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Abstract: Big data has the ability to open up innovative and ground-breaking prospects for the electrical  grid,

which  also  supports  to  obtain  a  variety  of  technological,  social,  and  financial  benefits.  There  is  an

unprecedented amount of heterogeneous big data as a consequence of the growth of power grid technologies,

along with data processing and advanced tools. The main obstacles in turning the heterogeneous large dataset

into useful results are computational burden and information security. The original contribution of this paper is

to develop a new big data framework for detecting various intrusions from the smart grid systems with the use

of  AI  mechanisms.  Here,  an  AdaBelief  Exponential  Feature  Selection  (AEFS)  technique is  used to  efficiently

handle the input huge datasets from the smart grid for boosting security. Then, a Kernel based Extreme Neural

Network  (KENN)  technique  is  used  to  anticipate  security  vulnerabilities  more  effectively.  The  Polar  Bear

Optimization  (PBO)  algorithm is  used  to  efficiently  determine  the  parameters  for  the  estimate  of  radial  basis

function.  Moreover,  several  types  of  smart  grid  network  datasets  are  employed  during  analysis  in  order  to

examine the outcomes and efficiency of the proposed AdaBelief Exponential Feature Selection- Kernel based

Extreme Neural  Network  (AEFS-KENN)  big  data  security  framework.  The  results  reveal  that  the  accuracy  of

proposed AEFS-KENN is increased up to 99.5% with precision and AUC of 99% for all smart grid big datasets

used in this study.

Key words:  smart  grid; big  data  analytics; Machine  Learning  (ML); AdaBelief  Exponential  Feature  Selection

(AEFS); Polar Bear Optimization (PBO); Kernel Extreme Neural Network (KENN)

 
   Sankaramoorthy  Muthubalaji is  with Department  of  Electrical  and  Electronics  Engineering,  CMR  College  of  Engineering  &

Technology, Hyderabad 501401, India. E-mail: muthusa15@gmail.com.
   Naresh  Kumar  Muniyaraj is  with Department  of  Electronics  and  Communication  Engineering,  Vardhaman  College  of  Engineering

Kacharam, Shamshabad 501218, India. E-mail: nareshece84@gmail.com.
   Sarvade Pedda Venkata Subba Rao is with Department of Electronics and Communication Engineering, Sreenidhi Institute of Science

and Technology, Hyderabad 501301, India. E-mail: spvsubbarao@sreenidhi.edu.in.
   Kavitha  Thandapani is  with Department  of  Electronics  and Communication Engineering,  Vel  Tech Rangarajan  Dr.  Sagunthala  R&D

Institute of Science and Technology, Chennai 600062, India. E-mail: kavithaecephd@gmail.com.
   Pasupuleti Rama Mohan is with Department of Electrical and Electronics Engineering, Bharat Institute of Engineering and Technology,

Hyderabad 501510, India. E-mail: rammohan.kadapa@gmail.com.
   Thangam  Somasundaram is  with Department  of  Computer  Science  and  Engineering,  Amrita  School  of  Computing,  Amrita  Vishwa

Vidhyapeetham, Bengaluru 560035, India. E-mail: s_thangam@blr.amrita.edu.
   Yousef Farhaoui is  with T-IDMS, Department of Computer Science,  Faculty of Sciences and Techniques,  Moulay Ismail  University,

Errachidia 52000, Morocco. E-mail: y.farhaoui@fste.umi.ac.ma.
* To whom correspondence should be addressed.
    Manuscript received: 2023-03-22; revised: 2023-07-20; accepted: 2023-08-06 

BIG   DATA   MINING   AND    ANALYTICS
ISSN  2096-0654    08/15   pp399−418
DOI:  10.26599/BDMA.2023.9020022
V o l u m e   7 ,   N u m b e r   2 ,   J u n e     2 0 2 4

 
©  The author(s) 2024. The articles published in this open access journal are distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).



1　Introduction

In  the  past  few  decades,  the  adoption  of  big  data
analytics  in  communication  systems,  transportation
networks,  healthcare,  etc.,  has  increased  rapidly[1–5].
Moreover, the migration of power grid to smart grid is
characterized  by  using  big  datasets  with  customized
tools,  controlling  systems,  and  techniques.  Also,  it  is
widely  believed  that  the  application  of  big  data  to
present  and  future  smart  grids  would  have  immense
potential.  Recent  years  have  seen  significant
advancements  in  the  electrical  power  system[6].
Together  with  the  transmission  and  distribution  of
power, there have been technological advancements in
the  power  generation  sector.  The  adoption  of  various
demand  management  programs  and  strategies  is
another  way  that  the  new  technology  is  anticipated  to
transform  the  end-user  side[7, 8].  In  addition  to  utility
companies,  end  users  and  micro-grids  also  contribute
to the generation of renewable energy sources, such as
solar  and  wind  sources.  Moreover,  the  smart  grids
have  been  gradually  replacing  conventional  power
systems[9, 10].  To  address  the  increasing  demands  and
developing risks in the field of power systems, certain
new  and  technologically  advanced  sensors  called
“smart  grids” will  eventually  replace  the  conventional
electric grids. These grids give real-time data to storage
systems[11–14], which aids in the automatic detection of
grid failures and allows for self-healing. The data given
by  the  sensors  are  quite  large  and  are  generated  at
extremely  brief  periods  of  time.  The  heterogeneity  is
provided  to  smart  grids  by  various  forms  of  data  that
are generated by sensors.

The  addition  of  numerous  smart  meters  and  other
information extraction units is related to this shift. The
cost-effective  smart  grid  incorporates[15, 16] the
behaviors  and  operations  of  all  users,  including
generation  units,  customers,  and  power  station.  This
integration process results in decreased power loss and
high-quality power production, which keeps the power
system  affordable  and  sustainable.  The  system  is
additionally  protected  by  security  measures.  Modern
smart  grids[17–19] today  include  new  controls,
communications,  smart  monitoring,  and  self-healing
products,  technologies,  and  services.  These
organizations  offer  a  variety  of  advantages,  including
simple  connection  and  operating  efficiency  for
generators  of  all  sizes  and  technology[20].  Customers

here  are  aware  of  the  information  about  the  systems
and  play  a  crucial  part  in  enhancing  operation  of  the
system.  Also,  it  is  possible  to  optimize  the  load
demand,  which  can  dramatically  lessen  environmental
pollution  throughout  the  entire  electrical  supply
system.  Since,  the  smart  grid[21, 22] is  a  key
infrastructure,  any  cyber  or  physical  vulnerabilities
might have significant consequences. Traditionally, the
power  system  planners  use  vulnerability  assessment
techniques  to  provide  protection  from  the  effects  of
sudden  disturbances  caused  by  system  faults.  The
majority  of  smart  grid  data  consists  of  customer
personal  data,  proprietary  information,  and  economic
transactions (see Fig. 1).

