

Data Temperature Informed Streaming for Optimising
Large-Scale Multi-Tiered Storage

Dominic Davies-Tagg, Ashiq Anjum, Ali Zahir*, Lu Liu,
Muhammad Usman Yaseen, and Nick Antonopoulos

Abstract: Data temperature is a response to the ever-growing amount of data. These data have to be stored,

but they have been observed that only a small portion of the data are accessed more frequently at any one

time. This leads to the concept of hot and cold data. Cold data can be migrated away from high-performance

nodes to free up performance for higher priority data. Existing studies classify hot and cold data primarily on the

basis of data age and usage frequency. We present this as a limitation in the current implementation of data

temperature. This is due to the fact that age automatically assumes that all new data have priority and that

usage is purely reactive. We propose new variables and conditions that influence smarter decision-making on

what are hot or cold data and allow greater user control over data location and their movement. We identify

new metadata variables and user-defined variables to extend the current data temperature value. We further

establish rules and conditions for limiting unnecessary movement of the data, which helps to prevent wasted

input output (I/O) costs. We also propose a hybrid algorithm that combines existing variables and new variables

and conditions into a single data temperature. The proposed system provides higher accuracy, increases

performance, and gives greater user control for optimal positioning of data within multi-tiered storage solutions.

Key words: data temperature; hot and cold data; multi-tiered storage; metadata variable; multi-temperature

system

1　Introduction

According to recent studies, we have created over forty

zetabytes of data[1], collecting more data in the past few
years than that has ever existed before. This volume of
data come in a variety of formats, such as millions of
tweets sent daily or terabytes generated by genomics
sequencing[2]. The problem with storing all these data
gets addressed with cheaper hardware and commodity
storage solutions such as Hadoop, allowing for
significant amounts of storage across a distributed
cluster of nodes. Hadoop, although powerful, is not
known for high-performance analytical tasks or fast
input output (I/O)[3].

Advances in technology have also meant a
significant decrease in the price of memory (random
access memory (RAM)), but also the development of
faster storage hardware such as solid state drive (SSD)
(Flash-Memory) and PCIe NVMe SSDs. All of these
are faster than traditional hard disks with their slow
physical platters. Random access memory and flash

 Dominic Davies-Tagg is with the Department of Computing,

University of Derby, Derby, DE22 1GB, UK. E-mail:
d.tagg@derby.ac.uk.

 Ashiq Anjum, Ali Zahir, and Lu Liu are with the Department of
Informatics, University of Leicester, Leicester, LE1 7RH, UK.
E-mail: a.anjum@leicester.ac.uk; sazb1@leicester.ac.uk; l.liu@
leicester.ac.uk.

 Muhammad Usman Yaseen is with the Department of
Computer Science, COMSATS University Islamabad,
Islamabad 45550, Pakistan. E-mail: usman_yaseen@
comsats.edu.pk.

 Nick Antonopoulos is with the Edinburgh Napier University,
Edinburgh, EH11 4BN, UK. E-mail: N.Antonopoulos@
napier.ac.uk.

* To whom correspondence should be addressed.
 Manuscript received: 2023-04-24; revised: 2023-07-29;

accepted: 2023-12-07

BIG DATA MINING AND ANALYTICS
ISSN 2096-0654 07/15 pp371−398
DOI: 10.26599/BDMA.2023.9020039
V o l u m e 7 , N u m b e r 2 , J u n e 2 0 2 4

© The author(s) 2024. The articles published in this open access journal are distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

memory technologies have no moving parts, and this in
part gives them their much higher I/O speed[4].

The above are viable storage mediums, but the cost
compared to commodity storage is exorbitant, so only
the most critical and high priority data get used by
these solutions. All other data would need offloading to
cheaper storage, such as hard disk drive (HDDs) or
tapes. Considering the benefits of both the storage
across distributed commodity nodes and the expensive
high-performance memory storage, it makes sense to
combine both into a single storage solution. A solution
with various levels of performance and cost, combined
into a convenient single solution[5].

Yet, tiered storage solutions are not a novel idea and
have existed for many years[6]. What is innovative is
the move towards automation of the data movement
and the management of the various tiers of
performance by making the most out of the data by
matching it to its most ideal location within the tiered
storage solution.

In recent literature, temperature has been used as a
synonym for data priority. It describes current and
mission-critical data as hot and less relevant data as
cold. This naming convention can also be applied to
the storage mediums that contain data. This
phenomenon is depicted in Fig. 1, where a small hot
tier of storage is displayed at the top. The size of the
hot tier is smaller due to the cost of high-performance
storage resources. Working down the tiers of Fig. 1, it
can be seen that the tiers get larger the further down we
proceed. Moving towards cheaper commodity storage
results in more storage at each tier; hence, the frozen

tiers using cheaper storage hardware are larger.
The storage of all data within the high-performance

tiers of storage is unreasonable and not financially
viable. Especially considering that the vast majority of
data stored will be accessed only infrequently, if at all.
Data temperature is primarily used to describe a
dataset’s age or frequency of use. These are beneficial
factors in determining data positioning in an automated
way, but these two factors, used individually or
combined, are not enough to position the data in an
optimal or time-appropriate fashion.

Many implementations using data age treat new data
with the highest priority, and so it gets weighted higher
than older data. The problem with this is that just
because the data are new, it does not mean that it is
required or will get used at all. Age also presents issues
when combining with other variables; as data get older,
the weighting to move it to colder storage increases.
This increase in weighting towards colder storage
could conflict with data with a high frequency of use,
causing it to rank lower than usage frequency would
otherwise determine.

Frequency of usage puts the most popular data in the
higher performing resources. The primary problem
with this is that the most popular data do not equal the
highest priority data. Day-to-day sales processing
might result in specific datasets ranking higher in
usage, but data used by a project requiring high
performance may only get queried once or twice per
day. The later data have a much greater need for hot
storage, but this is not reflected in the low frequency of
usage.

Existing works have no focused consideration for the
quality of the data (type and size) or of the storage
devices they have moved the data to because they do
not factor in user needs or actual real-world priorities
(e.g., end-of-year calculations). It is a reactive process
only, not a proactive one; a proactive approach would
ensure that the data are where they need to be before
the queries hit. Also, no consideration has been given
to the actual cost of data movement and recursive
patterns in the flow of data that climbs up the storage
tiers and drops back down. This is a movement that
would incur unnecessary input output (I/O) costs.

The purpose of this research work is to address the
above-mentioned limitations of existing works.
Preliminary research found that there was very little or
no information available about the application of

Hot

Warm

Cold

D
at

a
ag

e

D
at

a
fre

qu
en

cy
 o

f u
sa

ge

Frozen

Fig. 1 Typical multi-tiered data temperature storage
solution.

 372 Big Data Mining and Analytics, June 2024, 7(2): 371−398

alternative variables in data temperature managed
multi-tiered storage solutions. Existing data
temperature solution usage of the variables “age” and
“usage frequency” is effective. However, in certain
scenarios, data placement based on these two variables
alone can present a detriment to performance. Such
scenarios require the addition of other variables to
ensure the continued optimal placement of data.

The proposed data temperature supplementation
method is intended to address the challenges posed by
the ever-increasing volume of data and its effective
management. It is acknowledged that the current
classification of data into hot and cold categories based
solely on data age and usage frequency is reactive and
restrictive. To overcome these limitations and enhance
data positioning, the proposed method introduces new
variables and conditions, allowing for more intelligent
decision-making when identifying hot and cold data.
By incorporating additional metadata and user-defined
variables, the data temperature value is expanded to
encompass a wider range of data attributes. In addition,
the proposed rules and conditions optimize data
movement, thereby reducing unneeded I/O costs during
data transfers between storage tiers. The introduction
of a hybrid algorithm that combines existing and new
variables improves precision, performance, and user
control for optimal data placement within multi-tiered
storage solutions, thereby presenting a proactive and
efficient approach to data management.

The objective of this research work is to develop
additional variables and controls that apply to data
temperature, to more accurately determine the optimal
positioning of the data within multi-tiered storage
solutions, but also to reduce the overall I/O cost of such
data movements. The proposed system identifies and
tests suitable metadata variables and user-defined
variables that can be used to extend data temperature. It
establishes rules and conditions for limiting
unnecessary movement of data, which will prevent
wasted I/O costs. A hybrid algorithm is also proposed
that combines existing variables and new variables and
conditions into a single data temperature.

This work contributes to the field of multi-tiered
storage solutions by proposing an improved approach
to data temperature management. Beyond data age and
usage frequency, it introduces new variables to more
precisely determine optimal data positioning and
prioritize data based on multiple factors. By combining

these variables into a hybrid algorithm, the proposed
system provides greater data placement accuracy and
user control, while reducing unnecessary data
movement and associated I/O costs. The research
addresses the limitations of existing works by
providing a proactive approach to data storage,
ensuring that data are placed appropriately prior to
queries, and taking into account real-world priorities
and user requirements. This research aims to improve
storage efficiency and performance in environments
with multiple storage tiers.

2　Literature Review

This section presents the knowledge and existing work
that are being performed to optimize large-scale and
multi-tiered storage systems. Recently, researchers
have carried out studies to manage clusters consisting
of multiple servers by using a single system[7]. They
have developed a backend and a front-end portal to
manage, dispatch, and rotate jobs and tasks to the
backend servers. The jobs and tasks that are of equal
priority are handled on a first-come and first-serve
basis, with a buffer maintaining the job queue.

Recent advancements in the cloud computing domain
also revolutionized the concept of multi-tiered storage
systems[8]. Most recent cloud systems by Amazon,
Google, Microsoft, and IBM have introduced the
concepts of “shared cloud” and “on-demand” resource
deployment[9]. Their remote clients are facilitated with
resource provisioning on the basis of requirements and
demand. Application programming interfaces (APIs)
are developed by the providers and used by the clients
to achieve on-demand resource deployment.

Most of the recent enterprise multi-tiered storage
systems work on a combination of SSDs and HDDs[10].
SSDs have the advantages of speed and performance,
but they also have the disadvantages of cost and the
number of writes. Therefore, the top tiers of these
multi-tiered storage systems use SSDs so that the hot
data can be accessed more quickly compared to the
lower tiers, and the lower tiers contain HDDs so that
the overall storage capacity of the system could be
increased.

One of the major challenges faced by such systems is
ensuring the diversity of service level agreements
(SLAs) in resource provisioning and management[11].
The multi-tiered storage solution also helps tackle this
challenge by maintaining the shared resources being

 Dominic Davies-Tagg et al.: Data Temperature Informed Streaming for Optimising Large-Scale Multi-Tiered Storage 373

used by different remote clients in multiple tiers.
Another solution that is proposed to handle the

challenges of multi-tiered storage systems is to define
proper policies based on the usage and frequency of
tasks and workload on multiple nodes[12]. The policies
are developed in such a way that they handle normal
workloads as well as the bursty workloads. Bursty
workloads are those that are capable of generating
many I/O operations in response to a single query or
statement. Such bursty workloads are usually
responsible for creating disastrous effects on the
overall system. The policies are written in such a way
that these workloads are handled by SSDs instead of
HDDs.

Numerous algorithmic and theoretical approaches
have also been proposed recently by a number of
researchers to handle and manage multi-tiered storage
systems. These algorithms and theoretical studies tend
to observe the effects of data transfer or migration
across the system. One of such theories is the edge
coloring theory proposed by Ref. [13]. This theory uses
polynomial-time approximation to minimize the effects
of data transfer across the system and try to achieve the
most optimal position.

Another recently proposed technique is an adaptive
controller named “triage”, which utilizes various ways
to mitigate the effects of performance isolation in
multi-tiered storage systems. This system is designed
to ensure that the distributed environment has high
resilience to heavy workloads[14]. This system was later
improved by Ref. [15] to tackle the issue of overhead
while transferring data from one location to another.
This was achieved by identifying the hotspots and
tuning the system according to the bandwidth ratio.

