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Abstract: The  ability  to  make  accurate  energy  predictions  while  considering  all  related  energy  factors  allows

production  plants,  regulatory  bodies,  and  governments  to  meet  energy  demand  and  assess  the  effects  of

energy-saving initiatives.  When energy consumption falls  within  normal  parameters,  it  will  be possible  to  use

the developed model  to  predict  energy  consumption  and develop improvements  and mitigating  measures  for

energy  consumption.  The  objective  of  this  model  is  to  accurately  predict  energy  consumption  without  data

limitations  and  provide  results  that  are  easily  interpretable.  The  proposed  model  is  an  implementation  of  the

stacked Long Short-Term Memory (LSTM) snapshot ensemble combined with the Fast Fourier Transform (FFT)

and  meta-learner.  Hebrail  and  Berard’s  Individual  Household  Electric-Power  Consumption  (IHEPC)  dataset

incorporated with weather data are used to analyse the model’s accuracy with predicting energy consumption.

The model is trained, and the results measured using Root Mean Square Error (RMSE), Mean Absolute Error

(MAE),  Mean  Absolute  Percentage  Error  (MAPE),  and  coefficient  of  determination  ( )  metrics  are  0.020,

0.013,  0.017,  and  0.999,  respectively.  The  stacked  LSTM  snapshot  ensemble  performs  better  than  the

compared  models  based  on  prediction  accuracy  and  minimized  errors.  The  results  of  this  study  show  that

prediction  accuracy  is  high,  and  the  model’s  stability  is  high  as  well.  The  model  shows  that  high  levels  of

accuracy  prove  accurate  predictive  ability,  and  together  with  high  levels  of  stability,  the  model  has  good

interpretability, which is not typically accounted for in models. However, this study shows that it can be inferred.
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1　Introduction

National development projects, population growth, and
urbanization  are  all  driven  by  energy,  making  it  a
highly  sought-after  resource.  Globally,  homes  and
buildings  make  up  a  substantial  proportion  of  the
energy  consumed  when  they  are  in  operation  and

contribute  to  global  warming  and  carbon  emissions.
Energy  performance  in  many  countries  is  important.
But  homes  and  buildings  must  be  designed  first  to
accommodate  the  occupants’ comfort.  Where  lower
energy  consumption  is  preferred,  it  is  a  secondary
aspect.  Therefore,  among  decision-makers  and 
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academic  researchers  in  the  energy  sector,  energy
efficiency  is  a  concerning  topic  that  is  critical  for
achieving  the  low-carbon  economy  target  (green
economy)[1].

Many  governments  appreciate  the  benefits  of
efficiently  using  energy.  Efficient  energy  use  affects
the  capacity  of  a  building  to  acquire  a  green  building
certificate, which is based on the green building rating
systems  intended  to  minimize  greenhouse  effects  and
carbon emissions. In this regard, predicting energy use
is critical for planning, conservation, and management.
Also, with increased demand, the call for better energy
consumption  planning  comprises  improved
consumption  measurement  and  distribution  planning.
The  capacity  to  optimize  and  predict  energy
consumption  can  aid  with  energy  distribution  to
support the increased energy demand[1].

Various  studies  have  been  conducted  to  further
develop  better  energy  utilization  and  execution  in
structures[2–4].  To  create  applications  for  smart
buildings,  buildings  must  use  smart  devices,  and
artificial  intelligence  and  engineering-based  methods
are  typically  used  to  predict  energy  consumption.
Engineering  methods  and  models  use  principles  like
thermodynamic  equations  to  forecast  energy
consumption. For energy performance evaluation, these
models and methods frequently necessitate expertise in
customizing  them  to  meet  specific  requirements  and
programming  the  thermal  parameters.  Engineering
models  and  techniques  require  in-depth  information
about  the  building  envelope,  the  thermal  properties  of
the  windows  and  construction  layers,  and  the
ventilation,  heating,  and air-conditioning systems used
to predict energy consumption accurately.

Future  energy  consumption  models  based  on
historical  data are referred to by Artificial  Intelligence
(AI)  and  Machine-Learning  (ML)  techniques[5].  The
ability  of  models  and  algorithms  to  learn  about  the
relationship between future and historical data is one of
the  benefits  of  using  AI  and  ML  techniques.  The
prediction models that are developed are fed historical
data,  in  contrast  to  engineering  techniques  that  use
comprehensive  building  data.  Additionally,  users  are
not required to have a comprehensive understanding of
the thermodynamic behaviour of a building.

AI  models  have  been  developed  to  predict  energy
performance,  as  suggested  by  some  studies.  For
instance, Song et al.[6] created an evolutionary model to

forecast  smart  building  energy  consumption.  In  2017,
Wang  and  Srinivasan[5] examined  ensemble-based  AI
models  to  predict  building  energy  use.  Other  studies
have used models from Deep Learning (DL) to conduct
research  in  the  creation  of  a  system  for  managing
energy.  Jahani  et  al.[7] incorporated  a  numerical
moment  matching  technique  with  a  genetic  algorithm
to  create  a  tool  for  predicting  residential  building
energy use.

It is essential that national energy efficiency policies
be  developed  and  proposed  by  evaluating  trends  in
electricity  consumption  and  energy  structures[8].  The
foundation  for  minimizing  energy  costs  and
maximizing  energy  performance  is  the  capacity  to
forecast  energy  consumption  beyond  buildings[9].  ML
and  AI  are  already  being  used  in  the  building  and
energy domain[10–14],  where models  use historical  data
to  forecast  energy  consumption  and  generate  new
insights. For example, based on the temperature of the
skin,  machine-learning  models  can  predict  thermal
demand[10].  Using an optimization model and machine
learning to identify energy data patterns, Chou et al.[15]

evaluated time series energy data in 2016.
Artificial  Neural  Networks (ANN),  linear  regression

models, and Support Vector Regression (SVR) models
are  among  the  most  widely  used  machine-learning
models[5]. Ganguly et al.’s research[14] predicted energy
consumption  in  a  historical  art  gallery  using  an  ANN
model.  In  2019,  Seyedzadeh  et  al.[16] analysed
performance  with  predicting  building  cooling  and
heating loads of ML models using SVR, ANN, random
forest,  Gaussian  process,  and  Gradient-Boosted
Regression  Trees  (GBRT).  It  is  resolved  that  GBRT
shows  the  best  presentation  when  utilizing  the  root
mean  square  mistake  values.  The  researchers  also
concluded  that  the  ANN  model  evaluates  complex
datasets  best.  Additionally,  the  ANN  model  computes
significantly  faster  than  the  other  ML  models  in  their
study[16].

ML,  a  subset  of  artificial  intelligence,  allows  the
machine  or  system  to  learn  without  human
intervention.  Several  DL  techniques  are  used  in
prediction,  including  Recurrent  Neural  Networks
(RNN),  Deep  Neural  Networks  (DNN),  and  Deep
Belief  Networks  (DBN).  These  powerful  tools  help
with  acquiring  robust  modelling  and  prediction
performance.  RNN  is  characterized  by  taking  the
output of a previous step and feeding it to the current or
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next  step  as  input.  Its  most  important  feature  is  its
hidden  state  that  retains  information  about  the
sequence.  However,  it  becomes  untrained  when  the
network contains large datasets and layers. Long Short-
Term  Memory  (LSTM)  is  a  DL  technique  based  on
RNN that provides the added advantage of successfully
training to overcome the problems found with RNN[16].

