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Survey on Encoding Schemes for Genomic Data Representation and
Feature Learning—From Signal Processing to Machine Learning

Ning Yu, Zhihua Li, and Zeng Yu�

Abstract: Data-driven machine learning, especially deep learning technology, is becoming an important tool for

handling big data issues in bioinformatics. In machine learning, DNA sequences are often converted to numerical

values for data representation and feature learning in various applications. Similar conversion occurs in Genomic

Signal Processing (GSP), where genome sequences are transformed into numerical sequences for signal extraction

and recognition. This kind of conversion is also called encoding scheme. The diverse encoding schemes can

greatly affect the performance of GSP applications and machine learning models. This paper aims to collect,

analyze, discuss, and summarize the existing encoding schemes of genome sequence particularly in GSP as well

as other genome analysis applications to provide a comprehensive reference for the genomic data representation

and feature learning in machine learning.

Key words: encoding scheme; data representation; feature learning; deep learning; genomic signal processing;

machine learning; genome analysis

1 Introduction

Since the first DNA genome sequence was sequenced
in the 1970s[1], four characters, A, T/U, C,
and G, representing the nucleotides of Adenine,
Thymine/Uracil, Cytosine, and Guanine, respectively,
have been remained as the mainstream representation
form in genome analysis. The four letters are combined
and permuted to denote various biology markers, such
as sequences, genes, proteins, RNAs, and DNAs.
They are readable, understandable, and convenient for
sequence analysis[2]. In the 21st century, especially with
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the advent of next-generation sequencing technologies,
genomic data representation has become more
important in many artificial intelligence technologies,
such as machine learning and knowledge discovery.
Data representation challenges can be alleviated by
adopting alternative data preprocessing methods such
as feature selection, normalization, and regularization;
however, effective methods of representing data and
building models for feature learning remain uncertain.

In Digital Signal Processing (DSP), the first step
toward feature extraction is converting the original
information into sequential digital values. These values
are called signals. Digital signal processing has a
set of advanced methods to process data, many of
which can be useful for knowledge-based discovery
in bioinformatics. An example is Genomic Signal
Processing (GSP), which is an interdisciplinary method
that integrates DSP, pattern recognition, control theory,
dynamic system, information theory, communication
theory, network modeling, mathematics, and statistics
into bioinformatics[3]. The goal of GSP is to discover
hidden genomic and proteomic characteristics and
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understand the mechanisms of disease and biological
system regulations by exerting extant signal processing
methods into bioinformatics. In recent decades,
scientists have utilized GSP in genome analysis and
data processing in various subjects, such as gene
detection and prediction, dynamical modeling of
the genetic network, sequence analysis, evolutionary
analysis, RNA prediction, and so forth.

GSP can provide a good reference for machine
learning because they both rely on the intensive numeric
computing. The first step in GSP is to convert character
data or text in DNA genomes into numerical sequences,
which is identical for both DSP and machine learning.
This conversion can be called numeric representation[4],
encoding scheme[5], or symbolic-to-digital mapping[6],
which are rather equivalent.

An encoding scheme determines the steps for signal
processing and pattern recognition and determines
how far genomic properties can be used to detect
the characteristics of particular regions. Thus,
diverse encoding schemes are designed for different
applications. For example, the most commonly used
encoding scheme in GSP is Voss representation[7]

because it only contains 0 s and 1 s in sequences that
can be easily used for Discrete Fourier Transform
(DFT)-related applications. Reports claim that most
GSP methods are focused on detecting coding
regions[8]. However, this study disputes that. Encoding
schemes are applied in many areas, such as detecting
3-periodicity coding region[8], prediction of repeats
in genomic sequences[9], sequence alignments[10, 11],
phylogenetic tree[12, 13], dynamic genetic network
modeling[3, 14], sequence comparisons[8], correlation
and fractal analysis[4, 15], motif detection[16], and so
forth.

The encoding schemes scrutinized in this
paper include atomic representation, Chaos
Game Representation (CGR), Electron-Ion
Interaction Pseudopotential (EIIP), molecular mass,
thermodynamics, three-group classification, and
dinucleotide representations among others. These
representations can be classified into fixed mapping,
which maps single or multiple characters to one
number, and flexible mapping[17], which uses a more
flexible approach where nucleotide sequences can be
encoded based on variant properties or statistics[18].
Representations can be non-graphical or graphical[19] in
1D, 2D, 3D, 4D, 5D, and even 6D transformations[20].

This study comprehensively investigated encoding

schemes of genome sequences. However, some
schemes may not be covered. In attempt to include
all schemes, we further classify them in terms
of the following properties: (1) biochemical or
biophysical properties, (2) computing/mathematical
properties. The former makes the encoding scheme
scientifically meaningful, and the latter ensures its
computing merits. Furthermore, they are summarized
into five categories based on following perspectives:
biochemical properties, primary-structure properties,
Cartesian-coordinate properties, binary and information
encoding, and graphical representation. A summary of
the encoding schemes is shown in Fig. 1.

This paper is organized according to the above
categories. Sections 2–6 demonstrate the different
encoding schemes following the above perspectives,
and in Section 7 we compare performance, analyze
applications, and discuss regularization methods, such
as data normalization in deep learning, which can
alleviate the negative impact of a poor encoding
scheme. In Section 8, we conclude with future
prospects.

2 Biochemical Properties

2.1 Atomic Number

Atomic representation refers to that each nucleobase is
assigned its atomic number as an indicator to convert
the nucleotide sequence into a series of numerical
atomic indicators. C D 58, T D 66, A D 70, G D
78. This type of direct mapping was used to measure
the fractal dimension difference between sequences
of human and chimpanzee[4]. It also gave a set of
comparisons to show the diverse results when different
encoding schemes of numerical representations were
used.

Cervantes-De la Torre et al.[15] adopted atomic
representation and obtained a fractal dimension of
the 118 bp HAR1 nucleotide sequence for human
and chimpanzee which was about 2.02 and 1.96,
respectively, with a difference of about 0.06. When
adopting the scheme of purine atomic numberD62 and
pyrimidine atomic numberD 42, the difference between
human and chimpanzee based on the fractal dimension
of the HAR1 gene sequence was 0.07[4]. In a scheme
where arbitrary values of A D 1, T D 2, C D 3, and
G D 4 were assigned, the difference was about
0.03[4]. Thus, it is seen that various encoding schemes
in data representation can give different results, which
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Name Scheme Feature

Atomic Number C=58, T=66,A=70, G=78 Atomic number of nucleotide

EIIP
C=0.1340, T=0.1335, A=0.1260, 

G=0.0806
Distribution of the free electron 

pseudopotential energy

Molecular Mass
C=111.1, T=112.1, A=135.13, 
G=151.13 or C=110, T=125, 

A=134, G=150
Molecule mass

Thermodynamics

TC=5.6, GA=5.6, CA=5.8, TG=5.8, 
TA=6.0, AC=6.5, GT=6.5, CT=7.8, 
AG=7.8, AT=8.6, TT=9.1, AA=9.1, 

CC=11.0, GG=11.0, GC=11.1, CG=11.9

Encoded according to the enthalpy 
values of thermodynamic 
interactions between two 

molecules

Three-group 
classification

(1) R={A, G}, Y={C, T}
(2) M={A, C}, K={G, T}
(3) W={A, T}, S={G, C}

Each group is assigned the same 
number.

Dinucleotide
Sixteen dinucleotides are mapped to a 

unit circle. 
Encoding the neighboring 
nucleotides to a 2D plot

Ring Structure 

AG: (0, 1.5), CT: (0, -1.5), CA:(1, 1), TG: 
(-1, -1), CG: (1, -1), TA: (-1, 1), GA: (1, 

0), GT(0.5, -1.25), GC: (-0.5, -1.25), TC:       
(-1, 0), AC: (-0.5, 1.25), AT: (0.5, 1.25), 
AA: (0, 1), TT: (0.5, 0), GG: (0, -1), CC:      

(-0.5, 0).