Extent-based dynamic tier manager (EDT-DTM) was
proposed by Ref. [16] which is a tier management
system aimed at dynamically extending the placement
during system execution. The proposed tier
management system helped reduce the consumption of
power by employing dynamic extent placement.
Similarly, another attempt was made by Ref. [17] to
overcome the issue of disk replacement and transfer of
data within a reasonable amount of time. Another
algorithm known as the lookahead data transfer
algorithm was developed by Ref. [18] to improve the
efficiency and performance of multi-tiered storage
systems. The idea was to curate a lookahead window
size that could help with the needs of dynamic

workloads.
However, most of the approaches surveyed in this

section assume that the jobs and tasks within the
system observe a cyclic pattern, and these approaches
do not take into account the different application SLAs
in their algorithms. Also, if we look from the service
provider’s side, these approaches are unable to
efficiently manage most of the challenges posed by
multi-tiered storage systems, especially in the case of
big data. Providing high performance and quality
across these hybrid multi-tiered storage resources is
still a core and difficult challenge.

We also argue that most of the state-of-the-art studies
do not consider both the on-the-fly data transfer issues
and a number of application SLAs for data transfer in
multi-tiered storage systems.

3　Data Temperature Preliminary

This section presents the knowledge and existing work
necessary for understanding the proposed
methodology. This section is divided into relevant
topic areas that underpin the research into data
temperature, with each topic providing a broad
understanding before expanding to elements relevant to
the proposed problem and solution.

3.1　Tiered storage

Tiered storage was introduced to balance the demand
for storage capacity and system performance. The
demand was a result of high-performance storage’s
expensive pricing and exponentially growing data.
Tiered storage means placing data across different tiers
of storage, with each tier having different levels of
availability, performance, security, and reliability,
among other considerations. The primary goal of tiered
storage is to reduce the cost of ownership[19].

A standard method of deploying tiered storage is that
of a three-tiered storage hierarchy model[20]. The model
splits storage into tiers, with each tier being assigned a
classification of data and the type of storage
technology associated with it. These tiers can be
defined as follows:

● Tier 1: Primary: Mission critical data that support
customer-facing and revenue creating operations.
Utilize the most expensive, high performance disk
systems, to ensure high response, near-zero downtime,
and high availability.

● Tier 2: Secondary: Broad range of business
applications such as databases, file systems, email, and

 374 Big Data Mining and Analytics, June 2024, 7(2): 371−398

various other systems. Tier 2 still requires a reasonably
fast response time but not as fast as Tier 1, so lower
performance disks can be chosen.

● Tier 3: Archival: The fastest growing storage tier,
used primarily for archiving old data or maintaining
data for compliance reasons. This tier uses tape or off-
site data vaults. These data are not actively used, so
slow responses are acceptable.

Recently, an additional tier of storage often labelled
“Tier 0” has emerged, often based on flash based
storage. Tier 0 is suited for high values. Tier 0 contains
extremely time-sensitive solutions such as financial
trading situation where every millisecond counts. This
tier would not be expected in day-to-day business
requirements and would only occur in niche specialist
environments.

Tiered storage was primarily used in specific
enterprise environment use cases. However, two
challenges limited the success and widespread usage of
tiered storage, and that was data movement (migration)
and data classification.

3.2　Data classification

Data classification is a data management tool for
categorizing data to effectively answer organizational
questions about data such as: what data types are
present, or who has access to certain types of data. The
benefits of classifying data are often data compliance
or security related.

Classifying data within tiered storage specifically is
the act of matching data and devices to assign data to
the most optimal storage tier. It is often the first step
when planning a tiered storage environment.
Implementations of tiered storage have often been
limited due to the challenge of manually classifying
data and the lack of effective methods of automated
classification.

The following are just some of the variables that
have been used as criteria for classifying data, they
have been split into three logical groupings:

● Data metadata
– Data type,
– Assigned owner,
– Location,
– Name.
● Data time
– Creation time,
– Last accessed,
– Last update time.

● Data content
– Specific tags and details about the sort of data that

are actually stored (financial, sales, etc.),
– Private or publicly accessible,
– Availability requirement/impact of unavailability.

3.3　Data migration

The majority of movement policies are mono-
directional data movement only occurring from high
performance tier to low performance tiers, without
much consideration for bidirectional movement of data.
The earliest research into tiered storage was focused
solely on the movement of data out to tertiary (offline)
storage, decluttering storage and freeing up higher
performance resources for new incoming data[21].

3.4　Multi-temperature storage and data
temperature

Multi-temperature data storage is a tiered storage
strategy aimed at minimizing the costs associated with
maintaining large amounts of data. Data are assigned a
“temperature” based on age and frequency of usage,
then the more frequently accessed or newer data are
optimized for placement into “hot” high-performance
tiers of storage, with the “cold” data being isolated and
placed into cheaper commodity storage solutions. The
assignment of temperature and movement of data in a
multi-temperature storage environment is an automated
process.

Interest and implementations of data temperature
have appeared in a lot of enterprise data warehouse
environments with big names such as IBM, Teradata,
and SAP all having their own implementations. Apache
Hadoop distributed file system (HDFS) even has
storage types and policies designed around data
temperature as part of an archival storage solution, the
goal being to decouple ever-increasing storage
requirements from compute capacity[22].

3.5　Data usage frequency

Data usage frequency, when used as a value for data
temperature, is the identification of the amount of times
data are accessed, the higher the number of times the
data have been accessed, then the hotter the data’s
temperature. In general, this is great and makes perfect
sense, the most critical data are the data that more
people are requesting, so placing that data item in a
high-performance storage area will be the most
beneficial, serving the needs of more users with much

 Dominic Davies-Tagg et al.: Data Temperature Informed Streaming for Optimising Large-Scale Multi-Tiered Storage 375

higher response times.
The problem with this method of thinking is that it

only works if all data and queries made against the
system have the same level of importance and urgency.
Being the most required does not immediately equate
to the most important. Figure 2 depicts two data items
in a data temperature managed storage environment
using frequency of use as its variable for data
temperature. The figures multiple general usage users
are querying a data item thousands of times per day,
and so within the usage-based data placement, it is
allocated a prime position within the hottest storage
tier. In comparison, the single mission-critical single
user that requires responsive query times to work
efficiently is instead working on data within the lowest
performance “frozen” tier due to the limited usage of
the data item.

It would be more beneficial to upgrade the mission-
critical data item to the hottest tier and downgrade the
more generic data item to a warmer tier of storage, but
within a usage frequency controlled environment, then
this could not happen. The example presented as part
of Fig. 2 could also raise issues with I/O, the “hot” tier
of storage is most likely a single or small group of high
performance nodes, whereas the cooler tiers of storage
are going to most definitely be much larger clusters of
nodes that would better serve thousands of queries
from multiple users, leaving the high performance
nodes free to a limited but high priority set of users and
datasets.

Another issue that could prove costly in a usage-

controlled data temperature is that of recurring
movements of data, by this, we mean that data are not
always used once and then never used again. Instead,
some datasets are used a lot for a period, and then the
usage drops off, but then consider that the period of
usage repeats repeatedly, for example once every
month. On first thought, this is ideal for the frequency
of usage and could be its prime sort of problem when it
resolves.

The problem although is that it is not a simple act of
these data, which was cold but is now hot; it is a
gradual process as the usage of the data ramps up, so
the data could potentially be climbing up the storage
tiers as the usage increases for that month, using the
storage solution from Fig. 2 as an example that could
be three movements of data upwards, then three
movements back down the tiers when the period of
high usage ends, this wasted data movement
demonstrated in Fig. 3a, ideally because of the
consistent movement every month instead only two
movements of data as demonstrated by Fig. 3b could
have sufficed, this would result in a lot less wastage of
resources every single month.

It would also result in users benefiting immediately
from him high-performance tier, instead of the wait for
it climbing up the storage tiers. It is also entirely
feasible by the time the data had climbed the tiers of
storage, the period of usage could be over for that
month, and so any benefit the “hot” high-performance
tier of storage provided was wasted.

Hot

(Thousands of daily requests)

General usage users

(Several requests per day)

Mission critical user

Warm

Cold

Frozen

Fig. 2 Usage-based data placement.

 376 Big Data Mining and Analytics, June 2024, 7(2): 371−398

3.6　Data age

Age is commonly applied in one of two ways, the first
being that of the newest data entering the system
translating directly to the hottest data and placed in a
high-performance storage tier. Second, data can instead
be allocated a default temperature, commonly not hot
nor cold, but an average temperature value and more
suited to a commodity storage location. Both feature a
decrease in temperature over time as they get older.

The problem with data age as a value for determining
the hotness of data is that it automatically assumes that
new data have a level of importance and that old data
are less important than all incoming new data. For
specific use cases, this can be ideal such as eBay’s
usage of data temperature, where they clearly identified
that a common trait of their datasets is heavy initial
usage, with new datasets being considered hot and
decreasing in how frequently they were accessed over
time.

This sort of consistent pattern of data being input and
then used immediately is not typical of all use cases,
instead consider, for example, a pharmaceutical
company where new datasets are ingested frequently
from various labs and subjects but the actual data being
used most frequently is the data for active studies and
projects and not just the newest available sets of data.

In the use-cases described above, where data are not
consistently queried immediately upon ingestion, we
are presented with the issue of data no longer being in
high-performance storage when it is needed. Figure 4

demonstrates this point, in Week 1, the data have been
inserted straight into the “hottest” high-performance
storage area. The problem with this is that the dataset is
not going to be needed for several weeks, but over the
four-week period presented in the diagram, the data
have gradually been migrated down each week to
achieve a “colder” lower performance storage tier
because they are now old data. The result of this sort of
movement is that the storage tiers are not well utilized,
as the data that currently need querying are instead in
the lowest performance tier of storage and will be
much slower to work with than they were four weeks
prior.

Another issue with data age is that today’s volume of
data are enormous, so the amount of new data entering
a storage solution will always push older data down to
lower tiers in favor of the newer data, even if older data
were only ingested into the hot tier seconds prior.

Hot

Warm

Cold

Frozen

Hot

Warm

Cold

Frozen

(a) Wasted data movement (b) Efficient data movement

D
at

a
m

ov
em

en
t u

p
tie

rs

D
at

a
m

ov
em

en
t d

ow
n

tie
rs

D
at

a
m

ov
em

en
t u

p
tie

rs

D
at

a
m

ov
em

en
t d

ow
n

tie
rs

Fig. 3 Wasted data movement diagram.

Hot

W
ee

k
1

W
ee

k
2

W
ee

k
3

W
ee

k
4

Warm Cold Frozen

Fig. 4 Data ageing to lower tiers over time.

 Dominic Davies-Tagg et al.: Data Temperature Informed Streaming for Optimising Large-Scale Multi-Tiered Storage 377

Figure 5 depicts this issue over a 20-min period across
four storage tiers: hot, warm, cold, and frozen. Data are
represented by circles, with new data inserted over
time, and so the newer data push the old data down into
the lower storage tiers as new data objects get ingested.

The scale of the example in Fig. 5 is vastly
minimized to use 26 alpha characters, but considering
today’s volume of data created, it is not that unrealistic
for GB’s or TB’s of data to be ingested over the 20-min
period presented. Taking note of data object “M”, after
20 min and two ingestions of new data, it has been
degraded from data with “hot” performance and is
instead residing in storage tiers three levels down. The
downgrade is due to limitations in space on the high-
performance tiers, requiring the “M” data item to be
gradually migrated between tiers to accommodate the
newer “hotter” data.

