
 

Exploring Fragment Adding Strategies to Enhance Molecule
Pretraining in AI-Driven Drug Discovery

Zhaoxu Meng, Cheng Chen, Xuan Zhang, Wei Zhao*, and Xuefeng Cui*

Abstract: The  effectiveness  of  AI-driven  drug  discovery  can  be  enhanced  by  pretraining  on  small  molecules.

However,  the  conventional  masked  language  model  pretraining  techniques  are  not  suitable  for  molecule

pretraining  due  to  the  limited  vocabulary  size  and  the  non-sequential  structure  of  molecules.  To  overcome

these  challenges,  we  propose  FragAdd,  a  strategy  that  involves  adding  a  chemically  implausible  molecular

fragment  to  the  input  molecule.  This  approach  allows  for  the  incorporation  of  rich  local  information  and  the

generation  of  a  high-quality  graph  representation,  which  is  advantageous  for  tasks  like  virtual  screening.

Consequently,  we  have  developed  a  virtual  screening  protocol  that  focuses  on  identifying  estrogen  receptor

alpha binders on a nucleus receptor. Our results demonstrate a significant improvement in the binding capacity

of the retrieved molecules. Additionally, we demonstrate that the FragAdd strategy can be combined with other

self-supervised methods to further expedite the drug discovery process.
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1　Introduction
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Drug  discovery  is  becoming  increasingly  costly[1, 2].
Research and development of a new medicine can cost
anywhere from  million to  million US dollars,
which has increased exponentially in the last decade[3].
With the growing availability of big data, deep learning
is a promising approach to accelerate drug discovery in
areas  such  as  compound  synthesis,  virtual  screening,
and  de  novo  drug  design[4–7].  However,  the

effectiveness  of  deep  learning  depends  on  the
availability  of  labeled  data,  which  is  expensive,  time-
consuming,  and  sometimes  impractical  to  obtain[8].
Pretraining  can  help  address  this  issue  by  learning
background  knowledge  from  a  large  amount  of
unlabeled  data[9],  and  this  knowledge  has  been  shown
to  significantly  improve  the  performance  of
downstream tasks[10].

Recently,  the  masked  language  model  approach  has
been widely utilized for pretraining small molecules[11–13].
Infomax[14] was  one  of  the  first  graph  pretraining
methods to promote mutual information between local
and  global  representations.  Hu  et  al.[12] then
implemented Mask in a molecular graph and discussed
the  advantages  of  using  local  and  global-level  tasks
simultaneously.  Grover[11] further  advanced  the  Mask
concept by proposing 1-hop Mask augmentation, which
queries the model to predict artificial labels at local and
graph levels. MolCLR[13] then implemented contrastive
learning  from  computer  vision  and  developed  two
deletion  augmentation  methods:  bond  deletion  and
subgraph  removal,  which  can  further  corrupt  the
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molecule.
Although  Mask-based  pretraining  methods  have

shown some success in small molecule deep learning, it
is  not  ideal  for  small  molecules  due  to  two  intrinsic
properties:  a  limited  vocabulary  size  and  a  non-
sequential  molecule  structure.  For  example,  molecules
have  a  much  smaller  vocabulary  size  of  less  than  20,
while  university-level  English  speakers  know
approximately  10  000  word  families  on  average[15].  If
all the masked atoms in the molecules are predicted as
carbon, an accuracy of approximately 74% (counted for
1 million molecules) can be achieved.  This task is  too
easy,  which  prevents  the  pretraining  method  from
learning  useful  information.  Furthermore,  unlike
human  language,  where  words  are  arranged
sequentially,  molecules  have  chemical  structures  that
are  essential  to  their  properties[5, 16].  Applying  a  mask
to  chemical  bonds  does  not  cause  any  changes  in  the
structures  of  molecules,  whereas  deleting  bonds
significantly  modifies  the  properties  of  the  molecule.
Consequently,  this  obstacle  prevents  the  pretraining
method from gaining valuable knowledge.

In  contrast  to  the  existing  pretraining  strategies  that
involve  reducing  or  eliminating  information  through
the use of masks, we introduce a novel approach called
FragAdd,  which  involves  the  addition  of  a  chemically
implausible molecular  fragment to the input  molecule.
This strategy is intended to provide structural variation
and prevent the collapse of the molecular structure. To
learn  rich  local  information  while  producing  a
meaningful  molecular  representation,  we  designed  a
series  of  experiments  to  explore  how  the  adding
strategy  can  be  implemented.  The  fragments  used  in
the  strategy  were  taken  from  a  fragment  database
created using pretraining data.

