
BIG DATA MINING AND ANALYTICS
ISSN 2096-0654 01/06 pp 1– 18
Volume 1, Number 1, March 2018
DOI: 10.26599/BDMA.2018.9020001

Volume 1, Number 1, Septembelr 2018

Applications of Deep Learning to MRI ImagesW A Survey
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Abstract: Deep learning provides exciting solutions in many fields, such as image analysis, natural language

processing, and expert system, and is seen as a key method for various future applications. On account of its

non-invasive and good soft tissue contrast, in recent years, Magnetic Resonance Imaging (MRI) has been attracting

increasing attention. With the development of deep learning, many innovative deep learning methods have been

proposed to improve MRI image processing and analysis performance. The purpose of this article is to provide

a comprehensive overview of deep learning-based MRI image processing and analysis. First, a brief introduction

of deep learning and imaging modalities of MRI images is given. Then, common deep learning architectures are

introduced. Next, deep learning applications of MRI images, such as image detection, image registration, image

segmentation, and image classification are discussed. Subsequently, the advantages and weaknesses of several

common tools are discussed, and several deep learning tools in the applications of MRI images are presented.

Finally, an objective assessment of deep learning in MRI applications is presented, and future developments and

trends with regard to deep learning for MRI images are addressed.

Key words: magnetic resonance imaging; deep learning; image detection; image registration; image segmentation;

image classification

1 Introduction

Artificial intelligence[1–3] is not only a field of computer
science that was created in the 1950s but also a thriving
field with many practical applications and research
hotspots. Artificial intelligence attempts to simulate
human intelligence and produce a new intelligent
machine that would be able to process information
with human consciousness, behavior, and thinking. Its
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ultimate goal is to develop brain-like robots. Artificial
intelligence has been applied to many fields, such as
image analysis, natural language processing, robotics,
and expert systems.

Machine learning[4–6] is the core of artificial
intelligence and the fundamental approach toward
designing intelligent computers. Machine learning
involves a number of disciplines such as probability
theory, statistics, approximation theory, convex
analysis, and algorithm complexity theory. Machine
learning mainly uses induction and synthesis to make
computers acquire new knowledge by simulating
human learning behavior and then reorganizes the
existing knowledge to continually improve computer
performance. Machine learning has also been widely
applied in many fields, such as computer-aided disease
diagnosis[7–9], bioinformatics[10–12], and computer
vision[13–15]. The applications of machine learning span
the entire field of artificial intelligence.
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With the deepening of artificial neural networks[16],
the concept of deep learning[17, 18] has been
proposed. Deep learning is not only an improvement
in artificial neural networks, but also a new field
in machine learning research[19–24]. The successful
application of deep learning brings machine learning
closer to artificial intelligence. The idea of the artificial
neural networks arises from our understanding of
the human brain, which comprises interconnections
between neurons. The difference between artificial
neural networks and the human brain is that any
neuron in the human brain is connected to other
neurons via a specific physical path, whereas neural
networks contain discrete layers, connections, and data
propagation directions. Since deep learning consists
of more hidden layers in comparison to artificial
neural networks, a more abstract high-level feature
representation for different classes is formed by using
multiple hidden layers to combine low-level features.
Similar to artificial intelligence, deep learning also
attempts to build and simulate the human brain to
analyze the learning process of the neural network,
which simulates the learning mechanism of the
human brain when it attempts to understand unknown
concepts. Deep learning has a good development
momentum in data processing and analysis, and has
been reviewed as one of the top 10 breakthrough
technologies in the 2013 MIT technology review
(https://www.technologyreview.com/
lists/technologies/2013/). Thus far, deep
learning has been widely used in the scientific[25, 26] and
business community[27]. It is worth mentioning that
Google launched the first generation of deep learning
systems, namely, DistBelief[27], in 2011. By using
the deep learning system, Google was able to scan
thousands of their data center cores and build a larger
neural network. The deep learning system has been
widely deployed in Google’s commercial products,
such as Google Photos, Google Search, and Google
Street View.

Feature representation plays an important role
in medical image processing and analysis. As a
technology, deep learning methods have two obvious
advantages in feature representation, as follows:
� Deep learning can be used to automatically

find features from a given dataset for each
specific application. In general, traditional feature
extraction methods are based on some prior
knowledge to extract features in a particular

application. Thus, these methods are semi-
automatic learning methods.
� Deep learning can find new features that are

suitable to specific applications, but have never
been previously discovered by researchers.
Traditional feature extraction methods are often
limited by some a priori knowledge, which can
only extract some features associated with a
particular application.