3.7　Lack of user control

Data temperature as a data resource management
solution is mostly an automated process, with age and
usage frequently being values that are easily tracked
and acted upon by the system, without any prior user
input. The problem with automation of data
temperature is that it only has two points of data to
work with: age and usage, but this does not account for
the real world or business requirements; instead, all
data are treated as if it were all the same. In many
instances, this equality of data is acceptable, but for use
cases where specific data do take priority, that data
need to be in the “hot” high-performance storage tier.
This will help to attain maximum benefit of the high-
performance tier.

Despite this section arguing against the total lack of
user input and presenting it as an issue, too much user

input would also cause its own specific set of
problems, not even counting the person hours and
resources for manually allocating data across a tiered
storage solution. Any solution proposed should instead
allow for greater user control in a more supervisory
manner and not a hands-on manual process, as this
would prove to be a regressive and not a progressive
action towards smarter automation of a tiered storage
solution.

The discussion in this section concludes that in the
past, we have had tiered storage, but due to issues of
classification and data movement, it never really took
off in any real way except within specific enterprise
environments. With a resurgence in tiered storage in
the form of data temperature, prompted by lowered
costs of memory, SSDs and various new storage
devices that have varying levels of cost, this, combined
with virtualized storage and file systems such as
HDFS, makes migration of data feasible due to its
lower impact on system performance.

Data temperature implementations currently only
classify data into two variables that, as discussed
above, have various flaws inherent to each, at least
outside of specific use cases. Older tiered storage data
classification was costly and inconvenient, but specific
traits of the data itself or users were explored and used.
Caching, a technique with similar characteristics to
tiered storage, also has a method of classifying data.
The traits of both expanded beyond the age and usage
currently used for data temperature.

Metadata and predictive algorithms have come a long
way in recent years, simplifying the classification of
data and also allowing for pre-emptive predictions of
how to classify data in the future. From this research,
we have concluded that data temperature classification
can expand by exploring existing variables previously
applied in tiered or cached environments. This,
combined with complete metadata management tools
and machine learning algorithms against the data,
provides multiple data points to classify the data and
optimally place temperatures at the ideal temperature
and location.

4　Extending Data Temperature

Existing work revealed that the variables that have
been used to determine the placement of data in the
cache were merely age and usage. From this, we
propose the following: the utilization of alternative

Ingest new data

10
:0

0
10

:1
0

10
:2

0

Ingest new data

Hot Warm Cold Frozen

Fig. 5 New data pushing older data down to colder storage
tiers.

 378 Big Data Mining and Analytics, June 2024, 7(2): 371−398

variables, but also a process of combining multiple
variables into scope-specific configurations to deliver a
situational based solution that proved to be more
optimal than the current single solution approach. We
also propose an approach to balance the temperature of
our temperature-ordered data with the goal of reducing
unnecessary movement.

We propose that instead of being constrained to two
variables that are of limited scope in how we rank data
in a multi-temperature system, considerations should
instead be made for alternative variables when ranking
data and assigning a “temperature”. These variables are
then further combined with conditional statements
using solution-specific ranking algorithms to provide
optimal placement and greater user control of data.

The basic premise of the proposed solution is already
prevalent in existing data temperature implementations,
with data age and usage frequency often being
combined and used together to deliver a more
competent data temperature value. The deficiencies of
age and usage as variables for optimally positioning
data were explored in the prior section, but when
combined into a single data temperature value, these
identified deficiencies are mitigated. When combined
into a single data temperature value, age gradually
lowers the temperature over time to slowly decay the
data into lower tiers. When combined with the
frequency of use, it prevents data still actively used
from getting archived.

The use of more data points often brings greater
understanding to a variety of problems, but even when
combined, data age and usage frequency have the issue
of being of limited scope and only being relevant when
the newest and most highly used data reflect
importance; it cannot consider operational or specific
data requirements, and instead all data are generic and
treated equally. The scope of the current data
temperature does match a lot of use cases, such as
those where you have lots of new incoming data that
are of immediate importance and will be of immediate
use, but not all requirements are so simplistic, so a
demand exists for more tailored case-specific data
temperatures that will provide a more optimal
placement of data on a case-by-case basis.

The proposal of additional variables and controls
over data comes from the process of data classification
that has been applied to tiered storage for many years.
Data classification has long been used in many

variables such as owner, filename, time last accessed,
business value, availability index, retention period, etc.
For determining how data should migrate between tiers
of storage, caching has also been explored to identify
what should exist in the cache and what should not,
with similar usage of a broader range of variables than
just age and usage alone.

The proposed approach intends to introduce
additional variables that, when combined, further
mitigate the deficiencies of using a single data
temperature variable, so the existing variables of age
and usage frequency are not being replaced as there is
nothing explicitly wrong with them. They just fit a
specific use case and are not the correct tool for every
situation; we are instead adding additional variables to
deliver a more flexible toolset when addressing data
temperature in a variety of usage scenarios.

We have split the process into five stages; the first
three are the initial setup and configuration of the
system that get performed when establishing what data
temperature means within a specific system. The final
two stages are processes that repeat continually as the
data temperature of a system is calculated over time.
The frequency of repetition will be domain specific and
influenced by various factors such as the amount or
regularity of new data added, the amount of active
system usage, and many other factors, but for the scope
of our research and within our experiments, we have
worked under the assumption that updates to data
temperature occur overnight every night. The proposed
data temperature process consists of the following
stages:

● Identify target system scope,
● Selecting suitable variables,
● Applying conditional rules,
● Calculating the temperature of data,
● Balancing data temperature.
The following subsections cover each stage of the

proposed process. Each stage is thoroughly explained
and justified before concluding and moving onto the
next stage of the process.

4.1　Identifying target system scope

The proposed approach is not a recommendation that
all the proposed new variables be used together;
instead, consider it a technique where a subset of
relevant variables is identified to construct a model that
is more accurate and suitable to a specific use case than
if the entirety of an available dataset is used instead.

 Dominic Davies-Tagg et al.: Data Temperature Informed Streaming for Optimising Large-Scale Multi-Tiered Storage 379

Identifying the scope of a storage system consists of
fact-finding tasks that will aid in the selection of these
relevant variables. The aim here is to identify how to
use the system, and how the “hotness” or “coldness” of
the data should be determined using the variables we
have defined. System scope can be determined by
exploring (but not limited to) the following conditions:

● Users requirements: Not all users are equal,
access rights, responsibilities, and job roles have a
significant impact on how a user interacts with a
system. Having understood that a specific group of
users requires data available with minimal delay, it
allows that data to have a higher priority than data
required by more generic users.

● Objectives of the system: The purpose of the
system and what it is meant to achieve influence how
we decide what data should move through a system,
there is a big difference between a system used
specifically for analytics and a system that is intended
for archiving purposes only.

● Additional interfaces and influences: Storage
solutions are not always user-centric. Often, they can
instead be used by specific tools, such as machine
learning or various other automated processes. The
problem with this is that the query patterns and usage
of the system would be much different compared to
what you would find if compared to a set of users,
potentially resulting in less focus placed on these tools.

● Frequency of updates: Daily updates equal a lot
of movement around a system, especially if the new
data are essential and need prioritizing and so become
an important factor, less frequent update is a much
slower and less movement intensive scenario, so in the
former scenario, identifying variables that decrease
movement would be ideal.

● Concurrent users: The number of users is not
indicative of what is important, but it does allow us to
understand the weighting of variables such as read or
write frequency and make more knowledgeable
decisions on how to place data.

Without first taking such steps to understand a
storage solution, there is little benefit to be gained, and
instead, the existing data temperature implementations
could be used and applied to everything regardless of
any potential loss in performance due to
incompatibility with the requirements of the system.
Understanding the storage system allows for a
movement towards a more optimal storage solution,

not the most generic optimal storage solution, but a
storage system that is most optimal for a specific use
case scenario with a bespoke data temperature. In
understanding a system, we can identify appropriate
variables that match the scope and requirements of the
system more appropriately.

4.2　Selecting suitable variables

We propose the following variables that can be used as
new temperature variables. These variables include
“file name”, “file type”, “tagging/categories”, “who
created”, “when created”, “who has access”, “read
frequency”, “write frequency”, “movement count”, and
“movement direction”. The proposed variables are
either simple metadata such as names, tags, etc., or can
also be statistics of the data, such as the amount it
moves in a month or total write counts. This is not an
exhaustive list of all potential variables; instead, it is a
brief selection of variables that could be used to
contribute towards our proposed data temperature
value, with each item accompanied by an example use-
case for determining hotness or coldness.

The selection of the variables will be determined by
the initial evaluation performed on the system to
determine its scope; at present, we propose no specific
process for automatically classifying or determining
the relevance or suitability of a specific variable for a
specific system or use case. Variable selection is
instead a process that will require domain and system
knowledge.

4.3　Applying conditional rules

The secondary aim of the proposed work is to
introduce greater user control over how the data are
placed, even with complex machine learning and
continuously evaluating years worth of usage data.
Users will often have specific knowledge external to
the system that could ensure optimal placement of data
for a specific event, such as an urgent project where
specific data could experience a surge in usage for only
a single day.

No system could have expected that, but with the
addition of a conditional rule indicating that for that
day a specific data type would experience heavy levels
of usage, it could already be in place (within hot
storage tiers) ready to be used and delivering the
optimum performance available. Conditional rules are
not proposed just with user input in mind, but could
also be used to input events and conditions that have

 380 Big Data Mining and Analytics, June 2024, 7(2): 371−398

been recommended by a machine learning algorithm.
Examples of conditional rules are as follows:

⩾● Data age 5 months = archive.
● If current day is Monday, all PDF files are high

priority.
● Filename containing AUG2016 = hot data.

⩾● If write frequency read frequency = hot or
warm.

Similar to the choice of variables, we make no
specific recommendations on which conditional rules
to apply. These rules are case specific, so what would
be applicable to one storage solution would not be
applicable to another. The rule statements used above
allow for broad classifications of data, but can also be
made very specific if required. These rules make use of
the identified variables and give them more depth and
specificity. All are determined by the user and
providing a significant amount of influence over how
we store the data.

This proposal for conditional rules is that they can be
a constant fixture of the data temperature calculations,
or that the rules can be applied as needed at a moment
of notice. This flexibility in customization allows for
even greater responsiveness of the data and its
placement and movement throughout the system.

Conditional rules will be applied exactly the same as
standalone variables and combined into a single data
temperature score, with the option of determining a
binary outcome or a ranged outcome as per the number
of available tiers.

4.4　Data temperature scoring algorithm

The primary objective of a hot and cold storage
solution is to distinguish between frequently accessed
or “hot” data and rarely accessed or “cold” data based
on their relative importance. The optimal scenario
entails sorting all data from the hottest to coldest,
ensuring that critical data are stored in high-
performance storage and less important data are stored
in lower-cost, slower tiers. However, the complexity of
sorting increases when multiple variables are
considered, necessitating multiple comparison sorts for
each variable. A data temperature scoring algorithm is
proposed to address this issue. This algorithm applies
scaling and weighting mechanisms to each variable and
rule, generating a single numeric score for each data
object that represents its “hotness”. The algorithm
employs a more efficient counting sort to organise data
objects based on their calculated scores, optimising the

storage solution by placing data in the appropriate tiers
in an efficient manner.

The proposed data temperature scoring algorithm
streamlines the sorting of data based on multiple
variables in hot and cold storage solutions. Combining
scaling and weighting mechanisms, it computes a
single numeric score for each data object that reflects
its relative significance. This eliminates the need for
multiple comparison sorts per variable and replaces
them with a more efficient counting sort, enabling the
storage system to sort data from the hottest to coldest.
The capability of the algorithm to optimise storage
performance ensures that frequently accessed data are
readily available in high-performance tiers, while less
frequently accessed data are stored in lower-cost,
lower-performance tiers, resulting in a cost-effective
and efficient multi-tiered storage solution.