We conducted experiments to assess the downstream
performance,  components,  and  molecular
representations of FragAdd, and to explore its potential
to  improve  a  drug  discovery  application.  To  compare
FragAdd with other pretraining frameworks, we tested
their  ability  on  a  benchmark  of  eight  molecular
properties.  After  validating  four  components  of
FragAdd,  which  can  influence  the  diversity  and
difficulty  of  pretraining  tasks,  we  examined  whether
the  produced  molecular  representations  can  contain
important  chemical  information.  Furthermore,  we
explored  how  to  apply  our  pretrained  model  in  the
virtual  screening  of  small  molecules  for  drug

discovery.  This  work  can  motivate  future  research  on
the  addition  strategy  for  pretraining  small  molecules
and  also  illustrates  a  possible  application  scenario  in
virtual screening.

2　Method

2.1　FragAdd framework

We  created  FragAdd  to  pretrain  small  molecules  and
use  the  pretrained  model  for  downstream  objectives
such  as  property  prediction  and  virtual  screening.
Pretraining  provides  Artificial  Intelligence  (AI)
systems  with  a  basic  understanding  of  the  data  by
learning  the  patterns  in  small  molecule  data[9].  As  a
small  molecule  pretraining  framework,  FragAdd
introduces  novel  augmentation  and  training  objectives
to  process  molecule  graphs  and  update  parameters.
After  pretraining  with  unlabeled  data,  the  model  is
further  refined  on  supervised  tasks,  for  example,
predicting the toxicity of molecules.

Inspired  by  the  modular  nature  of  small  molecules,
FragAdd  changes  the  molecular  structure  to  provide
diversity  and  avoids  predicting  molecular  vocabulary
to increase the difficulty of pretraining tasks. Diversity
describes  the  number  of  chemical  forms  generated
from  the  augmentation,  and  difficulty  indicates  how
challenging  the  task  is  for  an  intelligent  system  to
complete.  Focusing  on  these  two  aspects  may  corrupt
the molecules’ structure to increase diversity and adjust
the  difficulty  level  by  multiple  operations.  Molecules
have  a  modular  nature,  which  regards  molecules  as  a
collection  of  molecular  fragments  generated  by
addition  reactions.  Pharmacists  use  this  idea  to
optimize  the  quality  of  drug  candidates  by  adding  or
deleting  parts  from  molecules.  Based  on  this  idea,
FragAdd  attaches  a  fragment  outside  the  input
molecule to imitate  the process of  the natural  addition
reaction.

During the augmentation process, FragAdd generates
a  chemically  invalid  fragment  and adds  it  to  the  input
molecule, as shown in Fig. 1. We generated a fragment
database  from all  molecules  in  the  pretraining dataset.
To sample a fragment from the database, we designed a
two-step approach: first, choosing a subgroup based on
size  (the  number  of  atoms in  a  fragment[17]),  and then
randomly  sampling  one  fragment  from  the  chosen
group (fragments  larger  than 20 atoms are  placed into
one  group).  Further,  we  corrupted  the  sampled
fragment  by  atom  mutation  and  ring  break  so  as  to
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avoid problems in distinguishing the fragment from the
original molecule. Atom mutation replaces some atoms
with  a  different  atom  type,  and  ring  break  deletes  a
bond  in  a  ring  from  a  molecule  if  a  ring  exists.  The
ratio  of  mutation  and  break  can  be  adjusted  for  a
suitable  difficulty  level.  To  attach  the  damaged
fragment  to  the  input  molecule,  we  connected  two
randomly  sampled  carbons  from the  two  pieces.  If  no
carbon exists for connection, atoms indexed zero in the
molecule  graph  can  be  chosen.  The  FragAdd
augmentation  corrupts  a  dynamic  region  that  depends
on  the  size  of  the  added  fragment  instead  of  a  fixed
local region by Mask-like methods.

For pretraining objectives, FragAdd locally classifies
whether each atom belongs to the extra fragment while
globally  summing  up  the  number  of  added  atoms.  In
fact,  previous  work  has  proved  the  effectiveness  of
pretraining  small  molecules  at  both  local  and  global
levels[11, 12].  Locally,  FragAdd  predicts  a  binary
classification for each atom so that the model learns to
decompose  molecules  into  fragments  and  determine
which  fragment  is  chemically  unreasonable.  Globally,
FragAdd  predicts  the  number  of  added  atoms  to
summarize  the  chemical  knowledge  into  molecular
representation  by  pooling.  Both  levels  of  training
objectives are vital for effective pretraining.

2.2　Data preparation

We  transformed  small  molecules  from  SMILES  to

molecular  graphs  by  computing  node  and  edge
features. SMILES is not exclusive to a single molecule
and  necessitates  treating  molecules  as  texts.  We
determined atom number and chirality as node features.
Additionally,  we  incorporated  bond  features  with
chirality  and  bond  type  selected  from  single,  double,
triple,  and  aromatic.  We  hypothesized  that  atom  type,
bond  type,  and  chirality  are  sufficient  to  differentiate
one molecule from another.

