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Abstract: Data temperature is a response to the ever-growing amount of data. These data have to be stored,

but  they  have been observed that  only  a  small  portion  of  the  data  are  accessed more  frequently  at  any  one

time. This leads to the concept of hot and cold data. Cold data can be migrated away from high-performance

nodes to free up performance for higher priority data. Existing studies classify hot and cold data primarily on the

basis of data age and usage frequency. We present this as a limitation in the current implementation of data

temperature.  This  is  due  to  the  fact  that  age  automatically  assumes  that  all  new  data  have  priority  and  that

usage is purely reactive. We propose new variables and conditions that influence smarter decision-making on

what  are  hot  or  cold  data  and allow greater  user  control  over  data  location  and their  movement.  We identify

new metadata variables and user-defined variables to extend the current  data temperature value.  We further

establish rules and conditions for  limiting unnecessary movement of  the data,  which helps to prevent  wasted

input output (I/O) costs. We also propose a hybrid algorithm that combines existing variables and new variables

and  conditions  into  a  single  data  temperature.  The  proposed  system  provides  higher  accuracy,  increases

performance, and gives greater user control for optimal positioning of data within multi-tiered storage solutions.

Key words:  data  temperature; hot  and  cold  data; multi-tiered  storage; metadata  variable; multi-temperature

system

1　Introduction

According to recent studies, we have created over forty

zetabytes of data[1], collecting more data in the past few
years than that has ever existed before. This volume of
data  come in  a  variety  of  formats,  such  as  millions  of
tweets  sent  daily  or  terabytes  generated  by  genomics
sequencing[2].  The  problem with  storing  all  these  data
gets  addressed  with  cheaper  hardware  and  commodity
storage  solutions  such  as  Hadoop,  allowing  for
significant  amounts  of  storage  across  a  distributed
cluster  of  nodes.  Hadoop,  although  powerful,  is  not
known  for  high-performance  analytical  tasks  or  fast
input output (I/O)[3].

Advances  in  technology  have  also  meant  a
significant  decrease  in  the  price  of  memory  (random
access  memory  (RAM)),  but  also  the  development  of
faster storage hardware such as solid state drive (SSD)
(Flash-Memory)  and  PCIe  NVMe  SSDs.  All  of  these
are  faster  than  traditional  hard  disks  with  their  slow
physical  platters.  Random  access  memory  and  flash
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memory technologies have no moving parts, and this in
part gives them their much higher I/O speed[4].

The  above  are  viable  storage  mediums,  but  the  cost
compared  to  commodity  storage  is  exorbitant,  so  only
the  most  critical  and  high  priority  data  get  used  by
these solutions. All other data would need offloading to
cheaper  storage,  such  as  hard  disk  drive  (HDDs)  or
tapes.  Considering  the  benefits  of  both  the  storage
across distributed commodity nodes and the expensive
high-performance  memory  storage,  it  makes  sense  to
combine both into a single storage solution. A solution
with various levels of performance and cost, combined
into a convenient single solution[5].

Yet, tiered storage solutions are not a novel idea and
have  existed  for  many  years[6].  What  is  innovative  is
the  move  towards  automation  of  the  data  movement
and  the  management  of  the  various  tiers  of
performance  by  making  the  most  out  of  the  data  by
matching it  to  its  most  ideal  location within the tiered
storage solution.

In  recent  literature,  temperature  has  been  used  as  a
synonym  for  data  priority.  It  describes  current  and
mission-critical  data  as  hot  and  less  relevant  data  as
cold.  This  naming  convention  can  also  be  applied  to
the  storage  mediums  that  contain  data.  This
phenomenon  is  depicted  in Fig.  1,  where  a  small  hot
tier  of  storage  is  displayed  at  the  top.  The  size  of  the
hot tier is  smaller due to the cost of high-performance
storage resources. Working down the tiers of Fig. 1, it
can be seen that the tiers get larger the further down we
proceed.  Moving  towards  cheaper  commodity  storage
results  in  more  storage  at  each  tier;  hence,  the  frozen

tiers using cheaper storage hardware are larger.
The  storage  of  all  data  within  the  high-performance

tiers  of  storage  is  unreasonable  and  not  financially
viable. Especially considering that the vast majority of
data stored will be accessed only infrequently, if at all.
Data  temperature  is  primarily  used  to  describe  a
dataset’s age or frequency of use. These are beneficial
factors in determining data positioning in an automated
way,  but  these  two  factors,  used  individually  or
combined,  are  not  enough  to  position  the  data  in  an
optimal or time-appropriate fashion.

