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Location Prediction on Trajectory Data: A Review

Ruizhi Wu, Guangchun Luo*, Junming Shao, Ling Tian, and Chengzong Peng

Abstract: Location prediction is the key technique in many location based services including route navigation, dining

location recommendations, and traffic planning and control, to mention a few. This survey provides a comprehensive

overview of location prediction, including basic definitions and concepts, algorithms, and applications. First, we

introduce the types of trajectory data and related basic concepts. Then, we review existing location-prediction

methods, ranging from temporal-pattern-based prediction to spatiotemporal-pattern-based prediction. We also

discuss and analyze the advantages and disadvantages of these algorithms and briefly summarize current

applications of location prediction in diverse fields. Finally, we identify the potential challenges and future research

directions in location prediction.
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1 Introduction

Urban planning, relieving traffic congestion, and
effective recommendation systems are
important objectives worldwide and have received
increasing attention in recent years. Spatiotemporal
data mining is the key technique involved in these
practical =31 Trajectory data brings
new opportunities and challenges in the mining of

location

applications

knowledge about moving objects. To present, many
researchers have used trajectory data to mine latent
patterns that are hidden in data. These patterns can
also be extracted for the analysis of the behavior
of moving objects. Location prediction, as the
primary task of spatiotemporal data mining, predicts
the next location of an object at a given time. In
recent years, researchers in location prediction have
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made much progress. For instance, early studies
traced student ID cards to identify frequent temporal
patterns and used these patterns to predict their next
location!*71.  Since then, location prediction has had
a wide range of applications in daily life, e.g., travel
recommendation, location-aware advertisements, and
early warning of potential public emergencies, to
mention a few!® 11 Location prediction typically
must employ many techniques, including trajectory
data preprocessing, trajectory clustering, trajectory
pattern mining, trajectory segmentation, and trajectory
semantic representation. In this article, we review
the field of location prediction, its basic definitions,
typical algorithms, model evaluations, and diverse
applications. Our objective in this review is to present
a comprehensive picture of location prediction.

The remainder of this paper is organized as follows:
in Section 2, we introduce the basic concepts of location
prediction, including the different sources of trajectory
data, the general prediction framework, challenges
in location prediction, and common trajectory data
preprocessing methods. In Section 3, we introduce
some common trajectory data preprocessing methods.
Section 4 comprises the core of this review, in which
we describe different models and briefly introduce each
of their motivation, basic idea, and key techniques. In
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Section 5, we provide some public data sets, and
typical evaluation strategies used in location prediction.
Finally, in Section 6, we introduce some real-world
applications and future directions. We conclude our
overview in Section 7.

2 Preliminary

Trajectory data characterizes the locations and times of
moving objects. Formally, p = (x, y, h,t) represents
a trajectory data point, where x and y are the latitude
and longitude of a given moving object, respectively.
is the altitude, and ¢ is the time stamp (in many real-
world applications, #/ is ignored; thus p = (x, y,t) is
commonly used). As such, trajectory data is composed
of a sequence of trajectory data points in chronological
order. Formally, a trajectory T}, is often represented as:
Tya = P1, P2, .-+ Di,---Pn- In the following subsection,
we introduce different types of trajectory data sources,
their unique characteristics, and the corresponding
challenges in location prediction.

2.1 Trajectory data sources

There are many different types of trajectory data in real-
world scenarios. Zheng!'!! classified trajectory data as
being either actively or passively recorded, depending
on the derivation of trajectories. We briefly introduce
these two types of trajectory data below.

e Active recording trajectory data: People actively
record their locations when they login to social
networks or travel to places of interest and share
their life experiences. Typical data types include
check-in data (e.g., Twitter, Weibo, QQ, etc.),
and location-based data such as travel photos.
Figure 1 shows the correlation of users and
locations in social networks. In Flickr, a sufficient
number of geotagged photos can be formulated
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Fig. 1 User-location graph for a Location-Based
Social Network (LBSN), comprising user and location
correlations! 14,

as a trajectory, whereby each photo is associated
with a location tag and a time stamp. Due to
the random behaviors of users, active recording
data is typically characterized by its sparsity.
When mining this trajectory data, additional social
information is usually added.

e Passive recording trajectory data: With
the development of positioning techniques,
many moving objects are equipped with
positioning  position devices that record
location information. These include global
positioning systems GPS in vehicles and radio-
frequency identification devices for tracing
objects. Typically, these devices automatically
record huge trajectory  data
points!'? 131 Transaction records or the Internet
trajectory of human beings can also be viewed
as trajectory data, since locations and times are
recorded.

volumes of

2.2 Challenges in location prediction

In contrast to traditional data, the unique properties of
trajectory data (e.g., different sampling rates, different
lengths, and sparsity) mean that location prediction
faces many challenges.

2.2.1 Randomness of movement behaviour

Since the current location of a user is related to
that users visited location history, trajectory data is
context-sensitive. However, in contrast to other data,
mobility patterns are difficult to identify. Features in
trajectory data are fuzzy, and mobility patterns have no
exact standards. To generate patterns, researchers often
mine mobility patterns based on association rules, time
period, and transition probability between locations.
Sometimes patterns can represent user movement
behaviour, but cannot describe the moving process
of users due to the inherent mobility randomness of
mobility.

2.2.2 Time sensitivity

Trajectory data is time sensitive. Since the moving
speed of a user can be fast, a user often visits many
locations in a short period of time. The time sensitivity
property makes it is difficult to handle time. Traditional
methods often use a time window, but this strategy is
not always optimal, because (1) users move quickly and
randomly, and a time window cannot capture changes
in the trajectory data; (2) the length of a time window is
difficult to establish; and (3) a time window is a discrete
way to handle time and it is difficult to determine the
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correlation between time and location.
2.2.3 Cold start and sparsity problems

If a user has no trajectory history, it is difficult to
establish predictors regarding his future location, which
is known as the cold start problem. If a user has
only a few visiting locations, it is also difficult to
establish predictors of his future location, which is a
sparsity problem. Cold start and sparsity problems are
prevalent in prediction applications, especially those
using actively recorded trajectory data.

2.2.4 Heterogeneous data

The sources of trajectory data are diverse, e.g., taxis,
buses, people, etc. These moving objects often have
different sampling rates and movement patterns. In
many scenarios, datasets also include social relations or
short messages. As such, heterogeneous data sources
represent another challenge in location prediction
systems.