The  fragment  database  was  generated  from  the
pretraining  dataset  with  the  molecule  decomposition
algorithm BRICS.  BRICS algorithm breaks  molecules
in  positions  where  synthetic  reaction  could  happen[18].
We  implemented  BRICS  with  RDKit[17],  and  by
default,  the decomposition process  undergoes multiple
rounds  until  no  synthetically  accessible  bonds  exist  in
fragments. We saved the output fragments in SMILES
format  to  organize  fragment  data  and  removed
duplicates.  Additionally,  the  fragments  were  tagged
with  the  number  of  atoms  in  that  fragment,
categorizing the database by fragment size.

2.3　Graph neural networks

G = (V,E)
Xv v ∈ V

v

v k

A  molecule  graph  is  represented  as  with  a
node feature  for each . Graph Neural Networks
(GNNs)[19] use a message-passing approach, where the
representations of the neighboring nodes of node  are
combined  to  iteratively  update  the  representation  of
node .  After  rounds  of  aggregation,  the
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Fig. 1    Illustration of FragAdd pretraining. The molecule shown in the upper left corner serves as the initial input. A fragment
is randomly chosen from the generated fragment database, as depicted in the lower left corner. This selected fragment is then
corrupted by substituting highlighted orange atoms and removing highlighted blue bonds. To add the corrupted fragment to
the  input  molecule,  a  carbon-carbon bond highlighted in  green is  utilized.  The  model  is  subsequently  trained to  identify  the
corrupted fragment at both local and global levels.

  Zhaoxu Meng et al.:  Exploring Fragment Adding Strategies to Enhance Molecule Pretraining in AI-Driven Drug... 567

 



v
k

k

representation  of  node  captures  the  structural
information  within  its -hop  neighborhood.  Formally,
the -th layer of a GNN is expressed as follows:
 

a(k)
v = AGGREGATE(k)((h(k−1)

v ,h(k−1)
u ) : u ∈ N(v)),

h(k)
v = COMBINE(k)(h(k−1)

v ,a(k)
v ),

(1)

h(k)
v v k

N(v) v
where  is the feature vector of node  at -th layer,
and  is a set of neighbors of node .

We  implemented  Graph  Isomorphism  Network
(GIN)[20] as  our  model.  GIN is  the most  expressive of
the  GNNs  for  the  representation  learning  of  graphs.
Moreover,  GIN  uses  Multi-Layer  Perceptrons  (MLPs)
as the aggregation function, proving that it satisfies the
conditions  for  a  maximally  powerful  GNN.  For  the
pretraining  of  molecular  graphs,  GIN  is  the  most
recognized architecture.

When setting up the GIN model, all hyperparameters
stay  the  same  as  in  the  previous  work  to  exclude  the
model’s influence during comparison. Five GIN layers
were  used  to  process  molecule  graphs.  Nodes  were
embedded  into  300-dimensional  units,  and  no  dropout
are  used.  Only  node  features  of  the  last  layer  were
considered when model outputs and mean pooling were
used  to  read  out  global  representations.  We  used  a
linear  layer to predict  the training objective for  all  the
pretraining tasks.

2.4　Training detail

We  pretrained  two  million  small  molecules  from  the
ZINC  database  for  100  epochs,  and  about  134
hundurds  fragments  were  obtained  using  the  BRICS
algorithm.  Instead  of  increasing  the  pretraining  data
size to achieve the best  benchmark result,  we kept the
data size at two million molecules and conducted more
rounds of exploration on adding strategies.  We set  the
random  seed  to  zero  and  the  batch  size  to  256.  The
Adam  optimizer  was  updated  with  a  learning  rate  of
0.001;  no  weight  decay  or  learning  rate  schedule  was
used to keep the system at a minimum. We included a
ratio  of  0.1  in  our  global  training  objective  when
combining the local and global loss.

The  pretrained  model  was  fine-tuned  on  eight
classification datasets from MoleculeNet, and the batch
size  was  reduced  to  32.  MoleculeNet  classification
datasets  are  the  most  accepted  for  small  molecule
property prediction, including three biophysics and five
physiology datasets[21]. We added a dropout rate of 0.5
and  reduced  the  batch  size  to  32  for  small-size
downstream  tasks  such  as  SIDER.  Further,  a  linear

layer  was  used  to  predict  the  final  binary  label  and
average the accuracy across all tasks for each dataset.

2.5　Virtual screening pipeline

α

α

α

α

α

We took Estrogen Receptor Alpha (ER ) binding data
from  the  Nuclear  Receptor  Activity  (NURA)  dataset
and  divided  it  into  reference  and  search  data.  The
search  data  were  then  combined  with  two  million
molecules  to  form  the  final  virtual  screening  dataset.
NURA  dataset  contains  information  on  small
molecules  that  act  as  nuclear  receptor  modulators[22].
We  obtained  1287  ER  binding  active  and  4861
inactive  molecules  from  the  11  nuclear  receptors  of
NURA.  We  sampled  20% of  ER  data  as  reference
data,  which  were  used  as  a  template  for  similarity
search and fine-tuning. The other 80% ER  data were
merged  with  two  million  small  molecules  from  the
ZINC  database  for  screening.  All  weak  active  ER
binders were eliminated for simplicity.