Hence,  it  is  very  essential  to  secure  the  smart  grid
datasets  with  ensured  confidentiality,  reliability,
authentication, and secrecy. The big data framework is
a  model  that  is  developed  by  integrating  multiple
machine  learning  methods[23–25].  The  model  is  trained
using  the  training  portion  of  the  dataset  and  validated
against  by  the  testing  dataset.  Intrusion  Detection
Systems  (IDSs)[26–28] look  for  features  that  violate  a
system  program’s  or  a  computer  network’s  security
agreement.  IDS  must  consent  to  maintaining  security
precautions.  Threats  that  result  in  defects  in  program
design are found using the firewall for IDS. Moreover,
the  IDS[29, 30] makes  it  possible  for  forensic  suspicion
to  recognize  the  program  administrator’s  defenses
against  cyber  threats.  Systems  for  detecting  intrusions
into networks and systems are available. IDS tools are
specifically designed to find system threats or network
abuse, and notify the appropriate people when they are
found.  An IDS[6] examines  all  incoming  and  outgoing
network  traffic  in  order  to  look  for  any  abnormal
patterns that might point to a network or system attack
by  someone  attempting  to  infiltrate  a  machine.  The
functionality of an IDS [31, 32] on a system or network is
equivalent to that of a fixed intrusion alarm system.

For  intelligent  prediction  and  optimization  of  the
many automated activities already present in the smart
grids, the Machine Learning (ML)/Deep Learning (DL)
is an appropriate computing tool highly used in recent
times.  In  the  conventional  works,  various  big  data
analytics frameworks have been developed to increase
the  security  of  smart  grid  systems [32–34].  However,
most  of  the  approaches  have  difficulties  in  terms  of
computational  burden  in  system  design,  ineffective
predictions, and high time consumption. Therefore, the
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proposed work motivates to develop a novel intelligent
big  data  framework  to  secure  smart  grid  systems,
which has the following contributions:

•  To  effectively  handle  the  input  smart  grid  big
datasets  for  enhancing  security,  an  AdaBelief
Exponential  Feature  Selection  (AEFS)  mechanism  is
implemented.

•  To  predict  the  security  vulnerabilities  with  better
performance  efficacy,  a  Kernel  based  Extreme  Neural
Network (KENN) algorithm is deployed.

•  To  optimally  compute  the  parameter  for  the
estimation  of  radial  basis  function,  the  Polar  Bear
Optimization (PBO) algorithm is utilized.

•  To  analyze  the  results  of  the  proposed  AEFS-
KENN based big data security framework, the different
types  of  smart  grid  network  datasets  are  used  during
analysis.

The remaining sections of this work are divided into
the  following  categories:  Section  2  presents  the  full
literature  assessment  of  several  big  analytics
approaches  utilized  for  smart  grid  security  along  with
benefits and drawbacks. The work flow and algorithms
are  described along with  a  comprehensive explanation
of  the  proposed  AEFS-KENN  technique  in  Section  3.
Moreover,  Section  4  uses  several  datasets  to  validate

and  evaluate  the  security  performance  results.  In
Section  5,  the  paper’s  conclusion  and  findings  are
presented, which has future scope.

2　Related Work

The  cutting-edge  big  data  analytical  methods  for  the
smart  grid’s  sustainability  are  outlined  in  this  review.
In  order  to  achieve  sustainable  goals,  the  first
discussion  is  on  socioeconomic,  analytical,  and
ecological  factors  in relation to the smart  grid and big
data  analytics.  Moreover,  the  different  types  of  data
mining methodologies used for securing the smart grid
systems are also investigated in this part.

Syed  et  al.[34] investigated  a  comprehensive  survey
on various  technologies  and methods  used in  the  field
of smart grid big data systems, they provided an outline
of  the  phases  of  the  big  data  process  as  well  as  the
numerous  big  data  analytics  techniques  that  are
available.  Also,  they  talked  about  possible  smart  grid
applications  that  could  benefit  from  the  unrealized
potential  of  big  data.  Real-time  and  enormous
quantities  of  information  are  generated  by  smart  grids
at  an  extremely  rapid  rate.  For  electricity  grids,
information  must  be  extracted  from  smart  grid  data,
which  requires  a  thorough  understanding  of  the  data
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Fig. 1    Sources big data used in smart grid systems.
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inputs[35].  Consumption,  transmission,  storage,  and
generation data are the several types of data that can be
found  in  smart  grids.  Typically,  sensors,  monitoring
devices,  electrical  devices,  analyzers,  Supervisory
Control And Data Acquisition (SCADA), etc., are used
to  collect  these  data[36].  The  main  scope  of  using  big
data  analytics  in  smart  grid  systems  is  graphically
depicted in Fig 2.

Cui et al.[35] intended to predict the false data attacks
in  smart  grid  systems  by  using  ML  techniques.  The
authors of this study gave a thorough overview of these
advancements.  A  quick  overview  of  the  smart  grid
architecture and its information sources is given at the
beginning  of  the  study.  Also,  the  types  of  false  data
attacks  are  discussed,  followed  by  the  data  security
standards.  The  most  recent  methods  of  ML-based
detection are then condensed into three main detection
instances:  quasi  losses,  condition  estimation,  and
predictive  modeling.  A  significant  threat  is  the
misleading  data  assault.  By  manipulating  sensor
measurements in smart grid, it can attack all the levels
of  smart  grid  systems  while  getting  around  the
conventional protections. The most common false data
attack  uses  fraudulent  packets  to  trick  service
providers, disrupt information flow, or deactivate edge
devices to impair service between physical devices and
networks.  The  attackers  are  motivated  to  undertake
recurrent attacks in order to drain energy or physically
harm  the  end  devices.  A  replay  assault,  in  contrast  to
false data attacks, keeps uploading the covert data into
the end devices throughout the course of a specific time
period. According to the study, it is identified that there
are  significant  drawbacks  to  directly  implementing
current  machine  learning  algorithms  for  electric  data
analytics  in  real  smart  grid  applications.  The  fact  that
there  are  few  public  datasets  and  labelled  samples
makes  it  impossible  to  ensure  the  trained  model’s
accuracy.  Kumar  et  al.[36] implemented  a  new secured