Extension of dinucleotide 
encoding; ring structures; 

molecular weight

Inter-nucleotide 
Distance

If the same nucleotides are located at 
the positions of i, i+k1, i+k2, i+k3 ,..., 

one encodes S(i), S(i+k1), S(i+k2),... as 
k1, k2, k3,....

Primary structure; calculate the 
distance between the same 

nucleotides

Triplet 
<T1, σ1>,<T2, σ2>, ..., <T64, σ64>, T is the 
triplet of 64 codons, σ is triplet repeat 

function

The triplet encoding depends on 
the weight of condons

Frequency-of-
occurrence

C=0.27215, T=0.20576, A=0.24300, 
G=0.27909 or CG:0.01, GC: 0.043, CC: 

0.047, GT:0 .049, GG: 0.050, AC: 
0.054, TC: 0.057, GA: 0.061, TA:0.067, 
AG: 0.070, CT: 0.071, TG: 0.074, CA: 

0.074, AT: 0.081, AA: 0.097, TT: 0 .097

Single nucleotide frequency or 
dinucleotide frequency of 

occurrence

Minimum 
Entropy Mapping

Hx(M)=- 𝑘=0
𝑁/2

𝑝𝑥 𝑘;𝑀 log 𝑝𝑥[𝑘;𝑀]
Not fixed mapping; Calculate the 

power spectrum of DNA sequence

Integer Number
x↔n, x∈{C, T, A, G} , n ∈{0, 1, 2, 3}  or 

n∈{-1, -2, 1, 2} 
C,T,A,G are assigned an integer 

number

Real Number
x↔n, x∈{C, T, A, G} , n is a real 

number
EIIP is also one of real number 

encoding schemes.

Complex Number
C=-1+j, T=1-j, A=1+j, G=-1-j or C=-j, 

T=1, A=-1, G=j … … 
A broad category like integer 

number and real number

QPSK C=-1-j, T=1-j, A=1+j, G=-1+j
Constellation for QPSK scheme in a 

2D plane

PAM C=0.5, T=1.5, A=-1.5, G=-0.5 1D encoding scheme

DNA Walk/Paired 
Numeric

(C or T)=+1, (A or G)=-1 or (C or T)=-1, 
(A or G)=+1 

Visualizing the cumulative change 
for pyrimidine (C or T) and purine 

(A or G)

Voss
S=[C, G, A, T], Cn=[1,0,0,0], Gn=[0, 1, 
0, 0], An=[0, 0, 1, 0], Tn=[0, 0, 0, 1]

Four sequences of 0 and 1 are 
formed to represent the genome 

sequence

Galois Field
α=1↔1↔C, α1=α↔2↔T, α2=α+1 

↔3↔G, 0=0↔0↔A
A fundamental scheme for signal 

and information processing.

I Ching 
Representation

Binary codes for 64 codons
Ancient encoding scheme; binary 

codes for modern computing

Chaos Game 
Representation 

(CGR)

𝑋𝑖 = 0.5 𝑋𝑖−1 + 𝑔𝑖𝑥
𝑌𝑖 = 0.5(𝑌𝑖−1 + 𝑔𝑖𝑦)

A: (0, 0), T(1, 0), G(1, 1), C(0, 1)

Graphical representation; (𝑔𝑖𝑥, 𝑔𝑖𝑦) 
is the corresponding vertex; 

initiated in a unit square

CGR Walk
CGRRY: A(0, 0), T(1, 0), C(0, 1), G(1, 1)
CGRMK: A(0, 0), T(1, 0), G(0, 1), C(1, 1)
CGRWS: A(0, 0), G(1, 0), C(0, 1), T(1, 1)

Combine CGR with DNA Walk; 
three-group properties

Tetrahedron
𝐴 = 𝑘, 𝐶 = −

2 2

3
𝑖 +

6

3
j −

1

3
k, 𝐺 =

−
2 2

3
𝑖 −

6

3
j −

1

3
k, 𝑇 =

2 2

3
𝑖 −

1

3
k

Properties of tetrahedron used for 
representing 4 nucleotides and 

codons

Self-Organized 
Map (SOM)

A: (0, 0, 0), T: (0.289, 0.5, 0.816), 
C: (0.866, 0.5, 0), G: (0, 1, 0)

3D coordinate; midpoints between 
two bases can reflect 3-group 

properties.

Quaternion
A = i + j + k, C = - i + j - k, G = - i - j + k, 

T = i - j - k

Scale 3D coordinate to 4D 
quaternion; symmetry of 

quaternion

H-curve
A= i + j - k, T = i - j - k, C = - i - j - k, 

G= - i + j – k
3D curve

Z-curve

An+ Cn + Gn + Tn = n
𝐴𝑛
𝐶𝑛
𝐺𝑛
𝑇𝑛

= 
𝑛

4

1
1
1
1

+
1

4

+1 + 1 + 1
−1 + 1 − 1
+1 − 1 − 1
−1 − 1 + 1

𝑥𝑛
𝑦𝑛
𝑧𝑛

Four faces of tetrahedron are the 
directions of cumulating 

nucleotides in DNA sequence, that 
match the geometric properties of 

tetrahedron.

Fig. 1 Summary of encoding schemes.

can lead to non-uniformity in research.

2.2 Electron-Ion Interaction Pseudopotential

A numerical scheme based on EIIP of nucleotides
C, T, A, and G was proposed to replace Voss
representation[21], which maps the nucleotides into
four binary indicator sequences[7] and is commonly
employed in many GSP applications based on DFT.
The energies of delocalized electrons in amino acids
and nucleotides have been calculated as EIIP. These
values have been used in Resonant Recognition Models
(RRM) as a substitute for the corresponding amino acid
in protein sequences[22]. The EIIP values for the four
nucleotides are C D 0:1340, T D 0:1335,A D 0:1260,
and G D 0:0806. When the EIIP values are substituted
to a DNA sequence, it becomes a numerical sequence
that denotes the distribution of the free electrons’
pseudopotential energies along the DNA sequence.

EIIP uses real numbers, which facilitate scientific
computing. As such, it has been adopted in diverse
fields such as neural network, wavelet transform, and
GSP to reflect the pseudopotential feature of nucleotide
sequences[23, 24].

2.3 Molecular Mass representation

The molecular mass of nucleotides is used as a
numeric scheme to correlate some physical quantities.
Molecular mass representation has been utilized in
mapping DNA sequences into a multi-dimensional
space, where C, T, A, and G were encoded as
110; 125; 134; and 150, respectively[25, 26].

In one study, ascending molecular masses of
111:1; 112:1; 135:13; and 151:13 were respectively
used for C, T, A, and G[27], and the nucleobases
were paired based on these masses in ascending
or descending order. The deviation from the actual
mass values was little and was probably caused by
measurement techniques.

2.4 Thermodynamic properties

According to the thermodynamic properties of
neighboring nucleotide interactions[28], the enthalpies
of combined nucleotides are shown in Fig. 2. The
enthalpy values are TC D 5:6, GA D 5:6, CA D 5:8,
TGD 5:8, TAD 6:0, AC D 6:5, GT D 6:5, CT D 7:8,
AGD7:8, AT D8:6, T T D9:1, AAD9:1, CC D11:0,
GGD11:0, GC D11:1, and CGD11:9. The unit of
these enthalpy values is kcal/mol. Figure 2 also shows
the symmetric patterns when combining two nucleotides,
which have been discussed in a previous research[29].
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Fig. 2 Enthalpy values of thermodynamic interactions
between two molecules. The unit of measurement is
kcal/mol[29] (1 cal=4.18 J).

