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A Survey of SNP Data Analysis

Xiaojun Ding and Xuan Guo�

Abstract: Every person differs from every other person regarding their physical appearance, susceptibility to

disease, response to medications, and so on. However, 99.9 percent of human DNA is the same. As such,

differences in human genomes are very worthy of study. Single-Nucleotide Polymorphisms (SNPs) are the simplest

form and most common source of genetic polymorphism. SNPs have been used to successfully identify defective

genes that cause Mendelian diseases. However, most common human diseases are complex and are caused by

multiple SNPs. Each SNP explains only a small fraction of genetic causes. Experiments on individual SNPs may

reveal their non-detectable effects on complex diseases. Pathogenesis is a complicated topic, and it is difficult to

correctly predict multiple SNPs. As such, the analysis of SNP data is a critical task in the study of genetic diseases.

In this paper, we divide the methods for genome-wide SNP data analysis into two categories: single-trait Genome-

Wide Association Studies (GWAS) in which pathology is mined from data of a single phenotype, and multiple-trait

GWAS which identifies cross-phenotype associations. For single-trait GWAS, we review methods ranging from the

simple to the complex, including TEAM, BOOST, AntEpiSeeker, SNPRuler, EDCF, HiSeeker, ORF, MLR-tagging,

MSCD, and MIC. For multiple-trait GWAS, we describe methods in terms of their employed regression models,

dimension-reduction methods, and meta-analysis methods. We also list the advantages and disadvantages of

these methods. Finally, we discuss the future directions of SNP data analysis for genome-wide association.

Key words: SNP interactions; SNP combinations; GWAS; case-control study; disease association analysis; cross-

phenotype association studies

1 Introduction

Most human genomes are similar with only a
relatively few genetic differences between any two
randomly selected human genomes[1]. However, these
minor differences lead to a wide variety of human
characteristics. Some people have black hairs and
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black eyes whereas others have blond hairs and
blue eyes. Their responses to the same drug may
also differ. The genetic differences between people
merit careful investigation. A Single-Nucleotide
Polymorphism (SNP) is a DNA sequence variation
occurring when a single nucleotide differs in a pair of
homologous chromosomes. SNPs are domain genetic
differences[2]. The high throughput technique has
generated a large volumn of SNP data. One goal of
examining SNP data is to discover underlying rules
hidden in the data. SNP data contains much information
including causative mutation, evolutionary history, and
population differences.

Biological and medical scientists are most interested
in causal SNPs and have identified the genetic causes
of many single-gene diseases. A single-gene disease
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refers to a disease or pathological trait that is controlled
by a pair of alleles. For example, Prescott et al.[3]

identified a nonsynonymous SNP in ATG16L1 that
is related to Crohn’s disease. Seki et al.[4] reported
that a functional SNP in cartilage intermediate layer
protein is suspected as being related to lumbar disc
disease. Zaimkohan et al.[5] reported that PCSK9 SNP
rs11591147 is associated with risk of coronary artery
disease in Iran.

As research continues, scientists will address more
complex diseases. Complex diseases in the general
population have a higher incidence (generally not less
than 1%). A complex disease is often controlled by
two or more alleles and is determined by genetic
factors as well as environmental factors[6]. Also, there
are often complicated non-linear relationships between
genes and the environment. As such, pathogenesis is
difficult to determine in normal individuals and in
diseased individuals in one family. Currently, scientists
can only determine the role of genetic factors in the
occurrence of polygenic disease by studying a large
number of patients. Age-related Macular Degeneration
(AMD), for instance, is a complex disease and the
leading cause of legal blindness in adults in the US.
Klein et al.[7] analyzed the SNP data of the genotypes of
103 611 SNPs of 96 affected individuals and 50 healthy
individuals and reported that two SNPs (rs380390 and
rs1329428) are associated with AMD disease. Shen
et al.[8] exhaustively evaluated all pairs of SNP-SNP
interactions for 661 658 SNPs in 5269 cases and 5289
controls. The authors reported two SNPs, rs1105255
and rs651431, to be related to prostate cancer. These
finding have inspired the development of methods for
identifying causal SNPs.

In addition to examining one trait at a time, a
significant number of candidate gene studies and
Genome-Wide Association Studies (GWAS) have
revealed that a genetic variant might be associated
with more than one trait[9–19]. For example, many
studies have shown that variants in the DSP gene
are associated with chronic obstructive pulmonary
disease status and lung function traits[20]; variants
in protein tyrosine phosphatase non-receptor type 22
were identified as being associated with immune-related
disorders, including rheumatoid arthritis[21], systemic
lupus erythematosus[22], and type 1 diabetes[23]; and
a genetic risk factor located in the human leukocyte
antigen region was reported as being strongly associated
with multiple diseases and traits, including type 1

diabetes mellitus, multiple sclerosis, and rheumatoid
arthritis[21, 24]. The GWAS Catalog[25] is a manually
curated resource of published GWAS and association
results. In 2011, the authors of a study analyzing
the GWAS Catalog concluded that 4.6% of SNPs are
associated with more than one distinct traits[26]. The
fact that genetic variants are associated with multiple
and sometimes seemingly distinct trait is known as
Cross-Phenotype (CP) association[27]. Recently, many
methods have been developed for use in CP Association
Studies (CPAS) which investigate at detecting genetic
variants that affect multiple traits.

Traditional methods for analyzing genetic diseases
are based on a hypothesis. First, scientists guess which
candidate genes are associated with a particular disease,
and then they conduct extensive experiments to test this
hypothesis. This approach consumes lots of time and
money. Modern methods are data-driven and can reveal
the pathogenesis of whole genomes based on data from
large populations. However, these methods have several
challenges. First, the volume of data is tremendous.
It is estimated that on average there is an SNP in
every 300 bp in DNA sequences, with about 11 million
SNPs in the whole human genome. Also, one of the
commonly used electronic health records for measuring
phenotypes has more than 13 000 codes. Considering
the size of SNPs and the number of phenotypes, the
number of SNPs and traits combinations to be tested
is exponential. It is computationally impossible to
investigate all SNP/trait combinations. Second, the data
may be incomplete and contain a lot of noises due
to technology limitations and unexpected observation
errors. Third, robust and universal evaluative criteria
have not yet been constructed because the pathogenesis
of many complex diseases is still unknown. This review
is intended to offer an overview of available methods
for SNP data analysis, especially single-trait and multi-
trait GWAS (CPAS), and their relative strengths and
limitations.