Although  ML  models  can  produce  significant  and
demonstrated  prediction  accuracy  improvements  in
many cases, research has mainly focused on improving
accuracy without dealing with the interpretability of the
results. Currently, expert systems, primarily developed
using  linguistic  fuzzy  logic  systems,  give  users  the
ability to have systems modelling capabilities and good
interpretability[12].  However,  the  systems  and  models
often  depend  on  individual  expertise  and  regularly  do
not  produce  accurate  predictions.  Thus,  to  meet  the
requirements of interpretability and high accuracy, it is
being proposed to  combine  popular  techniques,  expert
models,  and other  methods.  Despite  the  application  of
DL models  in energy and the meeting of  the accuracy
requirement,  there  is  still  a  need  to  improve
performance  in  energy  consumption  and  production
application.

ML is a rich field with many models that can be and
have  been  implemented  in  energy  consumption
prediction,  such  as  ANN,  SVR,  linear  regression
models[5],  and  RNN  models[16],  to  name  just  a  few.
With every prediction model proposed and built,  there
is a problem solved, but each of these machine-learning
models has its own problems. The biggest issue is with
the  training  data.  ANN  is  attributed  to  the  lack  of
energy  training  data,  SVR  is  not  suitable  for  large
datasets,  and  linear  regression  is  prone  to  overfitting
and noise. Overfitting is where a model will work well
with  training  data  but  very  poorly  with  new  data.
Another problem is when a model will work well with
the training data,  but  if  there  is  less  training data  than
new data, the model underperforms. This is a problem
with  SVR.  In  linear  regression,  linearity  is  quite
important,  which  leaves  nonlinear  data  as  a
disadvantage.  All  these  data  issues  greatly  impact  the
accuracy of the prediction model. RNN[16] models also
have  an  issue  with  training  large  datasets  and  layers.
Data issues aside, some models may manage to achieve
accurate  data,  but  the  results  achieved  cannot  be
interpreted.  Modelling  capabilities  and  good
interpretability[12] are  essential  for  any  prediction

model,  and  most  of  these  available  models  focus
primarily on result accuracy and fail to consider result
interpretability.  This  created a need to conceptualize a
model  that  would  solve  the  issue  of  accuracy  in  an
energy  prediction  model  without  dataset  limitations
and produce results that were easily interpretable.

To  solve  this  issue  with  accuracy  and  good
interpretability  while  not  being  data  constrained  in  an
energy  prediction  model,  the  present  study  proposes
applying stacked LSTM snapshot ensemble. LSTM is a
DL technique based on RNN, which can make this one
seems  like  just  another  LSTM  model.  However,  the
proposed  model  would  implement  LSTM  snapshot,
which includes  the  characteristics  of  RNN algorithms,
LSTM  algorithms,  and  the  snapshot  characteristics.
The advantages that the stacked LSTM snapshot would
include  inputs  as  connected  time  series;  solving
problems  with  a  disappearing  and  vanishing  gradient;
and  being  able  to  store  snapshots  of  different  data
slices,  depending on the  length  of  their  sequence.  The
model  could  work  with  data  with  different  sequence
lengths,  as  well  as  train  them,  which  is  a  problem for
most  prediction  models.  Implementation  of  the  Fast
Fourier Transform (FFT) would make this possible and
allow  the  proposed  model  to  work  with  seasonal
pattern  series.  Meta-learning would then be applied to
collected base model snapshots and a final estimate of
the  energy  prediction  determined.  This  is  where
accuracy  is  achieved  because  the  final  estimate  is  a
mean  of  all  the  collected  snapshots  for  a  given  data
input. In addition, we improve the viability of the data
by adding weather data.  The fact  that  they are climate
change  and  unpredictable  weather  events  implies  that
the  weather  component  is  evolving  and  thus  having
new  implications  on  energy  consumption  and
production.  The  proposed  model  ensures  that  every
predicted  consumption  instance  is  checked  for  errors
and  accuracy.  The  model  is  found  to  have  the  best
accuracy  relative  to  the  compared  models  and  can  be
used for accurate energy consumption prediction. With
additional  performance  evaluation,  it  can  be  used  by
energy companies for consumption analysis to improve
their service delivery.

This  paper  discusses  works  related  to  various  DL
models,  including  LSTM  and  ensemble  learning
models in Section 2. The proposed model is described
in-depth  in  Section  3,  and  in  Section  4,  the  data  and
related  visualizations  are  presented.  Section  5  delves
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into  the  developed  model,  data  preparation,  settings,
feature  selection,  and  result  evaluation.  Section  6
discusses the model training and related losses. Section
7  compares  the  stacked  snapshot  LSTM  ensemble  to
other  DL  models,  and  Section  8  concludes  this
discussion of the study.

2　Related Work

One  of  the  main  components  of  AI  is  DL,  which  is
defined  as  a  set  of  layered  knowledge-acquiring
computer algorithms used by computers and machines
to learn without the need for explicit  programming[17].
Additionally,  DL provides  AI  with  layered  algorithms
that  machines  can  use  to  automatically  learn  and
improve actions based on previous experiences.  While
AI is characterized by airing and applying knowledge,
DL is the acquisition of skill and knowledge[17]. When
using  AI,  the  goal  is  to  increase  the  probability  of
success  rather  than  focusing  primarily  on  accuracy.
However,  when  using  DL,  the  goal  is  mainly  to
increase  the  accuracy  of  an  action,  regardless  of
success.  AI  can  be  compared  to  smart  computer
software, while DL can be likened to the processes and
techniques  a  machine  uses  with  data  in  learning.  As
indicated  earlier,  DL  algorithms  are  specifically
designed  to  help  machines  learn.  Typically,  the  DL
process  involves  finding  relevant  data  to  identify
patterns.  After  identifying  a  pattern,  the  machine  can
predict  outcomes  for  new  data  using  historical  data.
There  are  three  ways  machines  learn:  supervised
learning,  reinforcement,  and  unsupervised  learning[17].
Predicting  energy  demand  frequently  makes  use  of
neural  networks  and  DL,  particularly  LSTM  and
ensemble learning models.

Through  the  ANN  models,  researchers  have
concluded  that  building  efficiency  and  rising  energy
demands  are  crucial  to  sustainability[18].  Their
exploration  aims  to  decide  the  general  patterns  while
using ANNs to determine the energy consumption of a
structure. They concluded that while zeroing in on the
feed-forward brain network, they discovered that there
are  a  few  holes,  principally  in  application,  because
ANN is more fit  to time series information, but this is
seen  in  only  14% of  the  cases  they  cover.  They
discovered  that  6% of  the  applications  are  for  general
regression  and  radial  bias  neural  networks.  It  is
determined  from  their  findings  that  energy
management,  optimization  and  conservation
forecasting strategies are not as suitable for day-to-day

operations as the ANN predictive models[18].
Using  30-minute  Short-Term  Load  Forecasting

(STLF)  resolutions,  the  researcher  compare  the
performance  of  several  ANN  models  with  numerous
hidden  layers  and  activation  functions[19].  The  models
use  1–10  hidden  layers  and  different  activation
functions,  which  comprise  the  parametric  rectified
linear  unit,  rectified  linear  unit,  exponential  linear
units,  leaky  rectified  linear  units,  and  scaled
exponential  linear  unit[19].  Using  electrical
consumption data from five specific buildings collected
over  2  years  and  two  performance  metrics—the
Coefficient of Variation of the Root Mean Square Error
(CVRMSE)  and  Mean  Absolute  Percentage  Error
(MAPE)—they  discovered  that  the  model  with  five
hidden  layers  has  an  average  superior  performance
relative  to  other  tested  models  designed  for  STLF[19].
Although  the  researchers  produced  a  standard  model
for  predicting  energy  consumption,  it  is  possible  to
create a more precise prediction model by including the
input  variables,  which  can  show  a  building’s  energy
consumption  characteristics.  Additionally,  the  target’s
forecasting performance can be anticipated to  rise  due
to  hyperparameter  tuning  in  the  Scaled  Exponential
Linear Unit (SELU) prediction models[20].

