
BIG DATA MINING AND ANALYTICS
ISSN 2096-0654 05/06 pp146–159
Volume 1, Number 2, June 2018
DOI: 10.26599/BDMA.2018.9020014

HPPQ: A Parallel Package Queries Processing Approach for
Large-Scale Data

Meihui Shi, Derong Shen�, Tiezheng Nie, Yue Kou, and Ge Yu

Abstract: A lot of scholars have focused on developing effective techniques for package queries, and a lot of

excellent approaches have been proposed. Unfortunately, most of the existing methods focus on a small volume of

data. The rapid increase in data volume means that traditional methods of package queries find it difficult to meet

the increasing requirements. To solve this problem, a novel optimization method of package queries (HPPQ) is

proposed in this paper. First, the data is preprocessed into regions. Data preprocessing segments the dataset into

multiple subsets and the centroid of the subsets is used for package queries, this effectively reduces the volume

of candidate results. Furthermore, an efficient heuristic algorithm is proposed (namely IPOL-HS) based on the

preprocessing results. This improves the quality of the candidate results in the iterative stage and improves the

convergence rate of the heuristic algorithm. Finally, a strategy called HPR is proposed, which relies on a greedy

algorithm and parallel processing to accelerate the rate of query. The experimental results show that our method

can significantly reduce time consumption compared with existing methods.

Key words: package queries; heuristic algorithms; parallel processing; opposition-based learning

1 Introduction

Package query[1] is one of the hot issues in database
query processing. Unlike general set-based queries,
the result of package queries is a collection of data
objects that satisfy constraints collectively rather than
individually. It is used in, for example, vacation
and travel planning[2, 3], course selection[4], team
formation[5, 6], and meal planning[7]. A lot of scholars
have focused on developing effective techniques for
package queries and a lot of excellent approaches have
been proposed. These existing algorithms are divided
into several categories: exact algorithms, heuristic
algorithms, and divide-and-conquer algorithms.
�Meihui Shi, Derong Shen, Tiezheng Nie, Yue Kou, and Ge Yu

are with the College of Computer Science and Engineering,
Northeastern University, Shenyang 110000, China. E-
mail: 418316943@qq.com; shenderong@cse.neu.edu.cn;
nietiezheng@cse.neu.edu.cn; kouyue@cse.neu.edu.cn; yuge@
cse.neu.edu.cn.
�To whom correspondence should be addressed.

Manuscript received: 2018-01-08; accepted: 2018-01-11

Even though exact algorithms[8] can get the solutions
quickly when solving problems on small-scale datasets,
complex problems with multiple constraints remain a
challenge. High query accuracy is not demanded in
many fields, i.e., it is allowed to obtain a suboptimal
solution. However, it is necessary to get the solution as
fast as possible. Examples of applications follow:

Example 1. (Meal Planner). A dietitian needs to
make a meal plan for a user. They require calories in
a specified range and minimum fat intake.

In Example 1, we know that there are many data
objects in the food dataset. The candidate solutions will
be exponential. Although exact algorithms can obtain
an optimal solution, they take a lot of time. In fact, users
can accept a suboptimal solution if they do not want to
wait for hours or even days.

Example 2. (Vacation and Travel Planning). The
total time required for the visit is not more than
the specified time, and the total cost of spending is
within the specified range visiting the largest number
of attractions.

Meihui Shi et al.: HPPQ: A Parallel Package Queries Processing Approach for Large-Scale Data 147

In Example 2, users need a local travel plan during
their trip. They do not need the most accurate solution,
but they do need to obtain their travel plan in a relatively
short period of time.

Based on the above, scholars have proposed heuristic
algorithms. Heuristic algorithms[9–11] do not rely on
gradient information and provide excellent performance
in the problem of package queries. Compared with
the exact methods, heuristic algorithms may get a
suboptimal solution, but they greatly reduce the run
time. However, with the rapid growth in data volume,
heuristic algorithms used to solve package queries
also find it difficult to meet the increasing demands
of efficiency. Some scholars have used divide-and-
conquer algorithms[1, 7] to divide the problem into
multiple sub-problems and improve query efficiency.
But these use exact algorithms to solve the sub-
problems, which affect the run time to a certain extent.

Therefore, it is necessary to design an efficient
method of package queries for large volumes of data. In
this paper, we present a method called HPPQ (Heuristic
Parallel Package Queries), which is based on heuristic
and divide-and-conquer strategies. It optimizes the
method of package queries mainly through two aspects:
improving the quality of the candidate solutions and
accelerating the speed of query. To address these two
aspects, we propose the IPOL-HS algorithm and the
HPR strategy, respectively.

Our main contributions are summarized as follows:
� We propose an efficient heuristic algorithm,

namely IPOL-HS. It is an efficient harmony
search based on improved partial opposition-based
learning. In the process of heuristic searching, the
quality of the candidate solutions formed by each
iteration is increased to accelerate convergence and
reduce run time.
� To further improve the efficiency of package

queries processing, a strategy called HPR is
proposed, which relies on a greedy algorithm and
parallel processing to accelerate query speed.
� We conducted a comprehensive set of experiments

on a series of synthetic datasets and a real
dataset to verify the effectiveness and efficiency
of the proposed algorithms. The experimental
results show that our algorithms can significantly
reduce time consumption compared with existing
methods.

The rest of this paper is organized as follows.
Section 2 discusses related works. Section 3 presents

the preliminary study on our algorithms. Section
4 proposes our package queries processing method.
Section 5 shows the experimental results and Section
6 concludes.

2 Related Work

In this section, we give a brief overview of existing
work related to package queries and harmony searches.

2.1 Package queries

In general, package queries processing algorithms
are mainly exact, heuristic, or divide-and-conquer
algorithms. Most early scholars used exact algorithms
for package queries processing, such as the dynamic
programming algorithm[12] and the branch-and-bound
algorithm[13, 14].

