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Online Internet Traffic Monitoring System Using Spark Streaming

Baojun Zhou, Jie Li�, Xiaoyan Wang, Yu Gu, Li Xu, Yongqiang Hu, and Lihua Zhu

Abstract: Owing to the explosive growth of Internet traffic, network operators must be able to monitor the entire

network situation and efficiently manage their network resources. Traditional network analysis methods that usually

work on a single machine are no longer suitable for huge traffic data owing to their poor processing ability. Big data

frameworks, such as Hadoop and Spark, can handle such analysis jobs even for a large amount of network traffic.

However, Hadoop and Spark are inherently designed for offline data analysis. To cope with streaming data, various

stream-processing-based frameworks have been proposed, such as Storm, Flink, and Spark Streaming. In this

study, we propose an online Internet traffic monitoring system based on Spark Streaming. The system comprises

three parts, namely, the collector, messaging system, and stream processor. We considered the TCP performance

monitoring as a special use case of showing how network monitoring can be performed with our proposed system.

We conducted typical experiments with a cluster in standalone mode, which showed that our system performs well

for large Internet traffic measurement and monitoring.
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1 Introduction

To provide a secure and well-performing network
for the continually transforming cyberspace, Internet
operators need to monitor and analyze the network
status in real time. However, this is difficult nowadays
due to the huge scalability of networks and the huge
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amount of traffic to be analyzed. According to the
latest statistics by Cisco[1], the annual global IP traffic
was 1.2 zettabyte (ZB) in 2016 and expected to reach
3.3 ZB by 2021. The rapid growth of traffic volume
has imposed great challenges for traditional Internet
monitoring platforms.

Traditionally, Internet traffic measurement and
analysis have been executed on a high-performance
central server[2]. However, due to computing ability
limitations, central servers cannot cope with large
volumes of data in a short period of time. Nowadays,
this renders them unsuitable given the huge amount
of Internet traffic today. For example, when a DDoS
attack occurs, a monitoring system is required in order
to deal with the huge amount of Internet traffic, which
is a tough task for a single server. Various monitoring
methods use packet sampling in order to reduce the
amount of input data. However, this produces an
inaccurate result[3]. Moreover, a single server makes the
system vulnerable to failures. If the server crashed, we
would not be able to recover it quickly without affecting
the ongoing task[4].

In this study, we propose an online Internet traffic
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monitoring system based on Spark Streaming, which
is a big data platform that can efficiently process a
huge amount of traffic data so that we can monitor the
network status in real time and is robust enough so as to
suffer a failure without aborting the entire monitoring
process.

Big data platforms, such as Hadoop and Spark,
provide an efficient way of processing a huge amount
of data. For example, the MapReduce model and
its open-source version, Hadoop[5], have been widely
adopted by the big data analytics community due to
their simplicity and ease of programming[6]. However,
the intermediate data of Hadoop are stored on disk
(which usually has poor I/O performance); therefore,
there will be dramatic performance degradation for
algorithms requiring plenty of iterations. To improve
the performance of Hadoop, in-memory computing
methods, such as Apache Spark[7], have been proposed.
The intermediate data in Spark are stored in Resilient
Distributed Datasets (RDD), which are cached in
memory; therefore, data can be processed much faster
in comparison with Hadoop[8].

Some offline Internet monitoring systems[2, 9–11] have
used big data platforms to improve their processing
efficiency. However, only a few studies[12, 13] have
focused on online network monitoring.

Both Hadoop and Spark are based on batch
processing, which is suitable for offline data analysis.
Batch processing is applied to process large datasets,
where operations on multiple data items can be batched
for efficiency[14]. This requires input data to be readily
accessible when the calculation begins so that all of
the data can be simultaneously processed. Online
Internet traffic monitoring resembles a stream analytics
problem, where the input is an unbounded sequence of
data. Although MapReduce does not support stream
processing, it can partially handle streams using a
technique known as micro-batching. Here the stream
is treated as a sequence of small batch data chunks.
At short intervals, the incoming stream is packed to
a chunk of data and is delivered to the batch system
for processing[15]. Spark, for example, has provided
the Spark Streaming library to support this technique.
In addition, other platforms exist and are inherently
designed for big data streams, such as Apache Storm
and S4, where data are processed through several
computing nodes. Each node can process one or more
input stream(s) and generate a set of output streams.
Data will be processed as soon as they arrive.