Biochemical properties are reflected in the three-
group classification of the four nucleotides[30]. These
three groups integrate the thermodynamic properties of
DNA nucleotides and are as follows: (1) purineR D fA
or Gg and pyrimidine Y D fC or T g; (2) amino group
M D fA or C g and keto group K D fG or T g;
and (3) weak H-bonds W D fA or T g and strong H-
bonds S D fG or C g. Many encoding schemes are
based on this three-group classfication including CGR-
walk[31–33].

In addition, mutations between the nucleotides can
be transition or transversion. Transition (A-G, C-T)
occurs more frequently than transversion (C-G, T-A).
According to the enthalpy values in Fig. 2, weak bonds
exist between pairs of transitions compared with those
of transversions[29]. Encoding schemes can be designed
based on these biochemical features. For example, in
mapping using the binary codes, Hamming distance
and Euclidean distance were employed to reflect the
differences between transition and transversion in light
and dark colors, respectively, as shown in Fig. 3[2, 34, 35].

3 Primary-Structure Properties
The properties of a genome primary structure are

11

01 00

10
Transition

Transition

Transversion Transversion

dh=1, de=1

dh=1, de=1

d
h =2

, d
e =1

dh=1, de=2 d
h =2

, d
e =3

Fig. 3 Difference of transition and transversion between
molecules measured by Hamming distance and Euclidean
distance[29].

based on the structure of its DNA sequences, including
dinucleotide sets and triplets, as well as related
information such as the statistics at each position. These
can be considered when designing encoding schemes.

3.1 Dinucleotide representation
Combining two neighboring bases, dinucleotide sets are
encoded as values[27, 36]. For example, sixteen points
can be put on the circumference of a unit circle as shown
in Fig. 4, where each point can be encoded into a polar
angle following the below equation,

�i D 2i =16; i D 1; 2; :::; 16 (1)
Since each dinucleotide is encoded to the coordinates
.xi ; yi /, i D 1; 2; :::; N � 1 in a 2D plane, a DNA
sequence can be encoded into a series of codes and its
geometrical center can be calculated as follows:

x D

N�1X
iD1

xi=.N � 1/; y D

N�1X
iD1

yi=.N � 1/ (2)

The dinucleotide representation can be applied for
measuring the distance between two sequences[36],
since it plots any pair of bases into the 2D plot. A
Covariance Matrix (CM) can be determined as follows:

CM D

 
CMxx CMxy

CMyx CMyy

!
(3)

where

CMxx D

N�1P
iD1

.xi�x/.xi�x/ s
N�1P
iD1

.xi�x/2

s
N�1P
iD1

.xi�x/2

! ;

CMxy D CMyx D

N�1P
iD1

.xi�x/.yi�y/ s
N�1P
iD1

.xi�x/2

s
N�1P
iD1

.yi�y/2

! ;

CMyy D

N�1P
iD1

.yi�y/.yi�y/ s
N�1P
iD1

.yi�y/2

s
N�1P
iD1

.yi�y/2

! (4)

TG

TC

TT

TA

GA

GT
GG

GC

CA

CT

CG

CC

AA

AT
AG

AC

Fig. 4 Dinucleotides placed in a unit circle.



Ning Yu et al.: Survey on Encoding Schemes for Genomic Data Representation and Feature Learning 195

Using two eigenvalues �1 and �2 for the matrix CM,
the distance between two sequences i and j can be
calculated as

dij D

q
.�i

1 � �
j
1/

2 C .�i
2 � �

j
2/

2 (5)

3.2 Ring structure

Ring structure is an extension of dinucleotide encoding,
and it utilizes the ring structures of DNA bases and
their corresponding molecular masses. In Section 2.4,
we grouped the nucleotides into three sets and have
established that they can be encoded in terms of the
molecular weight in ascending or descending order.
Here, the three nucleotides groups are further classified
into six classes: purine, pyrimidine, amino, keto,
strong hydrogen bond, and weak hydrogen bond[27].
Subsequently, they are plotted into a 2D plane of
position coordinates. The six classes constitute the
six vertices of a hexagon. There are six combinations
of the different hexagon representations as shown in
Fig. 5. Each plot corresponds to an encoding system.
For example, in the first hexagon, each dinucleotide
is encoded into a two-dimensional vector: AG: (0,
1.5), CT: (0, �1:5/; CA: (1, 1), TG:(�1; �1/, CG:(1,
�1/; TA: (�1; 1), GA: (1, 0), GT(0.5, �1:25/; GC:
(�0:5;�1:25/; TC: (�1; 0), AC: (�0:5; 1.25), AT: (0.5,
1.25), AA: (0, 1), TT: (0.5, 0), GG: (0, �1), and CC:
(�0:5, 0).

Thus, for a sequence S D fs1; s2; :::; sN g, si 2 fC; T;
A;Gg and i D f1; 2; 3; :::; N g, S can be mapped into a
series of points P .
Pi D '.sisiC1; i/ D '.xi ; yi ; i/ D '.xsi siC1 ; ysi siC1 ; i/

(6)
where xsi siC1 and ysi siC1 represent the encoded values
in a corresponding plot and i denotes the z coordinate.

Fig. 5 Six hexagons.

Similar to the calculation of dinucleotide introduced
in the previous subsection, the geometric center for a
sequence can be calculated with the following equation:

ux D
1

N

NX
iD1

xi ; uy D
1

N

NX
iD1

yi ; uz D
1

N

NX
iD1

zi (7)

Euclidian distance can be used to measure the
similarity/dissimilarity matrix.

� D
q
u2

x C u
2
y C u

2
z (8)

3.3 Inter-nucleotide distance encoding

Encoding scheme based on inter-nucleotide distance
considers the property of the primary structure of a
DNA sequence that can be used for GSP. Nair and
Mahalakshmi[37] first adopted this encoding scheme,
where the distance between two same nucleotides
was encoded as the numerical representation
for the corresponding nucleotide. Distance-based
methods were adopted and further developed for
detecting CpG island[38, 39]. For a DNA sequence S ,
assuming that the same nucleotides are located at
positions of i , i C k1, i C k2, i C k3, ..., that is,
S.i/DS.i C k1/ D S.i C k2/ D S.i C k3/ D :::,
then S.i/, S.i C k1/, S.i C k2/, :::, are encoded as k1,
k2, k3, :::.

For example, for a short sequence of
AGTTCTACCAGC, the first and second A’s are
encoded as 6 and 3, respectively, because of the
distances between the first two A’s and the next two A’s.
Similarly, G, C, and T are encoded. Thus, the sequence
is encoded as f6; 9; 1; 2; 3; 6; 3; 1; 3; 2; 1; 0g[37].
Furthermore, the encoding scheme was slightly
modified into a cyclic structure[40], where the last
nucleotide in the sequence is connected to the first.
Thus, the total lengths of the four inter-nucleotide
distance sequences denoted as NA, N T, NG, and N C

are equal to the sequence length N .
An inter-nucleotide distance-based genome analysis

was conducted[40] where the distribution of inter-
nucleotide distance for each nuclotide shows a power
law behavior. Kullback-Leibler distance, Kolmogorov-
Smirnov distance, and correlation coefficient can
be adopted to measure the difference between this
distribution and a reference distribution. The relative
error expressed in Eq. (9) can be used to compare
various distance distributions based on their inter-
nucleotide distance.

r.k/ D
f0.k/ � f .k/

f0.k/
(9)

where f0.k/ is the observed relative frequency
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distribution of distance k, and f .k/ is the reference
relative frequency distribution[40, 41].

Inter-nucleotide or inter-dinucleotide distance-based
methods have been applied to analyze the distribution
kernel of genome patterns for a whole DNA
genome[42, 43], and similar research has been conducted
in recent years[44].