However, with the problems becoming increasing
complex, exact algorithms do not meet the increasing
demands for efficiency. Therefore, package queries
algorithms based on heuristic searches have attracted
much attention and research, and many variants have
been proposed. Haddar et al.[15] proposed a new
hybrid heuristic approach that combines the quantum
particle swarm optimization technique with a local
search method. Feng et al.[16] proposed an improved
hybrid encoding cuckoo search algorithm with a greedy
strategy. Rezoug and Boughhaci[17] presented a new
hybrid self-adaptive harmony search combined with a
stochastic local search algorithm, namely SAHS-SLS.

The volume of data means that both exact and
heuristic algorithms need a long run time. Therefore,
some scholars began to use the divide-and-conquer
method. The problem is divided into multiple sub-
problems to improve query efficiency. Brucato et
al.[7] designed a system called PackageBuilder, and
proposed two types of algorithm, DIRECT and
SKETCHREFINE, to solve the problem of package
queries. These algorithms are used to solve the problem
of different scales of data. The DIRECT algorithm has
two obvious drawbacks. It is only feasible if the data
scale is small enough and the time required to obtain the
results set by this exact algorithm is high. In large-scale
data processing the increase in the number of candidate
results is a serious burden for the database. Therefore,
Brucato et al.[7] proposed SKETCHREFINE, which
uses a divide-and-conquer algorithm to solve this
problem. However, this algorithm does not solve the
problem of high time complexity in the DIRECT
algorithm. In a large-scale data environment, the

148 Big Data Mining and Analytics, June 2018, 1(2): 146-159

SKETCHREFINE algorithm divides the problem into
multiple sub-problems, so that the amount of data to
be solved by each subproblem is within a small range.
However, as the volume of data grows too many sub-
problems occur, and as a parallel mechanism is not used
for these sub-problems they are solved sequentially,
which affects the query efficiency.

In short, the existing methods for package queries
have many deficiencies when dealing with large-scale
data and cannot guarantee query efficiency.

2.2 Harmony search

The Harmony Search (HS) algorithm[18] is a new
meta-heuristic optimization method imitating the music
improvisation process whereby musicians experiment
with the pitch of their instruments searching for a
perfect state of harmony. As the HS algorithm has
excellent global search abilities, we selected it as the
basic algorithm for use in this paper. Scholars have
proposed many variants to improve the performance of
the traditional HS algorithm.

Mahdavi et al.[19] proposed an improved HS
algorithm for solving optimization problems, namely
IHS. IHS employs a novel method for generating
new solution vectors that enhance the accuracy and
convergence rate of the HS algorithm. Omran and
Mahdavi[20] presented a new variant of HS, called
global-best harmony search. Pan et al.[21] proposed a
self-adaptive global best harmony search algorithm for
solving continuous optimization problems. Zou et al.[22]

presented a Novel Global Harmony Search (NGHS)
algorithm to solve unconstrained problems. Gao et
al.[23] proposed an HS hybrid optimization method and
opposition-based learning. These algorithms improve
different aspects of the HS algorithm. However, most
are based on using a random solution as the candidate
solution to calculate, which affects their performance to
a certain extent.

The algorithms proposed in this paper are different
from those previously proposed. First, we improve
the quality of the candidate results in each iteration
by using improved partial opposition-based learning,
which improves the convergence rate of the heuristic
algorithm. Second, we use the parallel mechanism to
increase the speed of searching for the optimal solution.

3 Preliminaries

In this section, we introduce the preliminaries relevant
to this paper.

3.1 Problem definition

Let D be a dataset and assume that the number of data
objects in dataset D is jDj. Any data object in D
contains multiple measurable properties.

Definition 1 (Package queries). Select a subset
from the dataset. The total consumption of each query
attribute for all data objects in the subset is subject to
corresponding constraints. And the objective function
should be maximized.

The mathematical model of the package queries is
given below.

In Formula (1), the 0-1 decision variables xi indicate
which objects appear in the result set. A set of objects
with profits vi > 0 and d resources with capacities Cj >

0 are given. Each object i consumes an amount ci;j > 0
of each resource j.

minimize
jDjX
iD1

vixi ;

subject to
jDjX
iD1

ci;jxi 6 Cj ;

xi 2 f0; 1g; 1 6 j 6 d

(1)

3.2 Partial opposition-based learning theory

Definition 2 (Opposite Number). Let us consider a real
number x that is defined on an interval [a, b], i.e., x 2
Œa; b�. The opposition number Ox is defined as follows:

Ox D aC b � x (2)

Definition 3 (Opposition-Based Learning). Let g.�)
be the fitness function. In each iteration of the
evolutionary algorithm, both the fitness of the original
solution and its opposition solution are computed
simultaneously. From the original solution and the
opposition solution, select the solution with higher
fitness as the new candidate solution.

Similarly, we can obtain the definition of partial
opposition-based learning.

Definition 4 (Partial Opposition-Based Learning).
Let x(x1, x2, ..., xm) be a point in multidimensional
space and we can obtain its partial opposition
point Oxq D . Ox

q
1 ;
Ox
q
2 ; :::;

Ox
q
m/ by converting some of its

elements to their opposition number. In each iteration
of the evolutionary algorithm both the fitness of the
original solution and its partial opposition solution are
computed simultaneously. From the original solution
and the partial opposition solution, select the solution
with higher fitness as the new candidate solution. This

Meihui Shi et al.: HPPQ: A Parallel Package Queries Processing Approach for Large-Scale Data 149

is defined as follows:

x D

(
x; g.x/ > g. Oxq/

Oxq; or

)
(3)

The partial opposition solution is defined as follows:

Ox
q
i D

(
ai C bi � xi ; rand.0; 1/ > r

xi ; or

)
(4)

4 Package Queries Processing

In this section, we propose our package queries
processing method, namely HPPQ.

Figure 1 shows the query processing framework
of the proposed method, which is divided into three
modules: data preprocessing, obtaining the optimal
solution of the centroid, and replacement based on
parallel processing. Two aspects are used to optimize
the methods of package queries on large-scale data.
First, the quality of the candidate solutions and the
convergence is improved with an HS. Then, a parallel
processing strategy is used to obtain the global optimal
solution quickly.

4.1 Preprocessing

Processing a dataset D generates 2jDj candidate
solutions, so it is necessary to reduce the number of
candidate results by preprocessing the data.