αWe adjusted FragAdd on ER  reference data for the
purpose  of  generating  molecular  representations.  We
set  the  batch  size  to  32,  which  is  suitable  for  a  small
dataset,  and  fine-tuned  the  pretrained  model  for  30
epochs.  To  make  the  fine-tuning  process  easier,  we
excluded  weak  active  data  and  only  took  into  account
absolute  active  or  inactive  data.  During  training,  a
linear  layer  was  used  to  classify  binding  activity,  and
meaning pooling created molecular  representations for
similarity search.

We employed the Python library FAISS to carry out
a  molecular  similarity  search,  utilizing  embeddings
from  the  GIN  model  and  the  Tanimoto  coefficient  to
search  for  fingerprints.  FAISS  is  a  Python  library  for
similarity  searching  and  clustering  of  large-scale
vectors[23].  The  distance  between  molecular
representations  was  calculated  with  the  minimum
Euclidean  (L2)  distance  (the  maximum  inner  product
search could also be used). In this study, we chose the
RDKit  fingerprint  and  set  the  fingerprint  size  to  300,
the  same  as  the  pretrained  embedding.  Additionally,
the k-nearest  fingerprint  was  defined  by  the  Tanimoto
coefficient, which is the ratio of the intersection of two
vectors to the union of the two vectors.

α

We  used  AutoDock  Vina  (version  1.2.3),  a  widely
used docking software for protein-ligand interaction[24],
to  investigate  the  interaction  between  unknown
screening  retrievals  and  ER  protein.  To  begin  our
analysis,  we  first  created  three-dimensional  molecular
structures  with  Open  Babel[25].  We  then  carefully
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α

determined the  center  of  the  grid  box,  using the  mean
value  of  atoms  coordinates  within  the  binding  pocket
of  ER .  This  approach  helped  us  to  accurately  define
our  docking  search  space,  which  was  set  to  a
dimension  of  30  angstroms.  Apart  from these  specific
settings, we adhered to the default parameters provided
by AutoDock Vina. Finally, we visualized the docking
pose with Pymol and Discovery Studio[26, 27].

3　Result

3.1　Molecular property prediction benchmark

We  compared  FragAdd  to  other  molecular  machine
learning  frameworks  by  evaluating  them  on  eight
molecular  property  classification  tasks[21],  including
Beta-secretase  1  Inhibition  (BACE),  Blood-Brain
Barrier Permeability (BBBP), drug toxicity assessment
(ClinTox, Tox21, and ToxCast), HIV inhibition (HIV),
challenging virtual  screening assays  (MUV),  and drug
side  effect  profiling  (SIDER).  To  ensure  a  fair
comparison, we pretrained all the frameworks with the
same  model  and  training  procedure.  We  used  Area
Under  the  Receiver  Operating  Characteristics
(AUROC)  as  a  metric  and  reported  the  mean  and
standard deviation of five fine-tune random seeds. For
the setup of FragAdd, we set the probability of adding
a  fragment  to  the  input  molecule  to  90%.  Once  a
decision  is  made  to  add  a  fragment  to  the  molecule,
two  subsequent  modifications  are  independently
performed on the fragment: each atom in the fragment
has a 15% chance of undergoing mutation, and there is
a  separate  50% probability  of  breaking  a  ring  within
the  fragment.  These  thresholds  were  set  based  on
corresponding  experiments.  Several  possibilities  for
mutation  and  ring  breaking  were  tested.  Excessively
high rates of mutation and ring breaking could result in
chemically  implausible  fragments,  while  excessively
low rates might not generate sufficient diversity.

β

FragAdd achieves the best mean accuracy compared
with  Mask-like  baselines,  as  shown  in Table  1.  From
the distribution of bold best accuracy, each pretraining
method  has  its  areas  of  expertise.  For  example,
Contextpred[12] performs  the  best  in  two  datasets
related  to  toxicity;  MolCLR[13] and  Grover[11] also
excel  in  two  pairs  of  tasks.  Considering  this  accuracy
pattern,  evaluating  the  average  performance  across  all
eight  datasets  is  crucial.  FragAdd achieves the highest
mean  AUROC  accuracy  for  the  eight  tested  datasets,
showing  that  the  proposed  adding  strategy  is
comparable  to  previous  best-performed  baselines.  For
individual tasks, FragAdd surpasses all other baselines
in  two  datasets  that  are  highly  related  to  drug
discovery:  BACE  and  ClinTox.  BACE  is  a  binary
binding classification dataset for inhibitors of human -
secretase 1, and ClinTox includes FDA-approved drugs
and  drugs  that  have  not  passed  clinical  trials  for
toxicity  reasons[29, 30].  We  can  infer  that  FragAdd  has
the  potential  to  contribute  to  downstream  applications
in drug discovery.