2 Problem Statement

If mutations in some SNP loci lead to the establishment
of different phenotypes, the distribution of SNP patterns
must differ populations with different phenotypes.
These SNP loci are as yet unknown. The job of
scientists is to collect the SNP data of individuals
with different phenotypes and identify the SNP loci
where mutations are significantly associated with these
phenotypes. Many strategies have been designed to
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mine suspicious SNP combinations, and robust and
powerful statistical tests have been created to extract
significant combinations.

Because most SNPs are bi-allelic, removing
triangular-allelic and quadrilateral-allelic SNPs can
simplify the problem without loss of much useful
information. The minor allele in a bi-allelic SNP
is often denoted by a lowercase letter, and the
major allele by an uppercase letter, such as a and
A, respectively. In an SNP locus, there are three
genotypes: the homozygous reference genotype (AA),
the heterozygous genotype (Aa), and the homozygous
variant genotype (aa). In raw data, they are usually
encoded as 0, 1, and 2, respectively.

3 Analysis for Single Phenotype

In this section, we review existing methods for
analyzing SNP data for a single trait, from the
simple to the complex. Researchers have achieved
great success in detecting single causal SNPs. Inspired
by this, there has been a movement toward the
detection of k-locus SNP. However, k-locus SNP is
much more complicated and the difficulty is closely
related to the size of the SNP combination. As this
size increases, the number of disease models and SNP
combinations increases exponentially and the disease
models and algorithms for single SNP detection are
not applicable. Researchers have developed various
evaluation functions and methods to handle these
challenges and there are many ways to categorize
them. Here, we list these methods by their main
underlying concepts and note that some combine
several technologies.

3.1 Single SNP detection

Table 1 lists three disease models for identifying single
causal SNPs including the dominant, recessive, and

Table 1 Disease models for single SNPs.

Dominant disease model

Genotype AA Aa aa
Risk 0 1 1

Recessive disease model

Genotype AA Aa aa
Risk 0 0 1

Additive disease model

Genotype AA Aa aa
Risk 0 0.5 1

additive disease models.
In the dominant model, as long as there is a mutation

on one chromosome, the risk of disease is denoted as
1. The risk is denoted 0 when there is no mutation
on either chromosome. In short, the risk of illness
will increase if a mutation appears. The risk is not
affected by the number of mutation occurrences. In
the recessive model, the risk of illness is greater than
0 only when the two chromosomes on the genetic loci
have mutated. This means that only a homozygous “aa”
can cause the disease. In the additive model, when one
chromosome has mutated, the risk of illness is 0.5 and
when both genes on the chromosome have mutated, the
risk increases to 1. The risk of disease increases as the
emergence of mutation increases.

Of course, the above three models are theoretical. In
reality, although mutation can increase risk, the risk is
also affected by environmental and other factors. Nor
is the probability exactly 1 or 0.5, but a statistical test
is often used in the evaluation. SNPs are regarded
as suspicious pathogenic SNPs if their statistical test
values are below a P-value threshold.

These three models are simple, intuitional,
and widely recognized. Once a disease model is
constructed, it remains to then investigate all the SNP
data on the whole genome. The time complexity of
this task is O.n/, where n is the number of SNPs. The
performance of an exhaustive search is sufficient and
since this process loses no useful information, it is
considered to be the best method.

3.2 Two-locus SNP detection

Figure 1 illustrates the natural idea to detect two-
locus SNP combinations, that is to build the two-
locus disease models and to investigate all the possible
SNP combinations, as in the single SNP detection.
Since there are three types for each SNP, there are

Fig. 1 From single SNP detection to two-locus SNP
detection.
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a total of 32 D 9 genotypes for two-locus SNP and
the relationship of these SNPs may be nonlinear.
Researchers have divided them into marginal (main)
effects (eME) and non-marginal effects (eNME)[28, 29]

and have also introduced the parameters penetrance
p.D/, odds ODDgi , and p.Djgi / for the construction
of these disease models, where p.Djgi / is the
probability that an individual will be affected with
a given genotype combination gi . The relationships
between penetrance p.D/, odds ODDgi , and p.Djgi /
are shown in Eqs. (1)–(3).

ODDgi D
P.Djgi /

P. NDjgi /
D

P.Djgi /

1 � P.Djgi /
(1)

p.D/ D
X
i

p.Djgi /p.gi / (2)

p.DjgA/

p. NDjgA/
D

P
gB

p.DjgA; gB/p.gB/P
gB

p.DjgA; gB/p.gB/
(3)

After determining the odds, a disease model can be
described. There are many possible disease models.
Table 2 lists two models with marginal effects, in which
Model 1 is multiplicative and Model 2 has been used to
describe handedness and the color of swine.

Once these models are constructed, the next step
is much like the detection of a single SNP. The
simplest way to detect causal SNPs is to exhaustively
investigate all possible combinations in the disease
models. However, the situation is more complicated
than with that of a single SNP, in that there are many
possible disease models. Velez et al.[30] generated 70
different penetrance functions that define a probabilistic
relationship between a genotype and a phenotype. The
number of SNP combinations also rapidly increases.
For n SNPs, the number of all possible two-loci SNP
combinations is C2n. When n is large, the computation
costs are prohibitive.

Tree-based Epistasis Association Mapping
(TEAM)[31] is a method by which all possible

Table 2 Odds tables of disease Models 1 and 2.
Model 1 BB Bb bb

AA ˛ ˛ ˛

Aa ˛ ˛.1C �/ ˛.1C �/2

aa ˛ ˛.1C �/2 ˛.1C �/4

Model 2 BB Bb bb

AA ˛ ˛.1C �/ ˛.1C �/

Aa ˛.1C �/ ˛ ˛

aa ˛.1C �/ ˛ ˛

two-locus SNPs are exhaustively investigated. The
authors who developed TEAM realized that there
were many unnecessary and repetitive calculations
in previous approaches. If two SNPs have the same
genotypes on most samples, the computation of
contingency tables can be shared by considering
only samples with different genotypes[32]. To reduce
the computational cost, TEAM utilizes a minimum
spanning tree to maximize the shared computation of
the contingency tables. TEAM controls false positives
using a permutation test. The performance of TEAM
is faster than the brute-force approach, but is still very
slow for massive amounts of data.