Studies on constructing phylogenetic trees using
inter-nucleotide distance have stimulated the
development of inter-nucleotide distance-based
techniques[41, 45]. The algorithms have become more
efficient because of the use of k-word distance, which
count the distance between k-tuple, 2 6 k 6 9[45, 46].
Extensive studies on phylogenetic tree construction
have used inter-amino-acid distance to measure the
distance of amino acids in protein sequence[47].

3.4 Triplet encoding

A weight-based numerical representation was proposed
based on the properties of nucleotide triplets and codons
of amino acid[48]. This encoding scheme was used
to measure the distance between two sequences. For
two pairs of triplets .X1; Y1/ and .X2; Y2/, if the
corresponding codons ofX1 and Y1 are encoded into the
same amino acid, while those ofX2 and Y2 are encoded
into another amino acid, the distance between the pairs
can be expressed as

j .X1/ �  .Y1/j < j .X2/ �  .Y2/j (10)

where  is a mapping from triplet to weight. The
weight consists of two parts: the amino acid and
the codon, which are its integer and fractional parts,
respectively. For example, the first codon (GCT) of
alanine has a weight of 1.1 and its second codon (GCC)
has a weight of 1.2.

For a DNA sequence G D g1; g2; g3; :::; gN ,
g 2 fC; T;A;Gg, its triplet sequence is G D t1; t2;

t3; :::; tM where M D ŒN=3� and ti is a triplet. A
mapping � is illustrated as
�.G/ D f.1;  .t1//; .2;  .t2//; :::; .M; .tM //g

(11)
Furthermore, a triple-repeat function ı is defined

to represent the occurrence of triplet in a sequence.
Given two coding sequences, A and B , the triplet-
repeat model set for a sequence G is G D

< T1; ı1 >;< T2; ı2 >; :::; < T64; ı64 >, where T is
the triplet of 64 codons. A weight deviation between
the two sequences is shown in Eq. (12). It can be used
to measure the similarity between A and B .

WD.A;B/ D

64P
iD1

jıA.i/ � ıB.i/j� .Ti /

64
(12)

3.5 Frequency-of-occurrence mapping

The occurrences of DNA nucleotide differ in various
regions[49, 50], such as intron and exon. On the basis
of the frequencies of nucleotide occurrence, the
fractional occurrence can be statistically calculated
and used as a key parameter in detecting these
regions. Thus, nucleotides are represented by their
fractional occurrences. For example, C, T, A, and G in
exons are encoded as 0.272 15, 0.205 76, 0.243 00, and
0.279 09, respectively, following the statistics of their
occurrences.

Position count function uses the binary count for
each position to generate the frequency of nucleotide
occurence in that position[51]. DNA sequence has been
modeled with a random process that assigns values
according to a probability distribution on the alphabet
(C, T, A, G)[52].

Besides the frequency of single nucleotides, the
frequencies of dinucleotides and triplets have also been
considered[9, 50, 53, 54]. They show different frequencies
among species, indicating the different statistics on
DNA genome of various species. Thus, this encoding
scheme can vary in different DNA genomes. For human
genome, the below frequencies of dinucleotide were
used as an encoding scheme[5]: CG: 0.01, GC: 0.043,
CC: 0.047, GT: 0.049, GG: 0.050, AC:0.054, TC:
0.057, GA: 0.061, TA: 0.067, AG: 0.070, CT: 0.071,
TG: 0.074, CA: 0.074, AT: 0.081, AA: 0.097, TT:
0.097.

3.6 Minimum entropy mapping

To reduce the noise of DNA sequences and concentrate
on the relevant information after mapping, Minimum
Entropy Mapping (MEM) was designed[55]. MEM is an
encoding scheme that maps by minimizing the spectral
entropy of a DNA sequence rather than fixed mapping.
The search of encoding scheme is an iterative process
following an exhaustive search algorithm.

Each iteration will assign the vector of C, T, A, and
G by choosing the increment of fixed �h. Once the
values of C, T, A, and G are calculated, it converts
the sequences into numeric sequences and calculates
the Fourier spectra for C, T, A, and G sequences.
Subsequently, the energy is computed in terms of the
Fourier transform. The spectrum P can be expressed in
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P Œk� D jXAŒk�j
2
C jXC Œk�j

2
C jXG Œk�j

2
C jXT Œk�j

2

(13)
where

XŒk� D

N�1X
nD0

xŒn�e�i 2 
N

nk
; k D 0; 1; :::; N � 1 (14)

The entropy Hx of a sequence is defined as

Hx.M/ D �

N=2X
kD0

pxŒkIM� logpxŒkIM� (15)

where
pxŒkIM� D PxŒkIM�="P .M/ (16)

and

"P .M/ D

N=2X
kD0

pxŒkIM� (17)

The final encoding scheme meets that
NM D arg min

A;C;G;T2R
Hx.M/ (18)

Under this MEM encoding scheme, the sequences’
spectrum via Fourier transform can be expressed as

XsŒk� D

N�1X
nD0

xŒnI NM�e�i 2 
N

nk
; k D 0; 1; :::; N � 1

(19)
This method was validated as an effective method to

reduce noise and enhance concentration on signals[55],
which can be applied in detecting periodicity in
DNA sequences. The entropic information can also
be applied to other applications[56, 57], such as DNA
sequence analysis, coding/non-coding detection, and so
forth.

4 Cartesian-Coordinate Properties

4.1 Integer and real number

Integer and real number representations are direct and
are commonly used encoding schemes[58, 59]. In many
scenarios of mapping DNA nucleotides, especially in
the early stage of genomic studies, C, T, A, and G have
been arbitrarily assigned to an integer or a real number,
such as 0, 1, 2, and 3. For example, DNA barcode on the
mitochondrial gene cytochrome c oxidase I (COI) is a
core global bioidentification system for animals. DNA
sequences were encoded to four integers .A D 1;G D

2; C D 3; and T D 4/[60, 61].
This broad encoding scheme has been applied to

many other applications[59, 62]. Kent et al.[63] used 2-
bit format to compress and store the DNA sequences
in a compact randomly-accessible format, which uses
a 16-byte header to contain the encoding information

and pack each DNA nucleotide to two bits per base,
T: 00, C: 01, A: 10, and G: 11. However, this type
of arbitrary assignment is criticized for its inability to
provide real signals to aid understanding in biological
research[64]. Instead, a weight-based assignment is
employed to the spectral transformation where the
weight coefficients are derived from the enthalpy
analysis of each nucleotide pair[64]. This numerical
representation method is one of the supportive evidence
for a novel encoding method[64]. Moreover, EIIP is also
a set of real numbers which has many applications in
genomic sequence analysis[23].

A complementary encoding scheme using an integer
or a real number is popular in neural network
community because its mean is zero and the deviations
are symmetric. Such symmetric and complementary
properties are beneficial to data training and feature
learning. For example, the code book fC: �1, T: �2; A:
2, G: 1g has showed its importance in supervised deep
learning networks in recent studies[5].

4.2 Complex number

The complex representation reflects the complementary
nature of AT and CG pairs as A D 1 C j , C D �1 C
j , G D �1 � j , and T D 1 � j [17, 65–68], which better
translates the features of nucleotides into mathematical
properties. Complex number representation is a 2D
numerical mapping. By placing the nucleotides on
different vertices on a two-dimensional Cartesian-
coordinate plane, the encoding values for C, T, A, and
G are different. The complex number representation is
regarded as a dimensionality reduction technique since
3D projection can be reduced to 2D[6]. It leads to two
types of mapping methods by changing the projection
planes: A D 1 C j , C D �1 � j , G D �1 C j ,
T D 1�j ; and A D �1Cj , C D �1�j , G D 1Cj ,
T D 1� j . For the former, the pairs of nucleotides CG
and AT are in mathematics complex conjugates, while
purines and pyrimidines have equal imaginary parts and
real parts with opposite signs. For the latter, the two
complementary strands of a DNA molecule correspond
to digital signals of equal absolute values and opposite
signs so that their algebraic sum is zero, which benefits
computing[6].