3.2　Adding strategy exploration

In contrast to Mask and its variants, which only specify
what  to  delete,  the  augmentation  strategy  of  FragAdd
presents  more  challenges  and  lacks  approaches  to
address them. Mask deletes one feature for each chosen
atom,  while  1-hop  Mask  extends  this  range  to  the
chosen  atom  and  its  1-hop  neighbors[11, 12].  This
augmentation  is  straightforward  and  does  not  require
additional thought. On the other hand, when it comes to
adding strategy, questions such as what form should be
added,  how  to  connect  the  additional  piece  to  the
original  molecule,  and  what  training  objective  to  use
must be answered. These issues may be the reason why
the default augmentation strategy for pretraining masks
or  hides  something.  Nevertheless,  as  discussed,  for
small  molecules,  adding  strategy  could  be  more

 

Table 1    AUROCs on eight molecular property classification datasets.

Method
AUROC accuracy (10−2)

BACE BBBP ClinTox HIV MUV SIDER Tox21 ToxCast Average
Edgepred[28] 79.1 ± 2.2 71.1 ± 1.1 65.6 ± 1.4 76.9 ± 0.7 77.0 ± 1.8 61.8 ± 1.4 74.6 ± 0.7 62.6 ± 0.4 71.1
Infomax[14] 77.6 ± 1.0 70.1 ± 1.0 72.4 ± 1.2 78.4 ± 0.5 80.0 ± 0.9 59.4 ± 0.8 76.8 ± 0.5 63.8 ± 0.3 72.3

Contextpred[12] 81.4 ± 0.6 73.1 ± 0.7 70.1 ± 1.6 78.8 ± 0.2 78.8 ± 0.9 62.6 ± 0.4 77.1 ± 0.2 64.7 ± 0.3 73.3
Mask[12] 79.8 ± 0.8 71.4 ± 0.6 84.0 ± 1.1 78.9 ± 0.5 79.1 ± 1.4 60.2 ± 0.3 76.5 ± 0.3 64.1 ± 0.4 74.3

MolCLR[13] 80.5 ± 0.8 74.2 ± 0.7 79.4 ± 1.5 79.6 ± 0.5 79.1 ± 0.7 61.2 ± 0.7 75.8 ± 0.2 63.8 ± 0.2 74.2
Grover[11] 79.7 ± 0.4 69.6 ± 0.6 84.4 ± 2.0 79.2 ± 0.5 80.4 ± 0.4 62.7 ± 0.2 75.5 ± 0.3 64.4 ± 0.1 74.5
FragAdd 84.8 ± 1.3 72.3 ± 0.9 85.1 ± 2.3 77.8 ± 0.7 78.2 ± 1.2 62.4 ± 0.6 75.9 ± 0.6 63.7 ± 0.3 75.0
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suitable  for  the  requirements  of  molecular  data  and  is
worth exploring.

To determine how to  implement  the  adding strategy
which  described  in  Section  2.1,  we  explored  four
components  that  influence  the  diversity  and  difficulty
of  augmentation  on  small  molecules (Fig.  2a).  At  the
beginning  of  the  FragAdd  augmentation  process,  a
fragment  should  be  sampled  from  the  fragment
database. However, the generated fragment database is
unbalanced  for  fragment  size  (number  of  atoms  in
fragment),  resulting  in  a  decrease  in  diversity  when
sample  from  the  databse  directly  (one-step  sampling).
For example,  fragments with size less than 3 or larger
than  20  have  nearly  no  chance  of  being  selected.
Therefore,  a  better  sampling  method  that  tackles  the
unbalancing problem of fragment size can contribute to

the  diversity  of  corruption.  For  fragment  corruption,
how  the  fragment  can  be  damaged  to  adjust  the
difficulty  to  a  reasonable  level  needs  to  be  explored.
Additionally,  it  is  crucial  to  choose  the  connection
bond  in  fragment  addition  step.  If  most  connection
bonds are obvious wrong, the model will  only need to
break the bond to separate the molecule into two parts,
which makes it too easy for the model to learn valuable
molecular  information.  Finally,  training  objectives
directly  affect  the  difficulty  of  the  pretraining  tasks
locally or globally.