authentication protocol to assure security of smart grid
systems.  Here,  an  Elliptic  Curve  Cryptography  (ECC)
model has been used to preserve the demand response
of smart grid systems. In this work, the different types
of attacks that affect the smart grid networks have been
discussed,  which  include  man-in-the-middle  attack,
impersonation  attack,  replay  attack,  device  attack,  etc.
Karimipour  et  al.[37] deployed  an  unsupervised
classification mechanism to protect smart grid systems
from  cyberattacks.  Here,  the  symbolic  dynamic
filtering  mechanism is  used  to  simplify  the  process  of
attack  detection  with  low  computational  burden.
Moreover,  a  model-free  strategy  is  applied  to  both
hierarchical  and  topological  networks  for  various
assault  situations.  Tarik  and  Farhaoui[38] presented  a
detailed study on various  machine learning techniques
for  assuring  security  in  wireless  communication
systems[39].  The  concept  of  big  data  refers  to  a  set  of
sophisticated  hardware  and  development  tools  that
gather  enormous  volumes  of  data,  safely  store  it  on  a
vast number of cloud servers, process it using intricate
algorithms, and analyze data it in real-time.

Latif  et  al.[40] designed a  light  weight  dense random
neural network methodology to detect cyber-attacks in
the  smart  grid  systems.  The  key  benefits  of  using  this
approach  are  easy  to  understand,  better  generalization
capability,  and  simplified  computations.  The  variables
known  as  hyper  parameters  govern  the  network
structure and regulate the learning process. The authors
conducted  a  comprehensive  test  to  identify  the  ideal
hyper  parameters  to  guarantee  the  performance  of
suggested  deep  learning  algorithm.  Here,  the  learning
rate, speed, number of iterations, and time duration are
some of  the  important  hyper  parameters  considered  in
this  work.  Alkahtani  and  Aldhyani[41] deployed  three
different  deep  learning  mechanisms  such  as,
Convolutional  Neural  Network  (CNN),  Long  Short
Term  Memory  (LSTM),  and  hybrid  convolutional
network for protecting smart grid networks from cyber-
attacks.  Moreover,  the  swarm  intelligence  based
optimization  algorithm  is  deployed  for  estimating  the
subset of features. However, the time taken for training
and  testing  is  very  high,  which  degrades  the  security
performance  of  the  suggested  framework.  Vijayanand
et  al.[42] introduced  a  hierarchical  deep  learning  based
attack  detection  system  for  guaranteeing  the  cyber
security  of  smart  meter  communication  network.  The
purpose of this paper is to spot intrusions in the smart
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Fig. 2    Main scope of big data analytics in smart grid.

    402 Big Data Mining and Analytics, June 2024, 7(2): 399−418

 



grid systems with better prediction accuracy. Here, the
stochastic gradient algorithm is used to tune the hyper
parameters of the deep learning model.

Zhang  et  al.[43] and  Mouatasim  and  Farhaoui[44]

utilized  a  Genetic  Algorithm  (GA)  based  extreme
learning machine for identifying intrusions in the smart
grid  systems.  Power  distribution  networks  and
communication networks make up the two components
of  the  smart  grid.  A  variety  of  gadgets  communicate
with one another over the communication network. The
fact  that  the  communication  network  is  frequently
linked  to  a  machine  creates  a  number  of  new security
concerns.  Grammatikis  et  al.[45] designed  a  multi-
variate  intrusion  detection  framework  for  protecting
smart  grid  networks  with  high  level  of  security.  Here,
the  GAN  model  is  also  utilized  to  minimize  the  error
functions  with  better  efficiency.  This  framework
includes  the  major  modules  of  data  collection  phase,
analysis engine module, and response phase. In which,
the  network  traffic  dataset  is  taken  as  the  input  for
processing  and  analysis,  where  the  network  flow
statistics  are  extracted  for  improving  the  performance
of  detection.  Li  et  al.[46] deployed  a  federated  deep
learning methodology based cyber physical systems for
protecting  heterogeneous  industrial  networks  against
intrusions.  The  authors  created  a  federated  learning
system  that  enables  various  industrial  cyber  physical
systems  to  jointly  create  an  extensive  intrusion
detection model while maintaining privacy. In addition,
a secure communication protocol based on the Paillier
public-key  cryptosystem  was  designed  for  the
federated  learning  framework,  which  can  effectively
maintain  the  confidentiality  and  security  of  model
parameters  during  training.  However,  the  suggested

framework  has  the  limitations  of  increased
computational  burden,  difficult  to  deploy,  and  slow
processing.  Mahdavisharif  et  al.[47] utilized  a  big  data
aware framework for developing an intrusion detection
framework with the use of LSTM. Due to the increased
speed  of  processing,  and  reduced  system  complexity,
the  big  data  analytics  methodology  is  implemented  in
this  work. Table  1 compares  the  previous
methodologies  used  for  securing  smart  grid  systems,
where  the  different  types  of  parameters  and  datasets
used in the conventional works are also investigated.

The reviews [48−51] show that most big data analytics-
based  security  frameworks  might  utilize  AI  (i.e.,  both
ML  and  DL)  methods  to  protect  smart  grid  networks.
Nevertheless,  the  main  issues  with  the  present  works
are  their  inability  to  handle  huge  datasets,  slow
processing  speeds,  low  attack  detection  rates,  and
complex  system  designs.  Thus,  the  proposed  work
motivates  to  develop  a  novel  and  unique  security
framework  based  on  big  data  analytics  for  protecting
smart grid systems.

3　Proposed Methodology

The detailed explanation of the proposed Rapid AEFS-
KENN  based  big  data  security  framework  for  smart
grid  systems  is  presented  in  this  section.  The  original
contribution  of  this  paper  is  to  design  a  unique  and
reliable attack detection framework based on Artificial
Intelligence  (AI)  for  increasing  the  security  level  of
smart  grid  systems.  Presently,  several  cyber-physical
systems  are  developed  in  the  baseline  works  for
improving the security of smart  grid networks.  Due to
their  increased  computational  burden  and  system
complexity, the proposed work motivates to develop a

 

Table 1    Comparative study on previous works.
Reference Method Dataset used Finding

[36] LSTM-auto encoder based
robust security model Gas Pipeline and UNSW-NB 15 accuracy = 97.95%

[37] Cyber SCADA security
model using ML approaches ORNL Electric test bed AUC = 99%