2.3 Location prediction framework

Human trajectory data reveal the movement
preferences and behaviours of people in daily life.
Trajectory data mining involves trajectory data
processing, management, and pattern mining from past
trajectories!!!!. Location prediction, as the primary task
in trajectory data mining, learns the movement patterns
of moving objects based on their past locations and the
past and then forecasts future locations. In traditional
trajectory mining tasks, trajectory pattern mining,
trajectory similarity measurement, and trajectory
anomaly detection are closely related to location
prediction. The objective of location prediction is to
predict the next location and/or the next visit time to a
given location. The former considers trajectory data as
a spatial sequence, whereas the latter regards trajectory
data as a spatiotemporal sequence.
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Figure 2 shows the framework of the location
prediction process, which has three steps. (1) Due to
trajectory data being sampled from various positioning
devices, its quality is low, so data preprocessing is
necessary.  Trajectory data preprocessing involves
noise filtering, trajectory data
, even some special preprocessing
such as trajectory segmentation!®2!  trajectory
semantics!'*?>23 or map matching!?*?%!. (2) Learning
from past trajectory data is a modeling process, a key
aspect of location prediction, in which the movement
of a moving object is modeled. The performance of a

data cleaning!!®,

compression! 618!

location prediction algorithm mainly depends on the
proposed model. (3) Location prediction and results
evaluation are the indispensable parts of an established
location prediction system.

In this section, we review some basic concepts of
location prediction, including the data sources and
challenges associated with location prediction. Finally,
we provided an overview of the location prediction
framework.

3 Trajectory Data Preprocessing

Based on the above general framework, we briefly
introduce some common trajectory data preprocessing
methods in this section. First, we present some common
basic data cleaning methods, including noise filtering,
stay point detection, and trajectory compression. Then,
we introduce some special trajectory data preprocessing
procedures, which typically involve Places Of Interest
(POIs) identification, trajectory segmentation, and
trajectory semantics. Finally, we introduce methods for
extracting features from trajectory data.

3.1 Data cleaning

Traditional trajectory data preprocessing often involves
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Fig. 2 Popular general framework of location prediction in which the integration of single object and group models is an

emerging direction.
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noise filtering, stay point detection, and trajectory
compression.

Noise filtering addresses data inaccuracy problems
when the sampled trajectory data from positioning
equipment contains unexpected mistakes, such as
sensor noise. Existing methods are mainly categorized
into three types: mean (or median) filters, Kalman
filters, and particle filters.

The stay point is a trajectory point in which the
geographical position does not change over a relatively
long period of time. Generally, stay points usually
have a special meaning to the moving objects, such
as a work place, restaurant, or nest for animals. The
earliest stay point detection algorithm was proposed by
Li et al.””’! and Zheng!®®!. Many stay point detection
algorithms are based on the concepts of density and
nearest neighbours.

To present, the volume of trajectory data is rapidly
increasing due to the popularity of positioning devices.
However, a lot of trajectory data suffers from high costs
of storage and analysis. Trajectory data compression
is used to extract key information from trajectory data,
including some key points in a trajectory to briefly
represent the trajectory. Existing methods can be
divided into three categories: off-line, on-line, and
semantic compression.

Table 1 summarizes some of the main data cleaning
methods. For details, the reader is referred to the
corresponding references.

3.2 Preprocessing for location prediction

After data cleaning, data preprocessing is usually
necessary in location prediction. For example, the goal
in most applications is to determine the next location at
which people will arrive, rather than the specific GPS
coordinates. In this scenario, trajectory preprocessing
mainly includes map matching, POIs identification,

Table 1 Summary of existing trajectory data cleaning
methods.

Method
Mean (or median) filterst'!]
Kalman filters!!>?!
Particle filters3%311
Density clustering?!

Data cleaning

Noise filtering

Nearest neighbour3334!
Content-based™!
Off-line compression!*®!

Stay point detection

On-line compression!!”-37!
l13.28]

Trajectory compression
Semantic compressio

trajectory segmentation, and trajectory semantics.

Urban trajectory data can be used to map a road
network!®l.  As such, it is beneficial to analyze the
paths taken by people, and this also provides a new
representation of the trajectory data, i.e., a graph. Map
matching techniques map trajectory data onto a road
network. Current mainstream matching algorithms
are either context-based® % or integrate additional
information!*!-42!,

POIs are great concern in urban places, and are
also referred to as significant locations. POIs denote
locations frequently visited or high-density trajectories
near locations. Currently, POIs data can be divided
into two types. The first type includes well-known
public places like malls, government offices, and
transportation centers, to mention a few. Unfortunately,
this type of data is often scarce. The second type
of POI data is high-density trajectory data, in which
POIs are often invisible and a cluster-based algorithm
or hierarchical method must be utilized to identify
the POIs. Figure 3 outlines the process of identifying
significant locations (POIs) via hierarchical clustering
methods!*3!, where X is the center of the cluster, and
the dots indicate GPS data. In the figure, the white
dots are the GPS data in a cluster, and the dots within
the dotted line represent data in the previous cluster.
The basic idea of clustering algorithms is to mark a
place and its radius. GPS data points within this radius
are recognized as the same POI, and the central point,
which is new, represents the mean of these GPS data
points. This process is repeated until all points within
this radius no longer change. We note that POIs are
different from stay points. A stay point is the cluster
point of a trajectory, whereas POIls are key places of
interest.

In some scenarios, since the local trajectory is
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Fig. 3 Process for identifying significant locations using
cluster methods™3.
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more important than the whole trajectory, trajectory
segmentation is introduced. Trajectory segmentation
methods involve finding the key point, and minimizing
the specific cost function or rule-based methods. Early
studies identified an inflection point or angle-change
distinct point as the key point. Since then, more
mature techniques have been proposed. For example,
Lee et all'” proposed a trajectory segmentation
approach using MDL (Minimum Description Length)
to minimize the cost of coding this trajectory.
Trajectory segmentation is essential in local trajectory
trend analysis and local trajectory clustering.