Additionally, the two elements that affect the results
of medical image processing and analysis, are image
acquisition and image interpretation, as follows:
� Image acquisition: As we all know, the better

the image quality, the better the results obtained
in image processing and analysis. However,
the quality of the image depends on image
acquisition; therefore, the better the image
acquisition, the higher the image quality. Magnetic
Resonance Imaging (MRI) does not only have the
characteristics of non-invasive and good soft tissue
contrast, but also does not expose subjects to high
ionizing radiation. Since MRI can provide a lot
of invaluable information about tissue structures,
such as shape, size, and localization, it is attracting
more and more attention for clinical routine and
computer-aided diagnosis[28–30]. Therefore, in this
article, we focus on MRI images. MRI can be
divided into structural and functional imaging.
Structural imaging includes T1-weighted MRI
(T1w), T2-weighted MRI (T2w), Diffusion Tensor
Imaging (DTI), etc.; functional imaging includes
resting state functional MRI (rs-fMRI), tasking
state functional MRI (ts-fMRI), etc.
� Image interpretation: In clinical practice, most

medical image interpretations are basically
performed by clinicians to determine whether
the subjects are abnormal. However, due to
limitations with regard to the clinician’s personal
skills, subjectivity, energy, and other factors, the
medical image interpretations by clinicians often
differ significantly. To obtain accurate image
interpretation results, it is imperative to develop
an automatic image interpretation system that
includes many functions, such as image detection,
image registration, image segmentation, and
image classification. To realize this system, many
machine learning methods have been widely
applied. However, due to the fact that deep
learning architectures can obtain high-level latent
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features, many researchers have applied deep
learning architectures to the development of this
automatic image interpretation system. Therefore,
in this survey, we focus on deep learning.

In this survey, we provide a comprehensive review for
the architectures of deep learning and their applications
to MRI images based on the above analysis. First,
we introduce some common architectures of deep
learning. Then, we present several applications of
deep learning in MRI images, such as image detection,
image registration, image segmentation, and image
classification. Subsequently, the advantages and
weaknesses of several common tools are discussed, and
several deep learning tools applied to MRI images are
demonstrated. Finally, an objective assessment about
deep learning in MRI applications is presented, and
future developments and trends are addressed for deep
learning by using MRI images.

2 Deep Learning Architectures

2.1 Artificial neural networks

Artificial neural networks[16] were proposed in the
1980s and have become a hot topic in the field of
artificial intelligence. The essence of artificial neural
networks is to learn the information processing process
of the human brains neural network, and then develop a
simpler model, which will form a specific network for
a given network connection. Artificial neural networks
are computational models consisting of a large number
of nodes and connections. For a specific artificial
neural network, each of its nodes represents a specific
output function (denoted as an activation function), and
each of its connections between two nodes represents
the ability to transmit information between these two
nodes (denoted as the weight). Therefore, an artificial
neural network is often approximated as an algorithm,
and the output of the algorithm depends mainly on
the activation functions and the weights of the neural
network. In general, the artificial neural networks
can be divided into feedforward neural networks and
feedback neural networks, according to the different
connections of the networks, as follows:
� Feedforward neural networks: A feedforward

neural network can be represented as a directed
acyclic graph, without feedback in the network.
The network implements the transformation of the
information from the input space to the output
space, and its information processing ability comes

from the combination of many simple nonlinear
functions. The topology structure of the network
is relatively simple and easy to implement.
� Feedback neural networks: A feedback neural

network can be represented as an undirected
complete graph, with feedback in the network. The
information processing of the network is the state
transformation, which can use the dynamic system
theory to deal with processing. The stability of
the network is closely related to the associative
memory function.

Over the last ten years, with the deepening of artificial
neural network research, great progress has been
made in multiple fields, such as pattern recognition,
biology, intelligent robots, economy, and medicine.
Furthermore, artificial neural networks have also
been successfully applied to solving many practical
problems, and exhibit good intelligence characteristics.
In general, the characteristics of artificial neural
networks are mainly reflected on three abilities; namely,
the ability of self-learning, ability of associative
memory, and ability of quickly finding an optimal
solution.

2.2 Deep feedforward networks

Feedforward neural networks (also called deep
feedforward networks) are the classical deep learning
models[31, 32]. The purpose of training deep feedforward
networks is to approximate the corresponding objective
functions. A deep feedforward network can be defined
as a mapping y D f .xI �/, which learns parameters
� to obtain the best function approximation. In
general, a deep feedforward network includes an input
layer, multiple hidden layers, and an output layer.
Furthermore, the flow of information in the deep
feedforward network flows only in one direction and
never goes backward, as shown in Fig. 1. This is an
example of a deep feedforward network with an input
layer, three hidden layers, and an output layer.

As can be seen from Fig. 1, if given an input x, and
three hidden functions f1, f2, and f3, an output f .x/
can be obtain by training the deep feedforward network:
f .x/ D f3.f2.f1.x///. If y is the corresponding label
of x, f .x/ should be very close to y. Thus, we can
denote f .x/ as y. Such a chain structure is most
common in deep feedforward networks. In general, the
length of a chain structure can be called the depth of a
deep feedforward network. Additionally, there has been
a new professional terminology, namely, deep learning.
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Fig. 1 An example of a deep feedforward network with an
input layer, three hidden layers, and an output layer.

Therefore, the deep feedforward network is one of the
most primitive deep learning architectures.

2.3 Stacked autoencoders

An autoencoder[33–35] is a simple deep feedforward
network, which includes an input layer, a hidden
layer, and an output layer. Meanwhile, according to
different functions, an autoencoder can be divided into
two parts: the encoder and decoder. The encoder
(denoted as f .x/) is used to generate a reduced feature
representation from an initial input x by a hidden layer
h, and the decoder (denoted as g.f .x//) is used to
reconstruct the initial input from the output of the
encoder by minimizing the loss function:

L.x; g.f .x/// (1)

By these two processes, high-dimensional data can
be converted to low-dimensional data. Therefore, the
autoencoder is very useful in classification and similar
tasks.