Network traffic analysis and monitoring can be
regarded as a statistics problem for a set of packets in
a period of time. Therefore, micro-batching may be a
better choice for a network monitoring system. In this
study, we propose an online Internet traffic monitoring
system based on Spark Streaming. This could be
used for data traffic performance analysis, such as TCP
performance.

Our contributions in this study are as follows:
� We propose a distributed architecture as an online

Internet traffic measurement and monitoring
system.
� We implement a parallel algorithm for monitoring

TCP performance parameters, such as delay and
retransmission ratio with a very short delay.
� We conduct typical experiments showing that the

proposed system is feasible and efficient.
The rest of this study is organized as follows. In

Section 2, we introduce various related works on real-
time Internet monitoring. In Section 3, we describe
the architecture of our proposed monitoring system
and introduce the tools we used. In Section 4, we
consider TCP performance analysis as an example of
how the network monitoring problem can be solved
by the stream-processing method in our System. In
Section 5, we evaluate the performance of the proposed
system and present the experimental results. Finally, we
conclude this study in Section 6.

2 Related Work

Cyberspace is dynamical and vulnerable to attacks.
Therefore, it requires network providers to monitor the
status of their network in real time. Online Internet
traffic monitoring technologies have been extensively
studied. In 1999, Paxson[16] proposed the Bro system to
detect network intruders in real time. Bro first captured
a packet stream using libpcap and then reduced the
incoming stream into a series of higher-level events
using an event engine. They also proposed a custom
scripting language called Bro scripts, which can be
executed by the policy script interpreter to deal with
events. Although Bro is single threaded, it can be set
up in a high throughput cluster environment. Similar
studies include Snort[17] and Suricata[18], which are
inherently based on single-machine computing.

Various related studies have been conducted on
online Internet traffic measurement and monitoring
using Spark. Gupta et al.[12] used Spark Streaming
to analyze the network in real time. They presented
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three network monitoring applications that can be
expressed as streaming analytics problems; namely,
reflection attack monitoring, application performance
analysis, and port scan detection. They made use of
programmable switches, such as OpenFlow switches,
to extract only the traffic that was of interest, which
reduced the data that needed to be processed. However,
their system was not feasible for networks using non
programmable switches. In this study, we propose an
Internet traffic measurement and monitoring system that
works on both programmable and non programmable
switches. Karimi et al.[13] proposed a distributed
network traffic feature extraction method with Spark
for a real time intrusion detection system. They used
a collector component to capture packets from the
switch and extract the required information from packet
headers. These headers are written in CSV files and
separated by the time window. Then, Spark periodically
reads data from the CSV files within a small-time
window to make it nearly real-time data. However,
the periodic writing and reading of files degrades the
performance of Spark as an online Internet traffic
monitoring system. Our system uses Spark Streaming
to directly cope with the stream in order to achieve a
higher speed.

3 Architecture of the Online Internet Traffic
Monitoring System

As illustrated by Fig. 1, the proposed online monitoring
system comprises three components, namely the
collector, messaging system, and stream processor. A
collector is a device that is used to capture packets
from the network. It captures all the inbound and
outbound packets from a switch using port mirroring.
To capture packets from multiple switches, multiple
collectors may be present in the system. The stream
processor is the core component of our system and

Port
Mirroring

Monitored Network

Switch

Internet

Collector

Messaging
System

Stream
Processor

Monitored
Network

Monitored
Network Collector

Collector

Fig. 1 Architecture of the proposed online monitoring
system.

processes the input data transmitted from the collectors.
First, the collector preprocesses the captured packets
and only sends necessary protocol header data to the
stream processor to reduce the amount of input data.
Moreover, we use a messaging system as a bridge to
help the data transmission from the collectors to the
stream processor.

3.1 Collector

To implement the collector component, we used
Jpcap, which is an open-source Java library, to capture
packets and efficiently extract the required packet
header data such as time stamp and TCP segment
number. To reduce the number of captured packets, we
set a filter (protocol, destination IP address, etc.) for
Jpcap so that it captures only the packet that we are
interested in.