[38] Adversarial machine learning model Authentic power system dataset
time = 25.21s, precision = 94%,

recall = 94%, and accuracy = 94%

[39] Three tiered intrusion detection system Industrial gas pipeline dataset
F-measure = 87.4%, precision = 87.9%,

and recall = 88.4%

[40] Deep multi-modal cyber
security mechanism ICS dataset

precision = 99%, recall = 98%, and
F-measure = 98%

[41] Honey badger world optimization based
deep learning algorithm ICS dataset accuracy = 99%

[42] CNN-GRU based security model WUSTL-IIoT 2018 and
WUSTL-IIoT-20 121 dataset

accuracy = 99%
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simple  and  novel  security  model.  Typically,
understanding  the  data  is  the  initial  stage  in  an
information-driven methodology like AI. Several forms
of  data,  such  as  host  actions  and  network  connection,
can  describe  the  behavior  of  particular  attack.  The
network traffic is a representation of network behavior,
while  server  logs  provide  host  behaviors.  There  are
various attack types, and each has a unique pattern. To
detect  different  attacks  in  accordance  with  the
characteristics  of  the  threat,  it  is  crucial  to  choose
appropriate  data  sources.  AI  is  a  key  component  of
cybersecurity,  and  numerous  studies  have  suggested
the development of network security solutions based on
AI.  The  workflow  model  of  the  proposed  system  is
depicted  in Fig.  3,  which  includes  the  following  key
stages:

• Smart grid big dataset obtainment;
• Preprocessing & normalization;
• AEFS;
• KENN;
• PBO.

In  the  proposed  security  framework,  a  combination
on  intelligence  algorithms,  including  AEFS,  KENN,
and PBO, are used for feature selection, classification,
and  optimal  parameter  computation.  Moreover,  the
overall proposed work is named as rapid AEFS-KENN
based  big  data  security  framework  for  spotting  cyber-
attacks  from  smart  grid  systems.  Preprocessing
involves  the  conversion  of  categorical  features  with
nominal values into numerical values to make sure the
data are compatible with the neural network’s input. In
this  work,  label  encoding  is  used  to  transform
categorical  information  into  numerical  values.  These
columns  are  removed  during  preprocessing  since  the
data,  time,  and  time  stamp  attributes  have  no  bearing
on  it  or  contribution  to  the  result  prediction.  Several
features  in  the  dataset  have  bigger  values  than  others
due  to  the  model’s  bias  towards  large  values,  which
may lower the accuracy of the results. Data are mapped
between 0 and 1 during data normalization to maintain
the  consistency  of  the  data’s  behavior.  After  that,  the
AEFS  mechanism  is  used  to  select  the  best  optimal
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Fig. 3    Work flow of the proposed model.
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features  from  the  smart  grid  big  dataset  based  on  the
Exponential  Moving  Average  (EMA)  function.
Consequently,  the  training  data  are  modeled  with  the
selected  feature  set  for  attack  prediction  and
categorization.  During  this  process,  the  Gaussian
distribution  function  estimation,  kernel  matrix
formation,  computation  of  radial  basis  function,  and
regression process have been performed to improve the
accuracy  of  attack  detection.  In  order  to  optimally
compute the radial basis function, the PBO algorithm is
used in this work. The primary advantages of using the
proposed  security  model  are  increased  attack  rate,
lower  computational  complexity,  and  effective
performance  outcomes.  Yet,  the  amount  of  time
required for training and testing big datasets need to be
reduced,  which  could  be  the  major  limitation  of  this
study.

3.1　AEFS

In this work,  the AEFS algorithm is used to optimally
identify  the  set  of  features  for  classifier  training.
Conventionally,  several  optimization  techniques  are
implemented  in  the  existing  works  for  feature
selection. Among other techniques, the proposed AEFS
provides  enormous  benefits  to  the  security  system.
Moreover,  the  proposed  AdaBelief  is  easily
customizable  from  Adam  without  additional
parameters.  The  three  major  characteristics  of
AdaBelief include:

•  Quick  convergence,  similar  to  adaptive  gradient
algorithms;

• Excellent generalization capability;
• Training resilience.
In  addition,  the  proposed  work  intends  to  obtain  an

increased attack detection accuracy and efficiency with
the  use  of  AEFS.  The  term “AdaBelief” describes  the
process of modifying the training strides in accordance
with  one’s  belief  of  the  gradient  direction.  In  the
conceptual  framework,  the  optimizer  will  adapt  this
adjustment  to  take  the  curvature  of  the  loss  function
into  account  rather  than  performing  a  huge  (low)  step
where  the  gradient  is  big  (small).  In  other  words,  this
strategy takes into account both the consistency of the
gradient direction through time and the modulus size of
the  historical  gradient  of  parameters.  Moreover,  it
updates  the  stochastic  gradient  descent  function  based
on  the  curvature  information,  where  the  parameters
such  as  learning  rate  and  step  size  have  been  used.  In

this  algorithm,  the  parameters  such  as  real  number,
Exponential  Moving  Average  (EMA),  step  parameter,
time stamp, and feature data are taken as the inputs for
dataset  optimization.  Then,  the  selected  subset  of
features  is  produced  as  the  output.  At  first,  the  loss
function is minimized with respect to the dimension of
real numbers as represented in below:
 

f (φ) = R, φ ∈ Rd (1)

dwhere  indicates the dimension of real numbers. Until
reaching  the  maximum  number  of  iterations,  the
gradient  of  convex  feasible  set  is  computed  by  using
the following model:
 

ƥt←∇φ ft (φt −1) (2)

Consequently,  the  EMA  is  updated,  and  its  step
parameter  is  computed  based  on  the  following
equations:
 

ǭt← τ1ǭt−1+ (1−τ1)ƥt (3)
 

st
p = τ2st−1

p + (1−τ2)
(
ƥt −ǭt

)2
+ε (4)

Then, the bias correction is performed with the EMA
of gradient and step, as shown in below:
 

ǭ̂t←
ǭt

1−τt1
(5)

 

ŝt
p←

st
p

1−τt2
(6)

Moreover, the estimated parameters are updated with
the  bias  corrected  values  based  on  the  following
equation:
 

φt←
∏
√

st
p

φt−1−
ϑǭ̂t√
st

p+ε

 (7)

fsBased on this  process,  the optimal set  of  features 
are obtained as the output of this algorithm, which is in
the following form:
 

fs← fd [i, :] , ∀mean( fd [i, :]) > φt (8)

The  obtained  features  can  be  further  used  by  the
classifier  for  proper  training  and  testing  operations  in
order  to  detect  attacks  in  the  smart  grid  systems.  The
list  of  symbols  used  in  this  algorithm  with  its
corresponding  descriptions  are  given  in Table  2.
Algorithm 1 explains the feature selection procedure of
AEFS mechanism.
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3.2　KENN