The autoencoder has three common variants: the
sparse autoencoder[36, 37], denoising autoencoder[38–40],
and contractive autoencoder[41, 42], as follows:
� Sparse autoencoder: Unlike autoencoders, the

sparse autoencoders add a sparse constraint ˝.h/
to the hidden layer h. Thus, its reconstruction error
can be evaluated by

L.x; g.f .x///C˝.h/ (2)
� Denoising autoencoder: Unlike sparse

autoencoders, which add a sparse constraint
to the hidden layer, denoising autoencoders are
aimed at minimizing the loss function:

L.x; g.f .ex/// (3)

where ex is based on x with some noise.
� Contractive autoencoder: Similar to sparse

autoencoders, contractive autoencoders add the

explicit regularizer ˝.h/ to the hidden layer h,
and minimize the explicit regularizer. The explicit
regularizer is

˝.h/D�

@f .x/@x

2

F
(4)

where ˝.h/ is the squared Frobenius norm[43]

of the Jacobian partial derivative matrix of the
encoder function f .x/, and � is a free parameter.

A stacked autoencoder[31, 44] is a neural network
with multiple autoencoder layers as shown in
Fig. 2. Furthermore, the input of the next layer
comes from the output of the previous layer in the
stacked autoencoders. An autoencoder usually consists
of only three layers and does not have a deep learning
architecture. However, the stacked autoencoder does
have a deep learning architecture with a stacked number
of autoencoders. It is worth mentioning that the training
of the stacked autoencoder can only accomplish an
action, layer-by-layer. For example, if we want to
train a network with an n ! m ! k architecture
using a stacked autoencoder, we must first train the
network n! m! n to get the transformation n! m,
and then train the network m ! k ! m to get the
transformation m ! k, and finally stack the two
transformations to form the stacked autoencoder (i.e.,
n ! m ! k). This process is also called layer-wise
unsupervised pre-training[17].

2.4 Deep belief networks

The Boltzmann machine[45–48] is derived from statistical
physics and is a modeling method based on energy
functions that can describe the high order interaction
between variables. Although the Boltzmann machine is
relatively complex, it has a relatively complete physical
interpretation and a strict mathematical statistics theory
as its basis. The Boltzmann machine is a symmetric
coupled random feedback binary unit neural network,
which includes a visible layer and multiple hidden
layers. The nodes of the Boltzmann machine can
be divided into visible units and hidden units. In a
Boltzmann machine, its visible and hidden units are
used to represent the random neural network learning
model, and its weights between two units in the
model are used to represent the correlation between the

Fig. 2 An example of a stacked autoencoder with n
autoencoders (i.e., AE1, AE2,.., AEn).
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corresponding two units.
A restricted Boltzmann machine[49, 50] is a special

form of Boltzmann machine, which only includes a
visible layer and a hidden layer. Unlike feedforward
neural networks, the connections between the nodes
of the hidden layer and the nodes of the visible
layer in the restricted Boltzmann machines can be
bi-directionally connected. Compared to Boltzmann
machines, since the restricted Boltzmann machines only
have one hidden layer, they have faster calculation
speed and better flexibility. In general, restricted
Boltzmann machines have two main functions: (1)
Similar to autoencoders, restricted Boltzmann machines
are used to reduce the dimension of data; (2) Restricted
Boltzmann machines are used to obtain a weight matrix,
which is used as the initial input of other neural
networks.

Similar to stacked autoencoders, deep belief
networks[51–54] are also neural networks with multiple
restricted Boltzmann machine layers. Furthermore, in
deep belief networks, the input of the next layer comes
from the output of the previous layer. Deep belief
networks adopt the hierarchical unsupervised greedy
pre-training method[51] to pre-train each restricted
Boltzmann machine in a hierarchical way. The
obtained results were used as the initial input of the
supervised learning probability model, whose learning
performance improved greatly.

2.5 Convolutional neural networks

Convolutional neural networks[55–58] are also deep
feedforward networks, and have been widely
used in recognition tasks, such as document
recognition[59], handwriting recognition[60], and
image classification[61–64]. The only difference between
the fully connected feedforward neural networks and
the convolution neural networks is that the two adjacent
layers of the two neural networks are connected in
different ways. The former only has some nodes
connected between the adjacent two layers, while the
latter has all nodes connected between the adjacent two
layers. The biggest problem of using a fully connected
feedforward neural network is that there are too many
parameters for the network. In general, increasing the
parameters will not only lead to slower calculation
speed, but will also lead to overfitting problems. To
effectively reduce the number of parameters in the
neural networks, more reasonable neural network
architectures are required. Therefore, convolutional

neural networks were proposed to achieve this goal.
Convolutional neural networks include two kernel

layers, namely, the convolutional and pooling layers, as
follows:
� Convolutional Layer: Only a small patch of the

previous layer is used as the input of each node in
the convolutional layer, and the size of the small
patch is often 3 � 3 or 5 � 5. The convolutional
layer attempts to analyze each small patch of
the neural network in depth, which results in the
higher abstraction of feature representation.
� Pooling Layer: There is often a pooling layer

followed by the convolutional layer. The pooling
layer can effectively reduce the size of the matrix
from the previous convolutional layer; thus, it can
reduce the number of parameters in the neural
network. Therefore, the use of pooling layers can
not only speed up the calculation, but can also
prevent the problem of overfitting.