Figure 6 depicts the scoring process per data object,
at the top of the diagram, the variables and conditional
rules that are applied to each data object are being
inserted into the process, with the final output of the
process being an individual score per each data object.
The phases of the process are explained in detail in the
subsections below.
4.4.1　Scoring per variable/conditions
Scoring is a single process that is applied to each
variable of a data object, but due to the multiple
variables and conditionals used, we have split the
process into binary or ranged scoring. Binary scoring is
applicable to variables and conditions that only have a
binary outcome, and ranged scoring is instead for
outcomes that can be split into three or more outcomes,
the number of outcomes is determined by the number
of available tiers.

Each variable/conditional that has been identified for
usage is scored equally, meaning the maximum or
minimum score available is equal for each
variable/conditional (not considering the addition of
weightings in the next stage). The maximum score
range is based on the number of storage tiers in usage,
so 4 tiers of storage result in a score range of 1 through
4. Within the topic of feature scaling/normalization,
this would be similar to the min-max scaling approach.
Min-max scaling is an alternative approach to Z-score
normalization. Min-max has a bounded range and so
suppresses the effect of outliers with its fewer initial
standard deviations[23].

Range scoring is applied to variables/conditions that

 Dominic Davies-Tagg et al.: Data Temperature Informed Streaming for Optimising Large-Scale Multi-Tiered Storage 381

can be split up into multiple ranges, the number of
ranges that are created is based upon the number of
tiers of storage available. An example of this is
presented in Table 1, which displays the scoring range
of a 4-tiered storage for the variable of data age. The
ranges themselves are currently created manually, but
these ranges can be generated automatically according
to the suitability of the storage tiers.

In situations where a variety of variables were
impractical or impracticable, binary scoring was
implemented as an alternative method. In situations

where a range of values for a particular variable cannot
be determined, the binary scoring system provides a
simple and effective solution. This method of scoring
uses the maximum and minimum values of the range
scoring system to represent “true” and “false”
conditions, respectively. In the binary scoring method,
a conditional rule is defined to determine whether a
particular data characteristic is present or absent. For
instance, the passage describes a conditional rule that
seeks the presence of a CSV data type. If a data object
is determined to be of type CSV, it is assigned the
maximum possible score (for example, 4) to indicate
that it is of greater importance (hot data). Alternatively,
if the data object is not of type CSV, it is regarded as
having a lower priority (cold data) and is assigned the
lowest possible score (for example, 1). Table 2
illustrates this with an example scenario. Table 2
displays various data objects and their respective scores
according to the binary scoring system. If the data type
is CSV, the data item is given a score of 4, indicating
that it is a hot data item. If the data type is not CSV, it
is assigned a score of 1, indicating that it has a lower
priority in the storage system and is therefore less
important.

Binary scoring is a straightforward and efficient
method for addressing situations where a simple
true/false determination is adequate. It complements
the more complex range scoring system and expands
the data temperature scoring algorithm’s adaptability to
accommodate a variety of scenarios in multi-tiered
storage solutions. By incorporating binary scoring in
addition to range scoring, the algorithm becomes more
flexible and adaptable to a wider range of data
characteristics, allowing for improved optimisation and
decision-making in data placement within the storage
tiers.

Another benefit of using these ranges is that the
temperature score is not weighted specifically to one
data variable, it is instead relatively equal due to the
normalization and balancing that occur. This also
means that the addition of user specified rules does not
totally dominate the temperature; instead, they are
factored together equally. This is in part to prevent user

Table 2 Example of a binary score for a 4-tiered storage
environment.

Data type Score description Score value
If data type is CSV Hot 4

If data type is not CSV Frozen 1

Multiple
variables per

data

Conditional
rules per

data

Scoring per
variable/condition

Ranged or binary

Apply weighting to
score value

Calculating data
temperature for
individual data

Ranged Binary

Fig. 6 Overview of the data temperature scoring process
per variable/condition.

Table 1 Example of a range score for a 4-tiered storage
environment.

Scoring range Score description Score value
Data age < 1 week Hot 4
⩽1 week Data age < 2 weeks Warm 3
⩽ ⩽2 weeks Data age 1 month Cold 2

Data age > 1 month Frozen 1

 382 Big Data Mining and Analytics, June 2024, 7(2): 371−398

requests from totally dominating the score and let the
combined score overall determines where the data are
actually positioned.

Considering our proposed example of 4 tiers, if we
assume that each data item temperature score is
calculated by 6 variables (combination of ranged or
binary), the maximum total score is going to be 24 as
can be seen in Fig. 7. Similarly, so at the minimum, the
minimum coldest score available would be a score of 6
as can be seen in Fig. 8. If we increase the tiers or
variables used, the min/max scores will also increase,
but the opportunity for each data object to score the
same remains balanced.
4.4.2　Weighting
Here, we determine the relative importance of the
variables identified within the scope of our system. The
assignment of weight to a specific variable is largely
dependent on the scope and evaluation of the specific
system. The weighting can pertain to multiple factors
such as user benefit (all users or specific users),
operational requirement (regularization needs, etc.),
I/O performance, archiving procedures, update
frequencies, or data size.

Due to the scale of data available, instead of ranking
all data variables in comparison to each other, we
instead gather the values from our identified variables,
apply the weighting identified above, and then combine
them into a convenient score per data item; this score
represents the temperature of that specific piece of
data.

The standard weighting of each variable or
conditional is 1, with an increase or decrease in this
weight as needed to increase or decrease the priority of
the specific value; e.g., a weighting of 0.5 would
reduce the impact of that specific score, but similarly, a

weighting of 4 would greatly increase the amount of
impact a single variable has upon the overall
temperature.

The scaling/balance afforded by the prior section
should be adequate without the need for additional
weighting, but for added user control, we propose the
addition of applying a weighting to each individual
variable of a data object.

We propose a minimum range of 0.5 and a maximum
of 2. This is to prevent user bias from heavily
influencing the scores while still allowing for
customization within the existing variables used. Using
the examples in the prior section as a basis, the
potential lowest score available now becomes 3 and the
highest available score becomes 48, as presented in
Fig. 9.

The min and max above are not realistic, as if you
are applying a max or min weighting to everything,
then you might as well apply it to nothing. A more
realistic example would be applying it to a single
variable such as in Fig. 10. The double weighting
applied to variable 1 means that it will overall score a
higher value compared to the other variables, even if it
scores 1 from a colder tier, it will be weighted higher
and more important than 1 from the other variables.

4.5　Calculating the temperature of data

The final process of calculating each data object’s

Variable 1 = 4 (hot) × 1
Variable 2 = 4 (hot) × 1
Variable 3 = 4 (hot) × 1
Variable 4 = 4 (hot) × 1
Variable 5 = 4 (hot) × 1
Variable 6 = 4 (hot) × 1

Maximum available score

24

Fig. 7 Scoring per variable, all hot scores.

Variable 1 = 1 (frozen) × 1
Variable 2 = 1 (frozen) × 1
Variable 3 = 1 (frozen) × 1
Variable 4 = 1 (frozen) × 1
Variable 5 = 1 (frozen) × 1
Variable 6 = 1 (frozen) × 1

Maximum available score

6

Fig. 8 Scoring per variable, all frozen scores.

Variable 1 = hot (4) × 2
Variable 2 = hot (4) × 2
Variable 3 = hot (4) × 2
Variable 4 = hot (4) × 2
Variable 5 = hot (4) × 2
Variable 6 = hot (4) × 2

Maximum available score

48

Variable 1 = cold (1) × 0.5
Variable 2 = cold (1) × 0.5
Variable 3 = cold (1) × 0.5
Variable 4 = cold (1) × 0.5
Variable 5 = cold (1) × 0.5
Variable 6 = cold (1) × 0.5

Maximum available score

3

Fig. 9 Scoring per variable, but with double or half
weighting applied.

Variable 1 = hot (4) × 2
Variable 2 = hot (4) × 1
Variable 3 = hot (4) × 1
Variable 4 = hot (4) × 1
Variable 5 = hot (4) × 1
Variable 6 = hot (4) × 1

Maximum available score

28

Fig. 10 Scoring per variable, but with max weighting
applied to a single variable.

 Dominic Davies-Tagg et al.: Data Temperature Informed Streaming for Optimising Large-Scale Multi-Tiered Storage 383

individual temperature value is that of combining all
the scores and weights of each individual variable and
conditional rules into a single data temperature. Due to
the normalization/scaling of the data objects, we can
simply total the scores from each variable used
together and have an independent data temperature
score for each data object within our system.

The proposed calculation is found within Algorithm 1,
it loops through all variables and conditional rules that
were applied to the system, first getting
normalized/scaled by either the ranged-outcome or the
binary-outcome methods dependant solely on the type
of value of the variable used. Once a normalized score
has been returned, it is then multiplied by that variables
assigned weighting to increase or decrease the priority
of that variable as is needed. Finally, Algorithm 1 just
totals up the score achieved for each variable and the
conditional rule, dataTemperatureScore being the data
temperature value that is assigned to each data object
within the system.

The benefit of an independent score is that it never
increases in complexity or resources required
regardless of the amount of data actually stored, no
sorting or reliance on thousands or millions of other
data items and how they score.

Algorithm 1 runs against each data item and makes

all assigned variables and conditional rules that have
been identified prior, the final outcome being that of a
single data temperature value created per data item.
The output score is a singular value per data item, the
score is stored alongside the metadata about each data
object. Algorithm 1 itself is low complexity due to the
normalization and scaling that occurred per each
variable/rule, without that process, the majority of
Algorithm 1 would instead be aimed at equalizing the
different values and achieving some semblance of
balance, so specific values were not unfairly weighted.

Dependent on the variables and other conditions such
as update frequency, the output value could change
greatly between each run, but a change in the assigned
score does not necessarily equal the movement up or
down a tier as each value is updated accordingly and
compared against the rest to determine an ideal storage
tier in the section below.

4.6　Sorting

Sorting is a comparative action between two values,
determining if one value is higher or lower than the
other, then applying this across a much broader range
to gradually sort these values into order. The problem
with this comparative style of ordering is that it has a
lower bound of O(nlog n) complexity. O(nlog n) is not
the worst outcome for a sorting algorithm, but having
to run it multiple times against each of our data object
variables and conditional statements would result in a
lot of compute and memory usage depending on the
scale of data objects stored.

Fortunately, we scaled and weighted our values and
provided a single score per data object; we could just
sort this score using a comparative sort as described
above. However, we have put ourselves in a unique
position to use an integer-based sort due to the scaling
process to assign every data object a single data
temperature score. The specific integer-based sort
proposed is the bucket sort.

The bucket sort on average has a complexity of
O(n+k), which is a decent linear sort (where n is the
number of data objects and k is the number of distinct
values); the problem is that the basis for this requires
an even distribution between buckets. If one bucket
instead contained all values, then we had to sort them
into a single bucket, this could result in the worst
complexity of O(n2). By adequately defining variables
and conditions appropriate to the storage data, the

Algorithm 1　Calculating overall data temperature of an
object
Data: variables, minScore, and maxScore
Result: dataTemperatureScore
foreach var in variables do
　　if var.type == “range” then
　　　if var.value == Condition 1 then
　　　　var.score = maxScore;
　　　else if var.value == Condition 2 then
　　　　var.score = maxScore(−1);
　　　else if var.value == Condition 3 then
　　　　var.score = maxScore(−2);
　　　else if var.value == Condition 4 then
　　　　var.score = minScore;
　　end
　　else if var.type == binary then
　　　if var.value == true then
　　　　var.score = maxScore;
　　　else if var.value == false then
　　　　var.score = minScore;
　　dataTemperatureScore = var.score × var.weight;
end

 384 Big Data Mining and Analytics, June 2024, 7(2): 371−398

worst case scenario should be avoided, and the result
will be a more even distribution of data objects across
the buckets.