The  SVR,  LSTM,  and  predictive  model  combining
SVR  and  LSTM  contain  240  samples  with  24-hour
load  profiles[21].  The  goal  is  to  perform  short-term
microgrid  load  forecasting.  Each  hour’s  load  quantity
is chosen as the output variable, and the input variables
are  used  as  an  input  sample.  The  majority  of  the  data
(70%)  in  each network is  used for  training the  model,
while  the  remainder  (30%)  is  used  in  testing.  The
short-term  load  prediction  in  the  microgrid  is  tested
without considering climate data. Instead, it focuses on
the  application  conditions  that  electricity  generators
and  consumers  of  the  microgrid  would  encounter  at
any given time. The researcher’s take on the outcomes
of  the  various  DL  methods  is  presented  in Table  1.
Short-term  load  prediction  in  the  microgrid  is  more
accurate and efficient using the model[21].

The  long  transient  memory  LSTM[22] is  used  to
improve the planning capacity of  utility  companies  by
improving  their  ability  to  predict  energy  load
consumption,  which  can  help  in  deciding  whether  a
new  energy  plant,  transmission  lines,  or  choosing
between  different  fuel  sources  during  production  are
needed.  The  researchers  could  show that  the  model  is
determined  to  be  highly  accurate,  the  MAPE obtained
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is  6.54  within  a  confidence  interval  of  2.25%.  Model
training takes 30 minutes. For a 5-year forecast, annual
offline  training  is  required,  making  the  computational
time a  benefit.  The LSTM–RNN model  is  suitable  for
predicting  future  locational  marginal  electricity
processes[22].

LSTM techniques  are  used  in  an  attempt  to  provide
credible  advice  for  energy  resource  allocation,  energy
saving,  and  improving  power  systems[23].  Over  five
months,  experimental  data  were  collected  at  a  minute

resolution  between  March  2018  and  July  2018.  The
experiment  demonstrates  that  time  as  a  variable
accurately  reflects  the  periodicity.  It  is  found  that
LSTM  shows  better  performance  than  forecast
methods,  such  as  Back  Propagation  Neural  Network
(BPNN),  AutoRegressive  Moving  Average  model
(ARMA),  and  AutoRegressive  Fractional  Integrated
Moving  Average  model  (ARFIMA).  For  long-term
time series predictions, the LSTM’s Root Mean Square
Error  (RMSE)  is  19.7% lower  than  the  BPNN  value,

 

Table 1    Limitations of the related work.
Model Measure Technique employed Limitation Source

ANN model
Forecasting

building energy use
and demand

ANN

• Does not perform well outside the model’s
training range,
• Overfitting,
• Inadequate selection of hyperparameters,
• Internals of the models are not known.

Runge and
Zmeureanu[18]

ANN-based STFL
model

Forecasting
electrical energy
consumption of a

building or building
clusters

ANN and STLF

Different ANN models are constructed, and the
input variables of the data used do not reflect the
characteristics of the target building (missing
characteristics); therefore, the forecast is not the
most accurate.

Moon et al.[19]

SVR-LSTM hybrid
model

Forecasting
consumption load

in microgrid
SVR and LSTF

Microgrid is examined without the presence of
Renewable Energy Sources (RES) in the data,
and it only includes loads for households and
commercial consumption.

Moradzadeh
et al.[21]

LSTM-RNN model
Forecasting

electricity load
demand

LSTM and RNN
There is room for performance improvement by
incorporating weather parameters into the
training data.

Agrawal et al.[22]

LSTM novel model
Predict time series

with periodicity LSTM Missing measurement equipment. Wang et al.[23]

Ensemble model Forecasting big data
time series

Decision tree, gradient-
boosted trees, and

random forest
– Galicia et al.[24]

Deep ensemble
learning

Probabilistic load
forecasting in smart

grids

LASSO-based quantile
combination strategy and

end-to-end ensemble

Difficulty in obtaining a narrow Predicting
Interval (PI), which interferes with the model
accuracy.

Yang et al.[25]

CNN-DNN model Mapping landslide
susceptibility

CNN for feature extraction
and DL neural network for

classification by sorting
pixels and grouping them
into high-susceptibility
and low-susceptibility

groups

The model only uses the conditions at a point to
test for susceptibility to landslides. To achieve
more accuracy, a model is recommended that
uses a conjunction of several conditions over an
area. The researchers leave this as a point for
further research.

Azarafza et al.[26]

RNN algorithm
model and CNN
algorithm model

National-scale
landslide

susceptibility

Two novel DL algorithms,
RNN and CNN

The study lacks some effective data, including
soil depth, soil texture, and distance from water
table. These factors can help enhance the
predictive power of the algorithms.

Ngo et al.[27]

Hybrid model using
GeoDetector and
ML cluster model

Landslide
susceptibility

mapping

GeoDetector and ML
cluster (ANNs, Bayesian

network, logistic
regression, and SVM)

The model selects SVM as the most effective
output ML, which works well with binary data,
but no mention of other presentations of data.

Xie et al.[28]

Spatially explicit
DNN model

Landslide
susceptibility DNN Exclusive for spatial parameters. Achu et al.[29]
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54.85% lower  than  the  ARMA  value,  and  69.59%
lower  than  ARFIMA[23],  and  shows  excellent  energy
forecasting potential[23].

Ensemble learning[24] is  used to determine multistep
forecasting  for  time  series  data.  Three
techniques—gradient-boosted  trees,  decision  trees
algorithm,  and  weighted  least  squares,  compute  the
weight of the ensembles. Through this, it is possible to
produce the dynamic or static ensemble model using a
two-weight updating strategy technique. The prediction
problem  is  then  decomposed  into  prediction
subproblems,  where  each  subproblem value  is  used  in
the forecasting horizon to obtain the ensemble member
predictions.  The  researchers  determined  that  their
approach  is  scalable  because  DL  algorithms  based  on
Apache  Spark,  a  big  data  engine,  can  solve  the
subproblems.  The  data  fed  to  the  ensemble  models  is
10-year electrical data measured at 10-minute intervals.
The  researchers  showed  that  the  static  and  dynamic
ensembles perform better than the individual members.
The dynamic model Mean Relative Error (MRE) value
is  2%,  the highest  accuracy level  obtained.  It  is  also a
promising result for forecasting large time series[24].

The  deep  ensemble  learning  study  on  smart  electric
grids  is  based  on  probabilistic  load  prediction.  It  is
postulated that  accurate  load predictions  are  important
in  decisions  involving  benefits  and  costs  for  electrical
grids[25].  The  Least  Absolute  Shrinkage  and  Selection
Operator  (LASSO)  model  evaluates  energy
consumption  data  from  400  small  and  medium
businesses,  and  800  consumers.  The  individual
residential  data  consumption  features  show  higher
volatility  and  diversity  than  the  small  and  medium
businesses  data,  not  withstanding  the  seasonality  and
regularity  of  the  aggregated  load  profiles.  When
conducting the probabilistic load forecasting on the 800
consumers,  the  data  are  classified  using  one  hour  and
one  day  intervals.  The  DNNs  used  in  the  ensemble
models  are  randomly  chosen,  with  a  total  of  7  DNNs
with  512  hidden  layer  nodes,  and  the  randomized
numbers  between  1  and  4  in  the  hidden  layers.  The
ensemble forecasts are refined using the LASSO-based
quantile combination model.