In general, there are two types of convolution
neural network architectures, according to the different
connection modes of the different convolutional layers.
One is to connect different convolutional layers in
series such as LeNet-5[59], AlexNet[61], and ZFNet[65],
while the other one consists of connecting different
convolutions in parallel, such as Inception and its
follow-up versions[66–68].

3 Deep Learning Applications

In recent years, many deep learning methods have
been proposed for application in the field of MRI
image processing and analysis, such as image detection,
image registration, image segmentation, and image
classification. All of these can be formulated as
feature representation problems, and can thus be solved
effectively by using deep learning methods to find
an effective set of features. In this section, we
review the recent progress of applying deep learning
architectures in the image detection, image registration,
image segmentation, and image classification of MRI
images.

3.1 Image detection

Image detection plays an important role in computer-
aided detection routines. Its main purpose is to find
the tissues of interest, and then measure and analyze
whether these tissues produce lesions. Some deep
learning methods have been proposed for performing
MRI image detection as follows.
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To perform organ detection from a given complex
dataset with abnormalities, for which it is difficult
to identify the labels of the samples in the dataset,
Shin et al.[69] proposed a deep learning model with a
stacked sparse autoencoder. In this study, the stacked
sparse autoencoder model was generated by stacking
several unsupervised feature learning layers, which
were trained by using greedy methods. Subsequently, a
pooling operation was applied to compress the features
of gradually increased input regions, and to generate a
part-based model to perform multiple organ detection in
MRI images.

To achieve the automatic detection of lacunes of
presumed vascular origin, Ghafoorian et al.[70] proposed
an automated two-step deep convolutional network
method. First, a fully convolutional network was
applied to the detection of the initial candidates. Then,
a 3D convolutional network was applied to reduce false
positives. In this study, Ghafoorian et al.[70] suggested
that location information plays an important role in
the detection of candidate tissue. Therefore, to further
improve detection performance, contextual information
was generated by using multiple scale analysis and a
combination of explicit location features to add into the
convolutional network.

To detect cerebral microbleeds (CMBs) from MRI
images, Dou et al.[71] proposed an automatic 3D
convolutional network method. The 3D convolutional
network was used to extract high-level features for
CMBs via a data driven approach, which can effectively
encode the spatial contextual information from MRI
images. Since the 3D convolutional network adopted
a traditional sliding window strategy, the computational
cost of using the method to detect CMBs was relatively
high. To further improve the performance of CMBs
detection, a two-step cascaded 3D fully convolutional
network framework was proposed. The 3D fully
convolutional network was first used to rapidly retrieve
potential candidates, and then used these potential
candidates to further accurately distinguish CMBs from
challenging mimics.

3.2 Image registration

Image registration is the process of matching and
superimposing two or more images at different times,
different sensors (such as imaging equipment) or
different conditions (such as illumination, position, and
angle)[72]. The general process of image registration is
as follows:

� The features are obtained by the feature extraction
of two images;
� The feature pairs are found by performing a

similarity measure;
� The image space coordinate transformation

parameters are obtained by matching feature pairs;
� The image space coordinate transformation

parameters are used to perform image registration.
Image registration has been widely applied in

medical image processing. Its main purpose is to
combine various medical images, which display their
information in the same image, and thereby provide
multiple information for clinical diagnosis. Therefore,
to achieve medical image registration, the building of
accurate and effective correspondences between the two
images is required. In general, the correspondences
between two images can be represented by maximizing
the similarity of the feature pairs.

Recently, as neuroimaging techniques developed,
various new modalities have been emerging to make
the diagnosis and treatment of diseases more accurate.
Thus, image registration operations, which combine
different modality data, are required. Many learning-
based image registration methods have been proposed
to help select the best related features, which are used
to guide the corresponding detection between samples
with large changes. However, for most of the existing
learning-based image registration methods, there is a
great limitation with regard to the fact that they need
a lot of known correspondences during the training
process. To address this limitation, Wu et al.[73]

proposed an unsupervised deep learning framework
to extract optimal image features for MRI image
registration. In this study, first, a stacked convolutional
independent subspace analysis network was developed
to learn the hierarchical representations of patches
from MRI brain images. The stacked convolutional
independent subspace analysis network included two
layers: (1) The first layer was used to extract the
low-level feature representations of patches from MRI
brain images; (2) The second layer was used to obtain
the hierarchical representations. Then, the hierarchical
representations were used to perform correspondence
detection in the image registration process.