Simplified, the bucket sort algorithm operates as per
the following instructions, additionally conveyed in
Fig. 11.

● Establish buckets of evenly distributed ranges.
● Distribute each among the bins.
● Sorting occurs within each individual bucket.
● Buckets are visited in order and the elements are

output back into the array.

4.7　Balancing data across storage tiers

Once the scoring of data temperature has been achieved
and an order for all data objects has been established,
the final step of the data temperature process is
implemented. The score is used as a comparison
against each instance of data to determine whether it
should be migrated upwards or downwards to a
different tier of storage. The goal of balancing data
temperature is not to orderly arrange it from the highest
scoring to the lowest scoring; it is instead aimed at
migrating between various tiers of storage.

Consider if a specific numerical order of data
temperature was identified for every piece of data, and
then we cleared out all storage and inserted data into it,

the hottest first, until each tier filled up or the data ran
out of the amount of movement required in one
instance to actually ensure that all data would be in its
assigned position, from the hottest to coldest. This is
just wasteful. Instead, consider only moving specific
data objects up and down as needed, the data only need
to end up in a relevant tier of storage; it does not need
to be assigned to the most perfect position within
storage.

In an ideal world, the simplistic solution would be to
order the data by the generated score from the highest
to lowest (the highest scoring being ingested first and
gradually filling up each tier until you ran out of
storage or items to store). The problem with doing it
that way is that it would require a huge amount of
movement with potentially every data object being
moved, this would be an unnecessary waste of I/O and
system resources.

Thankfully, we do not need as much movement as
alluded to above; the first item in the hot tier storage
will have no difference performance wise compared to
the thousand items within the same storage tier.
Movement between three or more tiers of storage is a
lot more manageable than a complete ascending sorting
of every data item, which is unrealistic.

Each of our tiers of storage has a temperature range
attributed to it; these ranges are determined by the data
present in each tier. For each tier, the average/mean
value is stored, and the min and max values are
currently stored within each tier. Maintaining these
values lets us know how much needs to be scored to
move a temperature upwards or downwards between
tiers.

Similar to the scoring process itself, the movement
occurs per item; the movement process is kept separate
from the temperature scoring and occurs after the
process completes, to prevent unnecessary movement.
Consider that if you calculated a new score for each
item and then made the movement action, the next data
item score could override that, meaning you would
have to move the same data around again.

The premise of this movement is to look at where the
data are currently located, only move it when
absolutely necessary. The above movement itself does
not occur automatically after the above process;
instead, it is added to a movement action list. This step
has been added to further ensure that data are moved as
little as possible. By adding it to such an action list, we

Distribute each among the bins.

Buckets are visited in order and the elements are output
to an array.

0–4 5–9 10–14 15–19

0–4 5–9 10–14 15–19

16 12 3 1

1

1 3 5 6

5
6

7

15
16
163

10
12

10 7 5 16 15 6

3 1 7 5
12 10

16
16 15

6

Fig. 11 Diagram depicting a simplified interpretation of
bucket sort.

 Dominic Davies-Tagg et al.: Data Temperature Informed Streaming for Optimising Large-Scale Multi-Tiered Storage 385

can order it appropriately, working from the highest to
the lowest, moving down the tiers as we go.

We have split our proposed approach to balancing
data into the following three stages:

● Establishing upper and lower bounds of storage
tiers.

● Assigning movement to data objects.
● Data relocation plan.

4.7.1　Optimal data object for tier placement
Before any movement can occur, we need to
understand where a data object should belong, but we
only have a limited amount of space in the higher tiers,
so we need to establish what data will fit in the hottest
tiers as well as consider its data temperature score.
Thankfully, the counting sort we implemented can help
us with this type of calculation. By reusing the object
counts from the highest to the lowest, we can easily
establish the number of items that will fit into each
storage tier.

For example, in Fig. 12, we have a table that will act
as a visual description of the data sorted into groups for
counting as part of the counting sort algorithm. Along
the bottom, there are coloured ranges that depict the
span of data temperature scores which the individual
tiers actually cover. Note that the value within each
range is the amount of storage used and the maximum
amount of storage for that tier. Working from right to
left (the highest to lowest), we are gradually filling up
each tier until we run out of storage for that tier, when
one tier of storage runs out the next tier of storage
starts counting along (note the coloured background of
the cells that make this more visible).

The pseudocode presented in Algorithm 2 details this
process: initially, we loop through the collection of our
data objects; this collection comes from the prior stage
of calculating data temperature, so each data object has

some generic metadata details such as identifier’s size,
current tier location, and also its data temperature
score. The prior process also sorted them, so they are in
order from the highest to lowest data temperature
score.

For each tier of storage, we have a tier object
collected together as tierList in Algorithm 2. Each tier
object has an empty collection waiting to be filled by
data objects. Looping through each data object, the
goal is to insert them into a specific tier. The tiers are
arranged from the highest to lowest (the first tier at 0 is
the highest tier). This is also the reason it is important
that our temperature-scored data be ordered from the
highest to lowest, so the more high-priority data are
first inserted into each tier. Before this insert occurs,
we need to check whether the data object will fit into
the tier.

The if statement in Algorithm 2 calculates the
amount of space currently used by the tier plus the
current object size; if this is above the storage capacity,
the data object gets placed into the next tier of storage,
and we move onto the next data object in order. The
else statement occurs if enough space is available
within the current tier for our data object. First, the data
object has its proposed tier value updated to match the
tier it is being inserted into, then it is inserted into the
current tier. Next, the current tier’s tierStorageUsed
value is updated by adding the current data object’s

Algorithm 2　Data object to tier placement
Data: dataObjectList, tierList, currentTier, and storageTier tier =
0;
foreach each dataObject in dataObjectList do

>　　if tierList(tier).tierStorageUsed + dataObject.size
　　　　tierList(tier).tierCapacity then
　　　dataObject into tierList(tier+1).dataObjects; x =
　　　　tierList(tier+1).tierStorageUsed + dataObject.size;
　　　　tierList(tier+1).tierStorageUsed = x;
　　end
　　else
　　　Insert dataObject into tierList(tier).dataObjects; x =
　　　　tierList(tier).tierStorageUsed + dataObject.size;
　　　　tierList(tier).tierStorageUsed = x;

⩾　　　if storageTier 90 of tierList(tier).tierCapacity then
　　　　tierList(tier).isFull = true; tier = tier + 1;
　　dataTemperatureScore = var.score × var.weight;
end
foreach each dataObject in dataObjectList do
　　Insert storageTier.dataObjects into storageTier;
end

Data temperature score

16 18 21 23 24 27 29 30 48 50

Cold (9/16) Warm (8/8) Hot (4/4)

Fig. 12 Filling up the storage tiers capacity from the hottest
to coldest.

 386 Big Data Mining and Analytics, June 2024, 7(2): 371−398

size to its own.
Finally, a check occurs in the form of another if

statement in Algorithm 2. It checks the amount of
storage space left, and if it is a certain percentage value
full, then the current tier’s isFull value is set to true,
and we move onto the next tier, this check is done so
that we are not trying to insert every value into the first
tier if a tiny amount of space is left, but it also acts as a
buffer for each storage tier. Once the initial loop over
all available data objects is completed, the tiers of
storage are looped through and their collections of data
objects are combined into a single collection of data
objects in the order of the proposed tier of storage,
ready for the next phase.

Once the process has worked its way through our
data structure from the highest to lowest and split the
data objects into specific tiers of storage, we will know
what data object’s should ideally be placed in which
tiers (based upon our data temperature scoring).
Figure 13 depicts the information we should now
understand about our data. We know the ideal tier of
storage for each data object and the data temperature
score of each temperature. With an understanding of
where our data should optimally be located and an
understanding of what sort of score range each storage
tier should adhere to, we can now make moves towards
planning to move data into the correct tiers of storage.
4.7.2　Assigning movement to data objects
In the prior section, we established where data should
optimally be located, now we want to avoid movement.
In an ideal world, you could remove all data and then
reinsert it at the relevant tier into an empty storage
environment, but this is not viable. Instead, we need to
assess and plan to move data or not move data as
needed.

Working from the highest to the lowest scoring
again, we check if the tier assigned matches the current
tier, and this informs us if an action needs to be taken.

From this, we can draw three conclusions: the first and
second are moving the data object up and down tiers,
and the third is taking no action at all. This is presented
in Fig. 14, with this decision being actioned on every
data object.

If the first or second options are the result, then an
entry is added to the action list, such as “move data
object Y from cold tier to hot tier”. This repeats for
every data item until we have a full list of movement
actions that need to be executed.

Algorithm 3 is the simple process of how we
establish what needs moving using the prior processes
of scoring, sorting, and establishing an ideal position in
storage. With the collection of objects from the prior
process of assigning a proposed tier to each data object,
here we check that against the data objects current tier
of storage. If it matches the proposed location, then
nothing happens; the data’s location does not need to
be changed, but if the tier is different, then a movement
action is generated, consenting the data ID and tier that
it is to be moved to, and this occurs for each data
object.
4.7.3　Data relocation plan
In the past two subsections, we presented what ideal
tiers each object should be assigned to and proposed a
list of actions that are only going to move what is
necessary to move. Movement occurs in reverse, from
the lowest to highest, so the higher tiers of storage are
freed up, when it comes to moving data up. If all
movement down to the lower tiers has already been
completed, then there will be no conflict with space
requirements when trying to move data upward to the
higher tiers, where space is more limited. The proposed
solution may become problematic if even the lowest
storage tier is of low capacity, but in most cases, we
can think of the lowest commodity tiers of storage as
being almost unlimited at this point, at least in a
majority of cases.

(Low = 30), (High = N/A) (Low = 24), (High = 30) (Low = N/A), (High = 23)

Hot

A D
R

Q
X

Y

N

U
V

H

I

Z
T

L

P
MG

F

E

B
C

Warm Cold

Fig. 13 Optimal tier data object locations.

 Dominic Davies-Tagg et al.: Data Temperature Informed Streaming for Optimising Large-Scale Multi-Tiered Storage 387

We have not established any clear boundaries
between movement to tiers because if working in
reverse order (the lowest to highest), then the tiers will
get used in the desired order anyway, even without
explicitly having to establish that. This is due to the
order in this section. This is demonstrated in Fig. 15,
the first diagram labeled “Phase 1” shows only the
lowest scoring data moving down to the lowest tier of

storage once all of this movement completes, next is
the “Phase 2” diagram, slightly different here as we
have the data moving down and up into the middle tier
of storage. Finally, “Phase 3” is the remaining data
actions moving up to the hottest tier of storage.

This example has only presented three tiers of
storage for simplicity, but more tiers of storage would
just result in the “Phase 2” style of movement being
repeated as per the number of tiers of storage available.
Once the movement action list has come to an end, so
has our movement policy, and all data should now
reside in its most optimal location as determined by our
proposed data temperature score and method of
balancing/moving data.

In Algorithm 3, there is a second loop not discussed
above. This is where we action the data movement,
each of the move actions generated is then integrated in
reverse order, so the movement of data occurs in a
downwards motion towards the colder tiers where
storage is more plentiful; this is to prevent any conflicts
with storage tiers being too full to accept data.

5　Experimental and Implementation Detail

The proposed system is based upon existing works not
being suitable for varying scenarios; this means that
our experimentation has to demonstrate that multiple
use case scenarios have been considered and tested
against to validate our primary objective. To achieve
these tests on various use-cases, we determined that a
simulated environment shown in Fig. 16 would be
more suitable and allow for the testing of only the
specific variables that were required without any
concern for external factors influencing our results.

5.1　Experimental environment

The presented algorithms and variables will be tested
on a simulator, a simulation is ideal for our current

Start

Get current data
object

No movement

Current tier
matches New

Higher/lower
tier

Move data object
up tiers

Move data object
down tiers

End

No Yes

LowerHigher

Fig. 14 Flow of the decision involved in creating a data
movement action.