Trajectory data are closely related to the behavior of
moving objects, especially humans!!'34%1_ Trajectory
semantics identifies semantic information about object
movement, to explain human behavior, identify the
semantic pattern, and establish an outlook for exploring
trajectory data. A number of researchers have enriched
semantic information into trajectory via data mining.
Trajectory semantics facilitates location prediction by
its ability to interpret human behaviour. For more
details, the reader is referred to the review of trajectory
semantics! 40!,

In this subsection, we introduced some new trajectory
representation techniques, specifically, map matching
of trajectories as a graph, the representation of
trajectories as sequential POlIs, trajectory segmentation
by splitting trajectories into segments in a set, and
trajectory semantics that consider a trajectory in a
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semantic representation.
3.3 Trajectory data features

In contrast to other data, it is a non-trivial task to extract
features from trajectory data. Some researches define a
start point, end point, moving speed, and time length
as features. Wang et al.l*”l proposed new features in
trajectory data, consisting of spatial mobility patterns,
text content, individual temporal patterns, social
relationships, collaborative filtering, and heterogeneous
mobility datasets. Social relationships describe the
social networks in Location Based Social Network
(LBSN), in which the extracted features include the
number of locations, user entropy, location entropy, and
visitation ratio. Figure 4 shows some features in the
Gowalla and Jiepang datasets!8]. There are various
types of heterogeneous mobility datasets including
bus, taxi, check-in, and life mobility datasets. Spatial
mobility patterns, individual temporal patterns, and
text content are extracted from individual trajectories
via data mining or machine learning and collaborative
filtering techniques are used to find similar users or
locations. These features provide unique insights for
exploring trajectories.

4 Location Prediction Models

In this section, we provide a summary of current
location prediction algorithms, introduce some
representative studies, and discuss the categorization of

novelty il True  False novelty Ml True  False

2
©
Lo.
(=]
<
B
20
3
©
20,
]
o
) | .
Number of days Novelty of previous check—in location
(©)] (d)
novelty Wi True  False novelty Wi True  False
. day ] i

> k
> WS month d
> ! year
30. 1
< i
k)
20.
=
©
S
fin

Interval (hours) from previous check-in

(h)

Hour of day

(g)

Fig. 4 Influence of different features on novel check-in location behaviours, x-axes are features and y-axes are the conditional
probabilities. (a) Distinct number of locations, (b) user entropy, (c) number of days, (d) novelty of check-in location, (e) location
entropy, () visiting ratio, (g) hour of day, and (h) interval since previous check-in*®!,
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prediction models.
4.1 Location prediction algorithms

Here, we introduce some representative location
prediction algorithms. Table 2 lists the main symbols
used.

4.1.1 Content-based methods

Content-based methods learn the content correlation or
location transition probability, based on the assumption
that the current user location is related to the previous
location. To this end, researchers often construct a data
structure to store content, then match the content to
predict location**3° The Markov model is a typical
strategy that uses content information to predict a future
state.

Song et al.[*¥! studied mobile phone positioning data
via Wi-Fi signal, using a two-year trajectory trace
of more than 6000 users on Dartmouth College’s
campus-wide Wi-Fi wireless network. The authors
compared two prediction methods, Markov-based
and compression-based location predictors. A Markov
model is a typical sequence analysis method in which
a Markov chain is used to model a user’s location
history based on the user’s transition probability from
one location to another. In this model, it is assumed that
a user’s next location depends on his current location.
If a user arrives at an associated location, he is likely to
visit the identified location. A k-order Markov model
enables the prediction of a user location based on
previous k — 1 locations. If a user is currently at the n-th
location, his k-order recent locations are (/,—g+1, --.ln)-
Formally, if we assume that a user trajectory history is
.o, l3,....ly—k+1, ..., In, the k-order context is ¢ =
(ln—k+15---»In) and L is the location sets, then the
Markov model is defined as shown in Eq. (1):

P(lyyr = I*|L(1.m)) =

P(ln+1 = l*|C = (ln—k-l—l’ln)) =
P(livks1=1"c=iv1.li+x)) (D

Table 2 Main symbols used in location prediction models.

Symbol Description

P Probability

l Location

L Location sets

c Content of location

Tra Trajectory
st Sub-trajectory
History trajectory
User

where P(l,+1 = [*]...) is the probability of the user
arriving at the next place [*. The first line in Eq. (1) is
the Markov assumption, and the second line indicates
that there is the same probability of arriving at a
different location if the context is similar. Moreover, if a
location has no historical context, its arrival probability
is equal to zero.

The other content-based method uses compression-
based location predictors with a popular incremental
parsing algorithm for text compression. In this method,
a trajectory is first partitioned into distinct sub-
trajectories stg, St1, ..., Stiy. Let lg = y, and for j > 0,
sub-trajectory /; removes its last location that is the
same as [;, where 0 < i < j and st15t5...8t, = Tra.
For example, for a trajectory ghdcbgcefbdbde, after
partitioning by the above rule, the sub-trajectory sets
are g,b,d,c,bg,ce, f,bd,bde. Then, a tree is built
to store these sub-trajectories, in which the root nodes
are y, and the child node is sub-trajectories and each
with a location occurrence number. Figure 5 shows an
example.

For each location [* in the location set, Eq. (2)
is used to compute the occurrence probability, where
N(sty,1*) denotes the number of st,, occurring as a
prefix for st,,, [* in the sub-trajectory data sets.

*
Py =19 = 20m D)
N(stm|L)

Unlike Markov-based predictors which have a fixed
length related to the k location, compression-based
predictors depend on the occurrence number of location
prefixes. Song et al.**! compared the performance
of these two methods in predicting the location of
users via user Wi-Fi data. Based on their experimental
results, the authors found low-order Markov methods
to be more accurate than complex compression-based
methods. Next, research is conducted to determine the

d:2) (e:1)
(e1]

Fig. 5 Example of a tree storage sub-trajectory based on
compression43],
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transition probability between different locations. The
transition probability is used in both Markov-based and
compression-based predictors, and is a prototype of the
Spatial Mobility Pattern (SMP) feature that provides a
new way of investigating changes in movement patterns
over time.

Similar to the findings of Song et al.*3!, Ashbrook
and Starner®!! proposed a location prediction model
based on a Markov chain, which they called the user
location pattern ULP model, and which has wide
application in many scenarios. In this model GPS data
is transmitted to significant locations. These locations
are then input to a Markov model to predict locations.
The difference between this model and that proposed by
Song et al.[**! is that ULPs are applied to both single
and collaborative users. The ULP model identifies
significant locations by clustering. The example in Fig.
3 shows the use of a location clustering algorithm to
identify significant locations. Next, a Markov model
is built to predict the next location. Figure 6 shows
a Markov model of the travel route between home,
the Centennial Research Building (CRB), and the
Department of Veterans Affairs (VA).