3.2 Messaging system

We use Kafka to develop our messaging system. Kafka
is a high-performance distributed messaging system for
record streams[19]. The collectors publish the required
packet header data as messages on Kafka using a
common topic. Then, the stream processor subscribes
to the topic and obtains the message stream from Kafka.

3.3 Stream processor

The stream processor component is a cluster running
Spark Streaming. It processes the packet information
collected by the collectors and shows the monitoring
results to the operators. This is similar to the Spark
program for batch processing, whose logic is expressed
by RDD transformations. The logic in Spark Streaming
is expressed by Discretized Stream (DStream), which
is an internal sequence of RDDs, transformations[20].
Spark Streaming has provided multiple transformation
APIs, such as flatMap(), which maps each input
item in the source DStream to 0, or more output
items, and groupByKey(), which can group key-
value pairs together according to their keys. Some
useful transformation APIs are listed in Table 1[20].

4 TCP Performance Monitoring

TCP is a widely used Internet protocol. In this
study, we focus on TCP performance monitoring. The
performance monitoring problems of other protocols
can be dealt with in a similar way. We used our system
to calculate the TCP segment throughput, average
Round-Trip Time (RTT), retransmission ratio, and out-
of-order ratio from the Internet traffic stream in real
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Table 1 Various useful transformation Spark Streaming
APIs.

Transformation Meaning
map() Map each element in the source stream to

a new value.
flatMap() Similar to map(), but each element can be

mapped to 0 or more output items.
mapValues() Map the value of each key-value pair

without change the key.
reduce() Aggregate each 2 elements in the source

stream to 1 new element.
reduceByKey() Aggregate 2 key-value pairs with the same

key to a new key-value pair.
groupByKey() Group all key-value pairs with the same

key together.
countByValue() Count the frequency of each element, and

return a key-value pair stream whose key
is the element, value is the count.

join() Join two key-value pair streams (K, V)
and (K, W) together, return a new stream
of (K, hV, Wi) pairs with all pairs of
elements for each key.

time.

4.1 Metrics

4.1.1 Throughput
Our system can measure the number and total length of
TCP segments per second.

4.1.2 Retransmission and out-of-order
TCP provides an ordered delivery of data. Each
segment’s protocol header contains a sequence
number (SEQ), which specifies the position of this
segment. When a TCP connection is established, both
the sender and receiver in the connection are assigned
an initial sequence number. The offset between the
actual sequence number in a segment and the initial one
is called the relative sequence number and is regarded
as the number of bytes sent by the sender before this
segment.

From the sequence number and payload (data length)
of a segment, we can calculate the next expected
sequence number, which indicates the sequence number
that the next segment from the host should have. For
a normal TCP data segment that is not SYN/FIN, the
next expected sequence number should equal the sum
of the current sequence number and payload. However,
for the SYN/FIN segment, the next expected sequence
number should equal the previous one plus one because
the SYN/FIN information is also considered as data that

is sent to the receiver.
In normal TCP conversation, the sequence number

of SYN/FIN or a segment containing data should not
be smaller than the maximum next expected sequence
number in previous segments. Otherwise, it must be
a segment that is either retransmitted or out-of-order.
Retransmission means that a segment is considered
lost and is therefore resent by the sender; out-of-
order means that the segments are not received by
the receiver in the order they are sent. In fact, it
is quite difficult to identify whether, in some cases,
a segment is retransmitted or just out-of-order. Here
we use a simple assumption to determine the out of
order segment. In other words, if the time stamp of
the segment is very close (within three milliseconds) to
the segment with the highest next expected sequence
number, we regard it as an out-of-order segment. A
high retransmission and out-of-order ratio will cause
poor network performance and indicate problems in the
transmission paths; therefore, they are very important
metrics in TCP performance monitoring.

In addition, we shall consider an exception
in our retransmission and out-of-order detection;
namely, keep-alive. A TCP keep-alive segment is an
acknowledgment segment (ACK) with its sequence
number set to one less than the next expected sequence
number and has a payload of 0 or 1 byte. Keep-alive
is often used to verify whether the TCP connection
with the remote host is still available. Although it
may carry 1 byte of data and does not advance the
sequence number, it is not a retransmitted or out-of-
order segment. A typical TCP keep-alive is shown in
Fig. 2.