Data preprocessing divides similar objects into the
same sub-regions, and when dealing with package
queries, the data objects in each sub-region are
treated as a whole. Data preprocessing mainly has two
parts: data mapping and data partitioning. First, data
objects are mapped onto corresponding data points in
multidimensional space using data mapping. Then, the
data points are divided according to the size of the sub-

Package queries

Solution

Data Preprocessing

Data mapping

Data partitioning

Obtain the Optimal Solution of Centroid

Construct the initial

solution of centroid

Generate candidate

solutions with high quality

Update the set of

candidate solutions

Obtain the optimal

solution of centroid

the centroid of

each sub-region

Replacement Based on Parallel Processing

Group Allocation

Construct the

initial solution

Finding a feasible

solution

Obtain The global

optimal solution

node node...

HPPQ

Fig. 1 Query processing framework.

regions and the regional dispersion, and the centroid of
each sub-region is calculated.

Data partitioning is based on two parameters: region
size and regional dispersion. The region size values
affect the run time and result accuracy. If the value is
too high this leads to low accuracy and if the value is too
low this leads to a long query time. In the case of non-
centralized data distribution in a region, the regional
dispersion is limited. The region is further divided
where the dispersion is greater than the threshold.

Definition 5 (Region). The space in which the
data object is located. We use the lower and upper
bounds of the space to represent the region, i.e., R D
ŒR:min;R:max�.

Definition 6 (Region Size Threshold, �). It restricts
the size of each region to a maximum of � data objects.

Definition 7 (Region Dispersion Threshold, �).
Regional dispersion is a measure of the degree of
aggregation of data objects in the region. In this
paper, we use the maximum distance from the regional
centroid to the data object in the region to represent
regional dispersion. The regional dispersion dis of each
sub-region is calculated using the following equation:

dis D max
16i6jDj

vuut pX
jD1

.etj � oi;j /2 (5)

In Eq. (5), etj is the regional centroid and oi;j

represents the j-th attribute value of the i-th data object.
When preprocessing data, we do not know which
attributes to use to query. So, preprocessing is based on
a set of p numerical attributes that are frequently queried
by users.

Different methods can be used for data partitioning.
As the partitioning method based on k-dimensional
quad-tree indexing results in a large number of sub-
regions, our implementation is based on sequential
cycle division. The iterations divide the regions into
sub-regions until each sub-region satisfies the region
size threshold and the regional dispersion threshold.

4.2 Obtain the optimal solution of centroid

Here, we propose a heuristic algorithm based on
Improved Partial Opposition-based Learning (namely
IPOL-HS) to obtain the optimal solution for the
centroid.
4.2.1 Improved partial opposition-based learning
The HS algorithm is used as the basic algorithm in
this paper. There have been many attempts to improve
the performance of the traditional HS algorithm and,

150 Big Data Mining and Analytics, June 2018, 1(2): 146-159

as they are based on using a random solution as
the candidate solution to calculate, they affect the
performance of the algorithms to some extent. The
traditional HS algorithm obtains candidate solutions by
the probability generation method. A candidate solution
generation algorithm based on partial opposition-based
learning[11] has been proposed to improve the quality
of the candidate solution, but even though it only
computes the opposition values for some components of
a candidate solution, the opposition-learning algorithm
is improved to some extent.

In fact, in partial opposition-based learning, each
component computes the opposition value with equal
probability. From the original solution and partial
opposition solution, select the solution with higher
fitness as the new candidate solution. As it is
impossible to determine which component of the
original solution needs to be converted to the opposition
value intelligently, there is still a possibility that a
candidate solution close to the optimal solution will
be deteriorated. Thus, we propose a novel method for
package queries based on improved partial opposition-
based learning. The current best solution in harmony
memory is used as a guide as it can increase the
possibility of some components with improper values
changing into their opposition values and can decrease
the possibility of components with proper values being
converted to their opposition values.

After the data partitioning processing was complete,
we used the centroid of each sub-region as the
representative data object. When package queries are
carried out, the maximum number of times that each
representative data object appears in the result set is the
size of the sub-region in which the representative data
object is located. The data was preprocessed and the
region of the dataset was divided into m sub-regions.
After data partitioning, the data objects in each sub-
region were considered as a whole. So, the centroideti can be used to represent the sub-region Ri when
processing package queries. The maximum number
of times that eti appears in the result set is the size
of the corresponding sub-region. Thus, Œai ; bi � can be
converted into [0, ni]. Package queries processing was
performed on the preprocessed data, and the number
of times that eti appears in the result set can be any
positive integer that does not exceed ni . So, an m-
dimensional positive integer string can be used to
represent a solution of a package query.

In the basic HS algorithm, each solution is called

a “harmony” and is denoted by n-dimensional real
number strings. There is a Harmony Memory (HM)
in the algorithm, which is used to store multiple
harmonies. The algorithm’s procedure mainly involves
four phases: initialize HM, generate new candidate
harmony, update HM, and iterative convergence. In
the generate new candidate harmony phase, a new
candidate harmony is improvised. The components of
the new candidate solution are taken from the HM at
a certain probability and formed randomly at a given
probability.

In the HS search based on improved partial
opposition-based learning, we generated an improved
partial opposition solution in the generate new
candidate harmony phase. From the original solution
and improved partial opposition solution, we selected
the solution with higher fitness as the new candidate
solution. The improved partial opposition-based
learning algorithm increases the possibility of some
components with improper values changing into their
opposition numbers and decreases the possibility that
components with proper values are converted to their
opposition numbers.

