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A Novel Deep Hybrid Recommender System Based on Auto-encoder
with Neural Collaborative Filtering
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Abstract: Due to the widespread availability of implicit feedback (e.g., clicks and purchases), some researchers

have endeavored to design recommender systems based on implicit feedback. However, unlike explicit feedback,

implicit feedback cannot directly reflect user preferences. Therefore, although more challenging, it is also more

practical to use implicit feedback for recommender systems. Traditional collaborative filtering methods such as

matrix factorization, which regards user preferences as a linear combination of user and item latent vectors, have

limited learning capacities and suffer from data sparsity and the cold-start problem. To tackle these problems,

some authors have considered the integration of a deep neural network to learn user and item features with

traditional collaborative filtering. However, there is as yet no research combining collaborative filtering and content-

based recommendation with deep learning. In this paper, we propose a novel deep hybrid recommender system

framework based on auto-encoders (DHA-RS) by integrating user and item side information to construct a hybrid

recommender system and enhance performance. DHA-RS combines stacked denoising auto-encoders with neural

collaborative filtering, which corresponds to the process of learning user and item features from auxiliary information

to predict user preferences. Experiments performed on the real-world dataset reveal that DHA-RS performs better

than state-of-the-art methods.
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1 Introduction

The Recommender System (RS) is a tool and technique
that helps people to attain content on the basis
of their interest and thereby save a lot of time[1].
Many websites, like Amazon[2], Netflix[3], and other
social networks, have adopted recommender systems.
Collaborative filtering is one of the key techniques
used in personalized recommender systems[1, 4–9]. The
essence of collaborative filtering is to reveal the
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relationship between users and items based on available
user-item information, such as user ratings of items.
Matrix Factorization (MF), one of the most popular
collaborative filtering techniques, projects users and
items into a shared latent space, and uses a latent
feature vector to represent either a user or an item.
Subsequently, the interaction of the user with the item is
modeled as the inner product of the latent vectors. The
final goal of a recommender system is to provide a list
of items that approximate user preferences. However,
collaborative filtering faces two problems. The first
is that recommender systems mainly rely on implicit
feedback, which is sparse and cannot truly reflect
user preferences[7, 10]. This limits the performance
of recommender systems. The second problem is
that traditional collaborative filtering uses linear
models to learn user-item relations, which restricts
the recommendation performance. For example, in
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Refs. [11–13], to generate a recommendation, the
authors used MF to learn user and item latent vectors
by decomposing a user rating matrix into user and
item latent vectors that have high relevance. MF is a
process of reducing dimension, which inevitably results
in loss of user-item interactions. Hence, traditional
collaborative filtering methods have difficulty in
improving the precision of recommendations.

Researchers have proposed various approaches
to the development of collaborative-filtering-based
recommender systems. Some researchers have explored
the application of Deep Neural Networks (DNN)
to recommender systems by designing collaborative
filtering based on neural networks. DNNs have
demonstrated their learning capacities in many tasks[14],
such as computer vision and speech recognition.
Salakautdinov et al.[4] used Restricted Boltzmann
Machines (RBMs) in recommender systems and
designed two-layer RBMs to model explicit item ratings
given by users. Georgiev and Nakov[15] extended the
RBMs model to deal with real value ratings and, further,
combined original training data with data generated by
bootstrapping to improve model performance. Ouyang
et al.[5] attempted to explore high-level user-item
relations using an Auto-Encoder (AE) and proposed
a three-layer auto-encoder to model users explicit
ratings on items. Considering that collaborative filtering
is a process of filling the rating matrix, Wu et
al.[16] proposed the Collaborative Denoising Auto-
Encoder (CDAE), which utilizes a Denoising Auto-
Encoder (DAE)[17] to perform collaborative filtering.
CDAE assumes user ratings to be corrupt and
the recommendation process involves reconstructing
original users ratings. It learns latent user-item
relations by minimizing reconstruction error. He et
al.[6] proposed a Neural Collaborative Filtering (NCF)
framework for implicit feedback recommendations.
The authors utilized a neural network to learn the latent
vectors of users and items in a way similar to MF.
NCF is flexible and can be easily extended to learn
the non-linear relations between users and items and
it also demonstrates that MF is a special model case.
To be clear, we use NCF to refer to the framework
proposed in Ref. [6], and the term neural collaborative
filtering to refer to collaborative filtering based on
neural networks. All these works have attempted
to improve the performance of recommender systems
by modeling user-item relations using different neural
networks that have more powerful learning capabilities.