Boolean Operation-based Screening and Testing
(BOOST) is a model-based exhaustive search
method[33]. The authors of this method used a new
Boolean representation to accelerate the collection of
contingency tables; then, they used an upper bound
for the likelihood ratio test based on log-linear models
and the Kirkwood superposition approximation[34]

for prune searching. Their model considers only
those SNPs with no marginal effects. BOOST is very
fast and takes less than 60 hours to complete an
evaluation of all the pairs of roughly 360 000 SNPs
on a standard 3.0 GHz desktop with 4 GB memory
running the Windows XP system. Its code is available
at http://bioinformatics.ust.hk/BOOST.html.

GBOOST, a tool that uses GPU parallel
programming to speed up the BOOST[35], which
achieves a 40-fold speedup compared with BOOST on
a desktop computer equipped with a Nvidia GeForce
GTX 285 display card. Its code is available at
http://bioinformatics.ust.hk/BOOST.html#GBOOST.

3.3 k-locus SNP detection

When the size of combined SNPs increases, the
number of possible disease models rapidly escalates and
the number of potential SNP combinations increases
exponentially. As such, investigating all combinations
becomes impossible. Figure 2 exhibits the main ideas
of k-locus SNP detection methods, researchers use
an odds ratio, mutual information or �2 instead of
disease models in the evaluation and they replace
exhaustive search with a heuristic, stepwise search or
feature selection method to accelerate the process. The
details of these methods are introduced in the following
paragraphs.

3.3.1 Heuristic search
Genetic Algorithm (GA), Ant Colony Optimization
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Fig. 2 From two-locus SNP detection to k-locus SNP
detection.

(ACO), Particle Swarm Optimization algorithm
(PSO), and Simulated Annealing algorithm (SA)
are commonly used and powerful heuristic search
methods. Actually, these are all metaheuristic methods,
which make just a few or no assumptions about the
problem being optimized and can search vast spaces
for candidate solutions. As such, it is natural to adopt
them in the search stage.

GA, first proposed by John Holland in 1975[36], is
inspired by the process of natural selection. The main
process of GA is as follows:

Step 1. A genetic representation of the solution
domain and a fitness function are proposed for
evaluating the solution domain.

Step 2. A large number of individuals are randomly
generated as a population, with each individual
corresponding to a possible solution.

Step 3. In a population, good individuals are likely to
breed the next generation, in which the individuals are
evaluated based on their fitness. In this process, a sub-
population comprising good individuals is selected.

Step 4. The next generation is generated from
the sub-population using a combination of genetic
operators known as crossover and mutation.

Step 5. Steps 3 and 4 are repeated until a termination
condition has been reached.

GA optimizes a problem by iteratively improving the
populations of candidate solutions with regard to their
fitness by selecting the superior and eliminating the
inferior.

ORT D
ODDT

ODDC
D

d0/h0
d1/h1

(4)

GA is better at single-objective optimization and is
not suitable for multiple disease models. Chuang et
al.[37] adopted the odds ratio as a score function, which
is calculated as shown in Eq. (4), where d0; d1; h0,

and h1 are allele counting shown in Table 3. ORT D 1
indicates no association between genotype and disease,
ORT > 1 indicates that the T allele is associated
with the disease, and ORT < 1 indicates that the T
allele is protective. To explore SNP-SNP interactions in
breast cancer, the authros designed a GA that analyzes
multiple independent SNPs. They reported that SNP-
SNP interactions with a high risk of breast cancer could
be successfully predicted using the GA method. Chen
et al.[38] and Yang et al.[39] also used the GA algorithm
to analyze chronic dialysis susceptibility and breast
cancer, respectively.

Similar to GA, the PSO, SA, and ACO methods
also obtain the better solutions by iteratively improving
existing solutions.

The ACO, first proposed by Dorigo and
Gambardella[40], simulates the behaviors of real
ant colonies. In the natural world, in the absence
of pheromones, ants wander randomly. When they
find food, they return to their colony while laying
down pheromone trails. If a pheromone is present,
ants will follow the path with the higher pheromone
concentration. Ants that choose a shorter path traverse
a distance more quickly, resulting in more pheromones
being deposited along that path. Ultimately, most ants
will follow the shortest path. This algorithm has been
successfully used in many fields.

The AntEpiSeeker algorithm, developed by Wang
et al.[41], uses a two-stage ACO algorithm to detect
SNP interactions in case-control studies. �2 values are
used as score functions to determine the association
between multiple SNPs. This tool is available at
http://nce.ads.uga.edu/ romdhane/AntEpiSeeker/index.
html.

PSO is a computational method that optimizes a
problem by identifying a population of candidate
solutions, known as particles, and moving these
particles around in the search-space according to simple
mathematical formulae with respect to particle position
and velocity. Each particle’s movement is influenced by
its local best-known location, but is also guided toward
the best known positions in the search space, which
are updated as better positions are identified by other
particles. This results in the swarm moving toward the

Table 3 Allele counting.
Allele Case Control

T d0 h0
C d1 h1
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best solutions.
Chuang et al.[42] used a PSO algorithm to identify the

significant multi-SNP combinations.
Wu et al.[43] adopted a PSO algorithm to identify

SNP interactions in renin-angiotensin system genes
with respect to hypertension.

SA is a probabilistic technique for approximating
the global optimum of a given function. Specifically,
SA is often used when the search space is discrete.
For problems in which finding an approximate global
optimum is more important than finding a precise
local optimum in a fixed amount of time, SA may be
preferable to alternatives such as gradient descent.

Kim et al.[44] adopted an SA algorithm to identify
relevant SNP sets and their experimental results showed
that this method could obtain a new set of variants
using a reduced number of variants, which improved
prediction performance compared to other algorithms
that use traditional feature selection.

These heuristic search algorithms obtain better
solutions iteratively by improving upon existing
solutions. They can only obtain the local optimal
solution by searching within a small portion of the
whole solution space. For small volumes of data, the
local optimal solution may exhibit good performance.
However, when the solution space is vast and the
solutions are discontinuous, these algorithms lose many
good solutions, and the local optimal solution obtained
is not the high-probability global optimal solution.

3.3.2 Stepwise search methods
In 1994, Agrawal and Srikant[45] proposed the Apriori
algorithm, which uses a “bottom-up” approach to
generate candidate item sets of length k by extending
one item from item sets of length k � 1: Then it
prunes candidates who have an infrequent subpattern.
According to the downward closure lemma, the
candidate set contains all frequent k-length item sets.
The algorithm terminates when no further successful
extensions are found.