The core idea is that in the iterative optimization
phase we present the current best solution in harmony
memory as a guide, and the new candidate harmony
will be influenced by the current best harmony by a
certain probability during each iteration and absorb part
of its information. So, the new candidate harmony
is close to the current best harmony and mines a
better harmony near the current best solution. For
multidimensional spatial data points, we retain the
components of the original harmony that are close to the
corresponding components in the current best solution,
and the components of the original harmony that are
far from corresponding components in the current best
solution are randomly changed. The components in the
improved partial opposition solution can be defined as
follows:

O
x

Iq
i D

8̂<̂
:
aiCbi�xi ; jxi � x

cb
i j > j Oxi � x

cb
i j

&&rand.0; 1/ < CR

xi ; or

9>=>; (6)

In Eq. (6), xcb
i represents the value of the current

best solution on i-th component. We determined
whether the values of the components in the original
harmony are close to the corresponding components in
the current best solution. We reserved the component
value of the original harmony when it was close to the

Meihui Shi et al.: HPPQ: A Parallel Package Queries Processing Approach for Large-Scale Data 151

corresponding components in the current best solution.
We calculated its opposite number with probability CR,
when the opposite number of the component value of
the original harmony was close to the corresponding
components in the current best solution. The probability
CR ensures that if the current best harmony is a local
optimal solution, the possibility of falling into the
local optimal can be effectively reduced by random
adjustment and avoids being in the neighborhood of the
local optimized solution. The current optimal solution
generally has an excellent search direction, so CR tends
to take smaller values.

Figure 2 shows an example of generating an
improved partial opposition solution. The current best
harmony is xcb=f3, 0, 3, 0, 1, 2, 5, 5, 5, 6g and
the original harmony of improvisation is xcnew=f2,
6, 0, 2, 1, 5, 0, 4, 9, 0g. The opposition harmony
obtained by opposition-based learning of the original
harmony is Oxcnew=f8, 2, 8, 7, 8, 3, 8, 6, 0, 9g.
The values of the partial components in the improved
partial opposition harmony can be determined and
the values of other components are selected from the
corresponding components in the original harmony with
probability 1–CR and selected from the corresponding
components in the opposition harmony with probability
CR.

4.2.2 IPOL-HS algorithm
Figure 3 illustrates the HS execution procedure, which
is based on improved partial opposition-based learning
to obtain the optimal solution of the centroid. The
dashed box indicates the generate new candidate
harmony phase. Unlike the basic HS, an improved
partial opposition solution is constructed based on
the current best harmony, which accelerates the
convergence of the algorithm.

The framework of our method is shown in Algorithm
1.

Using an HS based on the improved partial

opposition-based learning algorithm, the optimal
solution based on the centroids of the sub-regions was
obtained. But this was not the eventual solution to the
package query. Therefore, it was necessary to replace
the centroids of the sub-regions with the real data
objects in the corresponding sub-regions to get the final
solution.

4.3 Replacement based on parallel processing

Each replacement program needs to be calculated and if
replacing the centroids with real data objects this needs
to happen sequentially. This takes a lot of run time
and produces more combinations. So, in this section
a strategy called HPR, based on a greedy algorithm and
parallel processing, is proposed to accelerate the query
speed. The HPR strategy divides into two parts: group

Harmony
Memory

Randomly selected
from HM

Random
generation

Fitness
comparison

Is g()
>g()

Replace

Cancel

Yes

No

Generate new
candidate harmony

Generate improved partial
opposition harmony

Generate original harmony

Select the solution with
higher fitness as a new

candidate solution.

Repair infeasible
solutions

newx
worstx

worstx

Fig. 3 Harmony search based on improved partial
opposition-based learning.

Fig. 2 The solution of improved partial opposition-based learning.

152 Big Data Mining and Analytics, June 2018, 1(2): 146-159

Algorithm 1 IPOL-HS
Require: harmony memory size (HMS), harmony

memory considering rate (HMCR), pitch adjustment
rate (PAR), bandwidth (bw), opposition construction
rate (CR), the maximum number of generations (T),
the maximum number of consecutive non update
times(CT), the number of data objects in dataset (n)

Ensure: optimal harmony
1: Current harmony memory size (CHMS) 0
2: Current generation number (GEN) 0
3: Consecutive non update times (t) 0
4: while CHMS < HMS do
5: Randomly form a harmony and repair the infeasible

harmony
6: CHMS++
7: end while
8: while .GEN < T && t < CT/ do
9: for i=0; i<n; i++ do

10: if rand() < HMCR then
11: xi = x

j
i , where j 2 (1, 2, ..., HMS)

12: if rand() < PAR then
13: xi = xi ˙bw
14: end if
15: else
16: xi = xiL+rand()�(xiU –xiL)
17: end if
18: end for
19: for i=0; i<n; i++ do
20: generate the improved partial opposition number

with Eq. (6)
21: end for
22: if g.xcnew/ > g.

O
x

Iq
cnew/ then

23: xnew D xcnew

24: else
25: xnew D

O
x

Iq
cnew

26: end if
27: if g.xnew/ > g.xworst / then
28: update HM and t 0
29: else
30: t++
31: end if
32: end while

allocation and parallel processing. First, we designed
an allocation algorithm to balance the node load and
improve parallelism. Then, using the greedy strategy
and parallel processing, we effectively replaced the
centroids with data objects of corresponding sub-
regions to get the final solution.

4.3.1 Group allocation
Each sub-region where the centroid needs to be replaced
is called a group. The set of groups, based on the
improved partial opposition-based learning algorithm
for HS is recorded as G D fg1; g2; :::; gjGjg. The
number of nodes in the cluster is jN j and there evidently
is jGj � jN j. Therefore, the jGj groups need to be
assigned to the jN j nodes in the cluster. The allocation
algorithm is based on the number of combinations
generated in each group, i.e.,

� jgi j

jxbest
jgi j
j

�
.

That is, the number of combinations of jxbest
jgi j
j data

objects is selected from the set of jgi j data objects so
that, to achieve load balancing, the calculation load of
each node is approximately the same.

The specific process of the group allocation algorithm
is shown in Algorithm 2. The major steps are as follows.

First, eliminate sub-regions that do not require a
replacement operation. That is, the centroids of these
sub-regions have an element value of zero. All sub-
regions with centroids that need to be replaced are
composed of a set of groups and form a collection
of nodes. The maximum number of combinations for
each group to be replaced is calculated and arranged
in descending order (line 1). The first few regions
with the largest number of combinations are allocated
to the nodes in the cluster in turn. Then, each time an
unassigned group has the current maximum number of
combinations, it is assigned to the node with the least
calculation load (lines 2–7).