Occasionally Markov models are combined with
recommendation methods to establish a location
prediction system. For example, in the Collaborative
Exploration and Periodically Returning (CEPR) model,
Lian et al.[*8! solved the problem of location prediction
based only on context. Human movement patterns
reveal the human preference for finding fresh locations,
as do individual mobility trajectories. Lian et al.[*®!
proposed the CEPR model to predict user locations
based on this human movement tendency. First,
the authors studied unique characteristics in human
movement behaviour and proposed a novel solution: the
use of exploration prediction, for estimating whether

Fig. 6 Examples of different location state transitions in a
Markov model™!l,
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a visited location is new. Lian et al.*®! used a binary
classification system to classify a movement behaviour
as either an exploration of or return to a visited location.
Their experimental results had a 20% classification
error rate on two check-in datasets, comprising 6 x 10°
(million) and 3.6 x 107 records, respectively. Figure 7
shows the probability of return and the ratio of novel
check-in to all check-in locations in the two datasets.
Figure 4 shows the correlation between novelty and
various features. Using this exploration classification,
the CEPR model integrates location prediction and
location recommendation algorithms to generate a
location predictor. A Markov model is used for
location prediction and a location recommendation
is used to solve the problem of predicting novel
Equation (3) below shows the CEPR
[0,1] is the
exploration rate based on a binary classification, P, (/)
is the probability that a user arrives at a location,
based on the prediction algorithm, and P, (/) is the
probability of a user exploring a novel location, based

locations.
framework, where Pr(Explore) €

on the recommendation algorithm, P,(l), P,(I) €

[0,1]. Pr(EXplore) appears to be a soft switch for

controlling P, (/) and P, (]).

P(l) = Pr(Explore)P,(1)+(1—Pr(Explore)) P (l)

(3)

Content-based methods determine the correlation

between locations. This method has two disadvantages:

(1) if a user does not visit some locations, those

locations do not appear in the user’s prediction list and

(2) similar content will predict the same location.

4.1.2 Distribution-based methods

Distribution-based methods model user movement as
a distribution with location and time as two random
variables. In this method, the probability of a random
variable is computed and then ranked to predict a
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Fig. 7 (a) Probability of return; (b) ratio of novel check-

in locations to all check-in locations in Gowalla and Jiepang
datasets!*8],

Number of usage days
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location.

Cho et al.’?! discovered that human movement in
daily life is influenced by the factors, of geographical
limitations and social relations. In their collected data
set, the authors identified a peculiar phenomenon
whereby the social network structure has little effect
on the spatial and temporal patterns of human short-
range travel. Furthermore, social relationships account
for just 10%—-30% of people’s daily life movement, and
50% of their periodic activity. The authors proposed a
location prediction method based on these findings—
the Periodic and Social Mobility Model (PSMM)—
which describes human mobility based on periodic
short-range travel and social network structures. The
authors determined the home distance distributions of
friends and all users, the distance between 200 large
cities, and the probability of friendship as a function of
distance, the results of which are shown in Fig. 8.

Figure 9 shows that the work place and home are
the primary places in human daily life, and that most
people visit their work place during the workweek
daytime hours and their place of residence on work
nights and weekend day times. Based on this finding,
they proposed the Periodic Mobility Model (PMM)
for predicting future user location states (based on
partitions of all locations visited by users, both work-
and home-related). First, PMM infers the geographic
location centres of two latent locations for each user and

Probability
Probability
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Fig. 8 Distribution of distances between (a) homes of
friends, (b) all users, (c) 200 large cities, and (d) the
probability of friendship as a function of distance>?!,
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e

(b)

Fig. 9 (a) Spatial model: geographic distribution of check-
ins when at home or work place. (b) Temporal model:
temporal distribution of check-ins when at home or work
place, denoted by red and blue lines, respectively!>?.

then models them based on their Gaussian distribution.
Then, the PMM model determines the probability of
whether a user is at home or the work place as a function
of time of day.

Equations (4) and (5) are used to compute the
probability of the user state distributions based on their
Gaussian distributions:

_ Pcy _ 12 (l‘_TH)2
o = e (5) 5]
_ Pew _ 12 (t— TW)Z
) =2 |- (75 ) G| @
and then,
I Ny (1)
Pl =Hl = g T Ve @
Ple(t) = W] =~ () 5)

Ny (1) + Nw (1)
where 7 is the average time of day the user is at a
location state, and 6 is the variance in time of day.

To integrate social information into the PMM, Cho
et al.l’?! introduced a check-in classification (z,(t)) to
PMM. z,(t) = 1 to determine whether the check-
in location is related to the user social network, and
vice versa. The authors first determined the correlation
between travel distance and social information, and
then modeled the spatiotemporal pattern and social
information to predict location. However, this method
lacks any description of spatiotemporal patterns and
social structure.

Plx(t) = x] = Plx(t) = x|z, (t) = 1]-
Plzy(t) = 1] + P[x(1) = x|zu(r) = 0]

Plzu(t) = 0] (©6)

model geographical
information as a

Distribution-based methods
characteristics and temporal
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probability distribution model to compute the
probability of users arriving at a location. The difficulty
in distribution-based methods is that if a user’s
movement distributions do not fit the assumption,
performance suffers.

4.1.3 Pattern-based methods

Trajectory pattern mining is another important
branch of location-prediction research including
methods based on sequential patterns®*>*, frequency
patterns’®!, integrated data patterns’®), and periodic
patterns'?®l.  These methods extract spatiotemporal
patterns from trajectories to predict locations.

Here, we describe two predictor methods based on
spatiotemporal patterns. Monreale et al.>®! proposed a
dynamic pattern model called the T-pattern which is a
dynamic mining method for extracting GPS trajectory
datal®). First, the authors used nearest neighbour
methods to dynamically analyze the density distribution
and extracted a range of interesting dense cells. Then,
they constructed temporally annotated sequences and
computed its relationship to the spatiotemporal pattern
within a given time tolerance. Figure 10 shows an
example of a T-pattern study. After extracting the T-
pattern, Monreale et al.’®! stored it in a prefix-tree
structure, called the T-tree. In the prediction process,
this method computes a special score that includes the
path and punctuality scores. Next, the space tolerance,
time tolerance, path score, and punctuality score are
integrated to make a prediction.

Lee et al.’”! also extracted spatiotemporal patterns
to distinguish a T-pattern called the Gapped
SpatioTemporal-Periodic (GSTP) pattern, whereby
gapped sequence mining is used to build a pattern-
based location prediction system. Figure 11 shows
the training process of the proposed framework, for
which the data source is smartphone log data. After
data cleaning, the authors extracted the GSTP. This

Fig. 10 Example of T-pattern in temporally annotated
trajectory’>3l,
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Fig. 11 Extracting process of spatiotemporal pattern and
predictor training process™®’!,

pattern extraction process involves computing the time
range in which users stay at a unique place and the
stay probability, based on the SpatioTemporal-Periodic
(STP) pattern and use the GSTP to compute the
time gap and transition probability between different
locations. After constructing the GSTP trajectory,
this trajectory is used to forecast the next location.
This simple pattern describes the time gap and time
period of a user’s movement. The disadvantage of this
pattern is that it is based only on observed spatial and
temporal information and lacks any detailed description
of movement patterns, such as the location visitation
frequency.