The Apriori algorithm has achieved great success
in the data mining field. Since it was first proposed,
researchers have proposed many stepwise search
methods similar to this method.

The SNPRuler[46] is a stepwise search method that
uses rules to describe the cause of a disease. For
example, si D 0 ^ sj D 2 ! disease is a rule,
where si and sj are the SNP values at loci i and j:
The SNPRuler uses the �2 test value to measure the

quality of a rule, which gives an upper bound of the
�2 test value to replace the downward closure lemma.
Then, it remains to extend candidate item sets until no
further successful extensions are found. Although the
SNPRuler can find high-order SNP combinations, there
are two problems with this method. First, the upper
bound is based on the assumption that the number of
cases is larger than or equal to the number of controls.
Second, the upper bound derived from the �2 formula
is not a true upper bound and does not possess the anti-
monotone property[47].

The Epistasis Detector based on the Clustering of
relatively Frequent items (EDCF), proposed by Xie
et al.[48], is a novel statistical method based on the
clustering of relatively frequent items to detect multi-
locus epistatic interactions in case-control studies.
EDCF groups all genotype combinations into three
clusters, representing frequent genotypes in cases,
frequent genotypes in controls, and the remaining
genotypes. In the three groups, items for higher-
order interactions are constructed sequentially. The
significance of the final partitions can be evaluated by
Pearson’s �2 test. EDCF first selects all significant
two-SNP combinations and then extends them to k-
locus SNP combinations until no more significant
combinations can be found.

For interaction detection, HiSeeker[49] employs
the �2 test and the logistic regression model to
obtain candidate two-locus SNP combinations that
have intermediate or significant associations with
the phenotype. Then, two strategies (exhaustive and
ACO-based search) are employed to detect high-order
interactions by extending these candidate combinations.
In two real case-control datasets, HiSeeker has detected
several significant high-order combinations whose
individual SNPs and pairwise interactions have no
strong main effects or pairwise interaction effects[49].

Compared with exhaustive approaches, stepwise
algorithms usually run much faster and can perform
reasonably well for diseases with some marginal
effects. However, the lemmas used in current stepwise
search methods, which substitute for the downward
closure lemma, are not entirely correct or complete,
which means that SNP combinations with small or no
marginal effects cannot be found.

3.3.3 Feature selection and search methods
Because there are a vast number of SNPs, it is
impossible to investigate all SNP combinations. If a
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method can identify the most likely causal pathogenic
SNPs and then check all their combinations, it can
significantly reduce the associated computation cost.
Fortunately, several algorithms can make efficient
feature selections, including linear regression, Random
Forest (RF), Support Vector Machine (SVM), Neural
Network (NN), and Deep Neural Network (DNN).

The Optimum Random Forest (ORF), proposed
by Mao and Lee[50], uses a simple feature selection
method that first sorts all SNPs and then identifies
the m most significant disease-associated SNPs for a
given threshold. Next, ORF randomly generates many
classification trees based on the m SNPs and selects
trees that can distinguish between cases and controls
with high accuracy. The causal SNP combinations can
then be extracted from these trees.

Mao and Lee[50] did not consider the relationships
between SNPs when finding the m most significant
SNPs. To address this issue, linear regression can be
applied. The purpose of linear regression is to learn the
relationship between the input and response variables.
The linear regression model is expressed as shown in
Eq. (5):
yi D ˇ0 C ˇ1xi 1 C ˇ2xi 2 C � � � C ˇkxik C "i (5)

Y D Xˇ C " (6)

where yi is the label of the i -th individual, xij is the
genotype of the i -th individual on the j -th SNP locus,
ǰ is the regression coefficient, and "i is the model

error. If all individuals are denoted as Y and all SNP
data are denoted as X , the expression can be written
as shown in Eq. (6). The goal of linear regression is
to estimate the coefficients ˇ to minimize the total error
jj"jj for all individuals. The j -th SNP is strongly related
to the disease state if ǰ has a large absolute value.

MLR-tagging, a software package tool developed by
He and Zelikovsky[51], uses multiple linear regression
to select informative SNPs for examining their
relationship with corresponding traits.

ˇ� D arg min
ˇ

f
1

2
jjY �Xˇjj2 C jjˇjj1g (7)

There may be many j ǰ j with absolute values
higher than 0, so many candidate SNPs will be
selected. To improve this approach, Feng et al.[52]

used the Least Absolute Shrinkage and Selection
Operator (LASSO) method and the sparse Least squares
regression methods to select SNPs for the prediction
of quantitative traits. The LASSO algorithm finds the
ˇ� that satisfies Eq. (8). The strength of the LASSO

penalty can be tuned to select a predetermined number
of the most relevant SNPs. Wu et al.[53] used LASSO
penalized logistic regression to analyze case-control
data.

The Multi-SNP Combination set Detector (MSCD)
is a feature selection method proposed by Ding et al.[54]

The MSCD regards an individual’s genotype data on a
list of SNPs as a point with a unit of energy in a multi-
dimensional space and finds a new coordinate system
where the energy distribution difference between cases
and controls is maximum. The energy difference on an
axis ˛ can be calculated as j˛0HH

0

t�1
˛ � ˛0DD

0

r�1
˛j, where

H is a matrix in which each column corresponds to the
sequenced SNP data of one individual. D is the matrix
comprising the SNP data of healthy individuals. t is
the number of controls, and r is the number of cases.
The ˛ value that satisfies Eqs. (8) and (9) is calculated.
Each component of the axis corresponds to an SNP
locus, and the absolute value of the component indicates
the importance of the corresponding SNP locus in
differentiating between cases and controls. SNPs with
larger absolute values are selected as candidate SNPs.
Then a pruning tree-search strategy is used to identify
significant k-locus SNP combinations.

˛ D arg max
˛
j˛0
HH 0

t � 1
˛ � ˛0

DD0

r � 1
˛j (8)

and
k ˛ kD 1 (9)

The Maximal Information Coefficient (MIC),
proposed by Leem et al.[55], uses the mutual information
of an interaction between two SNPs as the evaluation
function. The mutual information is defined as shown
in Eq. (10):

I.Si ; Sj jy/ D
X

p.gi ; gj ; y/ log
p.gi ; gj jy/

p.gi jy/p.gj jy/
(10)

where Si and Sj are the two SNP loci, y is the sample
label, gi is the genotype of i -th SNP, and p./ is the
probability. Accordingly, the evaluation function of the
high-order interaction is defined as follows:

I.Si ; :::; Sj jy/D
X

p.gi ; :::; gj ; y/ log
p.gi ; :::; gj jy/

p.gi jy/:::p.gj jy/
(11)

I.Si ; :::; Sj jy/ > 0 indicates that these SNPs may work
together and have a close relationship with the disease.