Figure 4 shows an example of how to allocate groups.
Assume the optimal solution (2, 2, 2, 0, 0, 1, 1, 2) is
obtained by using the partitioning results shown in Fig.
1 and the HS based on the improved partial opposition-

Algorithm 2 Group allocation algorithm
Require: the set of cluster nodes N D fn1; n2; :::; njN jg,

the set of groups G D fg1; g2; :::; gjGjg

Ensure: each group is assigned to a node in the cluster
1: the groups are sorted in descending order according to

the number of combinations generated in the group
2: take the first jN j groups, assign them to nodes in the

cluster in turn
3: while there are unassigned groups in G do
4: get the group g with the highest number of

combinations
5: find the node ni with the least calculation load
6: assign g to ni

7: end while

Meihui Shi et al.: HPPQ: A Parallel Package Queries Processing Approach for Large-Scale Data 153

Fig. 4 The allocation process of groups.

based learning algorithm. There are four nodes in the
cluster. If the value of the components corresponding to
the centroid of the sub-region is zero, the data objects
in that sub-region will not appear in the result set, so no
replacement operations are required. The remaining six
groups are sorted in descending order of combinations
and we get the descending sequence group1, group2,
group3, group6, group4, group5. First, the first four
groups are assigned to each node in turn. Next, assign
group4. At this point, the node with the least number
of combinations in the cluster is n4, so assign group4 to
n4. Similarly, assign group5 to n4.

4.3.2 Parallel processing
Inferior replacement programs for sub-problems have
less likelihood of appearing in the global optimal
solution, and better replacement programs have a
greater likelihood of appearing in the global optimal
solution. Thus, some better replacement programs
can be obtained by heuristic methods and any inferior
replacement programs can be eliminated directly.
Although this method reduces accuracy to a certain
extent, it can significantly reduce the number of
replacement programs that need to be adjusted, thereby
reducing the run time required for the query. By
using only some of the better replacement programs to
consider the interaction between replacement programs
in sub-problems, the run time required for the query is
further reduced.

The parallel scheme can be used to generate the
optimal harmony memory for each group. However,
the replacement program for each group will affect
the replacement programs of the remaining groups.
Therefore, before presenting the parallel processing
algorithm, we first introduce a number of metrics that
are used in the algorithm to coordinate the replacement

programs for each group.
(1) Relative change in total value:

4vij D vij � vijnow
(7)

In Eq. (7), vij represents the objective function
value of the j-th replacement program in the i-th
group. vijnow represents the objective function value
of the jnow -th replacement program in the i-th group.
4vij represents the relative change in the objective
function when the replacement program of the i-th
group changes from vijnow to vij .

(2) Relative change in resource consumption:

4cij D

X
k

fcijk � cijnowk � rk=jEr jg (8)

In Eq. (8), cijk represents the k-th resource
consumption of the j-th replacement program in the i-th
group, cijnowk represents the k-th resource consumption
of the jnow -th replacement program in the i-th group.
rk represents the current consumption of the k-th
resource. jEr j represents the current consumption of all
resources.

(3) Scaled change of resource consumption for
repairing unfeasible solutions:

4cover
ij D

X
k

cijk � cijnowk

rk � Ck

(9)

In Eq. (9), rk � Ck represents the portion of the
original replacement program that is exceeded on the
k-th resource constraint.

(4) Scaled change of resource consumption for
optimizing feasible solutions:

4cin
ij D

X
k

cijk � cijnowk

Ck � rk
(10)

(5) Proportionality coefficient for repairing
unfeasible solutions:

uover
ij D 4cover

ij =4 vij (11)

(6) Proportionality coefficient for optimized feasible
solutions:

uin
ij D 4c

in
ij =4 vij (12)

(7) Unfeasible coefficient:

fijk D rijk=Ck (13)

In Eq. (13), if there is always fijk < 1 for all resource
constraints, the current solution is feasible.

A parallel algorithm is proposed to efficiently replace
the centroids of the sub-regions with the real data
objects in the corresponding sub-region. The main
premise of this is as follows: each node uses an HS
based on the improved partial opposition-based learning
algorithm to search the optimal harmony memory of

154 Big Data Mining and Analytics, June 2018, 1(2): 146-159

each group in parallel. The candidate solutions in the
harmony memory are sorted in descending order of
value. Therefore, the solution with the highest value
in each group is in first place. The solution of the first
row of each group is taken as the initial solution based
on the greedy strategy. Then, the solution is upgraded
or downgraded based on different metrics to find the
optimal solution that satisfies the constraints.

The framework of our algorithm is shown in
Algorithm 3. The major steps of the parallel processing
algorithm are as follows.

Algorithm 3 Parallel processing algorithm
Require: Each harmony memory HMi formed by

corresponding group, the number of groups (NG)
Ensure: Global optimal harmony

1: max 0 min 0
2: for i = 0; i<NG; i++ do
3: solution HMi0

4: end for
5: if the initial solution is feasible then
6: return solution
7: else
8: while the current solution is infeasible do
9: for i = 0; i<NG; i++ do

10: for each group with less valuable do
11: if uover

ij > max then
12: max uover

ij

13: end if
14: end for
15: end for
16: Perform a replacement operation on the

replacement program with proportionality
coefficient for repairing infeasible solution equal
to max

17: end while
18: end if
19: while the current solution is feasible do
20: for i = 0; i<NG; i++ do
21: for each group with more valuable and fk 6 1 do
22: if uin

ij < min then
23: min uin

ij

24: end if
25: end for
26: end for
27: Perform a replacement operation on the replacement

program with proportionality coefficient for
optimized feasible solution equal to min

28: end while
29: return solution

Step 1. Greedily form the initial solution (lines 3–7).
The solution in the first place of each group is taken as
the initial solution. If the initial solution is feasible, the
optimal result set is obtained and returned. Otherwise,
Step 2 is executed.

Step 2. Calculate the metrics in parallel and
reduce the value of the candidate solution to get
a feasible solution (lines 8–17). Calculate uover

ij of
the replacement programs in each group, which has
less value than the current replacement program in
each group. Select the replacement program which is
less valuable than the current replacement program in
each group but has the largest global uover

ij . Replace
the current replacement program in the corresponding
group with the program which has the largest global
uover

ij . If the modified solution is feasible, Step 3 is
executed. Otherwise, Step 2 is executed.