In this stage, the proposed KENN classifier can use the
optimal  set  of  features  for  identifying  intrusions  from
the smart grid big dataset based on training and testing
modules.  Most  of  the  existing  security  frameworks
used  in  the  smart  grid  systems  are  mainly  using  the
machine  learning  based  classification  algorithms  for
intrusion  detection.  When  compared  to  the  deep
learning  models,  the  machine  learning  techniques  are
simpler  to  implement  with  less  computational  burden.
However,  the  conventional  machine  learning
approaches have the major difficulties of high time for
training  features,  overfitting,  increased  false  positives,
and  low  detection  rate.  Therefore,  the  proposed  big
data  analytics  framework  intends  to  use  the  novel
KENN  algorithm  for  detecting  attacks  from  the  smart
grid  systems.  It  is  a  kind  of  non-iterative  learning
algorithm  that  trains  the  single  hidden-layer  feed-
forward  neural  networks  for  an  accurate  prediction  of
results. Moreover, it analytically calculates the weights
for  the  output  layer  while  selecting  the  input  layer,
weights,  and  hidden  layer  biases  at  random.
Specifically,  it  eliminates  the  overfitting  issue  with
improved  kernel  efficiency.  In  this  technique,  the

Trd Td
u Lad

cldo

training  data ,  unseen  data ,  and  label  data 
are  taken  as  the  inputs  for  processing,  and  the  output
data  is produced as the final result of classification.
At  first,  the  output  class  of  unseen  data  is  predicted
based  on  the  joint  Gaussian  distribution  model  as
represented in the following:
   cldo

ĉldo

 ∼
0,


K (E, E) kT

(
e
(
ĉldo

)
, E

)
k
(
e
(
ĉldo

)
, E

)
k
(
e
(
ĉldo

)
, e

(
ĉldo

))

 (9)

Here,  the  vector  value  of  the j-th  hidden  layer  is
estimated with the training instance as shown in below:
 

e
(
cldo

)
=
[
a
(
w1Trd (1)+b1

)
, a

(
w1Trd (2)+b2

)
, . . . ,

a
(
wnTrd ( j)+bn

)]
(10)

e
(
ĉldo

)
b1, b2, . . . , bn w1, w2, . . . , wn

k
K (E,E) E

E

where  is  the  vector  value  of  output  data,
 is  the  bias  value,  is  the

weight value, and  is the kernel vector. Moreover, the
kernel matrix  with set of rows  and columns

 is formulated with the use of kernel vector by using
the following model:
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)
, e

(
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(11)

 

Table 2    List of symbols and its descriptions.
Symbol Description

ǭ EMA
R Real number
φ Temporary parameter
sp Step parameter
t Time stamp
fd Feature data

f (·) Loss function
d Dimension

maxiter Maximum number of iterations
ƥt Gradient of convex set

τ1 τ2 and Smoothing parameters
ε Constant
φ RParameter in 
ϑ Learning rate
fs Selected features

 

Algorithm 1　AEFS
φ ǭ sp t

fd
Input: Parameter , EMA , step parameter , time stamp ,
feature data 

fsOutput: Selected features 
Procedure:
      ●    Loss function is minimized,

f (φ) = R φ ∈ Rd            , where ;
t <maxiter φt      ●    while  and  not converged

ƥt                  ○    Gradient of convex feasible set  is computed
　　　　　　 using Formula (2);

ǭt ƥt                  ○    Then, EMA  of  is computed by Formula (3);
st

p                  ○    Step parameter  from EMA is estimated based
                         on Eq. (4);

ǭ̂t ŝt
p                  ○    Perform bias correction  and  using Formulas

                         (5) and (6);
φt                  ○    Update parameter  with bias corrected values

                         as represented in Formula (7);
      ●    end while

fs      ●    Selected features ;
      ●    Form of obtained output is shown in Formula (8).
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Here, the kernel vector is expressed in the following
form:
 

k
(
e
(
ĉldo

)
, E

)
=[

k
(
e
(
ĉldo

)
, e

(
ĉldo (1)

))
, . . . , k

(
e
(
ĉldo

)
, e

(
̂cldo (M)

))]
(12)

Moreover,  the  Radial  Basis  Function  (RBF)  of  the
kernel  vector  is  computed  based  on  the  optimal
parameter  generated by using the PBO algorithm. The
RBF is in the following form:
 

k (g, h) = exp
(
−||g−h||2

2δ2

)
(13)

δwhere  is the optimal parameter generated using PBO
algorithm.  Consequently,  the  posterior  distribution  of
the  predicted  output  is  computed  with  the  mean  and
variance as represented in the following models:
 

pr
[
e
(
ĉldo (M)

)
, Lad, cldo

]
= N

(
µ, σ2

)
(14)

 

µ = k
(
e
(
ĉldo

)
, E

) [
K (E, E)+σ2

M Im
]−1

cldo (15)
 

σ2=k
(
e
(
ĉldo

)
, e

(
ĉldo

))
−k

(
e
(
ĉldo

)
, E

) [
K (E, E)+σ2

M Im
]−1×

k
(
e
(
ĉldo

)
, E
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(16)

µ σ2

Im M×M
where  and  are  the  mean  and  variance  of  the
Gaussian  distribution,  respectively,  is  an 
identity matrix, and μ is used as the predictive output of
the  unseen  data.  At  last,  the  final  output  data  are
obtained,  representing  the  predicted  result  as  shown
below:
 

ĉldo = k
(
e
(
ĉldo

)
, E

) [
K (E, E)+σ2

M Im
]−1× cldo (17)

 

e
(
ĉldo

)
=
[
a
(
w1Td

u (1)+ b1
)
, . . . ,a

(
wnTd

u ( j)+ bn
)]
,

∀ j = 1, 2, . . . , M (18)
Based on this  classification operation,  the  intrusions

or  cyber-attacks  in  the  smart  grid  systems  are
accurately  detected  with  low  system  complexity  and
time  consumption.  Algorithm  2  illustrates  the  steps
involved  in  the  KENN  classification  model,  which
provides the overview of attack detection operation.