Based on the benchmark, we found the best solutions
for  the  four  chosen  components,  shown  in Fig.  2b.
Compared  with  one-step  sampling,  first  choosing
fragment  size  substantially  improves  the  accuracy,
showing  the  importance  of  maintaining  the  fragment
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83.9 ± 0.8 72.4 ± 0.7 78.3 ± 2.4 77.9 ± 0.8 80.0 ± 1.2 62.1 ± 0.6 75.8 ± 0.4 74.363.6 ± 0.5
84.3 ± 0.8 72.1 ± 0.7 79.0 ± 2.4 78.1 ± 0.7 79.0 ± 0.7 61.8 ± 1.0 75.7 ± 0.4 74.163.0 ± 0.2
85.0 ± 0.8 73.0 ± 0.6 79.6 ± 2.4 77.2 ± 0.9 79.1 ± 1.2 62.2 ± 0.6 76.0 ± 0.4 74.563.5 ± 0.3
84.8 ± 1.3 72.3 ± 0.9 85.1 ± 2.3 77.8 ± 0.9 78.2 ± 1.2 62.4 ± 0.6 75.9 ± 0.6 75.063.7 ± 0.3

84.7 ± 1.5 72.8 ± 0.5 78.2 ± 2.1 77.5 ± 0.6 79.8 ± 1.4 62.0 ± 0.4 76.5 ± 0.5 74.463.5 ± 0.3
84.8 ± 1.3 72.3 ± 0.9 85.1 ± 2.3 77.8 ± 0.7 78.2 ± 1.2 62.4 ± 0.6 75.9 ± 0.6 75.063.7 ± 0.3

81.2 ± 1.2 73.8 ± 0.5 78.7 ± 3.2 79.7 ± 0.8 79.6 ± 1.4 60.0 ± 1.3 76.4 ± 0.5 74.163.0 ± 0.5
86.1 ± 0.7 72.0 ± 0.8 81.2 ± 2.3 77.7 ± 0.8 77.9 ± 0.9 61.6 ± 1.1 76.0 ± 0.5 74.462.9 ± 0.4
84.8 ± 1.3 72.3 ± 0.9 85.1 ± 2.3 77.8 ± 0.7 78.2 ± 1.2 62.4 ± 0.6 75.9 ± 0.6 75.063.7 ± 0.3
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Fig. 2    Exploration of  FragAdd design options.  (a)  Design options  of  each component.  The process  consists  of  four  sections.
The first section uses a sampling technique to randomly choose a fragment from the fragment database. In the next section, the
chosen  fragment  is  deliberately  altered  to  make  it  chemically  invalid.  The  third  section  involves  adding  a  chemical  bond  to
connect the fragment with the input molecule. Finally, training objectives are set up to detect the corrupted fragment. The local
objective  predicts  the  atoms  that  are  part  of  the  corrupted  fragment,  while  the  global  objective  determines  the  number  of
atoms  added  to  the  input  molecule.  (b)  AUROC  of  each  design  option.  The  final  choice  for  each  component  of  FragAdd  is
determined based on the results obtained.
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size  distribution  normalized.  For  fragment  corruption,
atom  substitution  and  ring  scaffold  hoping  contribute
independently  to  the  invalid  chemical  information.
Additionally,  the  carbon-carbon (C-C)  bond proved to
be  a  more  effective  choice  for  connecting  fragments
than  any  random  bond.  This  superiority  can  be
attributed  to  the  high  prevalence  of  C-C  bonds  in  our
pretraining  dataset,  where  they  constitute
approximately  59% of  all  bonds  in  small  molecules.
Furthermore,  carbon  atoms  in  these  molecules  are
typically connected to more than 1.05 hydrogen atoms
on  average,  a  higher  connectivity  compared  to  other
atoms  (e.g., “O”:  0.06, “N”:  0.32).  This  statistical
prevalence  of  C-C  bonds  and  the  connectivity  pattern
of  carbon  atoms make  the  C-C bond attachment  more
chemically  reasonable  and  effective  for  maintaining
molecular  integritye.  Results  also  show  that  local  and
global  training  objectives  are  essential  to  pretrain
performance, as they learn rich local information while
producing a high-quality graph representation.

3.3　Visualization of molecular representation

We  assessed  whether  molecular  representations  carry
meaningful  chemical  information  by  visualizing
embeddings from four structurally related scaffolds. To
do  this,  we  used  t-SNE  to  plot  the  embeddings,
expecting  that  molecules  belonging  to  different
scaffolds  would  be  clustered[31].  Instead  of  selecting
the most popular scaffolds in the dataset, we chose four
structurally  related  scaffolds,  as  shown  in Fig.  3a
(popularity was determined by the number of times the
scaffold appeared in the cross-pretraining dataset). The

four chosen scaffolds only differ in the presence of one
or two fragments, so this separation task requires more
powerful extraction capabilities.

As opposed to Grover, FragAdd generates molecular
representations  that  contain  information  capturing  the
slight  difference  between  the  scaffolds,  as  shown  in
Fig.  3.  Grover  fails  to  discriminate  molecules  by their
scaffolds, and FragAdd separates four groups of points
into  clusters.  The  comparison  shows  that  FragAdd
learns  the  structure  details  about  the  existence  of
fragments in molecules. We also noticed that FragAdd
generates  subgroups  under  the  same  color,  especially
for  scaffolds  colored  blue  and  red,  which  have
subgroups  far  away  in  the  t-SNE  space.  We  further
found  that  the  subgroups  significantly  differ  in  side
chains,  showing  that  FragAdd  can  learn  structural
information deeper than the algorithm used to calculate
the scaffold.