3　Proposed Model

3.1　Dataset

The  electrical  energy  consumption  prediction  models
are  validated  with  the  help  of  Hebrail  and  Berard’s
IHEPC  dataset  from  the  UCI  Machine  Learning

Repository.  Between  December  2006  and  November
2010, 2 075 259 measurements  from  households  were
included in the dataset. About 1.25% of the rows have
missing  measurement  values[30],  but  aside  from  that,
the  dataset  contains  the  calendar  timestamps.  The  12
attributes  are  date,  time,  global  active  power,  global
reactive  power,  voltage,  global  intensity,  and
sub-metering  1  through  3,  which  are  illustrated  in
Fig.  1[30].  To  select  the  data  to  use  for  the  model
training, different sequence lengths are identified. This
process  cannot  be  handled  randomly  because  random
sampling  would  eliminate  the  possibility  of  catching
the  seasonality  in  the  data.  The  study  therefore  uses
FFT  to  extract  the  right  sequence  lengths  from  any
given  time  series.  Applying  FFT  ensures  that  the
sample  sequence  lengths  capture  the  different
seasonalities, patterns, and other time-dependent effects
in the entire time series.

3.2　Applying  the  proposed  stacked  LSTM
snapshot ensemble

Improving  energy  management  services  necessitates
accurate energy consumption predictions in residential
and  commercial  buildings.  However,  it  is  challenging
to  make  accurate  predictions  about  energy
consumption  due  to  the  unpredictability  of  noisy
data[31].  Complex  variables  cannot  be  correlated  or
evolved  using  conventional  prediction  methods.  The
two-layer  ensemble  is  fed  with  energy  consumption
data from the IHEPC along with weather data, allowing
for  multiple  sequence  lengths  in  the  proposed  model,
which addresses these issues based on the photographs.
After that,  the model is trained, and a base estimate is
made.  The  base  estimate  has  a  lot  of  output,  and
although  the  patterns  are  similar,  the  different  models
learn differently. The meta-learner makes it possible to
select  the  appropriate  sequences  from  weighted
snapshots,  effectively  preventing  random
distribution[32].

The  stacked  ensemble  LSTM  DL  algorithm,  an
advanced RNN that takes the place of the original cell
neurons,  is  the  tool  used  for  regression.  The  RNN
algorithm’s  unique  characteristics  are  passed  down  to
the DL algorithm, allowing the inputs to be considered
connected  time series.  Also,  the  LSTM cells’ intricate
structure  can  solve  problems  with  disappearing  and
vanishing  gradient  limitations[33].  Input,  cell  status,
forget,  and  output  gates  are  the  four  essential
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components  of  the  utilized  LSTM  algorithm.  The
forget, input, and output gates are used to, respectively,
keep, update, and delete the data in the cell status[34].

The  forget  gate  is  responsible  for  deciding  which
data should be deleted or  kept  from the previous step,
due to the presence of the sigmoid layer. The data that
needed  to  be  saved  in  the  new  cell  state  are  then
identified. A sigmoid function is used in the input gate
layer  to  determine  the  update  values.  New  vector
values are produced by the tanh layer and injected into
the state. The states are then merged to produce a new
status update, and the LSTM memory is the cell’s state.
In  this  case,  the  algorithm  performs  better  than
standard  RNN  when  processing  longer  input
sequences.  Past  cell  states  are  coupled  to  the  forget
gate  in  each  time  step  to  determine  the  broadcastable
data. The values are later combined in the input gate to
create  new  cell  memory.  Finally,  the  LSTM  cells
produce  and  distribute  energy.  The  cell  state  passes
beyond the tanh hyperbolic function, filtering the value
of  the  cell  state  between −1  and  1,  as  shown  in
Fig. 2[34, 35].

Where
it•  represents the input gate,
C̃t•  represents the memory gate,
Ct•  represents the cell state,
ft•  represents the forget gate,
ot•  represents the output gate,
ht•  represents the hidden state.

And:
σ•  is the sigmoid function,
Ui, Wi, Uc, Wc, Uo, Wo, and Wo

bi, bc, b f , and b0

•  are  the  weight
matrices,  are the biases,

xt•  is the input data.
LSTM  has  a  hidden  state,  which  is  the  short-term

memory.  It  also  has  a  cell  state  that  is  the  long-term
memory.  In Fig.  2[36],  they  are  shown  as ht−1,
representing  the  hidden  state  of  the  previous
timestamp, ht is  the  current  timestamp  hidden  state,
Ct−1 is the previous cell state, and Ct is the current cell
state. xt is the input signal into the cell. The equation to
solve  it  represents  the  input  gate.  It  receives  previous
predictions  and  new information  as  input.  It  holds  the
information and manipulates it, hence updating it, with
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Fig. 1    IHEPC dataset features[30].
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the  assistance  of  the  sigmoid  function.  Equation ft
represents  the  forget  gate,  which  is  responsible  for
removing information no longer needed by a cell.  The
equation  that  solves  for ot is  the  output  gate  and  is
responsible for establishing the results of the cell. One
LSTM  layer  can  have  multiple  timestamps.  So,  a
timestamp receives data from a previous timestamp and
new information. The new information goes directly to
the  input  gate,  while  the  previous  timestamp
information  passes  through  the  forget  gate  to  select
only  the  needed  information  for  the  cell  passed  to  the
input  gate.  The  input  gate  computes  the  new
information, the selected information from the previous
gate,  and  uses  the  sigmoid  function.  The  results  are
passed  to  the  output  gate,  which  decides  what  to
output.

Because  of  their  design,  LSTMs  can  only  handle
sequences  of  equal  length  for  each  epoch.  This  is
following  the  optimization  process’s  requirements  for
the  matrix  operations.  In  some  data,  however,  a
sequence  of  varying  lengths  cannot  be  avoided,  so
padding is used. This makes it possible to train models
with different sequence lengths. However, the patterns
they  learn  are  related  but  different.  An  FFT  must  be
used  to  select  the  data’s  sequence  lengths  to
accomplish  this[36, 37].  The  FFT  makes  it  possible  to
select  sequences  that  distinguish  between  distinct
periods  in  a  given  time  series.  When  using  FFT  to
select  energy consumption sequences  from time series
data,  it  will  be possible  to  capture the series’ seasonal
patterns  and  other  time-dependent  effects,  making  the
chosen sequences work better[36, 37].

The  proposed  model  will  feed  the  LSTM  through
various data slices, and diversity will  rise.  As a result,
there  will  be n snapshots  stored  for  any  given  LSTM,

s1, s2, . . . , snprovided  that  a  set S =  { }  contains
sequences  of  various  lengths.  The  process  is  repeated
with a different data slice following the first data slice’s
training  of  the  LSTM,  and  the  cycle  continues.
Snapshots of the various sequences are saved for each
data  slice.  The  mean  is  derived  as  the  base  forecast,
and  the  collected  snapshot  estimates  are  combined
from  this  point.  In  this  case,  meta-learning  is  used  to
acquire  the  mean  function.  The  weight  matrices  from
the  first  snapshot  are  used  as  the  second  sequence
length  for  the  current  data  slice  because  there  are  two
LSTMs.  Meta-learning  is  used  to  combine  all  of  the
base model snapshots, resulting in the identification of
the  final  estimate  forecast.  If  20  sequence  lengths  are
used, for instance, 20 snapshots are stored for the first
LSTM  and  used  as  the  second  LSTM’s  sequence
length.  The  base  estimate  is  compiled  from  the
snapshots  obtained  from  the  second  LSTM  and  given
to  the  meta-learner  for  final  estimation[10, 36, 37].
Figure  3 shows  the  stacked  LSTM snapshot  ensemble
used in the present study.