Most studies have focused on user ratings, but
rating information alone cannot fully reveal user-item
relations. Additionally, the sparsity of user ratings
lowers the performance of most CF-based methods.
To improve performance, some researchers have used
traditional collaborative filtering to integrate user
and item side information to then construct hybrid
recommender systems. Popular neural networks such
as the auto-encoder and its variants, like the DAE,
can effectively learn useful structures and extract
representative features from input data. Furthermore,
some authors have employed neural networks to extract
user and item features from side information to improve
the performance of traditional collaborative filtering.
Wang et al.[10] proposed Collaborative Deep Learning
(CDL), in which a DAE learns item features that act as
item latent vectors for MF-CDL, which decomposes a
rating matrix and learns latent factors in one model. As
MF involves learning both user and item latent vectors,
Li et al.[7] proposed mDA-CF, which extends the CDL
model by adding the user latent vectors learned from
user side information by a DAE. mDA-CF combines
extracted user and item features and recommendations
in a joint framework. He and McAuley[18] noted that
visual information about items plays an important
role in real-world recommendations. So, the authors
developed the visual Bayesian personalized ranking
model, which employs a Convolutional Neural Network
(CNN)[19, 20] to extract features from item images.
These methods take advantage of neural networks to
improve the performances of collaborative filtering, but
the core of collaborative filtering is still MF.

The authors of the above mentioned studies attempted
to improve recommendation performance either by
introducing side information via neural networks or
designing novel collaborative filtering models based
on neural networks. However, there has been no
work that uses neural networks for both tasks. In this
paper, we present a top-K deep hybrid recommender
system framework based on auto-encoders (DHA-
RS). DHA-RS uses Stacked Denoising Auto-Encoder
(SDAE), which is an extension of the stacked auto-
encoder[21] that incorporates noise and SDAEs to
form a deep network. This network extracts user
and item features from auxiliary information as
user and item latent vectors for neural collaborative
filtering. In addition, we propose two models based
on the DHA-RS framework: GMF++ (Generalized
Matrix Factorization++) and MLP++ (Multi-Layer
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Perceptron++), both of which integrate user and item
side information. These models mainly differ in
their settings of neural collaborative filtering: in
GMF++, the latent factors generate the element-wise
product and then fully connects to the neural network,
whereas MLP++ concatenates the latent factors and
then connects to the neural network. The experimental
results on the real dataset MovieLens-1M reveal that
DHA-RS has better performance and more extensibility
than the existing frameworks with respect to top-K
recommendation problems. Although the performance
of MLP++ is not as good as GMF++, subsequent results
have shown that with an increasing number of hidden
layers, MLP++ performs better, which suggests that
using deep neural networks is effective for collaborative
recommendations and that MLP++ has room for more
improvement.

The rest of the paper is organized as follows. We
introduce our recommendation framework, DHA-RS,
in detail in Section 2 and discuss our experiments in
Section 3. In the last section, we summarize our work
and briefly introduce our plans for future work.

2 Method

In this section, we first present the general DHA-RS
framework and demonstrate how the SDAEs and neural
collaborative filtering are integrated into one model.
Then, we explain how the SDAEs extract user and
item features from auxiliary information. Lastly, we
present the two models, GMF++ and MLP++, which
use different settings in the neural collaborative filtering
module. Table 1 lists the symbols used in our approach.
Next, we describe the general structure of the DHA-RS.

Table 1 Frequently used symbols.

Notation Description
U User set
I Item set
p Dimension of user features
q Dimension of item features
L Number of layers of SDAE

R 2 RjUj�jIj Rating matrix
X 2 RjUj�p Auxiliary information of users
Y 2 RjIj�q Auxiliary information of items

pu User latent vector
qi Item latent vector
Wl Weight matrix of layer-l in SDAE
bl Bias vector of layer-l in SDAE

2.1 DHA-RS: A general framework

Let U and I denote the sets of users and items and
the users binary rating matrix R D Œrui �

jUj�jIj, whose
element rui represents whether user u rates item i , and
if user u has a rating record for item i , then rui D 1,
otherwise, rui D 0. The goal of recommendation for
implicit feedback is to generate an item list that reflects
the users preference.