MIC uses k-means algorithm to cluster all the SNPs
characterized by a certain distance between the mutual
information of two SNPs. In each cluster, the top d
SNPs are selected based on their scores, which are the
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sum of all the mutual information values between the
selected SNP and the rest of the SNPs in the same
cluster. After the selection of kd SNPs in k clusters,
an exhaustive search is conducted to find significant k-
locus SNP combinations. Authors reported that MIC
made some interesting and meaningful observations
on seven diseases in Wellcome Trust Case Control
Consortium data. The MIC algorithm is very fast
because the kd value is much smaller than the total
number of SNPs.

4 Cross-phenotype Association Studies

We extend our focus from single-trait GWAS to the
detection of CP effects and pleiotropy. In contrast
to single-trait GWAS, multi-trait analyses differ
considerably in the statistical methods they apply.
CP associations may be due to many factors. One
of the biological factors is pleiotropy[27, 56], which is
defined in genetics, as when a genetic variant affects
multiple traits. The recently increased availability of
GWASs with detailed phenotypic data from Electronic
Health Records (EHR) and epidemiological studies
has stimulated an increasing number of population-
based CPAS. EHR data includes a subject’s current
vital signs and present and past health conditions, as
well as any diagnostic procedures, laboratory profiles,
and clinical interventions. One of the commonly used
coding systems for EHR data is the International
Classification of Diseases, Ninth Revision, Clinical
Modification (ICD-9-CM) codes, which contain about
13 000 codes.

A joint analysis of correlated phenotypes can
explore the correlation between phenotypes and also
has other advantages. (1) CP analysis may enable
the detection of genetic variants with only small
effects across multiple traits. (2) Joint study can
avoid penalties for multiple tests associated with the
individual analysis of phenotypes. (3) Significant CP
outcomes may identify hidden connections between
seemingly unrelated diseases and guide investigators
to the potentially shared pathways of these disorders.
Therefore, today, methods that can fully utilize
information from multiple phenotypes in the detection
of novel genetic loci are attracting more attention.

With respect to the degree of assessed genetic
overlaps, CPAS methods can be broadly classified into
three categories: genome-wide, regional, and single
variant. Genome-wide CPAS methods often use an

initial measurement of the genetic overlap between two
or more traits. Region-based methods cluster variants
into groups based on some criteria, such as LD-blocks
or gene boundaries, and then test or estimate the CP
effects within a group. Such approaches can increase
their power by combining related information across
biologically meaningful units. Variant-level methods
test each variant individually before performing a
combined analysis, and may fail to identify these CP
effects unless all relevant variants pass the significance
threshold. Regression modeling is the most common
approach in CPAS. In the following subsections,
we introduce several CPAS regression models that
are used when subject-level phenotype and genotype
data are available. Next, we discuss the dimension-
reduction methods used in CPAS regression modeling.
Instead of directly incorporating multiple phenotypes
into the regression models, dimension reduction can
reduce the number of phenotypes and use traditional
GWAS methods on the combined phenotypes. We then
describe CPAS summary statistics methods. Subject-
level phenotype and genotype data from GWAS
analyses are often not accessible to researchers, due to
logistical and data confidentiality reasons, many meta-
analysis methods that use univariate GWAS phenotype
summary test statistics, which are typically available.
Table 4 summarizes recently developed methods for
detecting CP associations, any of which can due to
pleiotropy. However, these methods cannot determine
that the identified associations are genuinely caused
by pleiotropy, that is, that the genetic markers directly
affect all the multiple phenotypes. Therefore, we
investigate methods for identifying pleiotropy.

4.1 Regression modeling

Regression modeling is a statistical approach for
assessing the relationship between variables. For
example, logistic regression is used to evaluate the
relationship between genetic markers and disease
status, and linear regression is used to assess an
association with a continuous trait, such as blood lipid
levels. Other regression models, such as generalized
mixed effects models, generalized estimation equations,
and frailty models are also often used to test the
associations of genetic markers with continuous,
categorical, or survival multivariate phenotypes. Here,
we briefly introduce two to illustrate the basic concepts
of applying regression modeling for CPAS.

Liu et al.[57] proposed an Extended Generalized
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Table 4 Methods used in cross-phenotype association analyses.
Ref. Number of SNPs Trait type P-value calculation Implementation Year

Regression modeling
[57] 1 Any Asymptotic theory R 2009
[58] 1 Any Permutation R 2010
[59] 1 Continuous Asymptotic theory Perl & R 2011
[60] > 1 Any Asymptotic theory R 2011
[61] > 1 Continuous Asymptotic theory R 2012
[62] 1 Continuous Asymptotic theory R 2012
[63] > 1 Continuous Permutation R 2014
[64] > 1 Continuous Asymptotic theory R 2015
[65] 1 Any Asymptotic theory R 2015
[66] > 1 Continuous Asymptotic theory C++ 2015
[67] > 1 Continuous Asymptotic theory R 2015
[68] > 1 Continuous Permutation Matlab 2015
[69] > 1 Any Asymptotic theory Python 2015
[70] > 1 Continuous Permutation R 2016
[71] > 1 Continuous Asymptotic theory R 2016
[72] > 1 Continuous Asymptotic theory R 2017
[73] > 1 Any Asymptotic theory/ permutation R 2017

Dimension reduction
[74] 1 Continuous Asymptotic theory Fortran 2008
[75] > 1 Continuous Asymptotic theory R 2010
[76] 1 Any Asymptotic theory R 2011
[77] > 1 Continuous Asymptotic theory R 2012
[78] > 1 Continuous Asymptotic theory R 2014
[70] 1 Continuous Permutation R 2016
[79] 1 Continuous Asymptotic theory R 2016
[80] > 1 Continuous Asymptotic theory R 2017

Meta-analysis
[81] > 1 Any Permutation R 2013
[82] > 1 Any Asymptotic theory Java 2014
[83] > 1 Continuous Asymptotic theory R 2016
[84] > 1 Any Asymptotic theory Matlab 2016
[85] 1 Any Permutation R 2016
[86] > 1 Continuous Asymptotic theory Python 2016
[87] > 1 Any Permutation R 2017
[88] > 1 Any Asymptotic theory R 2017
[89] > 1 Any Asymptotic theory/ permutation R 2017