Furthermore, if the Cartesian coordinate is rotated by
45 degrees, the complex numbers for nucleotides are
encoded as: A D �1, C D �j , G D j , and T D 1.
In a quaternion representation of DNA bases, pure
quaternions are assigned to each base: A D i C j C k,
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C D i � j �k, G D �i � j Ck, and T D �iC j �k.
Since the complex representation is viewed as 2D

mapping, real-number representation[23, 69, 70] can be
viewed as a 1D Cartesian-coordinate mapping[71]. A
typical representation for the 1D mapping is A D 1:5,
C D 0:5, G D �0:5, and T D �1:5, where AT and
CG are complementary[49]. Another alternative real-
number mapping is A D �1:5, T D 1:5, C D 0:5

and G D �0:5[69]. The vectors connecting the origin to
four points, (1, 1), (�1, 1), (�1, �1/ and (1, �1/; have
rotational angles of  =4, 3 =4, 5 =4, and 7 =4 with
the x-axis[70]. Bases C, G, A, and T are accordingly
defined as 1, 3, 5, and 7.

4.3 Quadrature Phase Shift Keying (QPSK)/Pulse
Amplitude Modulation (PAM) schemes

The QPSK scheme shows constellations in a
complex plane, whereas PAM scheme shows
the real representation[72]. The complex, real,
and integer representations can be regarded as
constellation diagrams, which are widely applied
in digital communications[55, 69]. Figure 6 displays
the QPSK/PAM schemes for the real and complex
representations.

In the QPSK scheme, complex numbers represent
the bases[73]: A D 1C j , G D �1C j , C D �1 � j ,
and T D 1 � j . In PAM scheme, real numbers
denote the bases[73]: A D �1:5, G D �0:5, C D 0:5,
and T D 0:5. Thus, QPSK/PAM schemes uniformly
represent data on 2D planes and ensure symmetry of
genetic codes.

4.4 DNA Walk and paired numeric method

DNA Walk model[74] can be represented on a 2D plane,
which graphically shows a path along a DNA sequence,

G=--1+j A=1+j

C=--1-- j T=1-- j

A=--1.5 G=-- 0.5 C=0.5 T=1.5

Fig. 6 Constellation for real number and complex number
representations.

whose value is upwards (+1) for a pyrimidine (C or
T) and downwards .�1/ for a purine (A or G). A
graph keeps oscillating with the nucleotide value on
the x-axis, and the sequence progresses in a cumulative
manner. The DNA walk can be used to visualize
changes in nucleotide composition, base pair patterns,
and evolution along a DNA sequence.

Although DNA walk is a simple numerical
representation method, it can show the overall
statistical features of DNA sequences. Thus, it forms
the basis of many improved methods[31, 75].

Similar to DNA walk, paired numeric method
encodes the pairs of complementary nucleotides AT
and CG as C1 and �1, respectively, so that all
strands of DNA helix are identically represented[49].
Nucleotides are commonly paired and complemented
in encoding schemes. For example, in the complex
number representation of Section 4.2, nucleotides are
mapped, paired, and complemented in a 2D symmetry
plane, while for real-number representation, they are
symmetrically paired, mapped, and complemented in a
1D plot.

5 Binary and Information Encoding

5.1 Voss representation

Voss[7] proposed a method to represent a DNA sequence
by four binary sequences and applying long-range
fractal correlation. It has since been utilized as a
canonical numerical representation for GSP, especially
for DFT-based methods. The encoding method is shown
in the following matrix.

S D ŒC;G;A; T �;

Cn D Œ1; 0; 0; 0�;

Gn D Œ0; 1; 0; 0�;

An D Œ0; 0; 1; 0�;

Tn D Œ0; 0; 0; 1� (20)
Fourier technique uses Voss as the most prominent

numerical method to detect short-range correlations
such as the 3-periodicity on protein-coding regions.
The quantitative measure for detecting the relative
strength of this periodicity is based on Fourier
transformation[76, 77]. The transformation reflects the
3-periodicity because of amino acid and codon usage
biases. The unequal frequency of occurrence of the
amino acids in proteins results to a 3-base periodicity
in the coding regions of a DNA genome.

Through numerical representations of DNA
genomes, DSP-based features are extracted, analyzed,
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and classified in the spectral domain or spatio-temporal
domain.

A binary representation is mostly used to represent
genome sequences. DNA sequence containing
nucleotides C, T, A, and G are converted into four
separate binary sequences, xCŒn�, xTŒn�, xAŒn�, and
xGŒn�, where 1 and 0 respectively represent the
presence and absence of a base in the corresponding
positions.

The DFT is shown as follows:

XŒk� D

N�1X
nD0

xŒn�e�j.2 nk=N /; 0 6 k 6 N � 1 (21)

where xŒn� is a finite-length sequence of length
N . GeneScan calculated the signal-to-noise ratio of
the peak at k D N=3 as P D SŒN=3�= OS , where
SŒk� D

P
m

jXmŒk�j
2, m DfC; T;A;Gg and OS is the

average spectral content of S [76]. P was assigned a
value of 4 to distinguish between coding and non-
coding sequences.

Abbasi et al.[78] applied an FIR bandpass filter of
order 8 with central frequency of 2 =3 to numerical
sequences and multiplied the sequences with an impulse
train of periodicity 3 to emphasize the period-3 property
in exonic region.

Conventional signal processing methods are often
combined with other techniques. For example, a
22-alphabet-based encoding method that considered
the distribution of dinucleotides and Jensen-Renyi
divergence was proposed to detect the borders between
coding and non-coding regions[79]. A technique based
on inter-stop distance was used to measure the distance
between two stop symbols (amino acid) to identify the
coding region in prokaryotes and simple eukaryotes[80].

5.2 Galois field

An encoding scheme was integrated into Galois
field by which nucleotides were mapped to Galois
field GF.4/ and the sequence was transformed into
orthogonal .n; k/ codes[81]. The labels in Eq. (22) are
created for the nucleotide elements with the primitive
polynomial for GF.2/: ˛2 C ˛ C 1 D 0. Any GF.2/
binary pair corresponds to one of four GF.4/ symbols.
The polynomial can be manipulated by addition,
multiplication, subtraction, and division in GF.4/.

˛0
D 1, 1, C;

˛1
D ˛, 2, T;

˛2
D ˛ C 1, 3, G;

0 D 0, 0, A (22)

Furthermore, GF.4/ encoding scheme method can
be applied in other sophisticated encoding methods
such as error-correction code, which is an important
information coding technique in genome analysis. The
binary error-correcting coding structure reflects the
nature of genome coding and efficiency in detecting
genome redundancy and gene mutations. Similar ideas
to Galois Field have been developed. In a research,
the vector corresponding to the third base in a codon
(the least significant digit) was multiplied with 1, while
those corresponding to the second base and first base
(the most significant digit) were multipled with 2 and
22, respectively[2]. Other encoding schemes have been
combined with GF.4/ to reflect the features of DNA
sequence[6].

5.3 Error-Correction Code

Cyclic block codes are usually known in
communication channel as Error-Correction Codes
(ECC). In biology, these values are not needed, and a
block coding structure is reconstructed to fit biological
applications[72]. Currently, many variants of ECC
are adopted in DNA computing[82]. DNA sequences
are encoded as large ECC to equip them with error-
correction mechanisms in accordance with modern
communication theory.