Algorithm 3　Moving data objects into storage
Data: sortedDataObjectList, moveAction, and moveActionList
foreach dataObject in sortedDataObjectList do

! =　if dataObject.currentTier dataObject.proposedTier then
　　　moveAction = new MoveAction();
　　　moveAction.dataObjectId = dataObject.id;
　　　moveAction.targetTier = dataObject.proposedTier; Insert
　　　moveAction into MoveActionList;
　end
end
foreach each storageTier in storageTierList do
　　migrate moveAction.dataId into StorageTier matching
　　　moveAction.targetTier;
end

Hot

Warm

Cold

Hot

Warm

Cold

Hot

Warm

Cold

Phase 1 Phase 2 Phase 3

Fig. 15 Three non-explicit phases of data movement.

 388 Big Data Mining and Analytics, June 2024, 7(2): 371−398

requirements, as we can explore the potential of the
proposed variables in a controlled manner based on the
objectives of our research. The simulator is split into
two components, one is the data and data store
simulator, which represents our tiered storage
infrastructure filled with data with multiple
characteristics, the second is a user query simulator,
which will simulate user queries against the data and
data store simulator.

Individual scenarios created to test various types of
usage then have an impact on how both components
operate. The simulator has been programmed in JAVA.
The goal of the simulator is to test the variables and
algorithms proposed by our research, the success of
each will be determined by two scores generated from
our simulations and then evaluated. The fields are as
follows:

● Query cost: Each simulated user query will
generate a score based upon the tier of storage it has to
query on, this score will be totaled. Lower score is
more optimal.

● I/O movement: Over simulation as a whole, the
amount of movement that occurs will be totaled. Lower
score is more optimal.

5.2　Data store simulator

The data store simulator is our simplified
representation of a storage environment with multiple
tiers of storage. It initially establishes itself by inserting
the number of storage tiers, the breakdown of the tiers
as percentages, and the number of total data blocks
across the whole data store. Data blocks are our
method of representing storage, each data block has a
fixed position within the data store and is assigned a
temperature tier, a data block has space to assign a
single data object. Data and data blocks within our
simulator are all of a fixed size; this simplifies the
storage space to precisely what we want to simulate
and removes unnecessary complexity.

Figure 17 displays a compact version of our data
store simulator. It only has three tiers of storage
represented and six total data blocks across the whole
data store. The following values generated using this
data store simulator:

● Number of storage tiers: 3.
● Breakdown of storage tiers (percentage): 10%,

30%, and 60%.
● Total number of data blocks: 6.
To increase the size of the data store simulator, the

attribute of total number of data blocks has to be
increased, similarly if more tiers or differences in how
the tiers are weighted then the attributes just have to be
adjusted accordingly when setting up the simulator.
The simulator used for our results for example uses
roughly five hundred data blocks split across three
storage tiers.

It was explained above that the data block’s are
fixed, so in Fig. 17, Data Block 1 is always within the
hot tier and Data Block 5 is always located in the cold

Data store simulator

Hot Warm Cold

User query simulator
Simulated

users
Scenario

configuration

Fig. 16 Overview of the simulator.

Hot

Data Block
1

Data

Data Block
2

Data

Data Block
3

Data

Data Block
4

Data

Data Block
5

Data

Data Block
6

Data

Warm Cold

Fig. 17 Data store simulator.

 Dominic Davies-Tagg et al.: Data Temperature Informed Streaming for Optimising Large-Scale Multi-Tiered Storage 389

tier, it is instead the data that move between data
block’s, each piece of data only existing within one
data block. Replication is important and does
massively impact query performance, but this has also
been ignored to simplify storage to our current research
objects.

5.3　Data object

The simulator’s data object is where all features of
each data item are stored but also various statistics that
are used to generate various scores from the data, as
explained above data objects are assigned to a data
block, but can then move around between data blocks
during the data temperature movement phase.

Each data object has the following features:
● Data ID: Unique identifier for each data object.
● Creation DateTime: DateTime that the data were

first added into the data store simulator.
● Data type: Specifies the sort of data, e.g., sales

and forecasting. This is used by some scenarios to
target specific data.

● Data priority: Specific data can be essential to
success so requires a higher weighting.

These are features, each data object is assigned when
created. Data ID and creation DateTime are automated,
but data type and data priority are governed by the
scenario that is chosen. Data priority is also special in
that it is also affecting the “query score” value, high
priority data should be in the higher tiers of storage, to
reflect the negative impact of putting high priority data
in lower tiers of storage when the query cost is doubled
for high priority data:

● User queries Data 16 located in warm tier.
● User queries high priority Data 2022 located in

warm tier.
● User queries Data 18 located in hot tier.
● User queries high priority Data 2032 located in hot

tier.
Each data object also captures the following stats of

the data:
● Access count: Count the number of times the data

object has been queried against.
● Last accessed DateTime: DateTime of the last

query on the data object.
● Movement counter: Track the number of times

the data object has been moved between tiers of
storage.

● Last movement: Track whether the last

movement was up a tier or down a tier.
These stats about the data are gathered or generated

throughout the query process and are then used to
determine a data object’s individual data temperature
value.

Further details of how each feature/statistic of the
data is used to determine temperature will be covered
in detail within the data temperature section, as its
usage can change between implementations.

5.4　User query simulator

The user query simulator is the component of our
simulator that manages all the users and the queries
they make. Similar to the data store simulator, the
actions of the user query simulator are constrained by
what is established within the current scenario. The
scenario tells the user query simulator how many users
total will be created, the min/max range for the number
of queries they will make, specific target data criteria,
and the ability to specify specialist users that have their
own associated rules.
5.4.1　User
The simulator has consideration for two types of users,
the first a standard user and the second a high priority
user. Practically they do the same thing, but depending
on the specific scenario in place, high priority users
will have additional rules. High priority users represent
system users that are working on particular projects or
where their work is mission critical to a business’s
operations. The defining difference is that priority
users double the “query cost” value, so the lower tier of
storage they have to query to, then the query cost will
be much higher.
5.4.2　Query
Queries within the simulator are simple, User No. 1
targets data object A and that constitutes a query for
our purposes, no actual data exists, so a simple
interaction between the user and the data object are all
that is needed (the primary action of the interaction is
that of updating the statistics within the data object).

The data object that a user query is pretty much
random, and so could be any of the data objects that
have been added into the data storage simulator. The
only time this is not the case is when the scenario
dictates that only certain types of data should be
queried by a specific type of user. Then the user is
instead restricted to choosing data objects of that type
or potentially another feature that is not data type.

 390 Big Data Mining and Analytics, June 2024, 7(2): 371−398

5.5　Data temperature variable configuration

Our proposed solution is that of making use of suitable
variables and conditions relevant to specific data usage
scenarios, instead of the one size fits all approach.
Thus, we prepare a selection of variables to be used in
our simulated environment. Each proposed
configuration of variables and conditional rules has
been designed to the best match the scenario outlined
below. The variables and conditional rules for each
variable configuration (VC) alongside an explanation
on the motivations for combining such variables and
what the proposed outcome are in the rest of this
section.
5.5.1　Variable Configuration 1 (VC1)
● Variables:

– Age [ranged].
– Usage frequency [ranged].
● Conditional rules:
– None.
This configuration of variables is to act as a control

and represents the prevalent data temperature variables
currently used as standard. Usage frequency is the
combination of read and write activity upon the data
objects.
5.5.2　Variable Configuration 2 (VC2)
● Variables:

– Who accessed [binary].
– Frequency of usage [ranged].
● Conditional rules:
– None.
This configuration is focused primarily on usage and

who the data are being used by to determine what is
important.
5.5.3　Variable Configuration 3 (VC3)
● Variables:

– Write frequency [ranged].
● Conditional rules:
– If day is weekday or weekend [binary].
In this configuration, writes are a priority, and we

know data are used different between weekends and
weekdays.
5.5.4　Variable Configuration 4 (VC4)
● Variables:

– Age [ranged].
– Who accessed [binary].

● Conditional rules:
– Data type equals “data type A” [binary].
Variable Configuration 4 is focused towards a

specific data type, but has been combined with age and
who accessed, so the data age out over time and with
considerations for if high priority users are requiring
the data.
5.5.5　Variable Configuration 5 (VC5)
● Variables:

– Read frequency [ranged].
● Conditional rules:
– Tag equals “Tag A” [binary].
– Tag equals “Tag B” [binary].
– Tag equals “Tag C” [binary].
Reading of data objects is more important, with

priority being given to three specifically tagged data
objects.
5.5.6　Variable Configuration 6 (VC6)
● Variables:

– Age [ranged].
– Usage frequency [ranged].
– Created by [binary].
– Size [ranged].
– Who accessed [binary].
● Conditional rules
– Data type equals “data type A” [binary].
– Tag equals “Tag C” [binary].
– If day is weekday [binary].
Where Variable Configuration 1 was the control,

Configuration 6 is an extreme and has just had multiple
variables bundled together with no specific goal in
mind. Unlike the other configurations, it does not have
a matching scenario.
5.5.7　Variable Configuration 7 (VC7)
● Variables:

– Any.
● Conditional rules:
– Any.
The six prior variable configurations above were

planned and served a purpose. This configuration
instead will pseudo-randomly select any/all variables
and conditional rules featured in the six configurations
above.

5.6　Use case scenarios

This research targets varying types of user and data
access patterns, meaning we cannot adequately test
against a single kind of scenario where all data and
users are equal, we instead propose various scenarios to
test our variables and algorithms. The individual
scenarios have been constructed with real-world use
cases in mind but also with considerations for the

 Dominic Davies-Tagg et al.: Data Temperature Informed Streaming for Optimising Large-Scale Multi-Tiered Storage 391

variables we have proposed; the scenarios are relevant
because they for one indicate what sort of scenario
each variable/algorithm excels at but also where they
fail to perform and potentially hinder performance.

The scenarios described below first present the
configuration and established rules of the scenario
before explaining the use case it represents and the
specific goals the scenario aims to test.
5.6.1　Scenario 1
This scenario represents the current standard and will
act as our control. The latest data will be queried more
often and some data items will be frequently queried,
even if not of the latest dataset.

Scenario features:
● 100% standard users.
● New data are added into the scenario after every

simulated day.
● User queries will have a preference towards new

data objects.
● A set of data objects (First 10% of the original

dataset) will repeatedly be queried regardless of
newness.

● Recommended configuration: Variable
Configuration 1.
5.6.2　Scenario 2
Scenario 2 is demonstrative of an environment where
there is a smaller group of users that require high
priority usage over the rest of users. Data are not aged
out in this scenario, instead it focuses on the usage of
data and who it is being used by.

Scenario features:
● 80% standard users and 20% high priority users.
● New data are not added in this scenario.
● Recommended configuration: Variable

Configuration 2.
5.6.3　Scenario 3
Scenario 3 is representative of a high write
environment, the data being written take a higher
priority than data that are being read. The scenario also
has much different usage of data depending on whether
it are a weekday or not, data written at the weekend are
much more important than that the data written within
the weekday.

Scenario features:
● New data are not added in this scenario.
● Scenario has a higher number of writes than reads

(60/40 split).
● Recommended configuration: Variable

Configuration 3.
5.6.4　Scenario 4
Scenario 4 is interested in newer data, that is
influenced by who accessed it and if it is off a specific
data type.

Scenario features:
● New data are added into the scenario after every

simulated day.
● Recommended configuration: Variable

Configuration 4.
5.6.5　Scenario 5
This scenario is heavily influenced by users tagging
specific data objects, certain tags are then flagged as
important. In this scenario, the tagged objects will have
a higher priority to our users.