Step 3. Get a better solution than the current solution
(lines 19–28). For each replacement program that has
more value than the current replacement program, the
relative change in total resource consumption 4cij can
not be negative. This means that there is no replacement
program that has a greater value and consumes less
total resources than the current replacement program.
Therefore, we want to improve the value of the current
replacement program if it ensures that the new solution
obtained by the replacement operation is still feasible.
If changing the current replacement program to a
more valuable replacement program can make all the
unfeasible coefficients for the resources still be fk �

1, calculate its uin
ij . Select the replacement program

which has the lowest global uin
ij . Replace the current

replacement program in the corresponding group with
the program which has the lowest global uin

ij . If there
is a more valuable replacement program and it does not
make the feasible solution become unfeasible, Step 3 is
executed. Otherwise, stop the operation and return the
current optimal solution.

5 Experiments

In this section, we provide an experimental evaluation
on the performance of our method HPPQ. To test the
performance of the HPR strategy proposed in this paper,
we compared the sequential replacement method with
the HPPQ algorithm. For the sake of convenience
we called it HPQ and compared it with the existing
package queries algorithms SKETCHREFINE and HS
from the following aspects: (1) different sizes of real

Meihui Shi et al.: HPPQ: A Parallel Package Queries Processing Approach for Large-Scale Data 155

and synthetic datasets; (2) comparative experiments on
convergence; (3) the impact of varying the partitioning
region size threshold on the performance of algorithms;
and (4) the impact of varying the partitioning coverage
on the run time of algorithms.

5.1 Dataset

The proposed algorithm in this paper was evaluated
on a real-world dataset and a synthetic dataset. The
real-world dataset consisted of approximately ten
thousand data objects collected from a food datase
(https://www.kaggle.com/bls/eating-health-module-
dataset). Each data object in the dataset contained 37
numeric attributes. As the value of the partial attributes
of a data object is null, data with a null attribute
were filtered to form a food dataset with 23 non-null
numerical attributes. As the size of the real-world data
set was limited, it was necessary to create a synthetic
dataset, which contained about one hundred thousand
data objects. As the problem of package queries is
a kind of combinatorial optimization problem, the
synthetic dataset was a large-scale dataset. Statistics on
the two datasets are shown in Table 1.

5.2 Comparative algorithms and evaluation
criteria

We compared our algorithm with two baseline methods:
(1) SKETCHREFINE: an algorithm of package

queries based on the divide-and-conquer method. A
package queries problem is divided into several sub-
problems, then an exact method is used to deal with
sub-problems.

(2) HS: the IPOL-HS algorithm proposed in this
paper is based on the HS algorithm. Therefore, the HS
algorithm is used as the comparison algorithm. The
convergence of the proposed algorithm is compared
with the HS algorithm. The run time and accuracy rate
are used to evaluate its performance.

5.3 Results and discussion

Experiment 1: Comparison of different sizes of real and
synthetic datasets.

The dataset in Table 2 is extracted from the real-world
dataset, and the dataset in Table 3 is extracted from the
synthetic dataset. Figures 5–8 show the performance

Table 1 Statistics of datasets.
Number of data objects Number of attributes

Real-world dataset 10139 23
Synthetic dataset 100157 23

Table 2 Different sizes of real-world dataset.
Dataset Number of data objects Number of attributes
(a) R1K 1030 23
(b) R3K 3104 23
(c) R5K 5169 23
(d) R8K 8263 23
(e) R10K 10 139 23

Table 3 Different sizes of synthetic dataset.

Dataset Number of data objects Number of attributes
(a) S10K 10 084 23
(b) S30K 30 253 23
(c) S50K 50 425 23
(d) S80K 80 691 23
(e) S100K 100 157 23

of our methods and the SKETCHREFINE algorithm on
different sizes of the real-world and synthetic datasets.

In Figs. 5 and 6, the three algorithms show high
accuracy and high efficiency on small data. Even in
the case of processing R1K, the accuracy of all three

Fig. 5 Accuracy rate of different sizes of real-world dataset.

Fig. 6 Run time of different sizes of real-world dataset.

Fig. 7 Accuracy rate of different sizes of synthetic dataset.

156 Big Data Mining and Analytics, June 2018, 1(2): 146-159

Fig. 8 Run time of different sizes of synthetic dataset.

algorithms did not reach one hundred percent. Because
the centroids of the sub-regions are used to represent the
data objects in the corresponding sub-regions, this, to a
certain extent, reduces the accuracy of the algorithm.
With an increase in data size, the accuracy of the three
algorithms decreased gradually, but still achieved high
accuracy. The HPQ and HPPQ algorithms may obtain
suboptimal solutions because they all adopt heuristic
methods.

Compared with the SKETCHREFINE algorithm, the
HPQ and HPPQ algorithms use a hybrid of the divide-
and-conquer and heuristic methods, so that the run time
is significantly reduced. As the HPPQ algorithm had
fewer replacement operations when dealing with the
real-world dataset, fewer sub-problems were needed
for parallel processing. Therefore, the parallel strategy
introduced by the HPPQ algorithm did not significantly
reduce its run time compared with the HPQ algorithm.

As can be seen from Figs. 7 and 8, this is similar
to the case in the real-world datasets. The difference
is that when dealing with synthetic datasets, there are
more sub-problems. Compared with HPQ algorithm,
the use of parallel strategy to solve the sub-problems in
the HPPQ algorithm, significantly reduced the run time.

Experiment 2: Comparative experiments on
convergence.

The IPOL-HS algorithm proposed in this paper
is based on the HS algorithm. We compared the
convergence rate of the IPOL-HS algorithm and the
existing HS algorithm on different sizes of datasets
and used R1K and R10K as the experimental datasets.
Figures 9 and 10 show the performance of the IPOL-
HS algorithm and HS algorithm on different sizes of
the real-world dataset.

As can be seen from Figs. 9 and 10, for both
datasets, the improved partial opposition-based learning
algorithm shows excellent convergence performance.
The IPOL-HS algorithm improves the quality of

Fig. 9 Comparison of convergence on R1K.

Fig. 10 Comparison of convergence on R10K.

the candidate solution generated during the iterative
process. So that each new harmony can be closer to
the current best solution, which greatly accelerated the
convergence rate of the algorithm.