Later, in the same team, Wu et al.[74] also proposed
an unsupervised deep learning framework to learn the
hierarchical representations from MRI images for the
purpose of image registration. The unsupervised deep
learning framework contained a stacked autoencoder
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with a convolutional network. The 3D image patches
were used as inputs for training the stacked autoencoder
with a convolutional network. In this study, the stacked
autoencoder mainly consisted of two networks; namely,
the encoder and decoder networks, from which the
former was used to learn the low-dimensional features
from 3D image patches, and the latter was used to
recover the 3D image patches from the learned low-
dimensional features. However, if the inputs of the
stacked autoencoder are very large, the computational
cost of directly using the stacked autoencoder will
be very high. In this study, a convolutional network
was used to learn the translational invariant features,
which can reduce the dimensionality of the original
features, to reduce the computational cost of the stacked
autoencoder.

3.3 Image segmentation

Automatic tissue segmentation in MRI images is
of great importance in modern medical research
and clinical routines. Many medical image
segmentation challenges have been held to encourage
the development of automatic segmentation techniques,
such as Ischemic Stroke Lesion Segmentation (ISLES,
http://www.isles-challenge.org/),
Multimodal Brain Tumor Image Segmentation
(BRATS, http://braintumorsegmentation.
org/), MR Brain Image Segmentation (MRBrainS,
http://mrbrains13.isi.uu.nl/), and
cardiac MR Left Ventricle (LV) segmentation
(http://smial.sri.utoronto.ca/LV_
Challenge/Home.html). Many deep learning
methods have also been proposed to perform the
segmentation of various tissues in MRI images[75–78].

In MRI brain images, one of the most common image
segmentations is the segmentation of Gray Matter
(GM), White Matter (WM), and Cerebrospinal Fluid
(CSF). To segment infant brain tissue images into
GM, WM, and CSF, Zhang et al.[76] proposed the
use of convolutional networks to achieve this goal
by combining multi-modal MRI images, which are
T1, T2, and Fractional Anisotropy (FA) images. In
this study, four convolutional network architectures
were designed according to different input patch sizes.
These convolutional network architectures contained a
different number of convolutional layers and resulting
feature maps. To obtain the nonlinear mappings
between the inputs and outputs of each convolutional
network, the local response normalization scheme, the

fully-connected layers, and the softmax layers were also
applied to these convolutional networks. Moreover, to
segment neonatal brain tissue images into Brain Stem
(BS), cortical GM (cGM), myelinated WM (mWM),
Basal Ganglia and Thalami (BGT), unmyelinated WM
(uWM), ventricular CSF (vCSF), extracerebral CSF
(eCSF), and cerebellum (CB), Moeskops et al.[77] also
proposed a convolutional network to automatically
segment these tissues. Similar to the convolutional
networks previously proposed by Zhang et al.[76],
the convolutional network also contained multiple
convolutional layers and the resulting feature maps.
Additionally, the fully-connected layers were also used
in the convolutional network to represent each input
patch size, and a single softmax output layer was used to
connect these convolutional and fully-connected layers
to perform the final segmentation..

Since most brain tumors can affect a patient’s health,
and even shorten their life expectancy, automatic and
reliable segmentation techniques for removing brain
tumors are required. However, most brain tumors have
large spatial and structural variability, which makes
them difficult to segment. Thus, automatic and reliable
segmentation has become a challenging problem. To
address the problem, many deep learning-based brain
tumor segmentation methods have been proposed[79–84].
For example, Pereira et al.[83] used a convolutional
network with small convolutional kernels to segment
gliomas, which are the most common and aggressive
brain tumors in MRI images. They believed that
by using smaller kernels more convolutional layers
could be stacked, and that the same results with
larger kernels could be obtained. Additionally, to
further improve the segmentation performance, both
intensity normalization and volumetric constrains
were used in the convolutional network. Later, Havaei
et al.[84] also presented a fully automatic brain
tumor segmentation method with a convolutional
network. Unlike most traditional convolutional
networks, the convolutional network in this study
included three new components; namely, a two-
pathway architecture, cascaded architecture, and
two-phase training. The two-pathway architecture was
used to obtain global contextual and local features,
respectively. The cascaded architecture contained
input concatenation, local pathway concatenation, and
pre-output concatenation, and was used to exploit the
output efficiency of a convolutional network. The
two-phase training procedure was used to deal with the
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imbalance labels of brain tumors in MRI images.
The measurement of cardiac ventricle, including the

LV and Right Ventricle (RV), plays an important role
in the clinical assessment of cardiac structures and
functions, such as ventricular volume, wall thickness,
and ejection fraction. Therefore, the accurate and
automatic segmentation of cardiac ventricle is also
necessary. Recently, many deep learning methods have
been proposed to segment the cardiac ventricle[85–87].
For example, to segment the LV from MRI images,
Avendi et al.[86] proposed a methodology, which
combined deep learning architectures and deformable
models to perform this task. The method mainly
included three steps: (1) Using convolutional networks
to estimate the location of the LV from MRI images;
(2) Using stacked autoencoders to infer the shape of
the LV; (3) The inferred LV shape was used to perform
the final segmentation of the LV by a deformable
model. Later, Ngo et al.[87] proposed a combination
method with deep learning architecture and a level set
algorithm for the automated segmentation of the LV
from MRI images. The method also includes three
steps: (1) A deep belief network to estimate the location
of the LV from MRI images; (2) Another deep belief
network to delineate the endocardial and epicardial
borders; (3) The estimated location of the LV and the
delineation of the endocardial and epicardial borders
were incorporated into the distance regularized level set
method to perform the final segmentation of the LV.