Scenario features:
● New data are not added in this scenario.
● Data objects can have multiple tags.
● Recommended configuration: Variable

Configuration 5.

5.7　Simulating data temperature

Simulation combines the variable configuration,
scenario, storage, and user query simulator being used
together. The variable configuration and the scenario
establish the rules based on which these simulators will
act. For example, Scenario 2 applied to the user query
simulator tells it to generate 80% standard users and
20% flagged as high priority, other than being flagged
differently, they will act the same as other users unless
a rule specifies otherwise. The specialist users will not
impact data temperature values unless we apply a data
temperature variable configuration that is specifically
targeting that type of user.

5.8　Scoring

Scoring is applied in two ways, one is based upon
queries and the second is based upon data movement.
A total score is given that combines them, but the
individual scoring are evaluated in Section 6 also. In
our testing, a low score is always better. Query-based
scoring is pretty much that a simulated user query is
performed, and a score is awarded. The value of the
score is based upon the tier of storage that is being
queried, if the data object being queried is more
accessible to the user, i.e., in the hotter tiers of storage
then the better, so a lower score is awarded, e.g., user
queries a data object in the cold tier of storage score for
that query would be a 3, next user queries a data object

 392 Big Data Mining and Analytics, June 2024, 7(2): 371−398

in the hot tier and scores a 1 (assuming a 3-tier hot,
warm, and cold architecture).

Movement-based scoring instead looks at how much
data are actually moved around during the balancing
process, data should be moving around, but excessive
movement is detrimental to system performance, so
should be reduced where possible.

6　Result and Discussion

Using the simulators outlined in Section 5.1, we have
gathered the results presented here. We constructed
five scenarios, with each scenario designed to simulate
a distinct type of system usage and user activity. Each
scenario has its own optimal variable configuration, but
we will test each variable configuration against each
scenario, in addition to random (using pseudo-
randomly selected variables) and extreme variable
configurations (using multiple variables with no
targeted benefit).

The first scenario and variable configuration is under
our control, as it is based on the current data
temperature, the age and frequency of data usage, and
the usage of data. Random is not a specific
configuration like the others; rather, score values were
assigned pseudo-randomly to the data positions and
used in lieu of the full process carried out for the other
configurations.

We present the results from the perspective of a
scenario, with the most desirable outcome being that
the variable configuration designed for it is the optimal
one. The worst outcome should, in theory, be the
random or extreme configuration, but it could easily be
one of the other configurations, as each could be
configured in a way that benefits its target scenario but
not the others.

In this section, the authors describe the outcomes of
their study’s variable configurations. The first scenario
serves as the baseline and is based on the existing data
temperature method, which takes into account data age
and usage frequency. A new configuration referred to
as “random” is introduced in which score values are
assigned to data positions pseudo-randomly, as
opposed to the full process used by the other
configurations. The results are presented from the
vantage point of a particular scenario, with the optimal
variable configuration tailored to it. The total score,
which is comprised of scores for data movement and
data position at query time, the better the outcome.

Stackable column charts are used to illustrate the query
and movement scores for each variable configuration.

Continuous querying of data with a high temperature
score would result in its placement in a “hot” storage
location, where it would remain unmoved during score
sorting and balancing. The addition of new data and
user preference for new data keeps costs low, as new
data initially receive the highest score and are swiftly
placed in a hot or warm tier, reducing the cost of
querying new data. Even though maintaining older data
and prioritizing new data are contradictory variables,
the query cost remains low. If new data were initially
stored on the lowest tier, query and movement
expenses would increase. It is more cost-effective to
gradually age data downward as it is balanced within
the system as opposed to rapidly moving it up and
down as new data accumulate behind it.

6.1　Scenario 1

This scenario represents the current standard and acts
as our control. The latest data were queried more often,
and some data items were frequently queried, even if
they were not in the latest dataset. The optimal
configuration for this scenario was Variable
Configuration 1.

In Fig. 18, for Scenario 1, we see that the optimal
configuration of VC1 scores the best overall, followed
closely by VC2 and VC4. The VC1 scoring the lowest is
expected because this is the scenario it should perform
best in, as it is designed to accommodate the variables
of new data and a specific set of data that is frequently
requested. It scored very low on the query cost and
then relatively low on movement, topped only by VC4’s
lower score of 62. The low query score of 28 in VC1 is
likely due to the specific set of data continually being
queried, despite new data being added, this maintains a
set of data that are constantly low cost to query and
thus provides a lower result overall.

Query Movement

250

200

150

100

50

0
VC1 VC2

Sc
or

e

VC3 VC4 VC5 VC6 VC7

99

71
28

77
90 62 99

121 118

58 81 7273 7147

124

163
133

157

202 190

Fig. 18 Scenario 1 query and movement stacked column
graph.

 Dominic Davies-Tagg et al.: Data Temperature Informed Streaming for Optimising Large-Scale Multi-Tiered Storage 393

The continual querying would maintain an overall
high temperature score and result in this continually
queried data being allocated a “hot” storage location, a
location that the data would most likely already be
sorted in, so it would require zero movement when the
overall scores were sorted and balanced. It would still
maintain its “hot” position or at least movement from a
“warm” tier position. The addition of new data and the
user prevalence for new data would also keep this cost
low. Data would get added and score the highest due to
being the newest, so the sorting/balancing of the
proposed process would place it into a hot/warm tier
immediately, reducing the cost of any new data
queried.

The query cost of 71 is still low considering the two
variables are opposed, one maintaining the older data,
the other forcing new data to be given priority. The
majority of the movement is, no doubt, due to the new
data coming into the system and getting pushed down.
If the latest data were initially stored in the lowest tier,
they would lead to increased query and movement
costs. This is because the initial query would be high,
accessing lower-scoring cold tiers. Additionally, the
cost of moving the data up, only to have it quickly
move back down with new rising data, would result in
more overall movement compared to a system where
data age gradually and are balanced within the tiers.

VC2 and VC4 were also making use of traits used in
VC1 such as age or frequency of usage, so they shared
a similar boost to performance. The low query score of
VC2 is for the same reason as VC1, and its benefit of
data continuously scoring high due to its repeated
usage. Meaning less movement spent on moving data
around and having to have it rebalanced, also equaling
more time with data in an optimal location and
reducing query cost. VC4 received a similar benefit but
has a much higher movement score due to the fact that
instead of data being maintained in position even with
new data being added, it instead has to continually
move new data down tiers as it gets added into storage
to maintain the optimal data position and a low query
score.

The configurations of VC3 and VC5 did not perform
much worse, which is slightly surprising given the
score distance between them and configurations VC6
and VC7, which scored considerably worse. Both VC3
and VC5 use a sub-typing of usage, which are read and
write. For this scenario, part of the time they would get

some benefit out of usage, but the other half they
would not get any benefit due to the wrong type of data
usage encountered. This would explain the higher
movement cost, as data would see some read/write
usage and be sorted into one location, but then the
usage would be very different shortly after and see the
data moving out of its assigned tier. Thus increasing
the cost of the query overall.

The mismatch of so many variables for VC6/VC7
with only two simple inputs meant that the scoring
process was handing out both high and low
temperature scores to all new incoming data, meaning
the new data were not sorted immediately into the
higher tiers and received a much higher cost to query
overall.

One of our primary points is that we should not only
be focused on usage/time variables for calculating data
priority, but in the context of this scenario, the only
valid variables are usage/time, so they are what is used,
and they are what performs the best overall. So it is
important to consider that usage and time are not the
only variables, but in specific instances they can be the
only valid choice to make.

6.2　Scenario 2

Scenario 2, as depicted in Fig. 19, is demonstrative of
an environment where there is a smaller group of users
that require high priority usage over the rest of users.
Data are not aged out in this scenario, instead, it
focuses on the usage of data and who it is being used
by. The optimal configuration for this scenario was
Variable Configuration 2.

The scenario is very focused on satisfying a very
specific group of users, this would probably explain
why the score is as low as it is for VC2 as it is a very
focused and niche set of scoring requirements and
conditions. Coming in the second was VC4, this is
again due to this configuration also including the same
prevalence towards the higher priority users that are

Query Movement
VC1 VC2 VC3 VC4 VC5 VC6 VC7

200
180
160
140
120
100

80
60
40
20

0

163

85

55
84 62 109

98 67

82816571734778

102

157
133

174 179

149

Sc
or

e

Fig. 19 Scenario 2 query and movement stacked column
graph.

 394 Big Data Mining and Analytics, June 2024, 7(2): 371−398

accessing the system, the other fields used in VC4
would have decreased the score in this instance. The
remaining configurations are pretty consistent, hitting
around 130−140, this is strange for VC6 and VC7, we
can change the 121 scores from VC7 up to random
chance, but it is strange that the chaos of VC6 did as
well as it did for this much more user-focused scenario.

6.3　Scenario 3

Scenario 3, as depicted in Fig. 20, is representative of a
high write environment, the data being written take a
higher priority than data that are being read. The
scenario also has much different usage of data
depending on whether it is a weekday or not, data
written at the weekend are much more important than
the data written within the weekday. The optimal
configuration for this scenario was Variable
Configuration 3.

VC3 performed the best overall, with much lower
query and movement scores than the closest
configuration by 23 points, with VC6 scoring close to
double that of VC3. VC3 is the most appropriate
configuration, but we would not have expected it to
perform this well, the scenario does have a slight
preference for data writes, but this would not reflect
such a drastic scoring variance.

VC7 also performed strangely well, this is most
likely due to a random selection of a write preferential
“conditional rule”, otherwise we would expect it to
have performed very similarly to VC6.

The other VCs performed similarly within a range of
20 points of each other, VC2 performed considerably
worse than the others, but nothing too concerning that
would warrant further investigation.

6.4　Scenario 4

Scenario 4, as depicted in Fig. 21, is interested in
newer data, that is influenced by who accessed it and if

it is off a specific data type. The optimal configuration
for this scenario was Variable Configuration 4.

VC4 performed the best, scoring lowest in both
query and movement, this will be due to the usage of
both “age” and “who accessed” variables giving data
priority. This will also be the reason VC2 performed
well also, as it also uses the “who accessed” variable to
determine priority.

The outliers for this scenario would be VC1 and
VC7, VC1 because it has the “age” variable, and so
would have expected it to perform similarly to VC2
and not score as high as it did. VC7 because it
managed to score so low despite being a random
selection of variables similar to VC6, which performed
the worst overall.

6.5　Scenario 5

Scenario 5, as depicted in Fig. 22, is heavily influenced
by users tagging specific data objects, certain tags are
then flagged as important. In this scenario, the tagged
objects will have a higher priority for our users. The
optimal configuration for this scenario was Variable
Configuration 5.

An immediate and noticeable difference across these
results compared to the others is that they are all
slightly lower values than the previous results, this, we
presume, is in part due to the lack of “new data” being
added.

Query Movement

250

200

150

100

50

0
VC1 VC2 VC3 VC4 VC5 VC6 VC7

172

99

192

136

172 180
202

159

73
83 98 81121105

73 87 63 89 82 81 78

Sc
or

e

Fig. 20 Scenario 3 query and movement stacked column
graph.

Query Movement
VC1 VC2 VC3 VC4 VC5 VC6 VC7

200
180
160
140
120
100

80
60
40
20

0

175

97 69 80
71

95 98 74

79888467868278

151
166

138

179 186

153

Sc
or

e

Fig. 21 Scenario 4 query and movement stacked column
graph.

Query Movement
VC1 VC2 VC3 VC4 VC5 VC6 VC7

180
160
140
120
100

80
60
40
20

0

155

77 75 67 81
57

65 71 84

80
61

7782 7878

157
145

158

122 132

164

Sc
or

e

Fig. 22 Scenario 5 query and movement stacked column
graph.