rui D

(
1; u rates i I
0; otherwise

(1)

Actually, it is easy to find subsidiary information,
such as user age, occupation, gender, and item plot
and genre. As discussed above, subsidiary information
can help improve the performance of recommender
systems. For a user side-information matrix X and
an item side-information matrix Y, we use SDAEs to
learn the user and item features by minimizing the
reconstruction errors of the output and the original
user and item features. The learned features are
stored in the middle hidden-layer vector. Unlike
traditional collaborative filtering, DHA-RS uses neural
collaborative filtering to explore user-item relations,
which has a more powerful learning capability.

Figure 1 shows a schematic of the DHA-RS
framework. The DHA-RS has two main components:
(1) the feature-extraction and ID-embedding module
and (2) the neural collaborative filtering module. For
feature extraction and ID embedding, DHA-RS uses
two SDAEs to learn the user and item features,
respectively. User (item) input X (Y) is input to the
SDAE to extract user (item) latent features. The user
(item) ID is initiated by one-hot encoding, which is
sparse, and is then embedded into a dense vector. The

Fig. 1 Deep hybrid recommender system based on auto-
encoders model.
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extracted user (item) feature vector and embedded user
(item) ID are then concatenated to form the user (item)
latent vector. Later, the user and item latent vectors are
fed into a neural network to learn the user-item relation
and finally generate a predicted rating.

2.2 Feature extraction by stacked denoising auto-
encoder

The AE is a neural network that learns an identity
function, which then generates an output that
approximates the input. Auto-encoders are often
used to learn features from a data set. The DAE is a
variant of the AE, which is designed to tackle the noise
problem. To learn robust features, some of the input
data is stochastically set to zero. In another words,
the DAE tries to reconstruct the original input using
a corrupt version of it. The SDAE is a deep network
formed by stacking multiple DAEs. Figure 2 shows
an SDAE with four layers. This model is structurally
symmetric. The process of going from layer-0 to
layer-2 can be regarded as encoding, whereby noisy
input X0 is abstracted to a high-level presentation
X2. The process of going from layer-2 to layer-4 can be
treated as decoding, whereby X2 is reconstructed to its
original clean presentation. The values of the neurons
in the middle layer are the extracted features of the
input data. SDAE is robust to noise and can learn more
stable features due to the stochastic addition of noise to
the original input.

In an SDAE with L layers, Xl represents the output
of layer-l . For the original input Xc , the elements of
Xc are stochastically set to zero, and the noisy data are
fed into the SDAE. Wl and bl represent the weight and
bias of layer-l. The output of each layer is generated by
the following steps:
� The weight parameter Wl is generated byN.0; ��1W I/,
� The bias parameter bl is generated by N.0; ��1

b
I/,

Fig. 2 A four-layer stacked denoising auto-encoder.

� The output Xl is generated by
N.�.Xl�1Wl C bl/; ��1X I/;
where �W and �b are hyper parameters used in
parameter initialization. SDAE learns the user and item
features based on auxiliary information by minimizing
the reconstruction error and using the middle layer
output as the extracted user and item feature. The
reconstruction error can be described as follows:

L D kXc � XLk2F C �˝ k˝̋̋k
2
F (2)

where ˝̋̋ denotes the parameter of the model, and �˝ is
its regularization term.

Typically, auxiliary information consists of user and
item attributes, such as age, occupation, plot, and genre.
For example, the text information of a movie includes
the title, genre, and plot. This information can be dealt
with using some natural language processing methods
to transform them into a bag of words that can be used
as SDAE input. Similarly, DHA-RS uses SDAEs to
learn user and item features from side information. By
incorporating user and item side information into the
collaborative filtering process, the relations between the
user and item are enriched.

2.3 Generalized matrix factorization and multi-
layer perceptron with side information

Within the DHA-RS framework and inspired by the
NCF framework[6], in this paper, we propose two
models: GMF++ and MLP++ with side information.
These models differ in that the neural collaborative
filtering process uses different computational methods
and layers. The collaborative filtering module of
GMF++ uses a computational method similar to the
inner product of MF, whereas the collaborative filtering
of MLP++ concatenates the embedded user and item
latent vectors and then learns the user-item relations by
a multi-layer neural network. Both models integrate
side information to improve model performance.