4.1.3 RTT
RTT is the time required for a network communication
to travel from the source to the destination and back. In
TCP, when the receiver successfully receives a segment,
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Fig. 2 Typical TCP keep-alive.
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it sends back a response segment that contains an ACK
number. The latency between the former TCP segment
and the corresponding ACK is measured as RTT. This
is an important network parameter that reflects not
only network quality but also server response time.
The ACK number tells the sender how many bytes
have been successfully received by the receiver, which
should be equal to the next expected sequence number
of the received TCP segment. In other word, besides
the reverse IP addresses/ports, a TCP segment and its
corresponding ACK segment should also satisfy:

SEQ number + payload (in TCP segment) D

ACK number (in ACK segment) (1)

Especially, for SYN/FIN segment,
SEQ number + payload + 1 (in TCP segment) D

ACK number (in ACK segment) (2)

We use relationships (1) and (2) to find the
corresponding TCP and ACK segments in the packet
list. The RTT is calculated as the difference between
their time stamps. However, if there are retransmissions
in the TCP conversation, the problem becomes
complicated, such that, when an ACK is received for
a retransmitted segment, we cannot determine whether
the ACK corresponds to the retransmission or the
original segment. Even if we decide that the segment
was lost and retransmitted, it would still be possible
for the segment to eventually arrive after a long time or
for the segment to arrive quickly while the ACK takes
a long time to arrive. This is called acknowledgment
ambiguity[21]. In our algorithm, we select the original
segment to calculate the RTT. Although it may not be a
real RTT, we think it is more meaningful than the real
one because it shows the delay from the first time of the
sender sending the segment to the time of knowing that
the receiver has received the segment.

4.2 TCP performance monitoring with the
proposed system

TCP performance analysis is divided into five steps,
namely preprocessing, throughput calculation,
retransmission and out-of-order statistics, RTT
calculation, and sum up.

4.2.1 Preprocessing
We set the collectors to only capture TCP segments
from the Internet. Spark Streaming receives header
information from them through sockets. The
information for each segment is a formatted string

containing the time stamp (divided into a high and
a low parts), source IP, source port, destination IP,
destination port, SYN/FIN flag, ACK flag, SEQ
number, ACK number, payload, and packet length. We
denote this input stream DStream0.

Input stream data preprocessing is required to extract
the information required for the calculation to be
performed later. We map each input data as a tuple
htime stamp, source IP, source port, destination IP,
destination port, boolean(SYN/FIN, or carry data),
boolean(ACK?), sequence number, acknowledgment
number, next expected sequence number, payload, and
packet lengthi. For a segment that is not SYN/FIN and
carries no data, the next expected sequence number is
simply its sequence number. These tuples are stored in
DStream1.
4.2.2 Throughput calculation
Throughput is very easy to calculate by Spark
Streaming. First, we transform each tuple in
DStream1 to a key-value pair, whose key is hsource
IP, destination IPi and value is hpacket length, 1i. Next,
we use reduceByKey to sum up the values according
to the key. Finally, we obtain the total packet length and
total number of packets for each source and destination
IP pair and store them in DStream2.
4.2.3 Retransmission and out-of-order statistics
We calculate the retransmission and out-of-order
number. First, we map the tuples in DStream1

to a key-value pair, whose key is hsource IP, source
port, destination IP, destination porti and value is
hboolean(SYN/FIN or contains data?), sequence
number, payload, next expected sequence number, time
stampi. We group the key-value pairs according to the
key and obtain the lists of segments that share the same
source and destination IP addresses/ports. Then we can
calculate the number of retransmission and out-of-order
segments for each list using Algorithm 1. We only count
retransmission and out-of-order for SYN/FIN segments
or for segments carrying data.

We generate a new key-value pair for each list. The
key is a tuple of hsource IP, destination IPi, and the
value is a tuple of hnumber of retransmission, number of
out-of-orderi. Because each list only contains segments
from a source IP/port to a destination IP/port, the
generated key-value pair only contains the statistics of
segments between the specific IP/ports. Therefore we
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Algorithm 1:  Get statistics for each segments list.