In contrast to the GSTP, Monreale et al.[>®! considered
both time and space tolerance, and used a unique data
structure to store the T-pattern, which is beneficial in
predicting locations. Although pattern-based methods
are common, the difficulty of extracting meaningful
patterns is a non-trivial task. Pattern-based methods
also seem overly exacting and lack diversity in
visitation locations.

4.1.4 Preference-based methods

Mobility preference is an important factor in predicting
user location. Many studies have focused on user
mobility preferences as a basis for predicting
location. There are a number of methods available
for determining user preference, with matrix-based
methods being the most popular.

User location history can be used to generate a matrix
and then matrix factorization can be used to capture
user movement preferences. A tensor is an extension of
the matrix. Bhargava et al.l>8! used tensor factorization
methods in multi-dimensional collaborative filtering to
predict location via user profiles, user’s short message
in social network, and user location and temporal
information. Human movement is related to user
preferences, user activities, and user spatiotemporal
patterns. The use of additional information enables the
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improvement of the overall prediction outcome. Multi-
source data fusion and collaborative filtering are key
techniques. To solve the sparsity problem in check-in
data, Bhargava et al.®8! proposed tensor factorization
to complete multi-dimensional collaborative filtering
tasks. They jointly analyzed the constructed tensor and
matrices and formulated an objective function as shown
in Eq. (7).

1
Function = 5||Wx(X—UoLvoT)||2—|—

Ty —LaT + 2 |5 - adT) +

A3 T2 A4 2
7||Z—LL I + 5 ITRI +

A
SO + 1L + 1417 + 1TI)
(M

where W is a weight tensor, X is a tensor, U is a
user matrix, L is a location matrix, A is an activity
matrix, and T is a time matrix. |-|* is Frobenius
norm, o is the outer product, and A; — A5 are the
model parameters. This method integrates user, activity,
location, and temporal information to predict location
by tensor factorization. The drawback of this method is
that it is typically both resource and time consuming.
Single type mobility datasets often contain limited
information. For example, check-in datasets include
only check-in behaviour and social relationship.
Heterogeneous mobility datasets include bus, taxi, daily
life mobility, and so on. The use of various data
sources provides new perspectives regarding movement
patterns. Wang et al.*’l proposed a Regularity
Conformity Heterogeneous (RCH) model for analyzing
heterogeneous datasets and used a gravity model
to determine the spatial influence. The RCH model
assumes human movement to be affected by both
regularity term and conformity term, and splits the
geospatial space into many grid cells, as shown in Fig.

12.

Figure 12 associates each venue with a grid cell,
in which a plus sign means that the user has visited
RCH computes the probability of user
u; visiting v;, denoted as Pr(vj|u;), based on three
factors. The first factor is the visiting frequency of a
grid cell as shown in Figs. 12a and 12c. The second
factor is the transition probability of the geospatial
influence between different grid cells as determined
by the gravity model. Figures 13a and 13b show
the spatial influences of a bar district and an IT

this venue.

(O P i O D S O
(d) 0, I RN . 1)

Rowl Row2 Row3 Row4 RowS5
{“Group1  iGroup2 i iGroup3 Group 4

["] Groupwise sparsity [ '] Within group sprasity = Visited venues

Fig. 12 Method for determining regularity term™7),

(b)

Fig. 13 Spatial influence of a location using a gravity model
based on taxi, bus, and check-in datasets. (a) Point A is a bus
district, (b) point B is an IT district'4”).

district, respectively. In contrast to traditional methods,
the gravity model enriches the life and commuting
information via training by heterogeneous trajectory
data, such as taxi, bus, and check-in data. The third
factor is the venue visiting frequency. The regularity

term is computed using Eq. (8) below.
I

Pr(vjlup) o< Y Pr(dilus) Pr(v;ldi) =
k=1
I
D Pr(dlui) Pr(dy, |di) Pr(v;|di,)
k=1
®)
RCH describes conformity term using a time
changing matrix factorization model, as shown in Eq.
)
R0 = U + Ui(n) V]! )

By incorporating regularity term and conformity
terms, the RCH model is defined as follows.

Rij(t) = RI;(t) + RS (1) (10)
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The final objective function of RCH is that expressed
by Eq. (11). By modeling the regularity term and
conformity term, RCH considers not only individual
preferences based on regularity term, but also the
influence of others who are similar to the user. Then,
it incorporates heterogeneous mobility data for the first
time into its spatial influence analysis.

,min t; |R(t) — (U + U@V |2+

y(UIZ+1VID + 83 IUOIE (b
teT

The above approaches capture user or public
preferences via matrix or tensor factorization. Like
pattern-based methods, preference learning can
extract user movement behaviour. However, their
disadvantages are also similar. Most preference-based
methods ignore the evolution of preference and the

randomness of mobility.

4.1.5 Social relation-based methods

Social relation-based methods utilize social relations
to model user movement, and then use these relations
to infer future visiting locations of a given user.
Previous works have often depended on historically
visited locations. However, when user data contains few
previous locations, prediction methods cannot generate
any useful result. The social relation feature can be used
to alleviate the effect of cold starts and the data parsing
problem in location prediction models.

Gao et all® proposed a geo-social correlation
(gSCorr) model to solve the cold start problem based
on social information. The GSCorr model determines
the correlation between social network and geo-
graphical distance, and defines a complex matrix of four
relationships between social information and distance,
as listed in Table 3, where F is a friend in a social
network, F is not an observed friend in a social
network, D is a long geographical distance, and D is
a short distance. Sy describes a user’s friends in a
social network who live a short distance away. Figure
14 shows a user’s check in behaviour in different social
correlation aspects. GSCorr predicts the probability
of a user checking-in at a new location P[(I) (Eq.
(12)), where ¢p; — ¢4 are four distributions that govern

Table 3 Geo-social correlation™!,

F F

D Sgp:LocalFriends Sgp:LocalNon — friends
D Sgp : DistantFriends Sgp : DistantNon — friends
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Fig. 14 Influence of new check-in behaviour on geo-social
correlation™],

the strength of diversity in the geo-social correlation,
PL(1]Syx) is the probability of a user checking-in at a
location in the gSCorr model, and Sy is a user’s geo-
social circle.