2.3.1 GMF++
GMF++ first uses SDAEs to extract user and item
features from auxiliary information, the details of
which are described above in Section 2.2. Then, the
extracted user and item features are concatenated
with the embedded ID to obtain the respective latent
vectors. In collaborative filtering, GMF++ computes
the element-wise product of the user and item latent
vectors and outputs the calculated vectors to a fully
connected neural layer. The element-wise products
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of the user and item latent vectors can be defined as
follows:

�1.pu; qi / D pu � qi (3)
where �, pu, and qi denote the element-wise product of
the vectors, user latent vector, and item latent vector,
respectively. GMF++ then projects the vectors to the
output layer:

Orui D aout.hT.pu � qi // (4)

where aout denotes the activation function, hT denotes
the weights of the output layer, and Orui denotes the
predicted score of interaction rui . GMF is equivalent to
MF[6], especially when aout is an identity function and
h is a vector with a value of 1. Within the DHA-RS,
aout can be a non-linear activation function and h can
be learned from training data, therefore, it has greater
learning capability than MF.

To differentiate from GMF proposed in Ref. [6], we
refer to this model as GMF++. The original GMF relies
only on implicit feedback, and the sparsity of users
preferences regarding implicit feedback limits the GMF
performance. GMF++ adds auxiliary information to
the model and takes advantage of SDAEs to obtain
user and item latent vectors, therefore achieving better
performance.
2.3.2 MLP++
MLP++ and GMF++ use the same method to extract
user and item features from auxiliary information.
However, MLP++ takes a different learning strategy in
the neural collaborative filtering module. Instead of
treating user and item latent vectors by MF, MLP++
concatenates a learned user latent vector pu and item
latent vector qi , then adopts a multi-layer perceptron
in a collaborative filtering module to learn high-level
user-item relations. The collaborative filtering aspect of
MLP++ can be defined as follows:

z1 D �1.pu; qi / D

"
pu
qi

#
;

�2.z1/ D a2.WT
2z1 C b2/;

� � �

�L.zL�1/ D aL.WT
LzL�1 C bL/;

Orui D �.hT�L.zL�1// (5)

where Wx , bx , and ax denote the weights, bias vector,
and activation function for the layer-x, respectively,
and “Œ �” denotes the concatenating operation. To
differentiate from MLP proposed in Ref. [6], we refer
to this model as MLP++. The original MLP uses a
multi-layer perceptron to learn user-item relations, but
it depends only on implicit feedback. MLP++ employs

SDAEs to extract user and item features from auxiliary
information, so it is able to learn the critical relation
between a user and item.

2.4 Learning DHA-RS

In this section, we define the loss function for DHA-RS
and explain how to optimize this function. Generally,
a loss function consists of the reconstruction error of
feature extraction and the prediction error. The loss
of feature extraction contains user and item features
extraction. The loss function of SDAE for user feature
extraction can be defined as follows:

Lu D kXc � XLxk
2
F C �˝ k˝̋̋k

2
F (6)

where ˝̋̋ denotes the model parameter and �˝ denotes
the regularization-term parameter. Similarly, the loss
function of SDAE for the item features extraction can
be defined as follows:

Li D kYc � YLyk
2
F C � k			k

2
F (7)

where 			 and � denote the model and regularization-
term parameters, respectively.

The neural collaborative filtering process outputs the
predicted rating Orui for each (u, i) pair. Considering
the characteristic of implicit feedback, user ratings can
be regarded as labels for the user-item relations, that is,
1 denotes a user relating to the item and 0 otherwise,
therefore, the predicted Orui can be regarded as the
possibility that a user relates to an item. This requires
that Orui be constrained in the range of [0, 1], which can
be realized using a sigmoid activation function. The
loss function can be defined as follows:

Lc D
X

.u;i/2R[R�

.1 � rui /log2.1 � Orui /C

rui log2 Orui C �� k���k
2
F (8)

where R denotes a set of positive instances and R�

denotes a set of negative instances, which can all be
(or sampled from) unobserved user-item interactions.
��� and �� denote the regularization-term and model
parameters, respectively. This objective function is the
same as binary cross-entropy loss, which works well for
binary classification problems.