Data:A list of segments that have the same source and

destination IP/port

Result:Get the number of retransmission and

out-of-order.

sort();    /* sort the list in time order */

foreach segment in the segments list do
if is an SYN/FIN or carries data and SEQ   <

maxNextSEQ then/* SEQ number<max

next expected SEQ, then it must be

either a keep-alive, retransmission

orout-of-order */

if not keep-alive then
if Δ(maxTimeStamp;timeStamp)<3

then /*with in 3 milliseconds

since the segment with the

highest next expected

sequence number */
outOfOrder←outOfOrder  +1;

/*we assume it is an

out-of-order */

else
retransmission ←  

retransmission +1; / * we

assume it is a

retransmission */

if next expected SEQ is the max one ever seen then

/* record the max next expected SEQ

*/

maxNextSEQ ←  nextSEQ;

maxTimeStamp ←  timeStamp;

return new key-value pair (<Source IP, Destination IP>,

<retransmission; outOfOrder>);

and its time stamp

use reduceByKey() to group all the pairs that have
the same source and destination IP and calculate their
total number. The group was stored in DStream3.

4.2.4 RTT calculation
According to the relationship of the TCP and ACK pair,
if we use the tuple of hsource IP address, source port,
destination IP address, destination port, next expected
sequence numberi as a key for the TCP segment and
hdestination IP address, destination port, source IP
address, source port, acknowledgment numberi as a
key for the ACK segment, then a TCP segment and its
corresponding ACK segment should share the same key.
Therefore, we can group all TCP segments and their
corresponding ACK segments in Spark Streaming using
groupByKey() and perform the parallel calculation
of RTT for each TCP segment.

First, we map each segment in DStream1 to several
key-value pairs. If it is an SYN/FIN segment or

contains data we generate a key-value pair, whose
key is hsource IP address, source port, destination
IP address, destination port, next expected sequence
numberi and value is htime stamp, true (means it
is a data segment)i. If it is a segment whose ACK
flag is set to true, we generate a key-value pair, whose
key is hdestination IP address, destination port, source
IP address, source port, acknowledgment numberi and
value is htime stamp, false (this means it is an
ACK segment)i. Note that an ACK segment can also
carry data (piggyback), and a segment can be neither
a data nor an ACK/FIN/SYN segment; therefore, each
segment can finally generate 0, 1, or 2 pair(s) according
to their type. Because the former TCP segment is
actually a segment sent from the sender to the receiver
and the ACK segment is sent from the receiver to the
sender, the keys of the key-value pairs can be regarded
as hsender IP address, sender port, receiver IP address,
receiver port, next expected sequence numberi and
hsender IP address, sender port, receiver IP address,
receiver port, acknowledgment numberi, respectively.

We use groupByKey() so that the paired
TCP/ACK segment can be grouped into the same
list. Then, we can calculate RTTs from the list using
Algorithm 2.

We generate a set of key-value pairs for each sender
and receiver IP/port pair, whose key is hsender IP,
receiver IPi, value is hRTT, 1i. Then, we use
reduceByKey() to sum up the values by key, obtain

Algorithm 2:  Calculate the RTTs from the list of paired

TCP/ACK segments

Data:A list of paired TCP/ACK segments

Result: Calculate the RTT

sort(); /* sort the list in time order */

f  false; / * whether there is a new TCP

segment from sender to receiver after

last ACK segment */

foreach segment in the list do
if is TCP segment that from sender to receiver and

f = false then

time1 TCP segment’s time stamp;

f

elseif is corresponding ACK segment and f=true;
then

time2 ACK segment’s time stamp;

f

RTT       (time2---time1);

false;

generate new key-value pair (<hSender’s IP,

Receiver’s IP>, <RTT,1>);

←

←

←

←
←

←

true
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htotal RTT, total counti for each IP pair, and use
mapValues to calculate the average RTT, stored in
DStream4.

4.2.5 Sum up
In steps 2, 3, and 4, we obtain the packet count, total
length, retransmission, out-of-order statistics, and the
RTTs for each source IP/port and destination IP/port
pair and store them in DStream2, DStream3, and
DStream4, respectively, so that we can use the
join()method to merge these results into one stream.