Pi(l) = p1 PL(|SFp) + 2 PL(11Spp)+
¢3PL(|SFD) + ¢4 PL(|SEp) (12)

In addition to studying the correlation between social
circle and geographical distance, Guo et al.l®! also
paid attention to determined check-in patterns based
on check-in history. The authors obtained user check-
in patterns based on the power-law distribution and
short-term effect to explain user check-in behaviour
in a social network. To do so, they utilized the
influence of social and historical ties on user check-
ins. They assumed (1) user check-in behavior to follow
a power-law distribution and that (2) the check-in
history trajectory has a short-term effect. Based on these
assumptions, they proposed a social historical model
that uses a Hierarchical Pitman Yor (HPY) process/¢!!
model a user’s historical check-in sequence of LBSNs.
The HPY extracts the power-law distribution and short
term effect and formulates the user’s next check-in
location based on that user’s check-in history, as shown
in Eq. (13), where G is the next check-in location,
d € [0,1] is a discount parameter for controlling the
power-law property, y is a parameter, and Gy is the
base distribution!®!. The parameters in Eq. (13) can be
inferred based on the observed check-in history.

G ~ PY(d,yGy) (13)

To introduce social ties to the model, parameter 7 is
introduced to denote social influence. Equation (14) is a
social historical model that integrates social ties, where
P}{ (cht1 = 1) is the probability of user check-in at
location / based on the history trajectory, Pg (4+1 = [)
is the probability of check-in at location / based on user
social ties, and i is the user u;:

Ply (cns1 = 1) = NPl (cug1 = 1) +

to
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(1=1) P& (ny1 =1) (14)

where we can compute the probability of social ties
P (w41 =1) using Eq. (15). N (u;) is the friend set
of a user u;, and P;;ﬁ,y(cnﬂ =) is the probability
of a user u; check-in location /, where the probability
is computed using the HPY process and user check-in
history. Equation (16) is used to compute P}i (cht1 =

).

Pi(cnpr =0 =Y simQuiuj)Pyipy(cns1 =1)
quN(“i)
(15)

Pi(cns1 =1) = Phpy(cnr1 =1)  (16)

Sadilek et al.[?! proposed the Friendship and location
analysis and prediction (Flap) model to infer user
location despite users not having released their private
data. The authors built a Bayesian network for modeling
the effect of a user’s friends movement patterns to
realize two functions. First, Flap can predict the social
relationships between user movement patterns. Since
Bayesian networks are a probabilistic, Flap is a graph
network based on probability inference. Second, the
use of social relationship improves the results of user
location prediction. Sometimes, despite the fact that
some users keep their locations private, Flap can infer
their location based on the location information of
their friends, which is helpful in solving “cold start”
problems. Flap predicts location using a sequence
of visited locations and temporal information about
a user’s friends. Flap output is also a sequence of
locations that a user has visited over a given period of
time. Figure 15 shows a dynamic Bayesian network for
modeling locations visited by a user. Flap learns and
infers the parameters in a dynamic Bayesian network
and then predicts user locations.

Social relation-based methods focus on the effect of
social relations on location prediction. These methods
can also alleviate the problems of cold start and
data sparsity. Social relations represent additional
information that can help improve location prediction

Fig. 15 Two consecutive time slices of a Flap dynamic
Bayesian network for modeling user movement pattern based
on n friends2!,
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performance.
4.1.6 Time-dependent methods

Most location prediction algorithms focus on geography
or social characteristics, while ignoring temporal
information. Some algorithms build a time-dependent
model, but using a stochastic process is a better
choice. Stochastic process models utilize time factors
as random variables and embed location factors into
the stochastic process. A typical example is the point
process.

Du et al!®! proposed the Recurrent Marked
Temporal Point Process (RMTPP) to simultaneously
model visiting time and location. The basic concept of
RMTPP is to model movement history using a nonlinear
function. RMTPP also uses a recurrent neural network
to automatically learn a representation of influences
from a user mobility history. Figure 16 shows the
RMTPP framework.

For a given check-in trajectory T = (¢;,1 j)j=y at
the j-th check-in, location / i is first embedded into
a latent space. Next, embedded vector and temporal
information are fed into the recurrent layer and RMTPP
automatically learns a representation of the visiting
history. The output layer infers the next location and
time depending on the representation. The key RMTPP
process occurs in the recurrent layer, which undergoes
a recurrent temporal point process. Figure 17 shows
the recurrent temporal point process, which obtains a
general representation of the fuzzy relation between
temporal and spatial information.

Equation (17) shows the hidden layer, which has
three parts. Here, y; is the location information, #; is
the temporal information, W* is the embedded matrix,
h; is the representation of the j-th check-in event, and
by, is the base term.

hj = max{W?y; + W't; + Whh;_y + by, 0} (17)

[— log 7’(.'/;+1|h,:)] [ —log f*(tj+1) }
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Fig. 16 RMTPP framework!®3!,
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Fig. 17 Two consecutive time slices in the hidden layer of
the recurrent marked temporal point process®*,

The core of this model is the hidden layer
representation and conditional intensity function of the
temporal point process A*(¢), as shown in Eq. (18). The
conditional intensity function consists of three parts,
past influence, current influence, and base intensity.
RMTPP uses A*(¢) to model user check-in behaviour
with temporal information being the key factor, thereby
differing from spatial-based algorithms.

* tT t t
A (1) exp(w + w'(t—1) + \b/_/)

Current influence ~ Base intensity

Past influence

(18)

In addition, Zarezade et al! proposed a
probabilistic model based on point process, in which
a periodic kernel function is used to capture the user
time period and multi-nominal distribution of locations.
The whole framework is similar that of the RMTPP.
Point processes are effective in modeling time-varying
processes. To date, blending location prediction into
the temporal point process is a newly emerging research
direction.

In contrast with traditional models, time-dependent
methods model time as an important factor in location
prediction. Although prediction performance can be
improved in this way, the correlation between spatial
and temporal information is barely considered.

4.1.7 Representation-based methods

Traditional trajectory representation uses a point
sequence, and some researchers have proposed new
trajectory representation methods such as the extraction
of trajectory features and representation based on deep
learning.

Noulas et al.'! regarded the location prediction
problem as a ranking problem, whereby every check-
in associated location and time is defined as a tuple
[, t, ranking at the highest possible location in a user
historical list of visited locations. Prediction features
can be classified as user mobility, global mobility, or
temporal features.

e The user mobility feature includes historical visits
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and categorical preferences.

e The global mobility feature includes the
popularities of geographic and rank distances.

e The temporal feature captures both the time of the
location visit and the temporal patterns associated
with significant locations.

