-dimensional
big data and a discretization process of the transmission
rate, which are executed as follows. Note that,5 refers
to @UTF�CNN.�;x;y/

@k.t/
, k D D;B; ˇ; b in Algorithm 1.

Step 1. Execute a forward pass and compute the
outputs qi1 ��� im; qf1 ���fm of each layer (line 6).

Step 2. Compress the qi1 ��� im; qf1 ���fm values of the
output layer (line 7).

Step 3. Compute the error term "
.t/

f
by performing

backward propagation for every unit f in the output
layer as follows (lines 9–11):

"
.t/

f
D
@UTF�CNN.�/

@q
.t/

f

D .g.q
.t/

f
/ � yf / � g

0.q
.t/

f
/ (8)

where zj is the element of tensor X .
Step 4. Compute the error term "

.t/

f
as well, by

performing backward propagation for every unit f in
the layer t D mt � 1; : : : ; 3; 2.
� Layer t in a tensor fully connected layer (lines

13 and 14):

"
.t/

f 1���fm
D
@UTF�CNN.�; x; y/

@q
.t/

f 1���fm

D

mX
i1D1

� � �

mX
imD1

w
.t/

i1���imf1���fm
"
.tC1/
i1���im � g.q

.t/

f 1���fm
/ D

.D.t//T ˇ "
.tC1/
i1���im � g.q

.t/

f 1���fm
/ (9)

where w
.t/

i1:::imf1:::f m
denotes the weight difference

between unit f 1 : : : f m of layer t and unit i1 : : : im of
layer t C 1.
� Layer t in a tensor pooling layer (lines 18 and

19):

"
.t/

f 1���fm
D
@UTF�CNN.�; x; y/

@q
.t/

f 1���fm

D

mX
i1D1
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mX
imD1

k
.t/

f 1���fm
"
.tC1/
i1���im � g.q

.t/

f 1���fm
/ D

.B.t//T � "
.tC1/
i1���im � g.q

.t/

f 1���fm
/ (10)

where k.t/
f 1���fm

is the weight of kernel L.
� Layer t in a tensor convolutional layer (lines 23

and 24):

"
.t/

f 1���fm
D
@UTF�CNN.�; x; y/

@q
.t/

f 1���fm

D

ˇ.tC1/.up.".tC1/i1���im// � g.q
.t/

f 1���fm
/ (11)
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where up.".tC1/i1���im/ uses the factor sci to tile the input
element of each dimension, which is referred to as an
upsampling operation.

Step 5. Compute the error term @q.tC1/

@k.t/
, k D D;B as

follows (lines 16 and 26):
@q
.tC1/
i1���im

@k
.t/
˛i1���im

D at˛i1���im (12)

Step 6. Compute the desired partial derivatives as
well, as follows (lines 15, 16, 20, 21, 25, 26):

@UTF�CNN.�; x; y/

@D
.t/

f 1���fm

D

X
a
.t/
˛i1���im � "

.tC1/

f 1���fm
;

@UTF�CNN.�; x; y/

@B
.t/

f 1���fm

D

X
a
.t/
˛i1���im � "

.tC1/

f 1���fm
;

@UTF�CNN.�; x; y/

@b
.t/
i1���im

D

X
"
.tC1/
i1���im;

@UTF�CNN.�; x; y/

@ˇ
.t/
i1���im

D

X
"
.tC1/
i1���im (13)

Step 7. The TF-CNN updates the parameters
D; b;B; ˇ in each time i , to obtain the accuracy
pi .D; b; B; ˇ/ of the high-dimensional big data (line
32).

Step 8. Discretize the transmission rate r i ; i 2 NC,
of accurate data (lines 33–35).

Step 9. Obtain � by pi and r i ; i 2 NC (line 36).

4.4 Algorithm complexity

In an FR-CNN algorithm[18], the complexity is
O.PLs2/ in a convolutional layer with P output
mapping the Rs�s and L kernels, and the complexity
is O.Ss2/ in a pooling layer with S outputs Rs�s ,
the complexity is O.mn/ in a fully connected layer
with the weight Dm�n. Thus, the total complexity of
FR-CNN is less thanO.PLs2CSs2Cmn/. Similarly,
the TCNN[17] is the generalized algorithm for FR-CNN,
which extends CNN from the vector space to the tensor
space using an accelerator. Therefore, the complexity
of TCNN is O.PLsM C SsM CQIMQFMC1/,
QIM DQI1�QI2� � � ��QIM and QFMC1DQF1�
QF 2 � � � � �QFMC1 represent the orders of input
and weight. Compared to the TCNN algorithm, the
complexity of our proposed TF-CNN is reduced by
half. However, the complexity of the TF-CNN is
slightly higher than that of FR-CNN. Similarly, the
complexity of big data management based on the
TF-CNN algorithm is a little higher than that of
TF-CNN.