To present the Spark Streaming calculation results,
we develop a graphic user interface to show the
monitored Internet performance metrics for each
specified source and destination IP pair as line charts.

5 Experimental Result

We used eight servers from Amazon Web Services to
implement the proposed online TCP performance
measurement system. Their configurations are
presented in Table 2. The structural details are
shown in Fig. 3.

Currently, in the experimental environment, the
collector only captures packets from a single computer.

Table 2 Configurations for each component.

Component Configuration
Collector 2 machines. Model t2.micro, 1 GB

memory
Messaging system 1 machine. Model r4.large, High-

frequency Intel Xeon E5-2686 v4
(Broadwell) Processors, 15.25 GB
memory. Bandwidth up to 10 Gbps

Stream processor 5 machines. Model c4.large, High-
frequency Intel Xeon E5-2666 v3
(Haswell) processors, 3.75 GB
memory. Bandwidth of 500 Mbps

Messaging
System

Stream
Processor

Collector

Collector

Fig. 3 System structure.

The batch interval is set to 1 s, which means that
Spark Streaming will start a computation every 1 s and
information from all segments within this time interval
will be collected and processed as a batch task.

Our proposed system monitors the packet rate
(packet/s), throughput (byte/s), average RTT (ms),
retransmission ratio (%), and out-of-order ratio (%) for
each source and destination IP pair in real time. Figure 4
shows the network performance that was monitored by
our proposed system. The metrics are presented through
line plots so that the network situation can be clearly
monitored.

We investigated the TCP monitoring performance of
the proposed system both in terms of time cost and
robustness.

5.1 Time cost

We developed a special collector to evaluate the
performance of our system. Unlike conventional
collectors that capture packets from Internet in real
time, this special collector reads packet records from
a large packet capture (pcap) file.

Figure 5 shows the performance statistics of our
stream processor. In this experiment, the average speed
of the input stream was approximately 75 000 records/s.
We found that our proposed system processed the input
stream very quickly. Because we set the batch interval
to 1 s, if the batch task could be processed within the
interval, the system would be stable. We found that the
average total delay was 621 ms, which was within the
1 s interval. Therefore, it was demonstrated that our

Fig. 4 Network performance measured by our system.
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Fig. 5 Performance statistics of stream processor in Spark
UI, where processing time is the time taken to process all jobs
for a batch, and scheduling delay is the time to ship the jobs
from scheduler to executor.

system can handle such a high speed input stream.
We increased the packet rate and found that our

system could deal with nearly 150 000 packets per
second.

5.2 Robustness

The traditional network monitoring systems process on
a single server and abort when the server crashes. In a
cluster that is set up in Spark standalone mode, the jobs
will be distributed to and completed by several slave
machines. When a slave breaks down, other slaves will
resume its remaining jobs without aborting the entire
process.

We conducted a typical experiment to investigate
the robustness of our proposed system. We manually
shut down one slave when the program was running
and restarted it later. The system status is shown
in Fig. 6. When the slave crashed, its tasks were
retransmitted to other slaves, and we could observe a
jitter in the scheduling delay and processing time. The
master had to retransmit the jobs to the slave after it
was recovered. Therefore, a jitter was also observed
in scheduling delay. Although the failure and recovery
of a slave impacted the performance of the system, the
system returned to normal operation very quickly and
the entire job was not aborted. These experimental
results show that the system is robust.

6 Conclusion and Future Work

With the growth of Internet traffic, traditional network
analysis methods that work on single machines are no
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Fig. 6 System performance changes when a slave crashes.

longer suitable. Existing approaches take advantage of
big data frameworks to improve processing efficiency.
However, these approaches mainly focus on offline
data analysis. In this study, we proposed an online
Internet traffic monitoring system that utilizes Spark
Streaming. We demonstrated that Internet measurement
and monitoring can be treated as a stream analysis
problem and can be handled via a streaming processing
platform. Extensive experimental results show that our
system achieved good performance and robustness.

In future, we will implement collectors to capture
packets from switches through port mirroring so
that our system can analyze all the traffics passing
through monitored networks. Finally, we will test
its performance in practice and compare it with some
traditional single server systems in terms of scalability
and reliability.
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