In addition to the segmentation of the above tissues,
the deep learning segmentation methods in the MRI
images were also applied to other tissues, such as
multiple sclerosis[88, 89], prostate[90], striatum[91], tibial
cartilage[92], abdominal adipose tissues[93], and anterior
visual pathway[94].

3.4 Image classification

Image classification plays an important role in
automatic disease diagnosis and cognitive recognition,
such as the classification of different severity diseases
and the recognition of different brain activities. Many
deep learning methods have also been proposed
for performing image classification tasks in MRI
images[95–97].

3.4.1 Alzheimer’s disease classification
The automatic diagnosis of Alzheimer’s Disease (AD),
especially in its early stage, plays an important role
in human health. Since AD is a neurodegenerative
disease, it has a long incubation period. Therefore, it is

necessary to analyze the symptoms of AD at different
stages. Currently, many researchers have proposed
using image classification to perform AD diagnosis.
Moreover, many deep learning methods have been
proposed to perform severity classification for different
AD patients by using MRI images[95, 98–106].

To diagnose AD and its prodromal stage, namely,
Mild Cognitive Impairment (MCI), Suk et al.[95]

proposed a deep learning method for finding high-level
latent and shared features from two imaging modalities:
MRI images and Positron Emission Tomography (PET)
images. In this study, a statistical significance test was
first applied to obtain discriminative patches between
classes. A multi-modal deep Boltzmann machine was
built to find high-level latent and shared features from
the paired patches. In the multi-modal deep Boltzmann
machine, a Gaussian Restricted Boltzmann Machine
was trained to transform the paired patches into binary
vectors. The binary vectors were used as inputs to the
multi-modal deep Boltzmann machine. After finding
high-level latent and shared features by using the
paired patches and trained multi-modal deep Boltzmann
machine, an image-level classifier was developed to
perform the final classification. The construction of
the classifier mainly included three steps: (1) patch-
level classifier learning; (2) mega-patch construction;
(3) ensemble learning. Later, in the same team, Suk
et al.[104] also proposed a deep learning method for
AD classification to improve the previous classification
performance. In this study, a stacked autoencoder was
first developed to find high-level latent features from
low-level features extracted from three data sources,
namely MRI images, PET images, and CSF. Then, a
sparse representation learning method was applied to
select the most discrimination features from high-level
latent features and two clinical scores. Finally, a multi-
kernel support vector machine was applied to combine
the selected multi-modal features to perform the final
classification.

In another team, the deep learning methods around
AD classification were also presented. For example,
Liu et al.[99] designed a deep learning method, which
combined a stacked sparse autoencoder and a softmax
regression layer to diagnose AD and MCI. The stacked
sparse autoencoder was trained to obtain high-level
latent features from two imaging modalities, namely,
MRI images and PET images. The softmax regression
layer was used to obtain the probability of each subject
to classify all experimental subjects. Subsequently,
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Liu et al.[100] also proposed a multi-phase feature
representation learning framework to perform AD
classification to improve the previous classification
performance. Similar to Ref. [99], the purpose of
the first phase was to obtain high-level latent features
by using a stacked autoencoder from two imaging
modalities; namely MRI images and PET images.
The second phase consisted of using linear regression
to optimize the obtained high-level latent features by
adding some low-dimensional biomarkers. The third
phase consisted of classifying all experimental subjects
by using a softmax regression layer that was similar to
Ref. [99].

3.4.2 Schizophrenia classification
Schizophrenia (SCZ) is a complex psychiatric disorder
characterized by cognitive deterioration, aberrant
sensory perception, and disturbed thinking[107, 108].
Patients with SCZ may seem to lose their grasp to
reality. Their families and society at large are also
impacted by SCZ. Many patients with SCZ have
difficulty in performing tasks or caring for themselves;
therefore, they rely on others for help. Approximately
8 out of 1000 individuals will have an SCZ episode
in their lifetime. Therefore, automatic diagnosis of
SCZ is also necessary. Recently, many deep learning
methods have been proposed to perform SCZ image
classification[97, 109–111].

Pinaya et al.[97] trained a deep neural network that
combined a deep belief network and a softmax layer
to extract high-level latent features from MRI images
for the purpose of diagnosing patients with SCZ from
health controls. The deep neural network was trained
by using two steps: (1) pre-trained by a deep belief
network; (2) supervised fine-tuning by a softmax layer.
The pre-trained network was used to find high-level
latent features from MRI images. The softmax layer
was used to refine the pre-trained network by supervised
fine-tuning, and to perform the final classification.

Later, with regard to the problem of SCZ
classification, Kim et al.[110] also presented a deep
neural network with multiple hidden layers and a
softmax layer to obtain high-level latent features from
low-level features extracted from MRI images. To
further improve the accuracy of SCZ classification,
both L1-norm regularization and a stacked autoencoder
were incorporate into the deep neural network. The
L1-norm regularization was used to control the weight
sparsity in each hidden layer. The stacked autoencoder

was used to pre-train the deep neural network weights
for initialization.
3.4.3 Brain activity classification
In general, different external stimuli correspond to
different brain activities, and different brain activities
exhibit different functional brain images[112, 113].
Therefore, image classification plays an important role
in identifying different brain activities. Recently, many
deep learning methods were proposed to perform image
classification of different brain activities[96, 114–116].