Therefore, the general loss function for the training
model is as follows:

L D Lc C ˛Lu C ˇLi (9)
where ˛ and ˇ denote the hyper parameters of the loss
function.

Algorithm 1 shows the algorithm used in the DHA-
RS framework. P and Q denote the weight matrix for
user and item ID embedding, respectively, and �W and
�b are hyper parameters for parameter initialization.
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Algorithm 1 Learning algorithm for DHA-RS
Input: user feature X, item feature Y, user ID vu, item ID
vi

Output: predicted Orui

1. Add noise into user feature X and item feature Y by
stochastically setting elements in matrix to zero
2. For each layer lx in SDAE for users:

(a) Construct weight matrix WX
l

from N.0; ��1
W

I/,
(b) Construct bias bX

l from N.0; ��1
b

I/,
(c) Corresponding output layer Xl D �.Xl�1WX

l
C bX

l /.

3. For each layer ly in SDAE for items:
(a) Construct weight matrix WY

l
from N.0; ��1

W
I/,

(b) Construct bias bY
l from N.0; ��1

b
I/,

(c) Corresponding output layer Yl D �.Yl�1WY
l
C bY

l /.

4. For each user u:
(a) One-hot encoding of user ID is vu, the embedded user

ID is PTvu,
(b) Extracted user feature XLX =2;u� ,

(c) Then, user latent vector: pu D

"
XLX =2;u�

PTvu

#
.

5. For each item i :
(a) One-hot encoding of item ID is vi , the embedded item

ID is QTvi ,
(b) Extract item feature YLY =2;i� ,

(c) Then, item latent vector qi D

"
YLY =2;i�

QTvi

#
.

6. For each input user and item latent vectors pair.pu; qi /,
predicted Orui D f .pu; qi /,

(a) Within GMF++: Orui D aout .hT.pu � qi //,
(b) Within MLP++:

For First Layer: z1 D �1.pu; qi / D

"
pu

qi

#
,

For remaining layers:
�2.z1/ D a2.WT

2z1 C b2/,
�L.zL�1/ D aL.WT

LzL�1 C bL/,
Orui D �.hT�L.zL�1//.

2.5 Making predictions using the trained models

After training the model and learning parameters, we
can predict the probability that user will rate an item
for a user u and item i pair. As described in Algorithm
1, GMF++ and MLP++ use different strategies to deal
with user and item latent vectors. The prediction details
may differ for GMF++ and MLP++, but the general
prediction function can be written as follows. Given
a trained model, for a user u and item i pair with no

observed relation, the model output predicted rating is

Orui Df

 "
�.X0;u�.WX

1 /
�
C .bX1 /

�
/

.P�/Tvu

#
;"

�.Y0;u�.WY
1 /
�
C .bY1 /

�
/

.Q�/Tvi

#!
(10)

where “*” denotes trained parameters that differ from
the parameters in training.

3 Experiments and Results

3.1 Experimental settings

3.1.1 Dataset
Next, we evaluated the performance of the GMF++
and MLP++ models on the MovieLens-1M dataset
(https://grouplens.org/dataset/movielens/). As GMF++
and MLP++ are designed for implicit feedback
recommendation, we processed the original ratings
in the MovieLens-1M dataset into implicit feedback
data. If a user has an observed rating action for an
item, we labeled the corresponding record 1. GMF++
and MLP++ also use the side information of users
and items. Auxiliary user information includes age,
occupation, and gender attributes. There are 18 different
movie genres in the item features. Tables 2 and 3
summarize the characteristics of the MovieLens-1M
dataset.

3.1.2 Evaluation indicators
In this experiment, we used the leave-one-out
evaluation method to evaluate the performances of
GMF++ and MLP++. We used the latest rating record
of each user as the test set and left the remaining
records for training. For the top-K recommendation, it
is a time-consuming task to obtain the top-K relevant
items. Instead, we referenced the experimental strategy
used by the authors in Ref. [16] and randomly chose
100 items that are not rated by the user, and then
ranked the candidate items to determine the top-K
items. Herlocker et al.[9] systematically discussed the

Table 2 MovieLens-1M statistics.