5 Performance Evaluations

The quality of high-dimensional big data services
is chiefly determined by the data accuracy and
the transmission rate of accurate data. Therefore,
we selected advanced algorithms to analyze our
collections of big data in the pervasive edge computing
environment to extract the most accurate data. Then,
we manage the transmission rate of the accurate data to
meet the requirements of each end-users. In this section,
we quantitatively evaluate and validate the performance
of our proposed algorithm for high-dimensional big
data management.

5.1 Experiment settings

We conducted our evaluation via a two-step experiment.
In the first step, we implemented the TCNN, FR-
CNN, and TF-CNN algorithms, in MATLAB[42], and
evaluated them using a TensorFlow[43] simulation tool
written in Python, using the parameters listed in Table
2. Note that, TF-CNN is our proposed scheme, and
TCNN and FR-CNN are drawn from other works. We
employed this commonly used simulator because it is
designed to import a realistic trace as input from all
types of database. We also used the SNAE2 data set[44],
which is collected by sensors from different sources,
and in various raw-data formats in the pervasive edge
computing environment. We chose 2 TB data in the
simulation and also explored the important factors that
influence the QoE. Our goal was to optimize the data
transmission. Finally, we also used TensorFlow to
evaluate the performance of the QoE models.

In the second step, using a specific video-streaming
service, we conducted a comparative experiment of
the proposed algorithms using different transmission
rates to determine their effect on QoE, as computed by
the aforementioned QoE model. Generally, different
management methods are based on the quality of video
chosen by end-users. Then, management methods are
employed to measure end-user QoE.

Table 2 Simulation parameters.

Parameter Value
Hidden layer 1 256 neurons
Hidden layer 2 64 neurons
Hidden layer 3 32 neurons
Hidden layer 4 8 neurons

Discount parameter 0:8

Learning rate 0:2
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5.2 Results

For each test case, we used TensorFlow to evaluate the
performances and efficiencies of the three algorithms in
terms of their accuracy, precision, and recall. We note
that, the accuracy is defined as the ratio of the number
of samples divided by the total number of samples
correctly sorted by the classifier for a given test data
set. The Precision is defined as the ratio between the
number of corresponding documents retrieved, and the
total number of documents as measured by the search
system. The Recall refers to the ratio of the number of
documents with respect to the number of corresponding
documents in the document library. In Fig. 3, we can see
that the performance of FR-CNN in terms of accuracy,
precision, and recall is the worst, whereas that of TF-
CNN is the best. Next, we evaluated the performance
of the algorithms in terms of training time on the data
set. As shown in Fig. 4, due to the SVD, TF-CNN takes
less times to analyze the data than TCNN, although
the training time is longer than that of FR-CNN. This
is why we adopted the TF-CNN algorithm to analyze
high-dimensional big data. We also validated the QoE
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factor while varying the transmission rate with h. We
divided r i , i 2 NC, into h intervals and set the value of
the h division points as Q. When h becomes larger, the
number of division points increases.

Figures 5 and 6 show the results, from which we can
see that the average accuracies of FR-CNN, TCNN, and
TF-CNN were 0.83, 0.85, and 0.87, respectively. We
also find that, the performance accuracy pi , i 2 NC, of
FR-CNN is the worst, whereas TF-CNN is the best. We
can also see that the QoE values change greatly as pi ,
i 2 NC, increases in Fig. 6. In this figure, we can see
that the TF-CNN algorithm generates the highest QoE
value, and the FR-CNN algorithm the lowest. Clearly,
when k increases, QoE increases. However, as we can
see in Fig. 7, when the transmission rate becomes
faster than normal, the QoE value remains nearly the
same or even decreases. Previous studies[45, 46] have
reported that a satisfactory QoE value is usually above
60. Therefore, we can conclude that a high-dimensional
big data management method based on the TF-CNN
algorithm, which exhibits the best accuracy pi and r i ,
i 2 NC, provides end-users with a satisfactory QoE.
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Fig. 6 QoE values for different algorithms.
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From Figs. 3–6, we can see that the QoE performances
of the three algorithms are positively correlated to the
efficiency of their performance in terms of accuracy.

From Fig. 7, we find that the QoE performances
are positively related to adequate transmission rates.
Therefore, we can realize better performances by QoE
models shown in Fig. 8 because the QoE model with
r i and TF-CNN perform better than other QoE models.
From our above discussion and from Fig. 9, we can
see that QoE performances are positively related to the
accuracy of high-dimensional big data as well as the
adequacy of the transmission rate of accurate data.

6 Conclusion

In the work, we investigated high-dimensional big
data management in the pervasive edge computing
environment and methods for improving the QoE of
end-users. We also analyzed the factors that impact
QoE. To obtain accuracy in high-dimensional big data
as quickly as possible, we proposed the TF-CNN
algorithm and a high-dimensional big data management

Q
o

E

Fig. 7 QoE performance for various transmission rates via
h, for different ���.

Fig. 8 Performance of different QoE models.

Fig. 9 QoE performance under different algorithms v.s.
varying transmission rate, under different ���.

method based on TF-CNN. Our experimental results
revealed the high QoE performance of our proposed
high-dimensional big data management method.
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