Many implementations using data age treat new data
with the highest priority, and so it gets weighted higher
than  older  data.  The  problem  with  this  is  that  just
because  the  data  are  new,  it  does  not  mean  that  it  is
required or will get used at all. Age also presents issues
when combining with other variables; as data get older,
the  weighting  to  move  it  to  colder  storage  increases.
This  increase  in  weighting  towards  colder  storage
could  conflict  with  data  with  a  high frequency of  use,
causing  it  to  rank  lower  than  usage  frequency  would
otherwise determine.

Frequency of usage puts the most popular data in the
higher  performing  resources.  The  primary  problem
with this is that the most popular data do not equal the
highest  priority  data.  Day-to-day  sales  processing
might  result  in  specific  datasets  ranking  higher  in
usage,  but  data  used  by  a  project  requiring  high
performance  may  only  get  queried  once  or  twice  per
day.  The  later  data  have  a  much  greater  need  for  hot
storage, but this is not reflected in the low frequency of
usage.

Existing works have no focused consideration for the
quality  of  the  data  (type  and  size)  or  of  the  storage
devices  they  have  moved  the  data  to  because  they  do
not  factor  in  user  needs  or  actual  real-world  priorities
(e.g.,  end-of-year calculations).  It  is  a reactive process
only,  not  a  proactive one;  a  proactive approach would
ensure  that  the  data  are  where  they  need  to  be  before
the  queries  hit.  Also,  no  consideration  has  been  given
to  the  actual  cost  of  data  movement  and  recursive
patterns  in  the  flow of  data  that  climbs up the  storage
tiers  and  drops  back  down.  This  is  a  movement  that
would incur unnecessary input output (I/O) costs.

The  purpose  of  this  research  work  is  to  address  the
above-mentioned  limitations  of  existing  works.
Preliminary research found that there was very little or
no  information  available  about  the  application  of
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Fig. 1    Typical  multi-tiered  data  temperature  storage
solution.
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alternative  variables  in  data  temperature  managed
multi-tiered  storage  solutions.  Existing  data
temperature  solution  usage  of  the  variables “age” and
“usage  frequency” is  effective.  However,  in  certain
scenarios, data placement based on these two variables
alone  can  present  a  detriment  to  performance.  Such
scenarios  require  the  addition  of  other  variables  to
ensure the continued optimal placement of data.

The  proposed  data  temperature  supplementation
method is intended to address the challenges posed by
the  ever-increasing  volume  of  data  and  its  effective
management.  It  is  acknowledged  that  the  current
classification of data into hot and cold categories based
solely on data age and usage frequency is reactive and
restrictive. To overcome these limitations and enhance
data  positioning,  the  proposed  method  introduces  new
variables and conditions,  allowing for  more intelligent
decision-making  when  identifying  hot  and  cold  data.
By incorporating additional  metadata and user-defined
variables,  the  data  temperature  value  is  expanded  to
encompass a wider range of data attributes. In addition,
the  proposed  rules  and  conditions  optimize  data
movement, thereby reducing unneeded I/O costs during
data  transfers  between  storage  tiers.  The  introduction
of  a  hybrid  algorithm that  combines  existing  and  new
variables  improves  precision,  performance,  and  user
control  for  optimal  data  placement  within  multi-tiered
storage  solutions,  thereby  presenting  a  proactive  and
efficient approach to data management.

The  objective  of  this  research  work  is  to  develop
additional  variables  and  controls  that  apply  to  data
temperature,  to  more accurately determine the optimal
positioning  of  the  data  within  multi-tiered  storage
solutions, but also to reduce the overall I/O cost of such
data  movements.  The  proposed  system  identifies  and
tests  suitable  metadata  variables  and  user-defined
variables that can be used to extend data temperature. It
establishes  rules  and  conditions  for  limiting
unnecessary  movement  of  data,  which  will  prevent
wasted I/O costs.  A hybrid algorithm is  also proposed
that combines existing variables and new variables and
conditions into a single data temperature.

This  work  contributes  to  the  field  of  multi-tiered
storage  solutions  by  proposing  an  improved  approach
to data temperature management. Beyond data age and
usage  frequency,  it  introduces  new  variables  to  more
precisely  determine  optimal  data  positioning  and
prioritize data based on multiple factors. By combining

these  variables  into  a  hybrid  algorithm,  the  proposed
system  provides  greater  data  placement  accuracy  and
user  control,  while  reducing  unnecessary  data
movement  and  associated  I/O  costs.  The  research
addresses  the  limitations  of  existing  works  by
providing  a  proactive  approach  to  data  storage,
ensuring  that  data  are  placed  appropriately  prior  to
queries,  and  taking  into  account  real-world  priorities
and  user  requirements.  This  research  aims  to  improve
storage  efficiency  and  performance  in  environments
with multiple storage tiers.