3.4　Application in virtual screening

We  replaced  the  fingerprint  method  used  in  virtual
screening  with  FragAdd  and  investigated  whether  it
could help to retrieve more desired molecules from the
screening  database.  Virtual  screening  is  a  common
technique  for  the  in  silico  development  of  new
medicines[32–34], which searches for molecules with the
highest  probability  of  a  particular  property  or  activity
in  molecule  libraries.  To  generate  molecular
representations  with  abundant  chemical  information,
pretraining  methods  have  been  employed[35].  This
approach  is  advantageous  over  the  traditional
fingerprint  method,  as  it  does  not  require  the  use  of
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Fig. 3    Visualization (with t-SNE) of molecule representations pretrained by Grover and FragAdd. In this study, a total of four
molecule  scaffolds  with  similar  characteristics  were  chosen  and  displayed  on  the  left  side.  The  main  goal  was  to  accurately
segregate  the  molecules  belonging  to  different  scaffolds  into  distinct  clusters.  In  the  t-SNE  space,  Grover  merged  the  four
molecule categories, whereas FragAdd effectively differentiated the four scaffolds, forming clusters and even subgroups. The
right panel demonstrates that even within the same scaffold, the subgroups exhibit noticeable variations in their side chains.
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artificial  rules  to  extract  chemical  information.
Nevertheless,  the  application  of  pretraining  in  virtual
screening has not been extensively studied.

α α

α

α

α

We created a scenario to find molecules that bind to
the estrogen receptor  (ER ) from the top-k output of
a  molecular  similarity  search.  ER  is  a  crucial
therapeutic  target,  especially  considering  that
approximately  70% of  breast  cancer  patients  exhibit
ER  positive  status[36, 37].  Given  this  prevalence  and
the  critical  role  of  ER  in  the  disease’s  progression,
our study focuses on this receptor to better understand
its  interactions  and  potential  avenues  for  therapeutic
intervention.

αThe dataset of ER , comprising 6148 molecules, was
split  into  reference  and  search  subsets  in  a  1:4  ratio,
and  the  search  subset  was  combined  with  two  million
molecules  to  form  the  final  search  dataset.  The

k

k
α

reference  subset  was  employed to  fine-tune  the  model
and served as the basis for reference molecules during
the  search  process.  We  used  a -nearest  neighbor
search  for  each  reference  molecule,  calculating  the
distance between molecular representations and setting

 to 200. As most molecules in the search data do not
have  ER  binding  activity  labels,  we  used  different
methods  to  analyze  known  and  unknown  retrievals
(known  retrievals  include  molecules  that  have  a
binding label).

αThe  analysis  of  known  ER  ligands  suggests  that
pretraining  and  fine-tuning  are  beneficial  for  virtual
screening, as demonstrated in Fig. 4. FragAdd achieved
the  highest  true  binder  rate  for  known  binders  and
retrieved  more  than  half  of  the  true  binders  in  the  top
200  outputs  for  each  reference  molecule.  The
traditional  fingerprint  method  was  not  successful  in
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Fig. 4    Search engine (virtual screening) for estrogen receptor α binders. (a) True binder rate among the top 200 retrievals. (b)
Number of  known inactive  binders  among the  top 200 retrievals.  Box plots  illustrate  the  qualities  of  search results  by using
various true binders as queries. (c) Visualization (with tmap) of ERα active and inactive binders with pretraining before fine-
tuning. (d) Visualization with pretraining after fine-tuning. The promotion of the segregation of active and inactive binders can
be  observed  through  fine-tuning.  (e)  Visualization  without  pretraining.  The  results  indicate  that  pretraining  improves  the
quality  of  molecule  representations  at  specific  tmap  coordinates,  instead  of  grouping  tmap  coordinates.  Therefore,  by
pretraining and fine-tuning FragAdd, a search engine for estrogen receptor α binders can be achieved.
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α

retrieving  enough  true  binders,  which  highlights  the
advantages  of  deep  learning  compared  to  the
fingerprint  method.  We  further  explored  the  roles  of
pretraining  and  fine-tuning  in  virtual  screening.
Combining  the  true  binder  rate  and  inactive  number
results,  we  found  that  fine-tuning  improves
performance  by  decreasing  the  number  of  inactive
binding  molecules.  To  gain  an  intuitive  understanding
of  the  function  of  pretraining  and  fine-tuning,  we
visualized ER  data using tmap[38].  Comparing before
and  after  fine-tuning  reveals  that  fine-tuning  helps
classify  active  and  inactive  binding  to  reduce  the
inactive number. Without pretraining, many molecules
mix with other ones instead of forming a tree structure,
which  indicates  that  pretraining  assists  in  learning  the
chemical features of each molecule.