Figure 3 is  a diagram of the proposed model,  which
received  data  from  the  UCI  Machine  Learning
Repository. It is taken as data slices and passed through
the  FFT,  which  selects  the  best  sample  for  the  model,
that is sequences of different lengths, which makes it to
include  data  with  different  time-dependent  effects
including seasonalities and patterns. The varying length
sequences  length  are  then  recorded  as  the  input  data
ready to pass through the LSTM layers.  The output of
the first  layer  is  used as the input  of  the second layer.
The  output  of  the  second layer  is  then  passed  through
the  LSTM  snapshots.  The  number  of  different  length
sequences  that  are  input  determines  the  number  of
snapshots  taken.  So,  if  the  input  data  has  10  varying
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Fig. 2    LSTM structure[36].
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sequence lengths, there will  be 10 snapshots passed to
the  base  estimate.  The  base  estimate  stores  the
snapshots  gotten  and  passes  them  to  the  meta-learner,
which  combines  the  snapshots  to  get  a  final  forecast
estimate for the model.

4　Data Visualization and Analysis

4.1　Data sampling and resampling

The  data  contain  variables  sampled  relative  to  time,
month, and date. Resampling is also conducted because
it  shows  much  interaction  of  the  data  since  the
periodicity of the systems is changed. Since processing
the  data  is  expensive,  and  even  more  so  with  larger
datasets,  resampling  is  allowed  for  better  decision-
making in a suitable time frame. Figures 4–8 show the
data resampled every 30 minutes, hour, day, week, and
month,  all  of  which  are  selected  to  obtain  the  best
insights.

During resampling, the month, date, and time metrics
are  important  because  they  show  great  interaction,  as
desired. Figures  4–8 show  resampling  based  on  30
minutes,  1-hour,  daily,  weekly,  and  monthly
resolutions.  Sampling  is  important  for  obtaining
effective features used in the algorithm’s performance.
Based on Figs. 4–8, sampling the data based on hourly
resolutions  gives  a  balanced  output  of  the  predictions,
which allows the data to be transformed into a dataset
with 34 598 observations,  from  which  seasonality
could be derived.

4.2　Seasonality

Seasonality  refers  to  the  periodic  trends  in  data.
Seasonality suggests predictable patterns that  repeat  at
known  frequencies  within  a  specified  period,  such  as
hourly,  weekly,  or  monthly.  From  the  energy
consumption  data,  the  variables  evaluated  are  global
active  power,  global  reactive  power,  and  global
intensity  power.  It  is  observed  that  the  global  active
power  (Fig.  9)  and  global  intensity  power  (Fig.  10)
show similar highs in December and January, and then
show low consumption in August.  The global  reactive
power (Fig. 11) shows an opposite trend from the other
two  variables.  Low  consumption  is  detected  in  the
December  and  January  periods,  while  highs  are
detected in August.

The  trends  can  be  explained  by  increased
consumption  in  the  winter  months  and  reduced
consumption in the hotter months of the year. From the
trends  observed,  it  can  be  deduced  that  energy
consumption  is  affected  by  weather  conditions.
Typically,  the demand for  energy and its  consumption
is  higher  during  winter  than  it  is  in  summer,  and  the
peak  demand  during  summer  is  lower  than  the  peak
demand  during  winter.  Similarly,  low  demand  during
the  summer  can  be  compared  to  low  demand  during
winter.  Electricity  demand  and  consumption  tend  to
vary daily based on human activity.

Energy consumption  is  typically  lower  at  night,  due
to  reduced  domestic  consumption.  It  is  reasonable  to
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Fig. 3    Stacked LSTM snapshot ensemble.
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state  that  there are demands in energy consumption in
the  morning  hours  when  people  wake  up  and  start
using  electrical  appliances,  such  as  showers,  toasters,
coffee  makers,  and  kettles.  However,  the  surge  in
energy  consumption  increases  faster  over  shorter
durations  during  winter.  The  increase  in  energy
consumption increases and starts stabilizing at a certain

time of the day as people leave their homes. It is during
these  periods  that  peaks  are  noted in  the  sub-metering
data.  During  winter,  increased  demand  is  denoted
starting at 15:00.

This  trend  can  be  attributed  to  children  returning
from school and adults returning from work. As people
return  home,  electrical  appliances,  such as  televisions,
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dishwashers,  microwaves,  and  air  conditioners,  are
turned  on  as  people  warm  and  light  their  houses  and
prepare dinner. Consumption falls and drops as people
start  going to bed. During summer, the surge is not as
evident as in winter because when people return home,
it  is  still  light  outside,  and  their  houses  are  warmer.
There  is  an  increased  use  of  refrigerators  and  colder

beverages  when  the  weather  is  warmer,  but  energy
consumption  in  the  evenings  is  lower  in  the  summer.
There are notable peaks in Sub-meterings 2 and 3, such
as  the  air  conditioners,  refrigerators,  and washing
machines,  are  used  more  often,  increasing
consumption.
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Fig. 5    Data resampling per hour.
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4.3　Rolling average

The  rolling  average  is  used  to  determine  a  trend’s
direction.  It  adds  up  the  data  points  of  the  energy
consumption  over  the  defined  period  and  divides  the
total  by  the  data  points  provided  to  determine  the
average. From the rolling curves obtained, it is possible
to  observe  trends  in  the  data  where  the  global  active

power  and  global  intensity  show  highs  in  the  months
starting  in  March  2008  that  peak  in  July  2008,  after
which  there  is  a  decreasing  trend.  This  trend  can  be
interpreted  as  increased  energy  consumption  in  the
months  leading  up  to  July  2008,  and  there  is  reduced
consumption  after  July  2008,  as  observed  in  the  data.
The  global  reactive  rolling  mean  shown  in Fig.  12
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Fig. 6    Resampling per day.

    258 Big Data Mining and Analytics, June 2024, 7(2): 247−270

 



indicates that the trend is opposite to what is observed
and shown in Figs. 13 and 14.

4.4　Autocorrection

It  should  be  noted  that  after  two  lags  seen  in
Figs. 15−17, the lines get inside the confidence interval
(light  blue  area).  The  lag  is  caused  by  the  12–13

months used in defining a season in the data. Once the
algorithm  detects  the  extended  season,  there  is  an
autocorrection in the lag, where the lines fall within the
confidence  level.  The  benefit  of  having  the  extended
12–13 months and resultant lags is to show the ability
of  the  algorithm  to  adapt  to  unconventional  data  and
still produce accurate results.
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Fig. 7    Data resampling per week.
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5　Experimental Evaluation

5.1　LSTM settings

The stacked LSTM snapshot ensemble is implemented
using  Python,  and  the  front  and  back  ends  are
developed  using  Keras  and  TensorFlow,  respectively.
As a high-level DL API, Keras is used to develop and

train DL models with TensorFlow as the backend. The
IHEPC  data  are  cleaned,  and  noisy  data  are  removed
and  integrated  into  the  model  before  training,  testing,
and validation.

During  training  and  testing,  a  MacBook  Pro  M2
clocked  at  3.2  GHz  with  32  Gb  of  RAM  is  used.
Additionally,  the  M2  chip  has  a  10-core  GPU,  an  8-
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Fig. 8    Data resampling per month.
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core  CPU  with  four  efficiency  and  four  performance
cores,  and  a  16-core  neural  engine.  From  the  dataset,
70% of the data are used in training, and 30% are used
for  testing  and  validation.  The  technique  used  for
model validation is  a  train/test  split.  Validation occurs
between the training and test stages. Based on the new
dataset  obtained,  the  LSTM  settings  used  are
normalization set to between 0 and 1, the batch size is
50,  the  epoch  number  is  100,  and  there  are  4  LSTM
layers used.