2　Literature Review

This section presents the knowledge and existing work
that  are  being  performed  to  optimize  large-scale  and
multi-tiered  storage  systems.  Recently,  researchers
have  carried  out  studies  to  manage  clusters  consisting
of  multiple  servers  by  using  a  single  system[7].  They
have  developed  a  backend  and  a  front-end  portal  to
manage,  dispatch,  and  rotate  jobs  and  tasks  to  the
backend  servers.  The  jobs  and  tasks  that  are  of  equal
priority  are  handled  on  a  first-come  and  first-serve
basis, with a buffer maintaining the job queue.

Recent advancements in the cloud computing domain
also  revolutionized  the  concept  of  multi-tiered  storage
systems[8].  Most  recent  cloud  systems  by  Amazon,
Google,  Microsoft,  and  IBM  have  introduced  the
concepts of “shared cloud” and “on-demand” resource
deployment[9].  Their remote clients are facilitated with
resource provisioning on the basis of requirements and
demand.  Application  programming  interfaces  (APIs)
are developed by the providers and used by the clients
to achieve on-demand resource deployment.

Most  of  the  recent  enterprise  multi-tiered  storage
systems work on a combination of SSDs and HDDs[10].
SSDs  have  the  advantages  of  speed  and  performance,
but  they  also  have  the  disadvantages  of  cost  and  the
number  of  writes.  Therefore,  the  top  tiers  of  these
multi-tiered  storage  systems  use  SSDs  so  that  the  hot
data  can  be  accessed  more  quickly  compared  to  the
lower  tiers,  and  the  lower  tiers  contain  HDDs  so  that
the  overall  storage  capacity  of  the  system  could  be
increased.

One of the major challenges faced by such systems is
ensuring  the  diversity  of  service  level  agreements
(SLAs)  in  resource  provisioning  and  management[11].
The multi-tiered storage solution also helps tackle this
challenge  by  maintaining  the  shared  resources  being
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used by different remote clients in multiple tiers.
Another  solution  that  is  proposed  to  handle  the

challenges  of  multi-tiered  storage  systems  is  to  define
proper  policies  based  on  the  usage  and  frequency  of
tasks and workload on multiple nodes[12].  The policies
are  developed  in  such  a  way  that  they  handle  normal
workloads  as  well  as  the  bursty  workloads.  Bursty
workloads  are  those  that  are  capable  of  generating
many  I/O  operations  in  response  to  a  single  query  or
statement.  Such  bursty  workloads  are  usually
responsible  for  creating  disastrous  effects  on  the
overall  system. The policies are written in such a way
that  these  workloads  are  handled  by  SSDs  instead  of
HDDs.

Numerous  algorithmic  and  theoretical  approaches
have  also  been  proposed  recently  by  a  number  of
researchers  to  handle  and  manage  multi-tiered  storage
systems.  These algorithms and theoretical  studies tend
to  observe  the  effects  of  data  transfer  or  migration
across  the  system.  One  of  such  theories  is  the  edge
coloring theory proposed by Ref. [13]. This theory uses
polynomial-time approximation to minimize the effects
of data transfer across the system and try to achieve the
most optimal position.

Another  recently  proposed  technique  is  an  adaptive
controller named “triage”, which utilizes various ways
to  mitigate  the  effects  of  performance  isolation  in
multi-tiered  storage  systems.  This  system  is  designed
to  ensure  that  the  distributed  environment  has  high
resilience to heavy workloads[14]. This system was later
improved  by  Ref.  [15]  to  tackle  the  issue  of  overhead
while  transferring  data  from  one  location  to  another.
This  was  achieved  by  identifying  the  hotspots  and
tuning the system according to the bandwidth ratio.

Extent-based dynamic tier manager (EDT-DTM) was
proposed  by  Ref.  [16]  which  is  a  tier  management
system aimed at  dynamically  extending  the  placement
during  system  execution.  The  proposed  tier
management system helped reduce the consumption of
power  by  employing  dynamic  extent  placement.
Similarly,  another  attempt  was  made  by  Ref.  [17]  to
overcome the issue of disk replacement and transfer of
data  within  a  reasonable  amount  of  time.  Another
algorithm  known  as  the  lookahead  data  transfer
algorithm  was  developed  by  Ref.  [18]  to  improve  the
efficiency  and  performance  of  multi-tiered  storage
systems.  The  idea  was  to  curate  a  lookahead  window
size  that  could  help  with  the  needs  of  dynamic

workloads.
However,  most  of  the  approaches  surveyed  in  this

section  assume  that  the  jobs  and  tasks  within  the
system observe  a  cyclic  pattern,  and  these  approaches
do not take into account the different application SLAs
in  their  algorithms.  Also,  if  we  look  from  the  service
provider’s  side,  these  approaches  are  unable  to
efficiently  manage  most  of  the  challenges  posed  by
multi-tiered  storage  systems,  especially  in  the  case  of
big  data.  Providing  high  performance  and  quality
across  these  hybrid  multi-tiered  storage  resources  is
still a core and difficult challenge.