3.3　PBO

In  the  proposed  security  framework,  the  PBO
algorithm is  mainly  used  to  compute  the  parameter  in
order  to  estimate  the  value  of  RBF  required  for  the
classification.  In  the  literature  works,  several
optimization  algorithms  are  used  to  optimize  the

features  of  classification.  Here,  the  PBO  algorithm  is
used  to  compute  the  optimal  parameter  for  accurate
classification.  The  conventional  meta-heuristics  based
optimization  techniques  have  the  major  difficulties  in
terms of reduced efficiency, more iterations to find the
optimal  solution,  and low convergence.  Therefore,  the
proposed work intends to use the PBO algorithm for a
proper  optimization.  PBO  is  a  meta-heuristic  method
that draws inspiration from how polar bears hunt in the
hostile  arctic  environments  by  using  only  their  vision.
In  the  wild,  polar  bears  pursue  their  prey  using  both
their excellent senses of scent and sight. Thus, a unique
improved PBO variation that improves its functionality
by  giving  it  tracking  capabilities  using  polar  bears’
sense  of  smell  has  been  utilized  in  this  work.  In  the
search  space,  the  PBO  algorithm  has  three  unique
phases  of  search:  local  search  by  encircling  and
trapping  prey,  exploitation  of  the  search  space  by
floating ice oats, and variable population. Each of these
phases  highlights  a  key  element  of  the  polar  bear’s
arctic  hunting  strategy.  The  PBO  algorithm  starts  its
search  by  arbitrarily  altering  each  polar  bear’s  n
coordinates,  and  then  uses  global  and  local  search
tactics  to  propel  itself  towards  the  best  possible
solution  in  the  search  space.  The  bears  encircle  their
prey while hunting locally and use their teeth to attack
it. In this model, the Trifolium equations are effectively

 

Algorithm 2　KENN

Trd Td
u LadInput: Training data , unseen data , label data 

cldoOutput: Output data 
Procedure:

Td
u cldoStep 1: For an unseen data , the output class  is predicted

according to the joint Gaussian distribution as represented in
Formula (9).

( j = 1, 2, . . . ,
M)
　Here, the hidden-layer output vector of the j-th 

 training instance is estimated by Eq. (10).
K (E, E)Step 2: Construct the kernel matrix  with the use of

predicted class data as represented in Eq. (11).

k
(
e
(
ĉldo

)
, E

)
　Here, the kernel vector  used to form the kernel
matrix is estimated by Eq. (12).

k (g, h)Step 3: Compute the kernel of RBF  as defined in Eq. (13).
δ　Here,  parameter is obtained by using the PBO algorithm.

ĉldo

Step 4: Estimate the posterior distribution of the predicted output
 as shown in Eq. (14).

µ σ2　Here, the mean  and variance  of this Gaussian distribution
are estimated by Eqs. (15) and (16).

ĉldoStep 5: Finally, the output data  for the predicted result is
computed by Eqs. (17) and (18).
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pn

δ

used  to  model  the  performance.  Moreover,  two
parameters  known  as  distance  of  vision  and  angle  of
tumbling  are  randomly  selected  to  represent  the
behavior  of  polar  bears.  In  this  model,  the  polar
population  is obtained as the input for optimization,
and the optimal parameters  is produced as the output.
At  first,  the  set  of  populations  of  polar  bears  are
initialized as represented in below:
 

p̄ = (p0, p1, . . . , pz−1) (19)
pz−1where  is the number of polar bears.

The  population’s  behavior  of  gliding  on  polar
icebergs  in  search  of  food  is  represented  by  the
following equation:
  (

p̄t
j

)k
=

(
p̄t−1

j

)k
+ sign(θ)β+γ (20)(

p̄t
j

)k

k β

θ

γ

where  is the movement of k-th polar bear having
 coordinates  in t-th  iteration  towards  the  optimum, 

denotes  the  random  number  within  the  range  of  [0  to
1],  represents  the  distance  between  the  present  and
optimum bear and,  represents the random number in
the range (0, ω), where ω is the weight value. Then, the
distance is computed based on the Euclidean metrics as
shown in below:
 

dist
((

p̄t
j

)k
,
(
p̄t

j

) j
)
=

√√√g−1∑
s=0

[(
p̄t

s
)k,

(
p̄t

s
) j
]2

(21)

∂

Ψ0

(0, π/2)

Moreover,  the  behavior  of  polar  bears  is  transmuted
by  selecting  the  parameters  of  distance  of  vision  in
the  range  of  (0,  0.3),  and  angle  of  tumbling  at
random in the range of . Based on these limits,
the  radius  of  vision  is  estimated  according  to  the
following equation:
 

ř = 4h× cos(Ψ0)× sin(Ψ0) (22)
where h is a random value.

By  using  this  radius,  each  spatial  coordinate’s
movement  in  the  local  search  space  is  calculated  as
follows:
  

pnew
0 = pactual

0 ± ř× cos(Ψ1) ,

pnew
1 = pactual

1 ± [ř× sin(Ψ1)+ ř× cos(Ψ2)] ,

pnew
2 = pactual

2 ± [ř× sin(Ψ1)+ ř× sin(Ψ2)+ ř× cos(Ψ3)] ,
. . .

pnew
g−2 = pactual

g−2 ±
g−2∑
w=1

[
ř× sin(Ψw)+ ř× cos

(
Ψg−1

)]
,

pnew
g−1 = pactual

g−1 ±
g−2∑
w=1

[
ř× sin(Ψw)+ ř× cos

(
Ψg−1

)]
(23)

Ψ1 Ψ2 Ψ3where , ,  and  are  chosen  randomly  in  the
range  of  (0,  π).  Depending  on  the  value  of k,  the
individuals  are  eliminated  whenever  the  population
reaches  greater  than  50%,  whereas  the  reproduced
individual is represented in the following form:
 

δ =

(
p̄t

j

)best −
(
p̄t

j

)k

2
(24)(

p̄t
j

)best (
p̄t

j

)k
where  is  the  best  optimal  solution  is  up  to

current iteration and  is arbitrarily selected. Based
on  this  optimization  algorithm,  the  parameter  used  to
compute  the  RBF  of  classification  is  obtained,  which
helps  to  improve  the  overall  prediction  attack
prediction  accuracy.  Algorithm  3  represents  the  steps
involved  in  the  PBO  based  optimal  parameter
computation.

4　Result and Discussion

To  evaluate  the  performance  of  the  proposed  AEFS-
KENN  model  with  the  benchmark  schemes,
simulations  are  carried  out  in  this  subsection.  Online
network-based  datasets  are  widely  available  for  the
research community to train and test their methods for
 

Algorithm 3　PBO
pnInput: Polar population 

δOutput: Optimal paramaters 

Procedure:

      ●    Initialize polar bears nature population,

p̄ = (p0, p1, . . . , pg−1)              . (
p̄t

j

)k
      ●    Then, the population to grid behavior  is modeled
             by using Eq. (20).

dist
((

p̄t
j

)k
,
(
p̄t

j

) j
)

      ●    Distance among the polar bears  is
             estimated according to the Euclidian metrics as given in
             Eq. (21).