In Fig. 9, the global optimal solution is obtained when
the IPOL-HS algorithm iterates 300 times, but the HS
algorithm has to iterate 800 times before it converges
to the global optimal solution. In Fig. 10, using the
R10K dataset, the global optimal solution is obtained
when the IPOL-HS algorithm iterates 500 times, but
the HS algorithm has to iterate 1100 times before it
converges to the global optimal solution. Therefore, the
algorithm based on the IPOL-HS algorithm is more able
to search for the optimal solution compared with the HS
algorithm, and the convergence advantage increases.

Experiment 3: The impact of varying the partitioning
region size threshold on the performance of the
algorithms.

Both the SKETCHREFINE and HPPQ algorithms
adopt a data partitioning method in the data
preprocessing stage. The division size depends on
a threshold and this affects the performance of the
two algorithms. Smaller partitions mean generating
more but smaller sub-problems and larger partitions
mean generating fewer but larger sub-problems. The
performance of the algorithms is significantly impacted
by these two cases. Therefore, we need to analyze the
impact of varying partitioning region size threshold

Meihui Shi et al.: HPPQ: A Parallel Package Queries Processing Approach for Large-Scale Data 157

on the performance of the algorithms. We used the
real-world and synthetic datasets as the experimental
datasets.

As can be seen from Figs. 11 and 12, if the
region size thresholds of the two algorithms too high
or too low, on both datasets, the run time of the
algorithm is too long. When the region size threshold
is large, the two algorithms do not achieve the effect
of partitioning, which is close to direct processing.
Between them, the SKETCHREFINE algorithm is
similar to the exact method and can hardly obtain the
global optimal solution in a limited time. The HPPQ
algorithm is similar to HS and is based on an improved
partial opposition-based learning algorithm. It is only a
heuristic algorithm, and the run time is very long when
dealing with large-scale data.

As the region size threshold decreases, the run time
decreases significantly. In Figs. 11 and 12, there is an
optimal number of region size thresholds in both the
real-world and the synthetic datasets, which minimizes
the run time. The size of the optimal threshold depends
on the size of the dataset. For the real-world dataset, the
optimal region size threshold for the HPPQ algorithm
is 5% of the total number of data objects, and the
optimal threshold for the SKETCHREFINE algorithm
is 3%. For the synthetic dataset, the optimal region size
threshold for the HPPQ algorithm is 1% of the total

Fig. 11 Impact of threshold on real-world dataset.

Fig. 12 Impact of threshold on synthetic dataset.

number of data objects, and the optimal threshold for
the SKETCHREFINE algorithm is 0.5%.

Experiment 4: Impact of varying the partitioning
coverage on the run time of algorithms.

As data preprocessing is performed before query
processing, the query attributes are unknown and only
attributes that are queried frequently are handled as
partition attributes. As a result, partitioning coverage
has an important impact on the run time.

We defined the partitioning coverage as the ratio
of the number of attributes contained in the partition
attributes to the total number of query attributes. We
used a time increase ratio to represent the change in
run time. The run time for full coverage with partition
attributes, i.e., a partition coverage of 1, is used as the
standard run time. We used the real-world and synthetic
datasets as experimental datasets to test the impact of
partitioning coverage on the HPPQ algorithm.

As can be seen from Tables 4 and 5, the run time
of the HPPQ algorithm decreases with an increase in
partition coverage in both the real-world and synthetic
datasets. When data preprocessing uses only a small
number of query attributes that are queried frequently
as the partition attributes, the probability of using
the query attributes involved in this query in data
preprocessing is reduced, and the run time increases
significantly.

6 Conclusion

As a response to the requirements of large-scale
data, we proposed a novel method for package
queries combining heuristic methods and the divide-
and-conquer strategy, namely HPPQ. The method was
found to reduce the number of candidate results by
data preprocessing. The IPOL-HS algorithm was then
proposed to improve the convergence rate of the

Table 4 Impact of partitioning coverage on real-world
dataset.

Partitioning coverage Run time (s) Time increase ratio
0.25 55.64 2.542
0.50 35.67 1.630
1.00 21.89 1.000
1.25 20.25 0.925

Table 5 Impact of partitioning coverage on synthetic datase.

Partitioning coverage Run time (s) Time increase ratio
0.250 5652 3.053
0.500 3193 1.725
1.000 1851 1.000
1.250 1697 0.917

158 Big Data Mining and Analytics, June 2018, 1(2): 146-159

heuristic algorithm. Then, a strategy called HPR,
based on a greedy algorithm and parallel processing,
was proposed to accelerate the speed of query. The
experimental results show that our method can solve
the problem of package queries in large-scale data and
obtain the optimal solution efficiently within the range
of acceptable accuracy, so satisfying the requirement of
efficiency.

In the future, to further improve the convergence
rate of the algorithm, the effect of different periods on
the improved partial opposition operation probability
should be considered. In addition, even though the
method proposed in this paper reduces the run time
required for package queries in the large-scale data
environment to some extent, it still has the potential
for further optimization. The parallel strategy mainly
adopts parallel computing to reduce the run time, but
there is no parallel strategy for obtaining the optimal
solution of the centroid and no parallel replacement
scheme for multiple sub-problems. Therefore, how
to make the algorithm replace multiple sub-problems
simultaneously still needs to be investigated.

Acknowledgment

This work was supported by the National Natural Science
Foundation of China (Nos. 61472070 and 61672142).

References

[1] M. Brucato, J. F. Beltran, A. Abouzied, and A. Meliou,
Scalable package queries in relational database systems,
Proc. VLDB Endow., vol. 9, no. 7, pp. 576–587, 2016.

[2] M. De Choudhury, M. Feldman, S. Amer-Yahia, N.
Golbandi, R. Lempel, and C. Yu, Automatic construction
of travel itineraries using social breadcrumbs, in Proc. 21st

ACM Conf. Hypertext and Hypermedia, Toronto, Canada,
2010, pp. 35–44.