We also argue that most of the state-of-the-art studies
do not consider both the on-the-fly data transfer issues
and a  number  of  application SLAs for  data  transfer  in
multi-tiered storage systems.

3　Data Temperature Preliminary

This section presents the knowledge and existing work
necessary  for  understanding  the  proposed
methodology.  This  section  is  divided  into  relevant
topic  areas  that  underpin  the  research  into  data
temperature,  with  each  topic  providing  a  broad
understanding before expanding to elements relevant to
the proposed problem and solution.

3.1　Tiered storage

Tiered  storage  was  introduced  to  balance  the  demand
for  storage  capacity  and  system  performance.  The
demand  was  a  result  of  high-performance  storage’s
expensive  pricing  and  exponentially  growing  data.
Tiered storage means placing data across different tiers
of  storage,  with  each  tier  having  different  levels  of
availability,  performance,  security,  and  reliability,
among other considerations. The primary goal of tiered
storage is to reduce the cost of ownership[19].

A standard method of deploying tiered storage is that
of a three-tiered storage hierarchy model[20]. The model
splits storage into tiers, with each tier being assigned a
classification  of  data  and  the  type  of  storage
technology  associated  with  it.  These  tiers  can  be
defined as follows:

● Tier 1: Primary: Mission critical data that support
customer-facing  and  revenue  creating  operations.
Utilize  the  most  expensive,  high  performance  disk
systems, to ensure high response, near-zero downtime,
and high availability.

● Tier  2: Secondary:  Broad  range  of  business
applications such as databases, file systems, email, and
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various other systems. Tier 2 still requires a reasonably
fast  response  time  but  not  as  fast  as  Tier  1,  so  lower
performance disks can be chosen.

● Tier 3: Archival: The fastest growing storage tier,
used  primarily  for  archiving  old  data  or  maintaining
data for compliance reasons. This tier uses tape or off-
site  data  vaults.  These  data  are  not  actively  used,  so
slow responses are acceptable.

Recently,  an additional  tier  of  storage often labelled
“Tier  0” has  emerged,  often  based  on  flash  based
storage. Tier 0 is suited for high values. Tier 0 contains
extremely  time-sensitive  solutions  such  as  financial
trading situation where every millisecond counts.  This
tier  would  not  be  expected  in  day-to-day  business
requirements  and would  only  occur  in  niche  specialist
environments.

Tiered  storage  was  primarily  used  in  specific
enterprise  environment  use  cases.  However,  two
challenges limited the success and widespread usage of
tiered storage, and that was data movement (migration)
and data classification.

3.2　Data classification

Data  classification  is  a  data  management  tool  for
categorizing  data  to  effectively  answer  organizational
questions  about  data  such  as:  what  data  types  are
present, or who has access to certain types of data. The
benefits  of  classifying  data  are  often  data  compliance
or security related.

Classifying  data  within  tiered  storage  specifically  is
the  act  of  matching data  and devices  to  assign data  to
the  most  optimal  storage  tier.  It  is  often  the  first  step
when  planning  a  tiered  storage  environment.
Implementations  of  tiered  storage  have  often  been
limited  due  to  the  challenge  of  manually  classifying
data  and  the  lack  of  effective  methods  of  automated
classification.

The  following  are  just  some  of  the  variables  that
have  been  used  as  criteria  for  classifying  data,  they
have been split into three logical groupings:

● Data metadata
– Data type,
– Assigned owner,
– Location,
– Name.
● Data time
– Creation time,
– Last accessed,
– Last update time.

● Data content
– Specific tags and details about the sort of data that

are actually stored (financial, sales, etc.),
– Private or publicly accessible,
– Availability requirement/impact of unavailability.

3.3　Data migration

The  majority  of  movement  policies  are  mono-
directional  data  movement  only  occurring  from  high
performance  tier  to  low  performance  tiers,  without
much consideration for bidirectional movement of data.
The  earliest  research  into  tiered  storage  was  focused
solely on the movement of data out to tertiary (offline)
storage,  decluttering  storage  and  freeing  up  higher
performance resources for new incoming data[21].