Dataset Number of users Number of items Sparsity (%)
MovieLens-1M 6040 3706 95.8

Table 3 User and item attributes.
Dataset User attribute Item attribute

MovieLens-1M Age, occupation, gender Genre
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evaluation indicators. In this paper, we used the Hit
Ratio (HR) and Normalized Discounted Cumulative
Gain (NDCG)[22] to indicate the performance of the
recommended list. The HR directly measures whether
the test item is recommended in the top-K list. NDCG
considers the position of the item. The resulting NDCG
value is greater, if the item’s position is nearer the front.
The formula for calculating the NDCG is defined as
follows:

NDCG D
DCG@K
iDCG@K

(11)

DCGK D
KX
iD1

2r.i/ � 1

log2.i C 1/
(12)

where DCG and iDCG denote the discounted
cumulative gain and ideal discount cumulative gain,
respectively. r.i/ is the graded relevance of the
predicted rating at position i . log2.i C 1/ is the
logarithmic reduction factor. The default length of
the recommendation list is 10, excepting a specific
declaration otherwise.

3.1.3 Compared methods
We compared GMF++ and MLP++ with the following
related methods in this area:

(1) ItemKNN[23]. This is the standard item-based
collaborative filtering method, which is employed
by Amazon Inc. We used the settings reported
in Ref. [24] to apply this method using implicit
feedback data.

(2) BPR[25]. Bayesian Personalized Ranking (BPR)
does not optimize item ratings, but directly
optimizes personalized rankings, and we used
this model as a comparative baseline for item
recommendation.

(3) GMF[6]. This is a model proposed within the NCF
framework, which learns the non-linear relation
between users and items in a way similar to MF.

(4) mDA-CF[7]. This method employs SDAE to
extract features from user and item auxiliary
information and uses MF to determine user-item
relations

3.1.4 Parameter setting
For the training set, we sampled four negative instances
for each positive instance. We randomly initialized
the model parameters using a Gaussian distribution
with mean of 0 and standard deviation of 0.01. With
reference to Ref. [26], we used a mini-batch Adam
method to optimize the model and set the learning rate

to 0.001 and the batch size to 256. In the feature-
extraction step, we tested [4, 8, 16, 32] neurons in the
middle layer. In neural collaborative step, we defined
the latent vector dimension as the number of neurons
in the last neural collaborative filtering layer of neural
collaborative filtering. We tested the dimensions of [8,
16, 32, 64] latent vectors. For an MLP model with three
hidden layers, if the dimension of latent vector is set
to 8, then the architecture of the neural collaborative
filtering layers is 32!16!8 and the dimension of the
user and item latent vector is 16. In addition, we chose
ReLU as the activation function, as had the authors in
Ref. [6].

3.2 Experimental results and analysis

Because the experiments in Ref. [6] reveal that GMF
performed better than MLP, we compared GMF++
with the other related methods. Here, we focus on
the performance of GMF++ for a different dimension
of the latent vector and length of recommendation
list. Figure 3 shows the recommendation precisions
of different methods with different latent vector
dimensions. Since ItemKNN[23] is an item-based
method and does not refer to latent vectors, we tested
its performance using different neighborhood sizes and
chose the best ItemKNN results. As shown in Fig. 3,

Fig. 3 Performances of HR@10 and NDCG@10 w.r.t. the
dimension of latent vector.
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GMF++ performs better than the other four models at
HR@10 and NDCG@10. Compared with mDA-CF,
GMF++ improved its average HR@10 and NDCG@10
performances by 2.9% and 3.7%, respectively, which
proves that GMF++ yields better recommendation
quality. GMF++ also performed better than GMF,
which means that GMF++ with auxiliary information
effectively enhances prediction precision. With respect
to the latent vector dimension, the performances
of HR@10 and NDCG@10 are maximized when
the dimensions of the latent vector are 32 and 64,
respectively.

The length of the recommendation list also affects
prediction precision. Figure 4 shows that all five
models perform better when K, the length of the
recommendation list, increases. Compared to the other
models, GMF++ achieves the best performance with
respect to HR and NDCG when K is greater than
five. However, GMF++ does not perform as well as
mDA-CF, MGF, and BPR when K is less than 5. The
performances of mDA-CF, GMF, and BPR are similar.
From the tendency shown in Fig. 4, we can conclude

Fig. 4 Performances of HR@K and NDCG@K w.r.t. K.

that GMF++ can provide good recommendations when
the recommendation list is long.