α

α

In  contrast  to  known  ER  ligands,  the  lack  of
binding activity labels for unknown retrievals makes it
difficult  to  analyze  them.  To  address  this,  we
conducted a docking study to assess their binding to the
ER  protein  (Fig.  5).  Docking  is  a  computational
technique  used  to  predict  protein-ligand  interactions
and  binding  affinity.  We  used  the  affinity  gap  to
evaluate  the  binding  of  the  unknown  retrievals.
FragAdd  achieved  the  closest  affinity  gap  to  zero,
indicating that it retrieves better unknown binders than
the  traditional  fingerprint  method.  This  confirms  that
both  pretraining  and  fine-tuning  are  essential  for
unknown  retrievals.  To  further  understand  the  affinity

α

gap  result,  we  visualized  the  docking  pose  of  a  high-
affinity  unknown  retrieval,  ZINC1627292.  The
molecule  interacts  with  the  protein  target  through  two
hydrogen bonds on either side of the molecule and a T-
shaped  stacking  between  benzene  rings.  Of  the  three
interactions,  the  hydrogen  bond  with  His524  and  the
Pi-Pi  interaction  with  Phe404  are  conserved  in  the
natural binders for ER . For both known and unknown
retrievals,  FragAdd  increases  the  number  of  potential
binders in the top 200 outputs.

3.5　Combination of FragAdd with other methods

FragAdd  preserves  the  original  molecule  component,
thus allowing for the integration of other augmentation
techniques.  As  an  addition  approach,  FragAdd  only
adds  a  bond  to  one  carbon  atom  in  the  original
molecule;  this  means that  FragAdd is  compatible  with
Mask  and  its  derivatives,  raising  the  question  of
whether FragAdd can be combined with other methods.
If  it  can,  FragAdd  will  offer  a  new  choice  for  other
pretraining frameworks.

FragAdd improves the average performance added to
other  methods,  indicating  that  the  adding  and  deleting
strategies could be used simultaneously. To implement
this idea, we conducted Mask-like augmentation on the
input  molecule  and  then  attached  a  fragment  to  the
masked  molecule  and  added  the  two  loss  items.  We
tested  this  operation  for  Infomax,  Atom  Mask,  and
Bond  Mask.  Bond  Mask  hides  bond  types  for  some
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Fig. 5    Docking evaluation between ERα protein and novel binders discovered by FragAdd. (a) Mean Absolute Error (MAE)
between  binding  affinities  of  the  true  binder  and  the  novel  binder.  Hence,  the  novel  binders  uncovered  by  FragAdd exhibit
comparable  binding  affinities  to  established  binders.  (b)  Case  study  on  ERα protein  PDB:1X7E  and  novel  ligand
ZINC:1627292. Hydrogen bonds were represented by green lines, and T-shaped Pi-Pi stacking was represented by pink lines.
Previous studies have shown that His524 and Phe404 act as inherent binding sites for ERα. The observation of hydrogen bonds
and Pi-Pi interactions at these sites suggests that the newly discovered molecule by FragAdd could potentially bind to ERα.
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bonds  inside  the  molecular  graph.  For  Infomax  and
Atom  Mask,  FragAdd  improves  more  than  1%
accuracy  after  being  combined  with  FragAdd.
Moreover, for Bond Mask, the accuracy stays the same,
showing that it is better to adjust the ratio of loss items
for the best combination performance.

4　Conclusion

We propose a pretraining framework,  FragAdd, which
uses  fragments  from  decomposition  as  an  additional
part  of  an  adding  strategy,  as  an  alternative  to  the
Mask-based strategy in small molecule pretraining. Our
results  show  that  FragAdd  outperforms  previous
baselines  in  molecular  property  prediction  and  virtual
screening  tasks.  It  achieved  the  best  average  accuracy
in  eight  classification  datasets,  and  excelled  in  two
datasets related to drug discovery. This performance is
attributed to the extraction of molecular representations
that  capture  structure  details.  We also  found  that  both
pretraining  and  fine-tuning  are  essential  for  virtual
screening, and that FragAdd can be used in conjunction
with other self-supervised methods.

A  pretrained  model  based  molecule  search  engine
has  the  potential  to  greatly  accelerate  the  drug
discovery  process.  However,  we  have  noticed  that
FragAdd occasionally incorporates excessive structural
variations, resulting in a bias during subsequent virtual
screening.  Additionally,  the  training  of  FragAdd  has
utilized the same model and dataset as previous studies,
which  might  not  be  adequate  for  achieving  optimal
performance. Currently, we are focusing on developing
a dependable  molecule  search engine  that  can cater  to
the specific requirements of biomedical research.
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