3.4　Multi-temperature  storage  and  data
temperature

Multi-temperature  data  storage  is  a  tiered  storage
strategy aimed at minimizing the costs associated with
maintaining large amounts of data. Data are assigned a
“temperature” based  on  age  and  frequency  of  usage,
then  the  more  frequently  accessed  or  newer  data  are
optimized  for  placement  into “hot” high-performance
tiers of storage, with the “cold” data being isolated and
placed  into  cheaper  commodity  storage  solutions.  The
assignment  of  temperature  and movement  of  data  in  a
multi-temperature storage environment is an automated
process.

Interest  and  implementations  of  data  temperature
have  appeared  in  a  lot  of  enterprise  data  warehouse
environments  with  big  names  such  as  IBM,  Teradata,
and SAP all having their own implementations. Apache
Hadoop  distributed  file  system  (HDFS)  even  has
storage  types  and  policies  designed  around  data
temperature as part of an archival storage solution, the
goal  being  to  decouple  ever-increasing  storage
requirements from compute capacity[22].

3.5　Data usage frequency

Data  usage  frequency,  when  used  as  a  value  for  data
temperature, is the identification of the amount of times
data  are  accessed,  the  higher  the  number  of  times  the
data  have  been  accessed,  then  the  hotter  the  data’s
temperature. In general, this is great and makes perfect
sense,  the  most  critical  data  are  the  data  that  more
people  are  requesting,  so  placing  that  data  item  in  a
high-performance  storage  area  will  be  the  most
beneficial,  serving the needs of more users with much
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higher response times.
The  problem  with  this  method  of  thinking  is  that  it

only  works  if  all  data  and  queries  made  against  the
system have the same level of importance and urgency.
Being  the  most  required  does  not  immediately  equate
to the most important. Figure 2 depicts two data items
in  a  data  temperature  managed  storage  environment
using  frequency  of  use  as  its  variable  for  data
temperature.  The  figures  multiple  general  usage  users
are  querying  a  data  item  thousands  of  times  per  day,
and  so  within  the  usage-based  data  placement,  it  is
allocated  a  prime  position  within  the  hottest  storage
tier.  In  comparison,  the  single  mission-critical  single
user  that  requires  responsive  query  times  to  work
efficiently is instead working on data within the lowest
performance “frozen” tier  due  to  the  limited  usage  of
the data item.

It  would be more beneficial  to upgrade the mission-
critical data item to the hottest tier and downgrade the
more generic data item to a warmer tier of storage, but
within a usage frequency controlled environment, then
this  could  not  happen.  The  example  presented  as  part
of Fig. 2 could also raise issues with I/O, the “hot” tier
of storage is most likely a single or small group of high
performance nodes, whereas the cooler tiers of storage
are going to most definitely be much larger clusters of
nodes  that  would  better  serve  thousands  of  queries
from  multiple  users,  leaving  the  high  performance
nodes free to a limited but high priority set of users and
datasets.

Another  issue  that  could  prove  costly  in  a  usage-

controlled  data  temperature  is  that  of  recurring
movements of data, by this, we mean that data are not
always  used  once  and  then  never  used  again.  Instead,
some datasets are used a lot for a period, and then the
usage  drops  off,  but  then  consider  that  the  period  of
usage  repeats  repeatedly,  for  example  once  every
month. On first thought, this is ideal for the frequency
of usage and could be its prime sort of problem when it
resolves.

The problem although is that it is not a simple act of
these  data,  which  was  cold  but  is  now  hot;  it  is  a
gradual  process  as  the  usage  of  the  data  ramps  up,  so
the  data  could  potentially  be  climbing  up  the  storage
tiers  as  the  usage  increases  for  that  month,  using  the
storage  solution  from Fig.  2 as  an  example  that  could
be  three  movements  of  data  upwards,  then  three
movements  back  down  the  tiers  when  the  period  of
high  usage  ends,  this  wasted  data  movement
demonstrated  in Fig.  3a,  ideally  because  of  the
consistent  movement  every  month  instead  only  two
movements  of  data  as  demonstrated  by Fig.  3b  could
have sufficed, this would result in a lot less wastage of
resources every single month.

It  would  also  result  in  users  benefiting  immediately
from him high-performance tier, instead of the wait for
it  climbing  up  the  storage  tiers.  It  is  also  entirely
feasible  by  the  time  the  data  had  climbed  the  tiers  of
storage,  the  period  of  usage  could  be  over  for  that
month,  and so any benefit  the “hot” high-performance
tier of storage provided was wasted.
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Fig. 2    Usage-based data placement.
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3.6　Data age

Age is commonly applied in one of two ways, the first
being  that  of  the  newest  data  entering  the  system
translating  directly  to  the  hottest  data  and  placed  in  a
high-performance storage tier. Second, data can instead
be  allocated  a  default  temperature,  commonly  not  hot
nor  cold,  but  an  average  temperature  value  and  more
suited to a commodity storage location. Both feature a
decrease in temperature over time as they get older.