Estimation Equation (EGEE) based approach to
jointly test bivariate gene/phenotype association, which
represents one continuous and one binary traits.
Following the generalized linear model theory, the
relationship between explanatory variables and two
phenotypes is modeled as follows: 

�i1

ln
�

�i2

1��i2

�!
D

 
xi 0

0 xi

! 
ˇ̌̌1

ˇ̌̌2

!
(12)

where xi is a column vector of explanatory variables,
including genetic variants as well as other fixed effects
(e.g., age, sex) for a subject i , ˇ̌̌1 and ˇ̌̌2 are regression
parameter vectors of the same size for two traits,

respectively, and �i1 and �i2 are the marginal means
of the two phenotypes for subject i . Two steps, an
estimation step and a testing step, are taken to test
whether an SNP is associated with the continuous or
binary trait. In the estimation step, the regression vector
ˇ̌̌ is estimated in a set of estimation equations, as
reported in the original study[90]. In the testing step, a
Wald �2 statistic is used to determine if the considered
SNP affects either of the two traits. The test statistic for
the m-th SNP employed in the Wald test is as follows:

W D
�b̌
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b̌
m2

�
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�b̌
m1;

b̌
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b̌
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where b̌
m is the regression coefficient corresponding

to the m-th SNP and W follows �2 with two
degrees of freedom. Analyses of empirical GWA data
has confirmed the enhanced power of this bivariate
analytical method.

Zhan et al.[73] proposed a Dual Kernel-based
Association Test (DKAT) designed to measure the
association between high-dimensional phenotypes with
multiple genetic variants. DKAT is based on a Kernel
Machine Regression (KMR) framework, which is a
useful tool for assessing the gene/phenotype association
of both common and rare variants[91–93]. In the DKAT
concept, individual kernels are used for both the genetic
variants and high-dimensional, structured traits. The
DKAT statistic is defined as follows:

D D
tr .HKGHKY /p

tr .HKGHKG/ tr .HKYHKY /
(14)

where tr.� / denotes the trace of a matrix, H D In �
110=n is a centering matrix, In is the n-th order
identity matrix, 1 is an n-dimensional vector of ones,
and KG and KY are n � n matrices whose .i; j /-th
elements are kg.Gi ;Gj / and ky.Yi ; Yj /, respectively,
in which Gi denotes the vector of genotypes, Yi
is the set of traits, and kg and ky are kernel
functions. Two approaches have been proposed to
accommodate multiple-candidate kernels. The first
average-type strategy calculates an omnibusK0 , which
is usually a linear combination of all possible kernels,
then applies the DKAT test. The second minimum-
type approach selects the most significant kernel pair.
To calculate the P-value, the DKAT test uses moment
matching to approximate the empirical distribution of
all nŠ potential permuted DKAT statistics. In this way,
to determine the P-value, we must only calculate the
first three sample moments of these nŠ permutations,
which have closed-form expressions. A Pearson type
III distribution is employed to approximate the
permutation null distribution of the DKAT statistic by
matching the first three moments. Compared with
existing kernel association tests, such as the Multi-trait
Sequence Kernel Association Test (MSKAT)[67] and the
Gene Association with Multiple Traits (GAMuT)[94],
DKAT improves statistical power by incorporating the
inherently complex structure of the phenotypes using a
phenotype/trait kernel. However, the addition of more
noise traits not associated with the SNPs may result
in loss of power. Thus, it is important to incorporate
variable selection in DKAT to prioritize individual
genetic variants/traits.

4.2 Dimension reduction

Principal Component Analysis (PCA) and Canonical
Correlation Analysis (CCA) are the conventional
dimension-reduction methods used in the detection of
SNP association with multiple correlated traits. Here,
we discuss several PCA and CCA based methods to
illustrate key CPAS concepts.

Tang and Ferreira[77] proposed a CCA-based
algorithm to identify the correlation between a set of
genotype data and a single trait or a set of phenotype
data[95]. CCA is a method for identifying and measuring
the associations between two multivariate sets of
variables. Statistically, CCA results are inferred from
cross-covariance matrices. Let X D .X1; : : : ; Xp/ and
Y D .Y1; : : : ; Yq/ denote p SNPs and q phenotypes.
The i -th canonical correlations �i is calculated as the
square root of the i -th eigenvalue of the canonical
correlation matrix ˙�1=2X ˙XY˙

�1
Y ˙YX˙

�1=2
X , where

˙X is the covariance matrix of X ,˙Y is the covariance
matrix of Y , and˙XY is the covariance matrix between
X and Y . In Tang and Ferreira’s method[77], Rao’s
F -approximation is used to test the significance of the
canonical correlations and the test score is calculated.
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Note that this CCA-based method is a gene-based test
in which the SNPs are from one gene, according to the
annotation in the UCSC Genome Browser. Simulation
results suggest that this method provides a robust test
for the analysis of multiple quantitative traits without
the need for permutation testing. Despite its fast
computation speed, a limitation of this method is that it
is not flexible, and therefore is unable to accommodate
covariates.

Seoane et al.[78] proposed a modified CCA approach
that uses an attribute selection strategy based on a
GA to maximize the association between different
phenotypes and genetic variants within a gene, pathway,
or biologically relevant group. To identify sets of
SNPs and traits that have a high correlation, the
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GA-based optimization method is used, in which
the association value is used as the fitness function.
This optimization step has been formulated as an
integer programming problem that can be solved using
a binary GA to find an approximately satisfactory
solution in a computationally tractable time. The binary
encoding sets the feature to 1 if it is included in
the analysis and to 0 otherwise. The authors used
three population sizes of 100, 600, and 1000 for
single gene/multiple phenotypes, multiple gene/single
phenotype, and multiple gene/multiple phenotypes,
respectively. For the multiple phenotypes, they found
the mutation rate to be 1=82, and for multiple genes, this
rate was 1=3248. This method was applied to the British
Women’s Heart and Health Study. A number of novel
pleiotropic associations were identified between genetic
variants and phenotypes, and previously reported
genetic associations were also confirmed with improved
statistical detection power.