∂ Ψ0
(0, π/2)

      ●    Parameters such as the parameters of distance of vision
               in the range of (0, 0.3) and angle of tumbling  at
             random in the range of  are selected.

ř      ●    Based on these limits, radius of vision  is computed as
             shown in Eq. (22).
      ●    The obtained radius value is utilized to calculate move-
             ment in local search space for each spatial coordinate
             as illustrated in Eq. (23).
      ●    Depending on the value of k, the individuals are eliminat
             ed, whereas the reproduced individual is represented
             as shown in Eq. (24).
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the  detection  of  abnormal  network  behaviors  on
various  platforms.  Moreover,  obtaining  the  suitable
dataset  with  the  correct  data  properties  in  terms  of
usability  format  and  labelling  results  is  not  an  easy
operation.  It  should  contain  current  attack  scenarios,
such as botnet, brute force, DoS, etc. In this study, the
proposed AEFS-KENN security model is validated and
tested  by  using  smart  grid  big  datasets  such  as  power
system  dataset[52−54],  State  Grid  Corporation  of  China
(SGCC)  dataset,  CICIDS  2017,  Industrial  Control
System  (ICS),  and  UNSW-NB  15[55−58]. Here,  several
machine  learning  algorithms  in  the  current  research
works  have  been  used  for  comparison  with  the  above
mentioned  datasets.  This  is  due  to  the  fact  that  these
datasets include a variety of recent attack instances that
satisfy  the  real-world  requirements,  and  also  they  are
open  to  the  public.  The  ICS  cyber-attack  dataset  for
power systems is also utilized because it represents the
different  types  of  assaults  on  platforms  used  in  power
systems.  The  percentage  of  attack  occurrences  is
greater than that of occurrences of normal behavior, in
contrast to the preceding datasets.

Furthermore,  the  test  error,  accuracy,  false  positive
rate, detection rate, loss, f1-score and precision are the
different  indicators  that  are  primarily  used  to  evaluate
the  smart  grid  intrusion  detection  algorithm.  The  term
True  Positive  (TP)  indicates  the  quantity  of  normal
sorts  that  accurately  recognized  themselves  as  normal
types  and  triggered  smart  grid  attack  detection.  Then,
False  positive  (FP)  is  a  term  used  to  describe  the
number  of  false  alarms  that  are  wrongly  identified  as
the  right  kind  of  alarm  and  the  provoked  smart  grid
attack  detection.  The  number  of  abnormal  alerts  that
triggered  the  smart  grid  attack  detection  and  were
accurately  classified  as  abnormal  alarms  is  known  as
true negative (TN). Moreover, the False negative (FN)
refers to the proper kind of numbers that triggered the
smart  grid  attack  detection  but  were  incorrectly
recognized as an abnormal notification. The evaluation
parameters  are  computed  by  using  the  following
equations:
 

ACC =
TP+TN

TP+TN+FP+FN
(25)

 

PRE =
TP

TP+FP
(26)

 

REC =
TP

TP+FN
(27)

 

DR =
TP

TP+FN
(28)

 

F1-score =
2×TP

2×TP+FP+FN
(29)

 

FPR =
FP

TN+FP
(30)

TP TN FP
FN ACC

PRE REC DR
FPR

where  – true  positives,  – true  negatives,  –
false positives,  – false negatives,  – accuracy,

 – precision,  – recall,  – detection  rate,
and  – false positive rate.

Typically,  the  precision  relates  to  how  well  the
measurements  agree  with  one  another,  whereas
accuracy  refers  to  the  proportion  of  all  correctly
classified items. Recall quantifies the proportion of true
positives  that  are  labelled  as  assaults.  FPR  calculates
the  proportion  of  regular  traffic  that  is  marked  as  an
attack  on  regular  network  data.  The  test  accuracy  is
gauged  by  the  F1-score.  The  TPR  and  FPR  trade-off
employing  a  different  probability  threshold  is
summarized by the Area Under the ROC Curve (AUC),
which measures the size of the area under the Receiver
Operating Characteristics (ROC) curve.

The  confusion  matrix  and  evaluation  indices  of  the
proposed  AEFS-KENN  method  for  both  CICIDS  and
UNSW-NB  15  datasets  are  shown  in Figs.  4 and 5,
respectively.  Accurate  detection  performance  is
influenced  by  the  amount  of  labelled  data  used  in  the
training  process.  By  using  the  confusion  matrix,
performance is assessed based on the ability to classify
network  data  into  the  appropriate  attack  patterns.  The
similarity between the true label and the predicted label
can be represented based on a confusion matrix. Based
on  the  predicted  classes,  it  is  stated  that  the  proposed
AEFS-KENN model performs better with reduced false
positives.

Figure  6 depicts  the  convergence  analysis  of  the
proposed  PBO  technique  used  in  the  security
framework.  Based  on  the  improved  convergence  rate,
the  performance  and  optimization  efficiency  of  the
algorithm have been determined. Similarly, the ROC of
the  proposed  AEFS-KENN  model  with  and  without
optimization process is assessed with respect to varying
TPR and FPR as shown in Fig. 7. Overall, the observed
results denote that the proposed framework provides an
accurate prediction outcomes with the inclusion feature
selection  and  RBF  computation  operations. Figure  8
shows the training and testing accuracy of the proposed
AEFS-KENN model with respect to varying number of
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epochs. Similarly, the training and testing loss are also
validated according to the number of epochs as shown
in Fig.  9.  The  observed  results  indicate  that  the
combination  of  proposed  AEFS-KENN  provides  the
better accuracy with low loss by accurately identifying
the type of intrusions.

As  shown  in Fig.  7,  the  ROC  of  proposed  security
model is greatly maximized to 0.995 with optimization
technique.  Consequently,  the  training  accuracy  of  the
proposed  technique  is  0.999  and  testing  accuracy  is
0.997,  since  the  KENN  technique  could  effectively
predicts  the  normal  and  intrusion  data  with  high
training and testing accuracy by using the AEFS based
feature  selection  methodology.  Similarly,  the  training
and testing loss factors of the AEFS-KENN is reduced
up to 0.2% and 0% by properly detecting attacks from
the given data, respectively.