The problem with data age as a value for determining
the hotness of data is that it automatically assumes that
new data  have a  level  of  importance and that  old data
are  less  important  than  all  incoming  new  data.  For
specific  use  cases,  this  can  be  ideal  such  as  eBay’s
usage of data temperature, where they clearly identified
that  a  common  trait  of  their  datasets  is  heavy  initial
usage,  with  new  datasets  being  considered  hot  and
decreasing  in  how frequently  they  were  accessed  over
time.

This sort of consistent pattern of data being input and
then  used  immediately  is  not  typical  of  all  use  cases,
instead  consider,  for  example,  a  pharmaceutical
company  where  new  datasets  are  ingested  frequently
from various labs and subjects but the actual data being
used most  frequently is  the data for  active studies and
projects and not just the newest available sets of data.

In the use-cases described above, where data are not
consistently  queried  immediately  upon  ingestion,  we
are presented with the issue of data no longer being in
high-performance  storage  when  it  is  needed. Figure  4

demonstrates this point, in Week 1, the data have been
inserted  straight  into  the “hottest” high-performance
storage area. The problem with this is that the dataset is
not going to be needed for several weeks, but over the
four-week  period  presented  in  the  diagram,  the  data
have  gradually  been  migrated  down  each  week  to
achieve  a “colder” lower  performance  storage  tier
because they are now old data. The result of this sort of
movement is that the storage tiers are not well utilized,
as  the  data  that  currently  need  querying  are  instead  in
the  lowest  performance  tier  of  storage  and  will  be
much  slower  to  work  with  than  they  were  four  weeks
prior.

Another issue with data age is that today’s volume of
data are enormous, so the amount of new data entering
a storage solution will always push older data down to
lower tiers in favor of the newer data, even if older data
were  only  ingested  into  the  hot  tier  seconds  prior.
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Fig. 3    Wasted data movement diagram.
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Fig. 4    Data ageing to lower tiers over time.
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Figure 5 depicts this issue over a 20-min period across
four storage tiers: hot, warm, cold, and frozen. Data are
represented  by  circles,  with  new  data  inserted  over
time, and so the newer data push the old data down into
the lower storage tiers as new data objects get ingested.

The  scale  of  the  example  in Fig.  5 is  vastly
minimized  to  use  26  alpha  characters,  but  considering
today’s volume of data created, it is not that unrealistic
for GB’s or TB’s of data to be ingested over the 20-min
period presented. Taking note of data object “M”, after
20  min  and  two  ingestions  of  new  data,  it  has  been
degraded  from  data  with “hot” performance  and  is
instead residing in storage tiers three levels down. The
downgrade  is  due  to  limitations  in  space  on  the  high-
performance  tiers,  requiring  the “M” data  item  to  be
gradually  migrated  between  tiers  to  accommodate  the
newer “hotter” data.

3.7　Lack of user control

Data  temperature  as  a  data  resource  management
solution is  mostly an automated process,  with age and
usage  frequently  being  values  that  are  easily  tracked
and  acted  upon  by  the  system,  without  any  prior  user
input.  The  problem  with  automation  of  data
temperature  is  that  it  only  has  two  points  of  data  to
work with: age and usage, but this does not account for
the  real  world  or  business  requirements;  instead,  all
data  are  treated  as  if  it  were  all  the  same.  In  many
instances, this equality of data is acceptable, but for use
cases  where  specific  data  do  take  priority,  that  data
need  to  be  in  the “hot” high-performance  storage  tier.
This  will  help  to  attain  maximum benefit  of  the  high-
performance tier.

Despite this  section arguing against  the total  lack of
user input and presenting it as an issue, too much user

input  would  also  cause  its  own  specific  set  of
problems,  not  even  counting  the  person  hours  and
resources  for  manually  allocating  data  across  a  tiered
storage solution. Any solution proposed should instead
allow  for  greater  user  control  in  a  more  supervisory
manner  and  not  a  hands-on  manual  process,  as  this
would  prove  to  be  a  regressive  and  not  a  progressive
action  towards  smarter  automation  of  a  tiered  storage
solution.

The  discussion  in  this  section  concludes  that  in  the
past,  we  have  had  tiered  storage,  but  due  to  issues  of
classification  and  data  movement,  it  never  really  took
off  in  any  real  way  except  within  specific  enterprise
environments.  With  a  resurgence  in  tiered  storage  in
the  form  of  data  temperature,  prompted  by  lowered
costs  of  memory,  SSDs  and  various  new  storage
devices that have varying levels of cost, this, combined
with  virtualized  storage  and  file  systems  such  as
HDFS,  makes  migration  of  data  feasible  due  to  its
lower impact on system performance.