 Dominic Davies-Tagg et al.: Data Temperature Informed Streaming for Optimising Large-Scale Multi-Tiered Storage 395

VC5 performed the best with the lowest results
overall in both query and movement scores, this was
expected with the heavily tag-focused scenario,
resulting in a lower query cost and less movement
overall. This was strangely followed very closely by
VC6 our “extreme” implementation of a varied
assortment of attributes. VC6 does use tags, so by
chance, the scenario potentially favored this specific
type of “Tag C” that VC6 used.

The other variable configurations performed around
the 150−160 range with very similar query and
movement scores. Surprisingly, VC3 performed much
better than the others with no discernible reason, as no
tagging or benefit to new objects is offered in VC3.
Another surprise is that VC7 performed worse, even
though it was using a random selection of attributes
and conditions. We would have thought it would be in
line with the scoring of VC1, VC2, and VC4 at least.

7　Conclusion and Future Work

The primary objective of this work was to present a
solution that combined numerous user and system
variables, allowing for more performance-relevant data
placement within tiered-storage solutions. Essentially,
we were presenting an extended definition of “data
temperature” that encapsulated more than just age and
usage variables.

The presented variables and algorithms have
provided a clear benefit when used with the scenario
that they have been specifically configured for,
compared to the control, or when used against an
alternative scenario. This was an expected outcome,
and a different result would have been concerning for
the proposed research. The existing simple variables of
age and usage that acted as the control performed well
and even beat some proposed variable configurations,
not considerably, but this was either due to too much
movement or not enough due to how the weighting of
what should and should not move worked out.

Our research promotes a more bespoke attitude
toward data movement. Similar to choosing a specific
database type or storage mediums that match specific
requirements, the choice of how your data move
throughout a storage solution should also be presented
as a point of customization in an effort to get the most
benefit out of your tiered storage solution.

The primary issue with the research as presented at
present is that it has been tested on a simulation and not

a real working system being used by actual users. The
experiment presented has attempted to propose a
simplified abstraction of a real system, but a simulation
can never really hold up to experiments in reality. The
simulator did provide it with a relatively controlled
environment to test out various configurations in a
convenient and simpler manner, making it ideal at this
current level of research.

A potential limitation of the research to system
performance is that by complicating the process with
too many or conflicting variables, this in turn would
hinder system performance by either data not being
moved where it is most optimal, or even too much
movement occurring, which in turn would hinder
performance. Admittedly, for a majority of use cases, a
standard data temperature of age and usage, will work
admirably, but for more specific use cases where
priority data usage can not be determined by age or
usage alone, we see more benefit from our proposed
variables and algorithms.

Other topics worthy of exploration include
identifying additional variables not covered in this
work that could be used to gauge a dataset’s
temperature. Further validation and testing are
required, with real world case studies being the most
ideal. This also prompts research into the discovery of
metadata characteristics unique to an individual case
study, as not all variables will be appropriate for all
applications. Our proposed solution presented an
opportunity for greater user control and input in
determining a data’s priority and ideal location, but as
was discussed above, greater user control can also
result in a decrease in performance, not even
considering the overhead and cost of managing and
implementing these additional data temperature
variables, so this is something worth exploring further.

In future, the investigations are also required into
machine learning to determine future and expected
patterns in priority, working towards a more proactive
system, and ensuring data is where it needs to be prior
to users actually needing it there. We also need to
investigate the effect that the number of tiers has on
data temperature, the different weights that need to be
applied to reflect these changes, the frequency of data
movement, and the impact on I/O costs when data
move too much between tiers.

References

 J. M. Tien, Big data: Unleashing information, J. Syst. Sci.[1]

 396 Big Data Mining and Analytics, June 2024, 7(2): 371−398

Syst. Eng., vol. 22, no. 2, pp. 127–151, 2013.
 T. R. Gregory, Synergy between sequence and size in
large-scale genomics, Nat. Rev. Genet., vol. 6, no. 9, pp.
699–708, 2005.

[2]

 M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S.
Shenker, and I. Stoica, Delay scheduling: A simple
technique for achieving locality and fairness in cluster
scheduling, in Proc. 5th European Conf. Computer
Systems - EuroSys ’10, Paris, France, 2010, pp. 1–14.

[3]

 V. Roussev, G. Richard, and D. Tingstrom, dRamDisk:
Efficient RAM sharing on a commodity cluster, in Proc.
IEEE Int. Performance Computing and Communications
Conf., Phoenix, AZ, USA, 2006, pp. 193–198.

[4]

 J. Guerra, H. Pucha, J. Glider, W. Belluomini, and R.
Rangaswami, Cost effective storage using extent based
dynamic tiering, in Proc. 9th USENIX Conf. File and
Stroage Technologies (FAST’11), San Jose, CA, USA,
2011, pp. 1–14.

[5]

 D. Basin, E. Bortnikov, A. Braginsky, G. Golan-Gueta, E.
Hillel, I. Keidar, and M. Sulamy, KiWi: A key-value map
for scalable real-time analytics, ACM Trans. Parallel
Comput., vol. 7, no. 3, p. 16, 2020.

[6]

 V. Sundaram, T. Wood, and P. Shenoy, Efficient data
migration in self-managing storage systems, in Proc. IEEE
Int. Conf. Autonomic Computing, Dublin, Ireland, 2006,
pp. 297–300.

[7]

 G. Zhang, L. Chiu, and L. Liu, Adaptive data migration in
multi-tiered storage based cloud environment, in Proc.
IEEE 3rd Int. Conf. Cloud Computing, Miami, FL, USA,
2010, pp. 148–155.

[8]

 J. Zhang, M. Ma, W. He, and P. Wang, On-demand
deployment for IoT applications, J. Syst. Archit., vol. 111,
p. 101794, 2020.

[9]

 P. Gupta and M. Pegah, A new thought paradigm:
Delivering cost effective and ubiquitously accessible
storage with enterprise backup system via a multi-tiered
storage framework, in Proc. 35th Annual ACM SIGUCCS
Fall Conf., Orlando, FL, USA, 2007, pp. 146–152.

[10]

 R. Buyya, S. K. Garg, and R. N. Calheiros, SLA-oriented
resource provisioning for cloud computing: Challenges,
architecture, and solutions, in Proc. Int. Conf. Cloud and
Service Computing, Hong Kong, China, 2011, pp. 1–10.

[11]

 J. Tai, B. Sheng, Y. Yao, and N. Mi, Live data migration
for reducing SLA violations in multi-tiered storage
systems, in Proc. IEEE Int. Conf. Cloud Engineering,

[12]

Boston, MA, USA, 2014, pp. 361–366.
 R. Rizzi and D. Cariolaro, Polynomial time complexity of
edge colouring graphs with bounded colour classes,
Algorithmica, vol. 69, no. 3, pp. 494–500, 2014.

[13]

 I. Robertson-Steel, Evolution of triage systems, Emerg.
Med. J., vol. 23, no. 2, pp. 154–155, 2006.

[14]

 M. Christ, F. Grossmann, D. Winter, R. Bingisser, and E.
Platz, Modern triage in the emergency department,
https://www.aerzteblatt.de/int/archive/article/79788, 2010.

[15]

 M. Yamada and S. Yamaguchi, Filesystem layout
reorganization in virtualized environment, in Proc. 9th Int.
Conf. Ubiquitous Intelligence and Computing and 9th Int.
Conf. Autonomic and Trusted Computing, Fukuoka, Japan,
2012, pp. 501–508.

[16]

 Z. Yang, Y. Wang, J. Bhamini, C. C. Tan, and N. Mi,
EAD: Elasticity aware deduplication manager for
datacenters with multi-tier storage systems, Clust.
Comput., vol. 21, no. 3, pp. 1561–1579, 2018.

[17]

 G. Zhang, L. Chiu, C. Dickey, L. Liu, P. Muench, and S.
Seshadri, Automated lookahead data migration in SSD-
enabled multi-tiered storage systems, in Proc. IEEE 26th
Symp. on Mass Storage Systems and Technologies
(MSST), Incline Village, NV, USA, 2010, pp. 1–6.

[18]

 W. Shin, C. D. Brumgard, B. Xie, S. S. Vazhkudai, D.
Ghoshal, S. Oral, and L. Ramakrishnan, Data jockey:
Automatic data management for HPC multi-tiered storage
systems, in Proc. IEEE Int. Parallel and Distributed
Processing Symp. (IPDPS), Rio de Janeiro, Brazil, 2019,
pp. 511–522.

[19]

 S. Sankar and K. Vaid, Storage characterization for
unstructured data in online services applications, in Proc.
IEEE Int. Symp. on Workload Characterization (IISWC),
Austin, TX, USA, 2009, pp. 148–157.

[20]

 S. Rawson, M. G. Iadanza, N. A. Ranson, and S. P.
Muench, Methods to account for movement and flexibility
in cryo-EM data processing, Methods, vol. 100, pp. 35–41,
2016.

[21]

 A. Kala Karun and K. Chitharanjan, A review on
Hadoop—HDFS infrastructure extensions, in Proc. IEEE
Conf. Information & Communication Technologies,
Thuckalay, India, 2013, pp. 132–137.

[22]

 P. K. Acharya and S. K. Patro, Effect of lime and
ferrochrome ash (FA) as partial replacement of cement on
strength, ultrasonic pulse velocity and permeability of
concrete, Constr. Build. Mater., vol. 94, pp. 448–457,
2015.

[23]

Ashiq Anjum is a professor of distributed
systems at University of Leicester, UK,
and the director of enterprise and impact
for the School of Computing and
Mathematical Sciences, University of
Leicester, UK. His areas of research
include data intensive distributed systems,
distributed machine learning models, and

physics informed machine learning models for digital twins. He
has been investigating digital twins to emulate the real time
behaviour of (bio)mechanical and cyber-physical systems.

Nick Antonopoulos is a professor in cloud
computing at Edinburgh Napier
University, UK. He has more than 20 years
of academic and leadership experience,
with a very strong background in initiating,
leading and delivering improvements at an
institutional level. He has an excellent
international reputation in his field,

evidenced by his papers, books, chairing of prestigious
conferences, and his active leadership of broad reaching research
partnerships nationally and internationally.

 Dominic Davies-Tagg et al.: Data Temperature Informed Streaming for Optimising Large-Scale Multi-Tiered Storage 397

Dominic Davies-Tagg is a software
developer at Steris. He also worked as a
researcher at University of Derby, UK. His
research interests include big data
computing, databases, and distributed
computing.

Ali Zahir is an accomplished researcher
and industry professional. He currently is
pursuing the PhD degree at University of
Leicester, UK, with a specialization in
distributed computing. His research
focuses on elevating data processing
workflows in cloud and edge computing
environments, aiming to optimize the

handling of data-intensive scientific analyses. He is deeply
engaged in various national and international research and
development projects in the fields of high performance
computing (HPC), data science, networking, system design and
architecture, etc.

Lu Liu is a professor at the Department of
Informatics, University of Leicester, UK,
with expertise in artificial intelligence, data
science, and the Internet of Things,
focusing on developing trustworthy and
sustainable systems based on machine
learning for health, net zero, and digital
manufacturing. He has been investigating

machine learning models for large-scale sustainable information
and communications technology (ICT) systems for many years
and successfully developed several AI-driven methods for
reducing the carbon footprint of data centres and communication
systems.

Muhammad Usman Yaseen received the
master degree from Dalarna University,
Sweden, in 2012, and the PhD degree from
University of Derby, UK, in 2019. He is an
assistant professor at COMSATS
University Islamabad, Pakistan. With a
rich background in both higher education
and industry, he has accumulated over 15

years of expertise in machine learning, deep learning, and
computer vision. He has a strong track record of developing
innovative deep learning models for analyzing real-world data
sources like images, videos, and text.

 398 Big Data Mining and Analytics, June 2024, 7(2): 371−398