Klei et al.[74] developed a method based on the
Principal Component of Heritability (PCH) to reduce
different phenotypes to a single trait with a higher
heritability than any other linear combination of
phenotypes. The authors defined the heritability
attributable to an SNP as follows:

h2w D
w0VQw
w0VPw

(17)

where VQ is the genetic variance, VP is the residual
covariance, and w is used in a linear combination of
the phenotypes w0y D w1y1 C � � � C wmym. For any
choice of vector w, the linear association between w0y
and an SNP x can be modeled by w0y D � C ˇx C ".
The null hypothesis was ˇ D 0. The test statistic is
T D b=se.b/, where b is the least-squares regression
coefficient and se.b/ is the standard error. T follows
Normal .d; 1/ with a noncentrality parameter:

ı �

�
Nh2w
1 � hw2

�1=2
(18)

where N is the number of subjects. w that maximizes
heritability can be easily obtained by analyzing the
eigenstructures of VQ and VR. In short, VQ and VR
can be estimated empirically by sequentially fitting the
linear model to all the phenotypes. Using Cholesky
decomposition, VR is decomposed as VR D LL

0.
Setting w D .L�1/tv can maximize the heritability
as defined above, where v is the eigenvalue of VQ
(Only one eigenvalue is non-zero because of the
special structure of VQ). The power of this PCH-based
method is enhanced by taking a linear combination

of phenotypes that reduces the overall variance and
number of tests performed.

Ried et al.[79] developed a PCA-based approach to
simultaneously capture the variation across multiple
traits in a uniform manner across multiple studies.
The authors performed PCAs on six anthropometric
traits, including BMI, height, hip, waist, weight, and
waist-to-hip ratio of 20 independent studies with non-
overlapping, unrelated participants. In each study, they
applied PCA to the standardized residuals of the traits
adjusted for age and gender. The PCA results for
each study were a set of six Principal Components
(PCs) comprising orthogonal linear combinations of
the six traits. Then, a combined average correlation
matrix was derived. By using single-study correlation
matrices, this correlation matrix was a weighted sum
divided by the number of individuals. The associated
PCs, termed AvPCs, represent combinations of different
anthropometric traits. AvPCs can capture more complex
body-shape phenotypes than can any single traits. Using
the AvPCs, the authors performed regression to identify
the associated genetic markers. Their experimental
results showed that the AvPC was a robust CP
representation that could be used in large-scale
meta-analyses. However, PCA-derived results are
often challenging to interpret and lose power when
the weights for collapsing the multiple traits are
inconsistent with the phenotype structure.

4.3 Meta-analysis using summary statistics

The summary test statistics of many GWAS analyses
are more readily available than subject-level phenotype
and genotype data. Therefore, there is great interest
in jointly analyzing multiple phenotypes using only
GWAS phenotype analysis summary statistics.

Ray and Boehnke[88] developed a unified association
test, known as metaUSAT, what detects a single
genetic variant associated with multiple traits using
only summary statistics from existing GWAS studies.
metaUSAT can test the genetic associations of
categorical and/or continuous traits without subject-
level data. It can also analyze a single trait across
multiple studies with overlapping samples. The
proposed metaUSAT statistic is as follows:

T! D !TmetaMANOVA C .1 � !/TSSU (19)
where

! 2 Œ0; 1� ;

TmetaMANOVA D Z0bR�1Z;

TSSU D
PK
kD1Z



k
(20)
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Z D .Z1; � � � ; Zk/ are summary statistics, and bR is
the K � K estimated correlation matrix of the original
traits. The P-value pw of Tw can be calculated by
many different algorithms because Tw is approximately
distributed as a linear combination of chi-squared
variables under H0. metaUSAT is defined as the
weighted combination with the most significant P-
value, as follows:

TmetaUSAT D min
!2Œ0;1�

p! (21)

It demonstrated that the correlation matrix of
univariate summary statistics is the same as the
trait correlation matrix of the null hypothesis of
no association[96]. If two cohorts have overlapping
study subjects, the correlation matrix of the univariate
summary statistics is calculated as follows:

corr
�
Zi ; Zj

�
D

P
l .Zil � �i /

�
Zjl � �j

�qP
l .Zil � �i /

2
�
Zjl � �j

�2
(22)

where �i and �j are test statistic means for
many independent SNPs across the genome. If two
cohorts have no overlapping subjects, Zi and Zj are
independent. The results of simulation experiments
demonstrated that metaUSAT had a low Type-I error
and has comparable and sometimes higher power in
detecting associations than existing methods, such as
minP [97], SHom[96], and SPU [98].

Liu and Lin[89] proposed the use of univariate
summary test statistics for the detection of
homogeneous and heterogeneous genetic effects
on multiple phenotypes by considering the correlation
between these summary statistics. The authors
theoretically justified that under the null hypothesis,
the correlation matrix of the univariate summary test
statistics does not depend on the genotype, and is
the same as the correlation matrix of the original
multiple phenotypes, conditional on the covariates.
Thus, they reported that the correlation matrix of the
univariate summary test statistics can be estimated
using a large number of independent null SNPs over
the whole genome. To detect both homogeneous and
heterogeneous effects, they defined the following linear
mixed model for the summary statistics:

Z D �0JC bC �; � � N .0; ˙̇̇ / (23)
where Z D .Zi ; � � � ; Zk/

0 is a vector of the univariate
Wald-type statistics of k phenotypes, J D .1; 1; :::; 1/0,
�0 is a scalar denoting the shared common effect
size, and bk D �k � �0 denotes a departure from
the common effect of a genetic variant on the k-

th phenotype. bk is assumed to follow an arbitrary
distribution F with mean 0 and variance � and be
mutually independent. Using the above model, the
authors found the joint testing of H0: � D 0, � D 0 to
be equivalent to testing for the associations between a
genetic variant and k phenotypes. UnderH0, the scores
of � and � are calculated as follows:

U�0
D J0˙̇̇�1Z;

U�0 D .Z � b�0J/0 ˙̇̇�1˙̇̇�1 .Z � b�0J/ (24)
where b�0 is the MLE of �0 under �0. The authors
used three approaches, including the inverse-variance
weighting scheme, inverse standard deviation weighting
schemes, and adaptive procedure, to find an optimal 0
to maximize power in the following linear combination:

T� D �U
2
�0
C .1 � �/U�0 (25)

In addition to combining two testing statistics,
Fisher’s and Tippett’s procedures were also used to
combine the two corresponding independent P-values
of U�0

and U�0 . Simulation studies showed that
these mix-type tests are robust and can identify more
significant SNPs than the Wald test.