The ring of integers modulo 4 was used to construct
the algebraic structure of a codeword to verify the
presence of an error-correcting code underlying DNA
sequences[34]. To verify a match between a given DNA
sequence and a codeword, the 24 permutations of C,
T, A, and G were considered. A BCH code denoted
by .n; k; d/ was associated with the DNA sequence
structure, where n is the sequence length, k is the
length of the input information sequence responsible
for creating the DNA sequence, and d is the minimum
difference between any two codewords[83].

A codeword was designed for every k-symbol
information sequence and the codebook was a set of
all codewords made by the encoder[84]. For a received
sequence, a decoder gave a method for selecting the
codeword to be transmitted. Each symbol is a bit and
can be denoted as 0 or 1.

A convolutional encoding method was adopted,
where the error-correction coding theory was used to
encode and analyze DNA sequences for prokaryotic
organisms[35]. The convolutional code model was
designed based on degeneracy of codons. The
Hamming distance between two codes was calculated,
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which is the number of positions with different
corresponding symbols. By shifting each position, the
distances between adjacent codes were calculated. The
average code distances of the selected species outlined
their genomic characteristics.

5.4 I Ching representation

A genetic code based on natural patterns of symmetry
and periodicity was proposed to show the harmony
between the graphical geometry and biological
reality[85, 86]. Three binary representations of the genetic
code according to the ancient I Ching of Fu-Xi were
defragged[86], based on three biochemical properties of
nucleic acids: H-bonds, purine/pyrimidine rings, and
the keto-enol/amino-imino tautomerism, yielding the
last pair a 32/32 single-strand self-annealed genetic
code and I Ching tables. Twenty amino acids can
be directly mapped to the I Ching tables, which can
contain 43 D 64 codes. Some codes denote the same
amino acid.

6 Graphical Representation

6.1 CGR and CGR-Walk

CGR was proposed as a new method for representing
DNA sequences[87]. It generates a genomic signature to
characterize genomes by providing compact, lossless,
and visual appearance[88] and combining them with
distinct sequence statistics.

The CGR encoding scheme maps the DNA sequence
in a unit square, whose four vertices are encoded
with the nucleotides, A W .0; 0/, T W .1; 0/, G W .1; 1/,
and C W .0; 1/, and starts the sequence at the center
of the square. For a DNA sequence, the first
nucleotide is mapped halfway between the starting
point and the corresponding vertex for the nucleotide,
and the remaining nucleotides of the sequence are
plotted halfway between the previous point and
the corresponding vertices. Mathematically, a DNA
sequence can be represented as(

Xi D 0:5.Xi�1 C gix/;

Yi D 0:5.Yi�1 C giy/
(23)

where .gix; giy/ is the corresponding vertex of this
nucleotide and .Xi ; Yi / and .Xi�1; Yi�1/ are the
current and previous plotted points on the coordinate,
respectively.

In some articles, CGR is widely regarded as a Markov
Chain model[16, 88–90]; however, some other articles[91]

disagreed. It has been proved that the frequencies

of nucleotides, dinucleotides or trinucleotides cannot
solely determine the patterns in CGRs, whereas
frequencies of oligonucleotides of all lengths can
solely determine them[88]. The local similarity between
sequences can be reflected in the distance between CGR
points, since these points aggregate closer to a certain
region with the increase of local similarity. Studies
have unveiled the dependent relationship between CGR
patterns and local similarity[33].

Visual tools for data inspection are important in
genome analysis as they facilitate the quantitative
analysis and comparison of DNA sequences[27, 48, 92].
Following the exponential growth of genome data,
visual and graphical representations have become more
important. In terms of the number of dimensions,
visualization methods can be categorized into 2D, 3D,
4D, 5D, and 6D, which are all constructed based on
numerical transformation and representation[20, 93].

The CGR-walk model was proposed by combining
CGR with DNA walk method, which considers
the thermodynamic properties of the three groups
introduced in Section 2. Local similarity/dissimilarity
was further studied[31, 32]; three 2D CGR spaces were
created, and each vertex was differentially encoded
with nucleotides, as shown in Table 1. The basic
CGR encoding rules of the three spaces are the same
as those of traditional CGR. The CGR-walk model
provides the numerical foundation as well as graphical
representations for long-range correlation studies and
genome analysis.

The CGR-walk model provides a solid numerical
representation for studying the relationship between
long-range correlation and Hurst exponent[25, 31, 74, 77].
Hurst exponent is a measure for long-range correlation
in a DNA sequence that is related to the auto-
correlations of time series[94]. A DNA sequence with
N elements is transformed into a finite set of numerical
values by summing the x and y components of CGR.
That is,

ui D xi C yi (24)

where ui is the calculated value for the i -th nucleotide
in a DNA sequence, and xi and yi are the x and y

Table 1 Encoded initial positions of CGR-walk.

Category Encoded initial position
CGR-RY A(0, 0), T(1, 0), C(0, 1), G(1, 1)
CGR-MK A(0, 0), T(1, 0), G(0, 1), C(1, 1)
CGR-WS A(0, 0), G(1, 0), C(0, 1), T(1, 1)
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coordinates of CGR, respectively[94].

6.2 Tetrahedron

A tetrahedral numerical representation of C, T, A, and
G was projected on a 3D coordinate system to delineate
the distance between nucleotides[6, 59, 85, 93, 95], as shown
in Fig. 7. A typical representation of tetrahedron is
shown in Eq. (25). As an application[92], one of the
tetrahedron encoding schemes for codons is displayed
in Fig. 8.

A D k;

C D �2
p

2
3
i C

p
6

3
j � 1

3
k;

G D �2
p

2
3
i �

p
6

3
j � 1

3
k;

T D 2
p

2
3
i � 1

3
k (25)

Furthermore, since the tetrahedron is a subset of a
cube, it can be rotated to fit the coordinates of the cube.
Thus, the encoding scheme for the nucleotides is as
follows:

A D i C j C k;

C D �i C j � k;

G D �i � j C k;

T D i � j � k (26)

6.3 SOM-based approach

Kohonen and Somervuo[96, 97] proposed the use of Self-
Organizing Maps (SOM) for unsupervised training

A

C

T

G

Fig. 7 3-dimensional tetrahedron in a cube.
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Fig. 8 Tetrahedron encoding scheme for codons.

in the artificial neural network. This novel approach
encodes the genomic sequences into fixed-size, metric-
based vectors[93], as shown in Fig. 9. On an irregular
tetrahedron, the distance is set as 1 between AG and
CT vertices and 2 for the remaining pairs. Nucleotides
C, T, A, and G positions are mapped at the four
vertices of the tetrahedron. Symbols for ambiguous
nucleotides are encoded using the 3D coordinates
corresponding to the midpoint (R, Y, K, M, S, and
W) between two bases: the centroid of the plane and
the centroid of the tetrahedron (N). In terms of the
spatial position of the irregular tetrahedron, nucleotides
are encoded as the following numbers: A: .0; 0; 0/, T:
.0:289; 0:5; 0:816/, C: .0:866; 0:5; 0/, and G: .0; 1; 0/.
The Euclidean distance between any two nucleotides
can be calculated easily. Moreover, the midpoints (R,
Y, K, M, S, and W) and the centroids can be encoded
as numerical values according to the positions in the
irregular tetrahedron. Based on Self-Organizing Maps,
a new means was provided for the phylogenetic analysis
of distant species[98].