Data  temperature  implementations  currently  only
classify  data  into  two  variables  that,  as  discussed
above,  have  various  flaws  inherent  to  each,  at  least
outside of specific use cases. Older tiered storage data
classification was costly and inconvenient, but specific
traits of the data itself or users were explored and used.
Caching,  a  technique  with  similar  characteristics  to
tiered  storage,  also  has  a  method  of  classifying  data.
The traits of both expanded beyond the age and usage
currently used for data temperature.

Metadata and predictive algorithms have come a long
way  in  recent  years,  simplifying  the  classification  of
data  and  also  allowing  for  pre-emptive  predictions  of
how to  classify  data  in  the  future.  From this  research,
we have concluded that data temperature classification
can  expand  by  exploring  existing  variables  previously
applied  in  tiered  or  cached  environments.  This,
combined  with  complete  metadata  management  tools
and  machine  learning  algorithms  against  the  data,
provides  multiple  data  points  to  classify  the  data  and
optimally  place  temperatures  at  the  ideal  temperature
and location.

4　Extending Data Temperature

Existing  work  revealed  that  the  variables  that  have
been  used  to  determine  the  placement  of  data  in  the
cache  were  merely  age  and  usage.  From  this,  we
propose  the  following:  the  utilization  of  alternative
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Fig. 5    New data pushing older data down to colder storage
tiers.
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variables,  but  also  a  process  of  combining  multiple
variables into scope-specific configurations to deliver a
situational  based  solution  that  proved  to  be  more
optimal  than  the  current  single  solution  approach.  We
also propose an approach to balance the temperature of
our temperature-ordered data with the goal of reducing
unnecessary movement.

We propose that instead of being constrained to two
variables that are of limited scope in how we rank data
in  a  multi-temperature  system,  considerations  should
instead be made for alternative variables when ranking
data and assigning a “temperature”. These variables are
then  further  combined  with  conditional  statements
using  solution-specific  ranking  algorithms  to  provide
optimal placement and greater user control of data.

The basic premise of the proposed solution is already
prevalent in existing data temperature implementations,
with  data  age  and  usage  frequency  often  being
combined  and  used  together  to  deliver  a  more
competent  data  temperature  value.  The deficiencies  of
age  and  usage  as  variables  for  optimally  positioning
data  were  explored  in  the  prior  section,  but  when
combined  into  a  single  data  temperature  value,  these
identified  deficiencies  are  mitigated.  When  combined
into  a  single  data  temperature  value,  age  gradually
lowers  the  temperature  over  time  to  slowly  decay  the
data  into  lower  tiers.  When  combined  with  the
frequency  of  use,  it  prevents  data  still  actively  used
from getting archived.

The  use  of  more  data  points  often  brings  greater
understanding to a variety of problems, but even when
combined, data age and usage frequency have the issue
of being of limited scope and only being relevant when
the  newest  and  most  highly  used  data  reflect
importance;  it  cannot  consider  operational  or  specific
data requirements, and instead all data are generic and
treated  equally.  The  scope  of  the  current  data
temperature  does  match  a  lot  of  use  cases,  such  as
those  where  you  have  lots  of  new  incoming  data  that
are of immediate importance and will be of immediate
use,  but  not  all  requirements  are  so  simplistic,  so  a
demand  exists  for  more  tailored  case-specific  data
temperatures  that  will  provide  a  more  optimal
placement of data on a case-by-case basis.

The  proposal  of  additional  variables  and  controls
over data comes from the process of data classification
that has been applied to tiered storage for many years.
Data  classification  has  long  been  used  in  many

variables  such  as  owner,  filename,  time  last  accessed,
business value, availability index, retention period, etc.
For determining how data should migrate between tiers
of  storage,  caching  has  also  been  explored  to  identify
what  should  exist  in  the  cache  and  what  should  not,
with similar usage of a broader range of variables than
just age and usage alone.

The  proposed  approach  intends  to  introduce
additional  variables  that,  when  combined,  further
mitigate  the  deficiencies  of  using  a  single  data
temperature  variable,  so  the  existing  variables  of  age
and usage frequency are not being replaced as there is
nothing  explicitly  wrong  with  them.  They  just  fit  a
specific use case and are not the correct tool for every
situation; we are instead adding additional variables to
deliver  a  more  flexible  toolset  when  addressing  data
temperature in a variety of usage scenarios.