5.2　Data preparation

The  dataset  contained 2 075 259 rows  and  7  columns.
The  data  and  date  fields  are  parsed  to  the  date/time
column  and  converted  to  the  index  column  during
importation.  The  outliers  in  the  data,  noisy  data,  are
cleaned  by  filling  the  null  values  and  noise  with  the
mean  values  in  their  respective  fields.  The  data  are
successfully integrated after cleaning. From the dataset
containing 2 075 259 rows, 25 979 rows  contain  null
values,  which  are  filled  with  the  mean  value.  This  is
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Fig. 9    Global active power.
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Fig. 10    Global intensity power.
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Fig. 11    Global reactive power.
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Fig. 12    Rolling mean for global active power over 12 month period.
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Fig. 13    Rolling mean for global intensity over 12 month period.
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Fig. 14    Rolling mean for global reactive power over 12 month period.
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Fig. 15    Autocorrection of global active power.
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Fig. 16    Autocorrelation of global intensity.
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done  while  cleaning  the  data  to  deal  with  biasing  the
results  of  the  DL  model  used,  and  minimizing  the
model’s inaccuracy.

5.3　Data transformation

The Dickey-Fuller test for the presence of a unit root is
used  in  the  analysis  to  test  our  time  series  dataset,  A
p-value is obtained from the test, which is used to make
inferences  about  the  dataset.  The  null  hypothesis
assumes  the  presence  of  a  unit  root;  therefore,  the
p-value should be less than 0.05 for the null hypothesis
to be true. The p-value obtained from the data here is 0,
which implies a unit  root is existed and leads to make
transformation  on  the  data  to  become  stationary  by
taking lag differences of the series.

5.4　Normalization

The goal of normalization is that since the variables in
the  datasets  are  measured  on  different  scales,  that  do
not  all  contribute  equally  to  the  model  learning  and
fitting  and  could  cause  bias.  Therefore,  to  handle  the
probable  problem,  normalization  of  the  data  is
completed  using  the  MinMaxScalar  function.  The
function normalizes the data used in the model between
a minimum value of 0 and a maximum value of 1. This
is  done  so  that  all  feature  values  are  within  the  0–1
range.

5.5　Feature selection

The  Pearson  Correlation  Coefficient  (PCC)  is  used  to
select the most relevant features from the dataset, with
the value ranging from −1 to 1.  The technique applies
covariance  and  two  other  factors  to  determine  the
strength  of  relationship  between  the  features  and  how
strongly  the  features  correlate.  After  applying  PCC,  it
is  found  that  the  voltage  feature  has  a  negative
correlation. Figure  18 shows  correlations  of  the
features in the dataset.

5.6　Evaluation metrics and results

R2

The performance  of  the  models  is  evaluated  using  the
metrics of Mean Absolute Error (MAE), coefficient of
determination ( ), RMSE, and MAPE as follows:
 

 

1.00
0.75
0.50
0.25

C
or

re
la

tio
n

0
−0.25
−0.50
−0.75
−1.00

0 2.5 5.0 7.5
Lag

10.0 12.5 15.0 17.5

 
Fig. 17    Autocorrection of global reactive power.
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Fig. 18    Feature selection-based PCC.
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where  is the sample size,  is the true value,  is the
predicted value,  and  is  the mean of  the sample.  The
prediction  error  standard  deviation,  or  RMSE,  is  a
measure  of  how far  apart  the  data  points  are  from the
regression  line.  MAE  is  the  average  of  the  absolute
differences between the actual and predicted values for
every  instance  in  the  test  dataset,  considering  that  all
individual differences have the same weight. It is used
to  quantify  the  average  magnitude  of  the  prediction
errors  and  ignores  the  direction.  MAPE  is  a  relative
metric that represents the actual data percentage as the
average  value  of  the  relative  error.  MAPE  is  used  to
evaluate  the  model’s  accuracy  through  the  ratio
reflection of the actual value to absolute error values of
all samples. When the index is closest to 0 is when it is
most  accurate.  The  score  is  used  to  assess  the
performance  of  the  linear  regression  model  leading  to
variations  in  the  output  dependent  variables  that  are
predictable  from  the  input  independent  variables.  At
the  same  time,  the  coefficient  of  determination  ( )
shows  how well  the  model  fits  in  the  prediction,  with
values  close  to  1,  indicating  the  best  prediction
performance.  RMSE  is  best  to  use  in  describing  the
degree  of  deviation  between  the  true  value  and  the
predicted  result.  Lower  RMSE values  indicate  a  more
stable model.

R2

R2

R2

After  testing,  the  RMSE,  MAE,  MAPE,  and  are
found  to  be  0.020,  0.013,  0.017,  and  0.999,
respectively.  Lower  values  of  MAE,  RMSE,  and
MAPE  indicate  the  good  accuracy  of  the  developed
model. Also, the closer the coefficient of determination
( )  is  to  1,  the  better  the  model’s  performance.  For
this  model,  the  coefficient  of  determination  ( )  is
0.999. From the values of the evaluation metrics, it can
be  deduced  that  the  model  fits  the  datasets  and

produces highly accurate results.  Accuracy contributes
to the trustworthiness of the model. Trust attests to the
predictivity of the model. The RMSE value, at close to
0, is on the lower side, which means it is a more stable
model.  In  this  case,  we  can  deduce  that  the  model  is
highly  stable.  The  predictivity  and  stability  of  the
model will contribute immensely to its interpretability,
which  is  how  people  understand  the  workings  of  the
model.  However,  interpretability  is  only  needed  when
the  model  gives  results  that  are  out  of  the  estimated
result bounds. It references the need to understand why
the results are out of the expected range.

6　Model Training and Loss

The  train/test  validation  model  trains,  validates,  and
tests the splits of the data, with the percentage used for
training,  validating,  and  testing  being  70%,  10%,  and
20%,  respectively.  The  first  step  is  training  the  data
with  the  training  set.  Next  is  usually  the  validation
process,  in which the results  from the training process
are  validated,  and  the  hyperparameters  are  tuned  with
the  validation  set.  The  results  are  assessed  using
RMSE, MAPE, MAE, and R2. The purpose of this is to
achieve  satisfactory  performance  metrics.  Once  this
stage is completed, the process moves on to testing the
data.

Because this is a supervised learning model in which
the  DL  algorithm  looks  at  many  examples  to  find  a
good  model  that  reduces  loss,  model  training  requires
finding the best values for each weight and bias. Losses
are  penalties  for  poor  predictions,  where  loss  is  the
number indicating how bad the data are upon which the
prediction is made by the developed model. Losses also
indicate  insufficient  data  preprocessing  practices.
When the model’s prediction is perfect, the loss is zero,
and the objective of training is to select bias and weight
sets  with  low  average  data  loss.  The  loss  values  are
evaluated using RMSE.

In Fig.  19,  we  can  see  that  the  model  performed
optimally, with a value close to zero. From the training
and  test  graphs  obtained,  convergence  has  occurred.
There is no overfitting or underfitting of the data, based
on these  test  and  train  graphs,  and  the  learning  rate  is
based  on  a  decaying  function. Figure  19 thus  implies
that validation is successful.