6.4 Quaternion

The quaternion approach[71] is a 4D hypercomplex
representation derived from Eq. (27).
h D a0i0 C � � � C aj ij C � � � C aN iN ; N 2 ZC [ f0g

(27)
where a 2 R, 0 6 j < N , i0 D 1 and ij , 0 < j 6 N ,
are imaginary units. When j D 1, it is a complex
number; when j D 2, it can be reflected on a
3D plane; when j D 3, it is a 4D quaternion[71]. Seven
variants of quaternion encoding were researched for
detecting the protein-coding regions[66]. These variants
are verified as different complex-number encoding
schemes instead of quaternion encoding since the
complex and quaternion encoding can be unified to an
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Fig. 9 Encoding methods based on (a) a regular tetrahedron
and (b) an irregular tetrahedron.
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N-dimensional hypercomplex number encoding. One
of the encoding assignments can be

A D i C j C k;

C D �i C j � k;

G D �i � j C k;

T D i � j � k (28)

This approach is equivalent to the rotated tetrahedron
(with 3 imaginary units i , j , and k and no real number)
described in Section 6.2.

Addtionally, the quaternion is proposed to replace the
complex number representation to diminish the symbol
challenges of complex numbers, which could lead to
some undected significant patterns. According to an
article[71], the symmetry of the quaternions results to
symbol permutation invariance, when compared with
complex number representation, which lacks symmetry.

6.5 H-curve and Z-curve

In the 1980s, scientists tried to create alternatives to
letter-series representations of nucleotide sequences[99].
H-curve was presented as an alternative to represent a
DNA sequence as a 3D curve, in which each nucleotide
is encoded as a vector with the below functions:

gw.A/ D i C j � k;

gw.T / D i � j � k;

gw.C / D �i � j � k;

gw.G/ D �i C j � k (29)

where i , j , and k are unit vectors pointing to the
Cartesian x, y, and z axes, respectively, and w is the
loci of this nucleotide. Thus, H-curve is defined as

h.z/ D
Xn

wD1
gw.z/ (30)

where z 2 fC; T;A;Gg and n is the sequence length.
The end points of an H-curve describe the nucleotide
composition of the sequence[99]. Vector k value is the
total number of nucleotides in the sequence. The j
value is the accumulated count of purine (A, G) versus
pyrimidine (C, T), which increases or decreases by
one unit on encountering a purine or a pyrimidine,
respectively. The i value is the accumulated count of
C+G content versus A+T content, which increases or
decreases by one unit on encountering (A or T) or (C or
G), respectively.

The H-curve representation provides a simple way
to view, sort, and compare various gene structures.
However, its coordinates are rather sophisticated to
compute. H-curve was compressed into a 2D plane[100].
However, it has a drawback of possibly forming a loop

or circuit, and the sequences are not uniquely described,
which could result in information degeneracy. It was
later improved by compressing 2D Cartesian to the two
quadrants of a Cartesian plane to avoid degeneracy[101].
The encoding system is as follows:

gw.A/ D
1
2
i �

p
3

2
j;

gw.T / D
1
2
i C

p
3

2
j;

gw.C / D
p

3
2
i C 1

2
j;

gw.G/ D
p

3
2
i � 1

2
j (31)

where w is the location of a nucleotide in the sequence,
and i and j are the vectors in a Cartesian plane. The
uniqueness of a sequence is proved by following this
system[101].

Similar to H-curve, the Z-curve is a 3-D curve
that provides a unique set of vectors for visualizing
and analyzing DNA sequences[102–104]. The three
components of the Z-curve, fxn; yn; zng, represent three
independent nucleotide coordinates that denote a DNA
sequence in a 3D coordinate system. However, the
vectors move only in four directions, which are A-
face, T-face, C-face, and G-face, as shown in Fig. 10.
These directions .An; Cn; Gn; and Tn/ can be converted
into coordinate vectors .xn; yn; zn/. Assuming that
each move counts a nucleotide, the summation of the
four moves equals the number of nucleotide because
of the geometric properties of a tetrahedron. The
mathematical expression[102] is as follows:

An C Cn CGn C Tn D n (32)

The conversion between .xn; yn; zn/ and
.An; Cn; Gn; Tn/ can be represented asˇ̌̌̌
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Fig. 10 Tetrahedron-based coordinate system in Z-curve.
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When compared with H-curve, Z-curve can be
regarded as a symmetry projection on 3D coordinate
system, whereas, H-curve can be viewed as a spatial
projection of the Z-curve by rotating the coordinate
system. Both of them are tetrahedron-based encoding
schemes.

7 Analysis and Discussion

In designing an encoding scheme, few considerations
have to be made, such as the number of biological
properties to be reflected and the measure in which
the schemes can improve data processing in feature
extraction. Relatively, spectral analysis of DNA
sequences is often significant in GSP for detecting
feature signals. However, data modeling and training
are more important in deep learning. Thus, choosing
the best encoding scheme is often application-specific.

7.1 Genomic signal processing

Sixteen numerical codes were discussed in details
when searching for the period-3 signals from genome
sequence[66]. Eight of them were grouped under
complex number encoding, including quaternary codes
that were derived from 3D DNA walk for graphical
representation[67]. A comparison showed efficiency of
the quaternary code (C D �1, T D j , A D 1, G D
�j ). In a period-3 spectral classification of exon and
intron sequences with two data sets, the quaternary
codes were more efficient in predicting and computing.

Similar assessments have been conducted[105], and
more than ten encoding schemes, including several
real-number representations, frequency-of-occurrence,
paired numeric, complex quaternion, and inter-
nucleotide distance, were compared for protein-
coding detection. The results showed that paired
numeric encoding scheme was the most accurate
representation[49]. Paired numeric scheme exploits the
property that AT and CG pairs are rich in introns and
exons, respectively. They are paired in a complementary
manner and values of C1 and �1 are utilized to
distinguish them.

GSP methods are also used for computing the
distance between pairs of DNA sequences without a
need for alignment[8], which is useful where similarity
distances are needed. Similarity/dissimilarity can be
quantified based on the distance between different
pairs[27, 31, 36, 48] and represented numerically. In addition
to a good transformation of DNA sequences, a clear
numerical representation is very vital in measuring

the distance between pairs. Thus, the alignment-free
method is preferable to the conventional alignment-
based methods, because the bulky data that develops
from the latter result to complicated computation
for post-genomic studies. The previously introduced
numerical representations for distance measurement,
including dinucleotide representation[36], ring structure-
based encoding[27], I Ching representation, and
weight encoding[48], perform differently, and better
performance is expected in those models based
on biological principles. For example, dinucleotide
representation ignores the order the nucleotides, which
can hide some biological characteristics, resulting in
an inaccurate estimation of similarity[36]. A similar
conclusion has been reported[106], where nine encoding
schemes were compared for measuring the similarity
of DNA sequences. Biological-based mappings with
mathematical merits, such as Voss and Tetrahedron
representations, performed better than other encoding
schemes.

7.2 Neural network

Four types of numerical representations were used
in a four-classifier neural network system for gene
identification[107] and prediction of gene regulatory
networks[108, 109]. Numerical methods can predict
more accurate results, compared with feature-based
approaches that use distinct markers to differentiate
DNA sequences from non-promoter sequences such as
CpG islands, TATA box, and CAAT box, but these
numerical methods work inefficiently for eukaryotic
genomes due to the diverse patterns of promoters. The
numerical representations include (1) C D 1, T D �1,
A D �2, G D 2, (2) C D 1, T D �1, A D �1,
G D 1, (3) C D .10/2, T D .01/2, A D .00/2, G D
.11/2, (4) C D .0010/2, T D .0100/2, A D .1000/2,
G D .0001/2.

The four encoding schemes convert the inputs of
four neural networks from characters to numerical
sequences. Schemes (1) and (2) are integer
representations. Scheme (1) utilizes the unequal
distances among the nucleotides, namely, G > C

and T > A, introducing undesirable characteristics
to the resultant numerical sequences, and thus,
features in the promoter regions are affected[108].
By assigning the same value to two nucleotides,
A D T D �1, C D G D 1, scheme (2) ignores the
difference between A and T or C and G. Scheme
(3) is a promising numerical representation that has
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been effective in gene/exon prediction[17], and it is
also used for multi-classifier neural networks[108].
Scheme (4) uses binary numbers that are orthonormal
to each other and have identical Hamming distance
between any two of them. A similar test examined
two different numerical representations that preserve
different biological properties for multi-classifier neural
networks[108].