Using these features, Noulas et al.[%! proposed a
rank model for predicting future locations. Location
prediction ranking methods comprise supervised
models that obtain the check-in data tuple position
in the history list. This model extracts features from
check-in datasets, thereby providing a new way to
consider the location prediction problem. However,
it ignores the spatiotemporal sequence and sparsity
characteristic of check-in data.

In recent years, deep learning techniques have been
developed to a great extent, enjoy wide application!%®!,
and typically yield good performance. To date,
many researchers predict location using deep learning
techniques!®*7-681 For example, Liu et al.*’! have
extended Recurrent Neural Networks (RNNs) to
model time and location. Specifically, they used
spatiotemporal RNNs (ST-RNNs) to predict location.

Mg =fC Y

q}‘i eQu,0<ti<t

65]

Sq;‘—q;‘i Tt—ll'qZ + Chl(;)

(19)
Equation (19) is a representation of user u at time
t, where S is a distance-specific transition matrix, ¢
is a latent vector of the location of user visits, C is a
recurrent connection, and /¢ is the initial status. The
hidden layers in the ST-RNN integrate the effect of
the geographic distances between locations and visiting
history. ST-RNN models consider geographic distance
in RNNSs to predict location. Deep learning techniques
are widely used in location prediction. Zhang et
al.I”! proposed a deep learning method for predicting
citywide crowd flows. First, the authors divided the
city into grid cells, then they constructed an end-to-end
deep spatiotemporal residual network, called the ST-
ResNet, to predict the inflow and outflow of grid cells
in a city. ST-ResNet consists of four major components
that model the external, trend, period, and closeness
influences of a grid cell. ST-ResNet determines their
effects based on the inflow and outflow of grid cells in a
city and then trains the network to predict crowd flows
in a given location.
Representation-based =~ methods  explore  new
trajectory  representations to predict location.
However, finding a good representation to capture the
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characteristics of trajectory data remains a challenge.
4.1.8 Semantic-based methods

The aforementioned approaches often focus on
spatiotemporal space, however, few researchers have
paid attention to the trajectory of semantic space.
Semantic-based predictors enable better reasoning
and therefore better location prediction results.
Ying et al.l*3! proposed a semantic framework for
location prediction via semantic pattern mining, called
SemanPredict. First, the authors extracted frequent
locations in a user’s movement history and the semantic
information associated with these movements, and
then they generated semantic trajectory patterns.
SemanPredict then generates two tree structures to
store these patterns. In the prediction process, the
score of the tree structure path is computed to predict
location.  Semantic-based methods enable a better
understanding of the semantic information associated
with visits to locations.

4.2 Model categorization

Model categorization refers to the focus of an
approach being a single movement object or a group.
This categorization provides another perspective for
distinguishing different location prediction algorithms.

4.2.1 Single-object models

The earliest location prediction studies investigated
single object movement, like the Markov chain (Song
et al.®¥, Ashbrook and Starner!l), spatiotemporal
pattern mining (Bhargava et al.’® Lee et al.l'”l,
Monreale et al.l’®!), and ranking problems (Noulas et
al.l%!). These methods determine the location transition
probability, user movement preference, and movement
patterns with respect to single-object movement!’%),
Although user future locations are mainly dependent
on the user himself, other factors also play a vital
role in location prediction, such as social information,
group movement tendencies, and geographic distance,
to mention a few, and these factors are not considered
in single object spatiotemporal data. Also, single-
object models lack robustness and are sensitive to
anomalous and sparse data. Since a single object
can be characterized by random movement and usually
produces sparse data, location transition probability
and movement patterns cannot effectively model real

individual movement patterns.
4.2.2 Group models

Unlike single-object models, group models primarily

study a group of moving objects based on the
hypothesis that both human beings and animals have
social relationships. Group model researchers consider
movement behavior to “follow the crowd” to some
degree. Typical group methods are based on clustering
(Ashbrook and Starner’®'), matrix analysis (Wang et
al.#71), and social relation analysis (Cho et al.%?l,
Sadilek et al.[®?l). The goal of these methods is to
extract group movement tendencies or patterns to
enable location prediction. Cluster-based methods can
be divided into two types: (1) determining user
clusters to explore user social relations, and (2)
identifying significant locations based on the data
of all users. Both types determine the correlation
between users and others. Matrix analysis techniques
employ matrix factorization and collaborative filtering
to obtain common patterns or relationships between
users. Social relation information is direct data that
reveals a user’s social structure. The researcher builds
a social graph to analyze the influence of social
information on user movement. Group models often
study external influences on users, such as social
information, geographic distance, and even the effect
of events. These additional types of information
can enable improved location prediction performance.
Unlike single-object models, group models can reveal
the movement of a group of users in some scenarios, and
have attracted interest by governmental organizations
for optimizing traffic flow and city planning.

4.2.3 Hybrid models

Both single-object and group models have advantages
and disadvantages. Some researchers have proposed
hybrid models that integrate the two model types.
For example, Wang et al.*”! modeled regularity and
conformity terms, respectively, and added these two
factors to predict location. Lian et al.*®! modeled
the correlation between periodic user behaviour and
novel exploration behaviour. Sadilek et al.l%?! learned
user’s social information in social networks to enhance
the performance of location prediction. Their model
integrates a user’s profile, activity (based on an analysis
of a short message), temporal information, and location
to build a predictor model. Generally, hybrid mainly
modes have three main concerns: (1) developing single-
object and group models, (2) correlating or integrating
the single-object and group models, and (3) using
additional information to improve the performance of
their prediction systems. Recently, hybrid models have
become the keystone in location-predication research
due to their excellent performance.
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4.3 Summary

Table 4 provides an overview of some representative
approaches with respect to the type of method used,
model category, and the data source type.

5 Location Prediction Evaluations

In this section, we introduce some common trajectory
datasets, including GPS, check-in, and Wi-Fi datasets.
Next, we present some evaluation matrices for assessing
location prediction.

5.1 Datasets

In recent years, there has been an increasing number of
public trajectory datasets, including GPS, bike sharing,
check-in, and Wi-Fi data. Zheng!'!! and Bao et al.[”?!
have provided summaries of these data. We summarize
and supplement these datasets in Table 5.

BrightKite check-in dataset is provided by a locaion
based social network service provider. This dataset
includes 4491 143 check-ins from 58228 users and
their social relation data (4491 143 relations) over the
period from Apr. 2008 — Oct. 20101521,

Gowalla check-in dataset is provided by a location
based social network website in which users share their
locations by checking-in'®?. This dataset comprises a
total of 6442 890 check-ins from 196 591 users over the
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period from Feb. 2009 — Oct. 2010.