If  validation  is  not  effective,  underfitting  or
overfitting  can  be  identified  from  the  loss  graph.
Underfitting  implies  that  the  developed  model  cannot
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learn  from  the  training  dataset.  Underfit  models  are
identified in the training loss learning curve. A typical
underfit  learning  curve  has  noisy  or  flat  values  of
comparatively  high  losses,  indicating  the  model  could
not completely learn the training dataset. An overfitting
curve  describes  a  model  that  learns  too  well  from  the
training dataset and includes the random fluctuations or
statistical  noise  found  in  that  data.  The  issue  with
overfitting is that when the model is specialized to use
training  data,  it  loses  its  capacity  to  generalize  new
data,  which  results  in  an  increased  chance  of
encountering  generalization  errors.  Overfitting  usually
occurs  when  a  model  contains  more  capacity  than  is
needed for the problem, which translates into too much
flexibility.

This  can  also  happen  when  training  goes  on  for  too
long.  Overfitting plots  exhibit  a  continuing loss  as  the
experience  (epoch)  decreases.  A  good  fit  curve,  like
Fig. 19, is the goal of the DL model and can be found
between  the  underfit  and  overfit  models.  The  good  fit

curve  can  be  recognized  by  the  test  and  training  loss
that reduce to the point of stability and with a minimal
gap between the final  loss  values.  The model’s  loss  is
almost  always  lower  on  the  training  data  than  on  the
test data. The implication is that there should be a gap
(generalization  gap)  between the  training  and test  loss
learning  graphs.  As  shown  in Fig.  19,  the  model’s
training  loss  curve  reduces  until  stability  is  obtained.
Since  a  good  fit  is  obtained,  the  model’s  prediction
capacity is observed to be highly accurate, as shown in
Fig.  20,  The  conclusion  that  the  model  is  highly
accurate is  warranted because the actual  and predicted
values  match  along  the  graph  from  the  data  points  in
the crests and troughs. Further, there are no outliers in
the data to suggest that there is an anomaly.

7　Comparative  Analysis  of  Models  Using
the IHEPC Dataset

The  comparison  of  the  stacked  LSTM  ensemble  to
other  DL  models  is  thoroughly  explained  in  this
section.  The  consumption  prediction  is  used  to
determine  whether  the  stacked  LSTM  ensemble
outperforms  other  DL  algorithms  that  use  the  IHEPC
dataset. Figure  20 depicts  the  model  and  dataset’s
performance,  indicating  that  the  obtained  results  are
satisfactory. Various DL models are compared with the
IHEPC dataset to determine performance, as shown in
Table 1. The models developed for the datasets include
linear  regression[38],  ANN[39],  CNN[40],  CNN-
LSTM[38],  CNN  Bidirectional  LSTM  (CNN-
BiLSTM)[41], CNN-LSTM autoencoder[38], CNN Gated
Recurrent  Unit  (CNN-GRU)[42],  CNN  Echo  State

 

0.008
0.007
0.006
0.005
0.004Lo

ss

0.003
0.002
0.001

0
0 20 40

Number of epochs
60 80

Train
Test

100

 
Fig. 19    Model loss.
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Fig. 20    Model’s prediction accuracy.

  Mona Ahamd Alghamdi et al.:  Predicting Energy Consumption Using Stacked LSTM Snapshot Ensemble 265

 



Network  (CNN-ESN)[43],  two-stream  deep  network
STLF  (namely  STLF-Net)[44],  residual  GRU[45],  ESN-
CNN[46],  Region-based  CNN  (R-CNN)  with  Meta-
Learning LSTM (ML-LSTM)[20],  standard LSTM with
LSTM-based  Sequence-to-Sequence  (S2S)
architecture[47],  Multiplicative  LSTM  (M-LSTM)[48],
Deep-Broad  Network  (DB-Net)[49],  explainable
autoencoder[50],  residual  GRU-based  hybrid  model[45],
hybrid  DL  network[51],  multi-headed  attention
model[52],  and  Conventional  LSTM-based  hybrid
architecture  Network  (CL-Net)[53].  Compared  to  all
other  models,  the  stacked  LSTM  ensemble  reveals
lower error rates of 0.020, 0.013, 0.017, and 0.999 for
RMSE,  MAE,  MAPE,  and R2,  respectively.  In  an
examination, based on RMSE, MAE, and MAPE, Kim
and  Cho[38] determined  that  the  linear  regression
model’s  performance  has  an  hourly  resolution  of
0.6570,  0.5022,  and  83.74,  respectively.  Rajabi  and
Estebsari[39] determined  that  the  ANN  model’s
performance  has  RMSE and  MAE values  of  1.15  and
1.08,  respectively.  The  structure  uses  recurrence  plots
to  encode time series  data  into  images,  and the  model
performs  better  than  CNN,  SVM,  and  ANN.  Khan  et
al.’s[40] work found that the LSTM autoencoder hybrid
CNN  model  has  RMSE  and  MAE  values  of  0.67  and
0.47, respectively. The model performs best with daily
predictions  as  opposed  to  hourly  predictions  of
household  electricity  consumption.  Using  the  CNN-
LSTM  DL  algorithm,  Kim  and  Cho[38] developed  a
model to predict residential energy consumption. Their
analysis  reveals  that  the  RMSE,  MAE,  and  MAPE
have  values  of  0.595,  0.3317,  and  32.82,  respectively.
Ullah  et  al.[41] created  a  CNN  multilayer  bidirectional
LSTM network  based  model  for  predicting  residential
energy consumption.  They discovered that  the  RMSE,
MAE,  and  MAPE values  are  0.565,  0.346,  and  29.10,
respectively.

Using the CNN-LSTM autoencoder, Kim and Cho[38]

created a model that could anticipate residential energy
consumption.  According  to  their  research,  the  RMSE
and MAE metrics have model errors of 0.47 and 0.31,
respectively. Sajjad et al.’s[42] study utilizing the hybrid
model  of  CNN  and  GRU  to  forecast  energy
consumption  shows  that  the  error  values  are  0.47
(RMSE) and 0.33 (MAE). Khan et al.[43] wanted to use
DL  algorithms  to  improve  energy  harvesting  and
selected  the  CNN-ESN  model.  Their  analysis  reveals
error values of 0.0472 (RMSE) and 0.0266 (MAE)[43].
In  2022,  Abdel-Basset  et  al.[44] used  the  STLF-Net

model  for  DL  analysis  and  short-term  load  prediction
in residential buildings. The MAPE, RMSE, and MAE
are found to be 36.24, 0.4386, and 0.2674, respectively.
Khan  et  al.[45] forecasted  energy  demand  and  supply
using a residual GRU model. They discovered that the
RMSE and MAE are 0.4186 and 0.2635,  respectively.
The ESN-CNN DL model is utilized by Khan et al. in
2022[46] to  enhance  energy  prediction.  The  study’s
error  values  are  0.2153  (RMSE)  and  0.1137  (MAE).
Alsharekh et al.[20] improved short-term load prediction
using the hybrid model and R-CNN. The RMSE, MAE,
MAPE,  and R2 values  they  discovered  are  0.0325,
0.0144, 1.024, and 0.9841, respectively.