To identify different brain activities including
emotions, social, motor, working memory, gambling,
relational and language activities, Koyamada et al.[96]

trained a feedforward deep neural network from fMRI
images to implement this task. The feedforward deep
neural network included multiple hidden layers and a
maxsoft layer. Similarly, these hidden layers were used
to obtain high-level latent features, and the softmax
layer was used to calculate the probability of each
subject in a class. Additionally, minibatch stochastic
gradient descent, dropout[117], and principal sensitivity
analysis[118] were incorporated into the feedforward
deep neural network to improve the final classification
performance.

Recently, Jang et al.[116] employed fully connected
feed-forward deep neural networks with multiple
hidden layers to classify different sensorimotor tasks
including auditory attention, right-hand clenching,
visual stimulus, and left-hand clenching. In this study,
a deep belief network with a restricted Boltzmann
machine was pre-trained and used to initialize the
weights of fully connected feedforward deep neural
networks. Then, a back-propagation algorithm was
used to fine-tune the deep belief network to control the
weight-sparsity levels across hidden layers.

In addition to the above three classifications, the
deep learning classification methods of MRI images
has also been applied to other classification fields,
such as classification of Attention Deficit Hyperactivity
Disorder (ADHD)[119, 120], age prediction[121–123], stroke
diagnosis[124], emotional response prediction[125], and
discrimination of cerebellar ataxia types[126].

4 Deep Learning Tools

4.1 General deep learning tools

Deep learning is a complex technology. To achieve
the abovementioned deep learning architectures,
researchers need to spend a lot of time and energy.
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Fortunately, in recent years, many deep learning tools
have been developed as shown in Table 1. These tools
are convenient for researchers; thus, they promote
the application of deep learning architectures. Some
common and widely used deep learning tools are shown
in Table 1 and are briefly introduced as follows.

Caffe is not only the first major industry-level deep
learning tool, but also the most popular tool in the field
of computer vision. Caffe is an open deep learning
framework created by Yangqing Jia[127]. The advantages
and weaknesses of Caffe are as follows:
� Advantages:
F Fast running;
F Specializes in image processing;
F Fine-tunes existing networks directly;
F Trains models directly without writing any

code;
F Supports Python as the Application Program

Interface (API);
� Weaknesses:
F Layer-based network structure; its scalability

is not good, and requires writing code for new
layers;

F Too much extension and dependence, which
results in increased inflating.

Torch is a scientific computing framework, and
supports many machine learning algorithms. The main
development languages of this framework are C and
Lua. Several large technology companies, such as
Facebook and Twitter have adopted this framework.
The advantages and weaknesses of Torch are as follows:
� Advantages:
F Fast running and good flexibility;

F Optimizes basic computing units and it is
easy to write new layers and run on GPU;

F Includes many common computational
models based on Lua;

F Includes many pre-trained models;
� Weaknesses:
F Lua has a steep learning curve;
F Layer-based network structure; its scalability

is not good and requires writing code for new
layers;

F Does not support Python as API.
Theano was developed by the Montreal Institute

of Technology (MIT) in 2008. Python is the main
development language of Theano. Theano derives a
lot of Python packages with deep learning, such as
Pylearn2 and Keras. Theano is the first architecture to
describe the model using symbolic tensor graphs. The
advantages and weaknesses of Theano are as follows:
� Advantages:
F Good flexibility and suitable for academic

research;
F Good support for recursive network and

language modeling;
F Many high-level deep learning packages such

as Keras and Pylearn2;
F Good portability;

� Weaknesses:
F Slow compilation;
F Difficult to modify codes for developer;
F Less pre-trained models.

To be compatible with traditional machine learning
and deep neural networks, TensorFlow was created by
Google to replace Theano. TensorFlow is also an open

Table 1 Some common and widely used deep learning tools.

Name Link Reference
DeepLearnToolbox https://github.com/rasmusbergpalm/DeepLearnToolbox [128]
Caffe http://caffe.berkeleyvision.org/ [127]
Torch http://torch.ch/ [129]
Theano http://deeplearning.net/software/theano [130]
Pylearn2 http://deeplearning.net/software/pylearn2/ [131]
Keras https://github.com/EderSantana/keras [132]
TensorFlow https://www.tensorflow.org/ [133]
CNTK https://www.microsoft.com/en-us/research/product/cognitive-toolkit/ [134]
MXNet https://github.com/dmlc/mxnet [135]
Chainer http://chainer.org/ [136]
Deeplearning4j https://deeplearning4j.org/ [137]
SINGA http://www.comp.nus.edu.sg/˜dbsystem/singa/ [138]
MatConvNet http://www.vlfeat.org/matconvnet/ [139]
maxDNN https://github.com/eBay/maxDNN [140]
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source software library, which uses data flow graphs to
implement numerical computation. Each node in the
data flow graphs represents a mathematical operation,
and each edge in the data flow graphs represents the
relationship between two multidimensional data arrays.
TensorFlow can run on multiple platforms, such as one
or more CPUs (or GPUs), mobile devices, and servers.
The advantages and weaknesses of TensorFlow are as
follows:
� Advantages:
F High quality meta frameworks;
F Supports multiple GPUs;
F Faster compilation than Theano;
F Rapid development for new networks;
F Supports distributed training;
F Good portability;

� Weaknesses:
F Slower running, and need to lager memory;
F Less pre-trained models;
F Does not support dynamic input of

convolutional operation, and does not
support convolution of time series.