3.3 Parameters used in training the model

In this section, we discuss the parameters we used in
training the GMF++ model. Specifically, we focus on
how the number of iterations and training weights, ˛
and ˇ, affect the performance of our methods. First,
we compare the performances of GMF++ and GMF for
different numbers of iterations.

As shown in Fig. 5, the performances of HR@10 and
NDCG@10 for both GMF and GMF++ improve when
the number of iterations increases and HR@10 and
NDCG@10 tend toward stability. However, GMF++
performs better than GMF due to the introduction of
user and item side information. We note that the
performances of HR@10 and NDCG@10 for both
GMF and GMF++ fluctuate after 10 iterations. This
may be due to overfitting of the training model.

Figure 6 shows the effect of the number of iterations
on the training loss. We can see that the training
loss drops rapidly with less than 10 iterations and then
tends to stabilize afterwards. Although the training loss
continues to decrease, as we can see from the figure,

Fig. 5 HR@10 and NDCG@10 w.r.t the number of
iterations.
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Fig. 6 Training loss w.r.t. number of iterations.

this may cause overfitting. Therefore, the number of
iterations should not be too large. We note that the
training loss of GMF++ contains the reconstruction
error of the user and item features extraction which
leads to a greater loss than GMF.

This is because the last two terms in Eq. (9),
representing the errors of the user and item features
extraction, are symmetric. In addition, the user and
item inputs of the MovieLens-1M dataset are similar
in size, so we set the parameters ˛ and ˇ as trade-
off. In the experiment, we set the trade-off to [0.1, 1,
10, 100, 1000] and the dimension of the latent vector

Fig. 7 Trade-off effect on HR@10 and NDCG@10.

to eight. Figure 7 shows how this trade-off affects the
performances of HR@10 and NDCG@10.

When we set the trade-off parameter to 100, we can
see that the performance of HR@10 is the highest.
Similarly, the performance of NDCG@10 is the highest
when the trade-off value is 1. However, variations in
the trade-off parameter had no significant influence on
the HR@10 and NDCG@10 values. Therefore, we
conclude that the model is not sensitive to trade-off and
we set the trade-off to 100 in our final model.

3.4 Number of layers in MLP++

In this section, we evaluate the effect of layer number
on the performance of MLP++, because the experiment
results in Ref. [6] indicated that GMF performs better
than MLP. Here, we only discuss the relation between
the performance of MLP++ and the number of neural
layers.

Figure 8 shows the performances of HR@10 and
NDCG@10 of MLP++ when the number of layers is
increased from 1 to 4. Specifically, we conducted the
experiments using the output layer dimensions of [8, 16,
32, 64]. The performances of HR and NDCG improve
when the dimension of the output layer is increased

Fig. 8 Performances of HR@10 and NDCG@10 w.r.t. the
number of hidden layers.
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and MLP++ exhibits better recommendation precision
with more hidden layers. Although the performance
of MLP++ does not surpass that of GMF++, the
performance of MLP++ continues to improve with
increases in the number of hidden layers. Therefore, we
can say that MLP++ has room for more improvement.

4 Conclusion and Future Work

In this paper, we proposed a novel recommender
framework DHA-RS, which incorporates implicit
feedback and user and item auxiliary information
to effectively learn user and item features. Neural
collaborative filtering enhances the learning capacity of
collaborative filtering and incorporates user and item
auxiliary information to improve the performance of
user preference predictions. Using different settings for
the neural collaborative filtering process, we proposed
two models: GMF++ and MLP++. GMF++ merges
user and item latent vectors to generate an element-wise
product, which is used as the input of a fully connected
perceptron. MLP++ concatenates the user and item
latent vectors and employs a multi-layer network to
learn the user-item relationship. Our experimental
results show that GMF++ performs better than other
state-of-the-art methods. Although MLP++ performs
less well than GMF++, the experimental results for
different numbers of hidden layers used indicate that
MLP++ has considerable room for improvement. Our
work shows that neural collaborative filtering with
auxiliary information can enhance recommendation
precision.

DHA-RS is not limited to textual auxiliary
information, and can be extended to other types
of auxiliary information. In future work, we will try
to incorporate more auxiliary information, such as
knowledge ontology and images. By combining more
representative side information into the recommender
system, we expect that recommendation precision can
be further improved.
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