4.4 Identifying pleiotropy

It is well known that causal conclusions cannot strictly
be drawn from mere statistical associations between
distinct phenotypes, such as low serum cholesterol
levels and cancer, unless all possible confounders of
the association are identified, measured, and adjusted.
Solovieff et al.[27] categorized pleiotropy with regard
to complex traits into three broad groups: biological
pleiotropy in which causal variants of different traits
to fall into the same gene or regulatory unit, mediated
pleiotropy in which a variant directly affects one trait
which affects another trait, and spurious pleiotropy in
which different causal variants may be tagged by the
same variant. Thus, CP associations may arise due to
one or more pleiotropy cases. Many methods have been
proposed to distinguish biological from mediated and
spurious pleiotropy. We discuss two of these methods.

Didelez and Sheehan[99] developed a framework for
causal inference based on Mendelian randomization,
which defines an Instrumental Variable (IV) and tests
for, or estimates, the causal effect of a phenotype on
another phenotype[100]. Let X be the cause, such as
cholesterol level, Y be the response, such as coronary
heart disease, G be the instrument (the genetic marker
in GWAS), and U be an unobservable variable that
represents the confounding aspect between X and Y .
For a valid IV, G must satisfy three assumptions: first,
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that G is associated with X ; second, that G is not
associated with U ; and third, that G is not associated
with Y when conditional on X . In the simplest case
where the dependencies among variables Y , X , G, and
U are linear, the following models can be defined:

E .Y jX D x; U D u/ D ˛ C ˇ1x C ˇ2u;

E .X jG D g;U D u/ D  C ı1g C ı2u (26)
The Average Causal Effect (ACE) is defined as

the difference in expectations for different settings of
X . In this framework, ˇ1 is the causal parameter of
interest since ACE.x1; x2/ D ˇ1.x1 � x2/. ˇ1 can be
consistently estimated as the following ratio,b̌

1 D
rY jG

rX jG
(27)

where rX jG is the consistent estimate of �1 and rY jG is
the regression coefficient of G in a linear least squares
regression of Y on G. However, typically, there is an
uncertainty regarding the third assumption of the IV,
which will not hold if G affects both X and Y (i.e.,
if the variants are truly pleiotropic). Many approaches
have been proposed to overcome this limitation in
Mendelian randomization settings[101–103]. For example,
MR-Egger, proposed by Bowden et al., is an adaption of
the Egger regression, which can detect some violations
of the standard IV assumptions and provides an effect
estimation that is not subject to third violations[103].

Han et al.[96] developed a statistical test, known
as BUHMBOX, to distinguish between whole-
group pleiotropy and subgroup heterogeneity in CP
associations. Whole-group pleiotropy means that the
sharing of risk alleles across different traits are driven
by all the subjects, whereas subgroup heterogeneity
is when these risk alleles are driven by a subset
of subjects. Subgroup heterogeneity can occur for
many reasons, such as in a case group that includes
subjects with atypical clinical symptoms for a different
disease. The BUHMBOX concept is that when there
is subgroup heterogeneity, known risk alleles for
the first-disease-associated loci will be enriched in
a subgroup of second-disease cases, which produces
positive correlations between these known alleles
from independent loci. In contrast, known risk alleles
for the first-disease-associated loci will be uniformly
distributed in whole-group pleiotropy. So the proposed
BUHMBOX test statistic compares the risk allele
frequency of variants associated with the first disease
in second-disease cases. BUHMBOX tests whether
the known risk alleles are enriched in a subgroup of
cases or whether they are evenly distributed across all

cases. Subgroup heterogeneity can lead to a significant
BUHMBOX test statistic. In contrast, a lack of actual
subgroup heterogeneity or high type II error can lead to
a non-significant BUHMBOX test statistic. The results
of systematic experiments showed that BUHMBOX
achieved 81.7% power and a 4.3% false positive
rate in detecting heterogeneity at P < 0:05. When
using BUHMBOX, users must specify the two traits
of interest, one of which must have a list of SNPs
associated with known risk alleles.

5 Summary and Outlook

To date, single causal SNP detection has achieved
successful results. Although the exhaustive search
method is slow, its computation cost is affordable.
For two-locus SNP detection, the exhaustive search
method may not finish in an acceptable amount of
time. Also, many complex diseases can be caused
by multiple SNPs. For complex disorders, k-locus
SNP detection is mainly used for data analysis. As
yet, no one method performs consistently better than
others in all scenarios. For example, heuristic search
methods, such as GA, PSO, and ACO, can obtain better
solutions for high-order SNP combinations, but are
not suitable for large SNP data due to the excessuve
computation cost. These methods may also miss many
significant associations by searching only a limited
feasible solution space. Stepwise search methods are
relatively more powerful than heuristic search methods.
For example, the SNPRuler has detection power
for SNPs with no marginal effects and requires a
reasonable time on large-scale datasets. However, it
is weak in the detection of SNPs with marginal
effects and requires a huge amount of memory. The
main challenge in stepwise search methods is to
construct a correct and complete lemma to replace the
downward closure lemma in the apriori algorithm. As
yet, there is no lemma that retains completeness for all
kinds of diseases. Feature selection methods are faster
than other methods because the number of selected
features (candidate SNPs) is much smaller than that in
other methods. However, the main problem in feature
selection methods is that they do not analyze how much
useful information remains in the selected SNPs, so it is
unclear whether important SNPs are filtered out in the
feature selection progress. In k-locus SNP detection,
stepwise search and feature selection methods are the
best choice for genome-wide association studies.
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As data becomes more available, Cross-Phenotype
Association Study (CPAS) is an emerging research
area in human genetics. This review extended the
focus from single-trait GWAS to the detection of CP
effects and pleiotropy. In contrast to single-trait GWAS,
where the analysis approaches are now somewhat
standardized, multi-trait methods vary considerably
in their applied statistical procedures. Here, we
broadly introduced and discussed commonly used
regression models, dimension-reduction methods, and
summary statistics in CPAS. A fundamental challenge
in CPAS is to assure comparability and replicability
of the results. As the field moves toward large-scale
sequencing-based association studies based on widely
available electronic medical records, a critical step
will be to develop fast and efficient algorithms that
have excellent scalability. These practical and powerful
approaches will increase our understanding of the
shared genetics among traits and reveal that phenotypes
are a set of related indicators of biological mechanisms
rather than isolated manifestations. As our knowledge
of the molecular links between diseases increases,
these insights will facilitate the establishment of the
foundation for drug design and personalized medicine
development.
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