Based  on  its  consumptive  nature,  the  S2S  model  is
studied and evaluated using the standard LSTM and an
LSTM model based on sequence/no sequence. Findings
show  that  LSTM  performs  better  at  hourly  resolution
but  not  at  a  per  minute  resolution[47].  The  RMSE  is
0.625.  Researchers  Kim  and  Cho[38] developed  the
CNN-LSTM  model,  which  uses  a  hybrid  connection
between  the  LSTM  and  CNN  networks.  The  CNN
network  in  the  model  extracts  intricate  features  from
variables  that  impact  consumption.  The  LSTM
algorithm  is  utilized  for  modelling  temporal
information. The RMSE, MAE, and MAPE values are
0.595, 0.3317, and 32.83, respectively. The explainable
autoencoder DL model is used to forecast consumption
for  15,  30,  45,  and  60  minutes  in  another  model  with
sample data. The specialists utilize a t-SNE calculation
to  make  sense  of  and  imagine  the  estimated  results.
The MAE value produced by their model is 0.3953[50].
Khan  et  al.[49] published  works  that  utilize  a  hybrid
connection  of  bidirectional  LSTM and CNN networks
along  with  the  DB-Net  algorithm  to  forecast
consumption.  The  model’s  error  values  are  0.1272
(RMSE) and 0.0916 (MAE). Ullah et al.[48] utilized the
conventional ML and DL sequential models for energy
consumption predictions.  Based on error metrics,  their
investigations  reveal  that  the  M-LSTM  model  has
superior  prediction  ability  over  the  DL  and  ML
algorithms.  The  M-LSTM  model’s  error  values  are
0.3296 (RMSE) and 0.3086 (MAE), based on an hourly
resolution. Haq et al.[51] predicted energy consumption
by  residential  and  commercial  users  using  a  novel
hybrid  DL  model.  The  model  acquires  RMSE  and
MAE  upsides  of  0.324  and  0.311,  respectively.  The
RNN  model  incorporating  multi-headed  attention  is
created  by  Bu  and  Cho[52] to  forecast  energy
consumption  and  selectively  determine  spatiotemporal
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characteristics.  The  MSE  value  is  0.2662,  but  the
model provides no error metrics. Khan et al.[45] created
a  hybrid  model  with  Residual  GRU  (R-GRU)  and
dilated  convolutions.  The  RMSE  and  MAE  error
metric  scores  are  0.4186  and  0.2635,  respectively,
when  this  model  is  used  to  predict  energy  generation
and consumption.  Khan et  al.[53] modelled the CL-Net
architecture using the ConvLSTM hybrid to assess the
model’s  accuracy  in  predicting  energy  consumption.
Their testing of the model results in an RMSE score of
0.122 and an MAE score of 0.088. In this comparison,
most  of  the  models  perform  better  than  this  one.  The
RMSE,  MAE,  MAPE,  and R2 of  the  proposed  model
are  0.020,  0.013,  0.017,  and  0.999,  respectively.  The
developed  model  has  the  lowest  error  scores  of  any
model,  indicating  that  it  accurately  predicts  energy
consumption. The performance comparison of different
prediction models is summarized in Table 2.

8　Conclusion

Using the developed model, it is possible to accurately
predict energy consumption. Compared to other studies

that  lack  dimension  reduction  algorithms[54] to  allow
for  seasonality  observation,  the  stacked  snapshot
LSTM ensemble shows that it is possible to investigate
seasonality  attributed  to  energy  consumption.  Another
advantage of using the model is  that  it  is  easy to train
and  validate.  Furthermore,  it  supports  big  data  and
could  dynamically  support  the  model  weights  used
without many adjustments to the dataset. The model is
designed to be simple and functional, such that it could
provide  a  relatively  inexpensive  method  of  evaluating
big  energy  datasets.  Finally,  the  model  includes  an
algorithm  that  trains  the  LSTM  model  sequentially.
This  allows  the  model  to  learn  different  patterns.  The
advantage of this feature is that the estimates provided
by the final model are very robust and accurate due to
the high levels of generalization. The model’s accuracy
and stability are measured using RMSE, MAE, MAPE,
and R2 as 0.020, 0.013, 0.017, and 0.999, respectively.
0.020  for  the  RMSE  demonstrates  the  model’s  high
level  of  stability,  while  0.017 for  MAPE is  very close
to  0,  signalling  high-level  accuracy  with  the  model.
The R2 results  of  0.999  is  nearly  1,  which  shows  the
model’s  good  performance.  Accuracy,  stability,  and
performance  give  the  model  consistent  results,  but  if
the results are out of the ordinary, the model allows for
humans to understand the causes of those results. This
refers  to  interpretability,  which  permits  a  human  to
explain the cause-and-effect of such anomalous results.

Despite  the  model’s  advantages,  there  are  some
limitations  encountered,  such  that  the  model’s
performance is not tested with real-time performance to
determine  its  robustness.  Therefore,  the  model  should
be  tested  in  the  future  to  determine  its  dynamic
performance in a real-time environment. In addition, in
the  present  study,  the  model’s  accuracy  and  stability
results  are used to infer  interpretability.  Future studies
should  determine  an  independent  way  to  measure  a
model’s interpretability.

Based on these findings, the energy sector could use
such a model, as it provides high-value insights, value-
addition,  and  service  improvements  based  on  its
effective  use  of  big  data  regarding  energy
consumption.  Because energy data reliably and in real
time  reflects  economic  activity  trends  of  populations,
businesses,  and  the  community,  by  virtue  of  these
technological  advantages  and  data  resources,  this  can
be  regarded  as  an  important  data  resource  for  energy
companies  to  develop  data  platforms  with  high-level

 

Table 2    Prediction model comparison.
Model RMSE MAE MAPE R2

Linear regression[38] 0.6570 0.5022 83.740 –
ANN[39] 1.1500 1.0800 – –
CNN[40] 0.6700 0.4700 – –

CNN-LSTM[38] 0.5950 0.3317 32.830 –
CNN-BDLSTM[41] 0.5650 0.3460 29.100 –

CNN-LSTM
autoencoder [38] 0.4700 0.3100 – –

CNN-GRU[42] 0.4700 0.3300 – –
CNN-ESN[43] 0.0472 0.0266 – –
STLF-NET[44] 0.4386 0.2674 36.240 –
ESN-CNN[46] 0.2153 0.1137 – –
R-CNN with

ML-LSTM[20] 0.0325 0.0144 1.024 0.9841

Standard LSTM and
LSTM-based S2S

architecture[47]
0.6250 – – –

M-LSTM[48] 0.3296 0.3086 – –
DB-NET[49] 0.1272 0.0916 – –
Explainable

autoencoder[50] – 0.3953 – –

Residual GRU-based
hybrid model[45] 0.4186 0.2635 – –

Hybrid DL network[51] 0.3240 0.3110 – –
Multi-headed attention

model[52] 0.2662 – – –

CL-Net architecture[53] 0.1220 0.0880 – –
Proposed model 0.0200 0.0130 0.0170 0.9990
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accuracy and performance algorithms that can integrate
data  from  multiple  industries,  facilitating  the
transformation  and  upgrading  of  governments  and
organizations.

For energy companies, the application of the stacked
LSTM  snapshot  ensemble  and  other  DL  models  to
energy  consumption  is  still  in  early  stages  of
development.  The  data  points  have  numerous
compound  values  that  must  be  discovered  and  mined
by internal and external businesses to obtain additional
insights and trends. Energy generation companies need
to  pay  close  attention  to  how  big  data  about  energy
consumption  work  and  how  businesses  and
multinational  corporations  use  them  by  working
closely with these businesses to learn more from them.
Businesses are conducting energy research to speed up
the  sharing  of  energy  data.  Companies  that  produce
energy  need  to  pay  close  attention  to  their  key
dynamics,  intensify  learning,  and  use  big  data  and
learning  applications.  Additionally,  they  should
investigate  cooperative  endeavours  and  share
mechanisms for collective improvement.

Translating  the  findings  from  the  stacked  LSTM
snapshot  ensemble  energy  consumption  prediction
model into the analysis of the energy usage dataset for
reporting  and  determining  faults,  optimization,  and
forecasted maintenance in households and businesses is
the future direction of this study.
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