7.3 Deep learning

Deep learning method has emerged as an advanced
technique for genomic sequence analysis[110]. Deep
Neural Network (DNN) is one of the implementations
in deep learning, and it generally refers to methods
that automatically learn complex functions[111] and map
data through multiple levels of the feed-forward neural
network to reveal some intractable and non-linear
relationships between input data and hidden factors.

Several common encoding schemes, including EIIP,
Galois field GF(4), Binary, Enthalpy, Entropy, and
so forth, were assessed and their impact on DNA
annotation for the deep auto-encoder network was
evaluated[5]. The standard benchmarks were adopted
on human gene splicing sites[112], which contained real
and fake splice sites and were divided into training and
validation sets.

It was shown that Complementary scheme (C D �1,
T D �2, A D 2,G D 1) performs more effectively in a
data set with a large number of features[5], and schemes
such as Binary and DAX perform more effectively in
a data set with fewer features. This also demonstrates
that the performance of encoding schemes is basically
application-specific.

Five encoding popular encoding schemes, DAX,
EIIP, Complementary, Enthalpy, and Galois, were
selected in an experiment to encode the lincRNA
sequences to train and find lincRNA features[113].
The Complementary scheme (C D �1, T D �2, A D
2, G D 1) had optimum performance on deep neural
network, and results showed that the encoding
scheme that reflects biochemical properties and has
a symmetric structure may perform better over a
particular application.

7.4 Normalization/regularization in deep learning

New techniques are evolving in machine learning
and deep learning to improve data representation
methods because of the importance of data
representation in data mining and pattern recognition.

Normalization/regularization enhances data
representation and compensates for the inadequacies of
poor encoding schemes. Likewise, it could eclipse the
effectiveness of a good encoding scheme.

The neural network has been known to converge
faster if the input training data are normalized[114].
Analytical results have shown that a non-zero mean
of features is disadvantageous to the optimization[115].
In this context, novel optmization algorithms were
invented in DNN to reduce the internal covariate shift
by whitening[115, 116]. However, whitening each layer is
costly; therefore, it is easier to independently normalize
each scalar feature by making it have a zero mean and
unit variance[114, 117]. In a layer of d -dimensional input
where x D .x1; x2; :::; xd /, the normalization equation
is cxk D

xk �E.xk/p
Var.xk/

(34)

where E.xk/ and Var.xk/ can be calculated over the
training data set. Normalization techniques can improve
the data representation of DNN as seen in ImageNet
classification and mini-batch procedures where a better
performance was achieved with less training steps[117].

7.5 Complex number in deep learning

Although complex number representation is not
commonly used in deep learning applications,
some innovatary research has shown it to be
impactful[118–123]. It was thought to be unfeasible
in artificial neural network compared with real-
number representations, which are good for
differential equations and linear algebra. However,
recent research[118, 119] found that complex number
representation can reduce matrix size and memory
usage. It improved robustness when used in
the Recurrent Neural Network (RNN)[120, 121].
Furthermore, convolutionary neural network can
also adopt complex number representation to enhance
the predictive capability in image recognition[122].
Complex number was also explored in Generative
Adversarial Networks (GAN) for a new Jacobian
algorithm, and a better convergence on GAN
architectures was achieved[123].

Because of the importance of complex values in
quantum mechanics, complex number representation
could be commonly adopted for data representation
and encoding genome sequences in deep learning and
feature learning.
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8 Conclusion

GSP and machine learning share some similarities such
as encoding scheme and data representation because
they all involve intensive numeric computing. For
further processing, encoding schemes convert original
data into appropriate representations recognizable by
a machine system, and this is the fundamental
step in data representation and feature learning.
Encoding schemes for data representation rely on
the combination of different properties on a genome
sequence, such as biological, chemical, physical,
mathematical, computational, and graphical properties
for optimum performance in scientific and computing
applications.

In this paper, we cover over 25 significant encoding
schemes to provide a comprehensive reference for
applications in GSP, machine learning, and deep
learning. These encoding schemes are introduced
and categorized according to different perspectives,
including biochemical, primary-structure, Cartesian-
coordinate, binary, graphical, and information encoding
perspectives. To determine the best encoding scheme
for an application, we scrutinized and analyzed the
typical applications including GSP and machine
learning. Encoding schemes were found to be
dependent upon specific needs, as seen in Section
7 examples. However, most efficient encoding schemes
are symmetrical, have a mean of 0 and structures
suitable for computing/math, and can reflect some
biochemical or biophysical properties. For examples,
the complimentary encoding scheme (C D �1,
T D �2, A D 2, G D 1) and the quaternary code
(C D �1, T D j , A D 1, G D �j ) have shown
the best performance in DNN and GSP for genome
annotation and pattern recognition, respectively.

These common features of efficient encoding
schemes, particularly symmetry, and a zero mean,
coincide with the merits of normalization/regularization
that ensure a normal distribution with unit
variance[117]. Thus, normalization/regularization
are also important techniques to achieve an efficient
encoding scheme. Their capacity to alleviate the
negative impact of poor encoding schemes is very
important to data representation in genomic analysis
applications.

As observed in the literature, it is inadvisable
to arbitrarily assign values to DNA genome data,
as it could lead to failure of feature learning or

necessitate normalization/regularization procedures
to ensure a normal distribution of data. However,
normalization/regularization method does not always
guarantee a compensation for the lapses in data
representation. An appropriate encoding scheme
that ensures normal distribution is always best to
boost the performance of feature learning, and
this has solely been adopted before the advent of
normalization/regularization methods. Nonetheless,
additional normalization/regularization procedures
can further adjust the data distribution and make it
more feasible to feature learning. A flow chart of the
positions of encoding scheme is illustrated in the path
B of Fig. 11.

Compared with protein sequence or other biological
sequences, DNA genome sequence is relatively simple,
and it is a good context to study the effects of
encoding schemes and illustrate the usefulness of those
schemes that were often skipped by scientists. We
collated those existing encoding schemes applied in
DNA sequence analysis, particularly in GSP, artificial
intelligence, and emerging deep learning applications,
and analyzed them from the perspectives of bio-
chemical, primary structure, mathematical properties,
computing properties, and visualization properties. By
their performance in different applications, we find that
no encoding scheme is most suitable for all applications
and the encoding scheme design has to adapt the context

Raw Data

Data Cleaning & 
Preprocessing

Data Representation 
with Encoding Schemes

Data Representation 
with Arbitrary 
Assignments

Normalization
/Regularization

Learning Machines

A B

Fig. 11 Flow chart on the position of encoding scheme in
feature learning.
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of specific applications. However, good schemes have
characteristics such as mathematical symmetry and
they properly reflect biochemical properties. From
literature, we speculate that some encoding schemes are
overlooked often because of the adjustment effects of
normalization/regularization. However, normalization/
regularization cannot guarantee efficiency in data
representation and feature learning. Thus, they would
work best when coupled with a good encoding scheme.
This paper also provides a reference for scientists
on encoding schemes employed in bioinformatics,
especially for genomic sequence analysis.

Similarly, for other areas, such as protein sequence
analysis and text mining, character-to-numeric
conversion is also very important, and if lagging,
could result in problems in data representation and
feature learning. These applications could be more
complicated where more features are contained,
and each of which may have more representations.
Therefore, elaborate encoding schemes are needed in
those areas and may be a major survey in the future.
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