Foursquare check-in datasets include three data
sets: (1) Foursquare 1 is simply a check-in dataset
with 12000000 check-ins from 679 000 users’¥; (2)
Foursquare 2 includes 221 128 check-ins from 49 062
users in New York City and 104478 check-ins from
31544 users in Los Angeles. As such, this dataset
consists of both check-in information as well as social
relation, and user and venue profiles!”!; (3) Foursquare
3 is similar to the Foursqure 2 dataset with respect to
the data types, and contains a total of 33 596 users/¢"!.

Geollife trajectory dataset, collected by Microsoft
Research Asia, includes 17 621 trajectories from 183
users’ life trajectory datasets over a five-year period
(from April 2007 to August 2012)121:761 This dataset is
useful in analyses of user long-term movement patterns.

Porto taxi trajectory dataset contains a complete
year (from 01/07/2013 to 30/06/2014) of the
1710670 trajectories of 442 taxis, the details
of which can be obtained from the website
(https://www.kaggle.com/c/pkdd-15-predict-taxi-ser-
vice-trajectory-i).

Bike sharing dataset contains 3 million trajectory
records generated by 300 000 users and 400 000 bikes.
For more details, readers are referred to the website
(https://biendata.com/competition/mobike/).

Animal movement dataset contains the radio-

Table 4 Summary of existing location prediction algorithms. (Social relation based prediction algorithm: S-R; time dependent
based prediction algorithm: T-D; active recording trajectory data: A; and passive recording trajectory data: P)

Method

Model categorization

Content Distribution Pattern Preference S-R T-D Representation Semantic Singleness Group Hybrid

Song et al.[+*]

Ashbrook and Starner>!!
Lian et al.48]

Xue et al.[7!!

Cho et al.1??]
[57]

J
v
v
J

Lee et al.
Monreale et al.[>!

LA

Bhargava et al.
Wang et al.[*7]
Gao et al.’?!
Gaol®

Du et al.l%3]
Zarezade et al.
Noulas et al.[6]
Liu et al.[*]
Zhang et al.[”)
Zhang et al.[%8!
Ying et al.l?’!
Ying et al.l’?

LA

[64]

LA

J P
J A

J A

J P

J A

J P
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J A

J J A
J J A
J J A

J J A
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J J P

J J P
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Table 5 Summary of trajectory datasets. A: active
recording date, P: passive recording data.
Dataset Source Type
BrightKite dataset Check-in & Social information A

Gowalla dataset Check-in & Social information

Foursquare datasets ~ Check-in & Social information
GeoLife dataset

Proto taxi dataset

A
A
GPS trajectory of human life P
GPS trajectory of taxi P
Bike sharing dataset ~ GPS trajectory of bike sharing P
Animal movement dataset ~ GPS trajectory of animal P
P

Hurricane tracking dataset GPS trajectory of Hurricane

telemetry locations (along with other information) of
elk, deer, and cattle from 1993 through 1996. For
more the details, readers are referred to the website
(https://www.movebank.org/). This dataset is useful in
studies of animal behaviour in the wild.

Hurricane tracking dataset contains 1740 trajectories
of Atlantic hurricanes over the 1851 to 2012 period,
as provided by the U.S. National Hurricane Service
(NHS)!"1. This dataset is used in meteorological and
natural disaster prevention studies.

5.2 Evaluation matrices

Location prediction evaluation mainly focuses on
precision, rank, and recall. Precision is based on
the accuracy @k (top k locations) and Mean Average
Precision (MAP), rank is determined based on the
Normalized Discounted Cumulative Gain (NDCG) and
Average Precision Rank (APR), recall is typically
described by an F1 score.

Accuracy@k is an index for evaluating the top-k
prediction locations whether or not they represent the
real locations.

MAP is determined based on an information retrieval
field. This value is the MAP, as defined in Eq. (20),
where N is the number of locations and rel(r) is
a binary function related to the relevance of a given
location rank.

(3 (P(r) - rel(r)))

mMAp = =L v (20)

APR is the average percentile rank of a prediction for
location /;1*7). PR is defined as shown in Eq. (21),
where rank(l;) is the position of location /; and N is
the number of locations.

PR — N —rank(l;) + 1
N

NDCG is an index of information retrieval, which

is used to evaluate the quality of a ranking. For more

21

details, readers are referred to the book Introduction to
Information Retrieval’".
F1 score is an index that considers precision and
recall, as shown in Eq. (22), where
number of realprediction locations

recision = — - s
P total number of prediction locations

number of real prediction locations

recall

total number of ground truth locations’

Fi=2. prec.is.ion -recall 22)
precision + recall

6 Applications and Future Work

In this section, we discuss the applications of location
prediction and future work.

6.1 Applications

Location prediction has wide application and location
predictors play an important role in urban management.
These models can help alleviate traffic congestion,
improves urban governmental planning!’®-3!!, and help
predict crime rates!®?!. Location prediction can also
help advertisers to promote sales based on location.
LBSN based data mining, which builds a real relation
between on-line social networks and real lifel83-851
is used to recommend friends or locations and detect
anomalous check-in locations. Location prediction is
currently in a period of rapid development, and various
techniques are being used based on the applications at
hand.

6.2 Future work

Location prediction has been the subject of study for
many years. However, it continues to face many
challenges and problems. Future location prediction
systems may have two thrusts: (1) correlating spatial
and temporal information, and (2) developing effective
and efficient prediction systems.

Correlating spatial and temporal information is
a key problem in trajectory data mining. Current
methods typically consider the spatial and temporal
spaces independently. New solutions must be found to
solve this problem. Examples currently include the use
of point processes and RNNs. Another approach for
solving this problem is to identify new representations.

Effectiveness and efficiency are two key and
ongoing factors in location prediction systems. The
earliest methods were built using small datasets for the
purposes of validating the methods. The complexity
of the methods and limitations in computer resources
constrain the use of prediction systems involving large-
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scale matrix factorization and sparse data in LBSNs.
Effective and efficient location prediction systems are
critical, as is the application of predictors to large
volumes of spatiotemporal data.

7 Conclusion

In this article, we provided an overview of location
prediction ranging from trajectory data preprocessing
to forecasting location and the evaluation of location
prediction systems. First, we introduced the basic
concepts of location prediction, the different types of
data sources, the challenges associated with location
predictions and the location prediction framework. We
introduced trajectory data preprocessing methods and
then identified the classification of location prediction
model types and discussed these models in detail. Next,
we categorized location-prediction models as either
single-object or group models or shared insights about
these approaches. We also listed the available public
datasets and evaluation methods to help readers conduct
their own research. Lastly, we discussed location-
prediction applications and future work.
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