Figure  10 compares  the  FPR  and  precision  of  the
proposed  AEFS-KENN  technique  with  respect  to
training  and  testing  models.  The  TP  rate  and  FP  rate
are  illustrated  graphically  by  the  ROC  curve.  It  is
employed  to  assess  a  classifier’s  effectiveness.  The
distribution of the deceptive class is distinguished from
the  fair  class  using  the  area  under  the  ROC  curve,  or
AUC. Based on the obtained results, it is stated that the
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Fig. 4    Confusion matrix for CICIDS 2017 dataset.
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Fig. 5    Confusion matrix for UNSW-NB 15 dataset.
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Fig. 6    Convergence analysis.

    410 Big Data Mining and Analytics, June 2024, 7(2): 399−418

 



proposed KENN classifier provides an improved AUC
and  precision  up  to  0.99  with  the  inclusion  of  AEFS
based feature selection model.

Figure  11 shows  the  precision,  recall,  and  accuracy
values  of  the  proposed  security  model  with  respect  to
varying number of labeled data.  Moreover,  the overall
comparative  analysis  among  the  traditional  and
proposed  classification  approaches  are  validated  and
contrasted by using the power system dataset as shown
in Fig. 12. When compared to benchmark methods, the

AEFS-KENN  achieves  the  greatest  values  across  the
range  for  all  performance  parameters.  Then,  the
detection  accuracy  of  the  standard  and  proposed
classification  models  for  the  power  system  dataset  is
validated and compared as shown in Fig 13. Similarly,
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Fig. 7    ROC analysis.
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Fig. 8    Training and testing accuracy.
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Fig. 9    Training and testing loss.
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Fig. 10    Precision and FPR analysis.
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Fig. 12    Comparative analysis using power system dataset.
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each performance statistic is detailed in order to better
understand  of  its  significance.  All  of  the  findings

produced using the  proposed classifier  demonstrate  an
upward trend. The analysis of the results reveals that an
increase  in  training  instances  improves  the
performance of classifiers.

In  order  to  demonstrate  the  intrusion  detection
efficacy  of  the  proposed  AEFS-KENN  model,  the
accuracy  of  several  classifiers  are  validated  and
compared  as  shown  in Figs.  14−16.  Based  on  the
improved level of accuracy, the overall performance of
the  security  methodology  has  been  determined.  The
AEFS-KENN  method  achieves  accuracy  for  the
CICIDS-2017  dataset  of  0.999,  while  the  other
algorithms  range  from  0.560  to  0.900.  The  AEFS-
KENN, on the other hand, produces the greatest results
when  using  the  ICS  cyber-attack  datasets,  with  an
accuracy  of  0.999,  compared  to  other  algorithms  that
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Fig. 13    Detection accuracy.
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Fig. 14    Accuracy analysis using UNSW-NB 15 dataset.
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Fig. 15    Accuracy analysis using CICIDS-2017 dataset.
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vary from 0.700 to 0.990.
Figure 17 validates the precision, recall and F1-score

of  several  machine  learning,  deep  learning  and
proposed  classification  models  used  for  the  intrusion
detection.  Similarly, Figs.  18−20 presents  the  overall
comparative  analysis  of  the  existing  and  proposed
models  by  using  UNSW,  CICIDS,  and  ICS  dataset,
respectively.  The  findings  indicate  that  among  other
approaches  utilized  in  this  paper,  the  AEFS-KENN
classification  offers  the  best  accuracy,  precision,  and
recall.  This  might  be  because  existing  approaches  are
not  more  capable  to  handle  the  enormous  amounts  of
data  with  better  accuracy.  But,  the  proposed  AEFS-
KENN  utilizes  an  improved  optimization  integrated
classification  model  for  intrusion  detection,  which
supports to obtain the better outcomes.

Overall,  the  obtained  results  state  that  the  proposed
AEFS-KENN  technique  provides  an  improved  attack

detection performance outcomes for all the big datasets
used  in  this  study.  Here,  the  AEFS  based  feature
selection and PBO based optimal parameter tuning are
the  major  reasons  for  gaining  improved  performance
outcomes,  since  it  supports  the  classifier  to  make  an
accurate decision at the time of intrusion identification
and class categorization.

5　Conclusion

In this paper, the new big data framework is created to
detect intrusions in the smart grid systems with the use
of  AEFS-KENN techniques.  The  primary  contribution
of  this  research  is  the  development  of  an  original  and
trustworthy threat detection framework based on AI for
enhancing  smart  grid  system  security.  Here,  the
categorical  data  conversion  is  performed  at  first  for
converting  numerical  values  based  on  label  encoding.
Since, the data, time, and time stamp attributes have no
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Fig. 16    Accuracy analysis using ICS dataset.
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Fig. 17    Comparative analysis with other recent state of the art approaches.
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influence on it, hence these information are eliminated
during the preprocessing operation. After that, the best
ideal  features  are  selected  from  the  large  smart  grid
dataset with the use of AEFS mechanism incorporated
with  EMA  function.  Consequently,  the  obtained
training data  is  modelled with the selected feature  set,
which  is  used  for  attack  prediction  and  classification.
To  increase  the  precision  of  attack  detection,  this
procedure  included  the  estimation  of  the  Gaussian
distribution  function,  kernel  matrix  construction,
computation of the radial basis function, and regression
process. The PBO technique is applied in this study to
compute  the  radial  basis  function  as  efficiently  as

possible.  In  this  study,  the  proposed  AEFS-KENN
security  model  is  validated  and  tested  by  using  smart
grid big datasets such as power system dataset,  SGCC
dataset,  CICIDS  2017,  ICS,  and  UNSW-NB  15.  The
current research efforts have used a number of machine
learning  techniques  for  comparison  with  the
aforementioned datasets.  This is owing to the fact that
these  datasets  are  public  and  contain  a  wide  range  of
recent  attack  instances  that  meet  the  real-world
requirements. To assess the performance outcomes, the
proposed  AEFS-KENN  is  validated  and  compared
using  a  variety  of  parameters  such  as  accuracy,
precision, recall, f1-score, and loss values. The findings
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Fig. 18    Comparative analysis using UNSW-NB 15.
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Fig. 19    Comparative analysis using CICIDS 2017.
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indicate  that  the  proposed  AEFS-KENN  technique
outperforms  other  approaches  with  the  average
accuracy  of  0.995,  precision  and  recall  of  0.990,  low
loss  value  of  0.002,  and  F1-score  of  0.992.  With  the
inclusion  of  AEFS  technique,  the  proposed  KENN
classifier  could  accurately  detect  the  disease  with
overall 0.990 of efficiency. In future, the current work
can be extended by implementing a new cryptographic
based framework for smart grid security.
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