[3] M. Xie, L. V. S. Lakshmanan, and P. T. Wood, Breaking out
of the box of recommendations: From items to packages,
in Proc. 4th ACM Conference on Recommender Systems,
Barcelona, Spain, 2010, pp. 151–158.

[4] A. Parameswaran, P. Venetis, and H. Garcia-Molina,
Recommendation systems with complex constraints: A
course recommendation perspective, ACM Trans. Inf. Syst.,
vol. 29, no. 4, p. 20, 2011.

[5] T. Lappas, K. Liu, and E. Terzi, Finding a team of experts
in social networks, in Proc. 15th ACM SIGKDD Int. Conf.
Knowledge Discovery and Data Mining, Paris, France,
2009, pp. 467–476.

[6] A. Baykasoglu, T. Dereli, and S. Das, Project team
selection using fuzzy optimization approach, Cybern. Syst.,
vol. 38, no. 2, pp. 155–185, 2007.

[7] M. Brucato, R. Ramakrishna, A. Abouzied, and A. Meliou,
PackageBuilder: From tuples to packages, Proc. VLDB
Endow., vol. 7, no. 13, pp. 1593–1596, 2014.

[8] Y. D. Cui, A new dynamic programming procedure for
three-staged cutting patterns, J . Global Optim., vol. 55,
no. 2, pp. 349–357, 2013.

[9] T. Meng and Q. K. Pan, An improved fruit fly optimization
algorithm for solving the multidimensional knapsack
problem, Appl. Soft Comput., vol. 50, pp. 79–93, 2017.

[10] Z. L. Guo, S. W. Wang, X. Z. Yue, and H. G. Yang,
Global harmony search with generalized opposition-based
learning, Soft Comput., vol. 21, no. 8, pp. 2129–2137,
2017.

[11] R. Sarkhel, T. M. Chowdhury, M. Das, N. Das, and M.
Nasipuri, A novel harmony search algorithm embedded
with metaheuristic opposition based learning, J. Intell.
Fuzzy Syst., vol. 32, no. 4, pp. 3189–3199, 2017.

[12] M. I. Andreica, A dynamic programming framework
for combinatorial optimization problems on graphs with
bounded pathwidth, arXiv preprint arXiv: 0806.0840,
2008.

[13] Q. Louveaux and S. Mathieu, A combinatorial branch-and-
bound algorithm for box search, Discrete Optim., vol. 13,
pp. 36–48, 2014.

[14] E. I. Hsu and S. A. McIlraith, Computing equivalent
transformations for combinatorial optimization by branch-
and-bound search, in Proc. 3rd Annual Symposium on
Combinatorial Search, Atlanta, GA, USA, 2010.

[15] B. Haddar, M. Khemakhem, S. Hanafi, and C. Wilbaut,
A hybrid quantum particle swarm optimization for the
multidimensional knapsack problem, Eng. Appl. Artif.
Intell., vol. 55, pp. 1–13, 2016.

[16] Y. H. Feng, K. Jia, and Y. C. He, An improved hybrid
encoding cuckoo search algorithm for 0-1 knapsack
problems, Comput. Intell. Neurosci., vol. 2014, p. 970456,
2014.

[17] A. Rezoug and D. Boughaci, A self-adaptive harmony
search combined with a stochastic local search for the 0-
1 multidimensional knapsack problem, Int. J. Bio-Inspired
Comput., vol. 8, no. 4, pp. 234–239, 2016.

[18] Z. W. Geem, J. H. Kim, and G. V. Loganathan, A
new heuristic optimization algorithm: Harmony search,
Simulation, vol. 76, no. 2, pp. 60–68, 2001.

[19] M. Mahdavi, M. Fesanghary, and E. Damangir, An
improved harmony search algorithm for solving
optimization problems, Appl. Math. Comput., vol. 188,
no. 2, pp. 1567–1579, 2007.

[20] M. G. H. Omran and M. Mahdavi, Global-best harmony
search, Appl. Math. Comput., vol. 198, no. 2, pp. 643–656,
2008.

[21] Q. K. Pan, P. N. Suganthan, M. F. Tasgetiren, and J.
J. Liang, A self-adaptive global best harmony search
algorithm for continuous optimization problems, Appl.
Math. Comput., vol. 216, no. 3, pp. 830–848, 2010.

[22] D. X. Zou, L. Q. Gao, J. H. Wu, and S. Li, Novel global
harmony search algorithm for unconstrained problems,
Neurocomputing, vol. 73, nos. 16–18, pp. 3308–3318,
2010.

[23] X. Z. Gao, X. Wang, S. J. Ovaska, and K, Zenger, A hybrid
optimization method of harmony search and opposition-
based learning, Eng. Optimiz., vol. 44, no. 8, pp. 895–914,
2012.

Meihui Shi et al.: HPPQ: A Parallel Package Queries Processing Approach for Large-Scale Data 159

Meihui Shi received the BEng degree
from Liaoning University in 2015, and
the MEng degree from Northeastern
University, China, in 2017, both in
computer science. She is currently
working toward the PhD degree in
the College of Computer Science and
Engineering, Northeastern University,

China. Her research area is set-based query processing.

Derong Shen received the BEng degree
in 1987, and the MEng degree in
1990, both from Jilin University. She
received the PhD degree from Northeastern
University in 2004. She is a professor
of the College of Computer Science
and Engineering, Northeastern University,
China. Her research area is data integration

and Web data management.

Yue Kou received the BEng degree in
2002, the MEng degree in 2005, the PhD
degree in 2009, all from Northeastern
University. She is an associate professor
of the College of Computer Science
and Engineering, Northeastern University,
China. Her research area includes entity
resolution and web data management.

Tiezheng Nie received the BEng degree
in 2002, the MEng degree in 2005, the
PhD degree in 2009, all from Northeastern
University. He is an associate professor
of the College of Computer Science
and Engineering, Northeastern University,
China. His research area includes data
quality and data integration.

Ge Yu received the BEng degree in 1982,
the MEng degree in 1985, both from
Northeastern University. He received the
PhD degree from Kyushu University,
Japan, in 1996. He is a professor,
the College of Computer Science and
Engineering, Northeastern University,
China. His research area is database and

big-data management.

		2018-04-11T14:34:12-0400
	Preflight Ticket Signature