4.2 Deep learning tools applied to MRI images

In recent years, based on the abovementioned general
deep learning tools, some deep learning tools applied
in MRI images have also been developed, as shown in
Table 2. They are briefly introduced as follows.
� BrainNet: This tool was developed based on

TensorFlow, and aims to train deep neural
networks to segment GM and WM from brain MRI
images.
� LiviaNET: This tool was also developed based on

Theano, and aims to train 3D fully convolutional
neural networks by using MRI images to segment
subcortical brain structures.
� DIGITS: This tool was also developed to rapidly

train accurate deep neural networks for image
segmentation, classification, and tissue detection
tasks. For example, DIGITS is used to perform
Alzheimers disease prediction by using MRI

images and obtain good results[142].
� resnet cnn mri adni: This tool was developed

to train residual and plain convolutional neural
networks by performing AD classification of MRI
images.
� mrbrain: This tool was developed to train

convolutional neural networks by using MRI
images to predict the age of humans.
� DeepMedic: This tool was developed based

on Theano, and aims to train multi-scale 3D
convolutional neural networks for brain lesion
segmentation from MRI images. Moreover, this
tool has shown excellent performance in brain
lesion segmentation tasks, and was the winner of
the ISLES 2015 competition.

5 Conclusion and Outlook

In summary, the aim of this survey was to provide
valuable insights for researchers, with regard to
applying deep learning architectures in the field of MRI-
based research. To our knowledge, we are the first
to review MRI-based deep learning applications. As
can be seen in Section 3, deep learning architectures
have been widely applied in MRI image processing
and analysis, in areas such as image detection,
image registration, image segmentation and image
classification, and can obtain better results.

Although many researchers have paid more attention
to MRI-based deep learning applications and have
obtained some relatively good results, there are many
problems and challenges that need to be solved urgently
due to various limitations. In particular, the two main
problems and challenges are as follows:
� Limited dataset size and class imbalance: It is

known that the larger the dataset, the better the
results of deep learning. However, since MRI
image acquisition processes are usually complex
and expensive, the size of an MRI image dataset
is limited in many applications. Furthermore,
for privacy considerations, many MRI images

Table 2 Some deep learning tools applied in MRI images.

Name Link Reference
BrainNet https://github.com/kaspermarstal/BrainNet [67]
LiviaNET https://github.com/josedolz/LiviaNET [141]
DIGITS https://developer.nvidia.com/digits [142]
resnet cnn mri adni https://github.com/neuro-ml/resnet_cnn_mri_adni [143]
mrbrain https://github.com/lanpa/mrbrain [144]
DeepMedic https://github.com/Kamnitsask/deepmedic [145]
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(especially disease-related MRI images) are rarely
obtained. Therefore, the size of the dataset with
MRI images is often small. In addition, if the
training of MRI images has class imbalance during
the training process, it is often very difficult to
obtain suitable deep neural networks. Presently,
the two main strategies to improve the above
problems are as follows:
F Sampling: includes oversampling and

undersampling, which is widely used to
enlarge and rebalance the size of the dataset
with MRI images. Oversampling is applied
to generate new MRI images from existing
MRI images, and undersampling is applied
to selecting some MRI images from existing
MRI images.

F Pre-training: When the size of the dataset
with MRI images is limited, an unsupervised
pre-training operation can help to prevent
overfitting and generate more regularized
results. Therefore, pre-training is also widely
applied to deal with limited dataset size
and class imbalance. In general, the pre-
training operation is followed by a fine-tuning
operation.

� Choosing a suitable deep learning architecture
and its corresponding hyperparameters for
a particular application: since, thus far, the
advantages and weaknesses of each deep learning
architecture are only roughly understood by most
researchers, finding a way toward choosing a
suitable deep learning architecture remains an
unsolved problem with regard to obtaining good
results for a particular application. Even if a deep
learning architecture for a particular application
is determined, finding a way toward setting the
hyperparameters of the architecture also remains
an unsolved problem. Presently, most researchers
are based on experimental experience to address
the abovementioned problems. Therefore,
finding a way to choose the most suitable deep
learning architecture and its corresponding
hyperparameters for a particular application is not
only an urgent problem to be solved, but also a
great challenge to be addressed in future work.

With the continuous advancement of medical big
data, the size of the MRI image dataset will no longer
be a problem. Moreover, as the understanding of
deep learning architectures expands, choosing a suitable

deep learning architecture and its corresponding
hyperparameters for a particular application will also
become achievable. It is reasonable to expect that deep
learning applications in MRI images will attain even
more remarkable achievements in the near future.
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