We  have  split  the  process  into  five  stages;  the  first
three  are  the  initial  setup  and  configuration  of  the
system that get performed when establishing what data
temperature  means within  a  specific  system.  The final
two stages  are  processes  that  repeat  continually  as  the
data  temperature  of  a  system  is  calculated  over  time.
The frequency of repetition will be domain specific and
influenced  by  various  factors  such  as  the  amount  or
regularity  of  new  data  added,  the  amount  of  active
system usage, and many other factors, but for the scope
of  our  research  and  within  our  experiments,  we  have
worked  under  the  assumption  that  updates  to  data
temperature occur overnight every night. The proposed
data  temperature  process  consists  of  the  following
stages:

● Identify target system scope,
● Selecting suitable variables,
● Applying conditional rules,
● Calculating the temperature of data,
● Balancing data temperature.
The  following  subsections  cover  each  stage  of  the

proposed  process.  Each  stage  is  thoroughly  explained
and  justified  before  concluding  and  moving  onto  the
next stage of the process.

4.1　Identifying target system scope

The  proposed  approach  is  not  a  recommendation  that
all  the  proposed  new  variables  be  used  together;
instead,  consider  it  a  technique  where  a  subset  of
relevant variables is identified to construct a model that
is more accurate and suitable to a specific use case than
if  the  entirety  of  an  available  dataset  is  used  instead.
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Identifying  the  scope  of  a  storage  system  consists  of
fact-finding tasks that will aid in the selection of these
relevant  variables.  The  aim  here  is  to  identify  how  to
use the system, and how the “hotness” or “coldness” of
the  data  should  be  determined  using  the  variables  we
have  defined.  System  scope  can  be  determined  by
exploring (but not limited to) the following conditions:

● Users  requirements: Not  all  users  are  equal,
access  rights,  responsibilities,  and  job  roles  have  a
significant  impact  on  how  a  user  interacts  with  a
system.  Having  understood  that  a  specific  group  of
users  requires  data  available  with  minimal  delay,  it
allows  that  data  to  have  a  higher  priority  than  data
required by more generic users.

● Objectives  of  the  system: The  purpose  of  the
system and what  it  is  meant  to  achieve  influence  how
we  decide  what  data  should  move  through  a  system,
there  is  a  big  difference  between  a  system  used
specifically for analytics and a system that is  intended
for archiving purposes only.

● Additional  interfaces  and  influences: Storage
solutions  are  not  always  user-centric.  Often,  they  can
instead  be  used  by  specific  tools,  such  as  machine
learning  or  various  other  automated  processes.  The
problem with  this  is  that  the  query  patterns  and usage
of  the  system  would  be  much  different  compared  to
what  you  would  find  if  compared  to  a  set  of  users,
potentially resulting in less focus placed on these tools.

● Frequency of updates: Daily updates equal  a  lot
of  movement  around  a  system,  especially  if  the  new
data are essential  and need prioritizing and so become
an  important  factor,  less  frequent  update  is  a  much
slower and less movement intensive scenario, so in the
former  scenario,  identifying  variables  that  decrease
movement would be ideal.

● Concurrent  users: The  number  of  users  is  not
indicative of what is important, but it does allow us to
understand  the  weighting  of  variables  such  as  read  or
write  frequency  and  make  more  knowledgeable
decisions on how to place data.

Without  first  taking  such  steps  to  understand  a
storage solution, there is little benefit to be gained, and
instead,  the existing data  temperature implementations
could  be  used  and  applied  to  everything  regardless  of
any  potential  loss  in  performance  due  to
incompatibility  with  the  requirements  of  the  system.
Understanding  the  storage  system  allows  for  a
movement  towards  a  more  optimal  storage  solution,

not  the  most  generic  optimal  storage  solution,  but  a
storage  system  that  is  most  optimal  for  a  specific  use
case  scenario  with  a  bespoke  data  temperature.  In
understanding  a  system,  we  can  identify  appropriate
variables that match the scope and requirements of the
system more appropriately.

4.2　Selecting suitable variables

We propose the following variables that can be used as
new  temperature  variables.  These  variables  include
“file  name”, “file  type”, “tagging/categories”, “who
created”, “when  created”, “who  has  access”, “read
frequency”, “write frequency”, “movement count”, and
“movement  direction”.  The  proposed  variables  are
either simple metadata such as names, tags, etc., or can
also  be  statistics  of  the  data,  such  as  the  amount  it
moves in a month or total  write counts.  This is  not an
exhaustive list of all potential variables; instead, it is a
brief  selection  of  variables  that  could  be  used  to
contribute  towards  our  proposed  data  temperature
value, with each item accompanied by an example use-
case for determining hotness or coldness.

The selection of the variables will  be determined by
the  initial  evaluation  performed  on  the  system  to
determine its scope; at present, we propose no specific
process  for  automatically  classifying  or  determining
the  relevance  or  suitability  of  a  specific  variable  for  a
specific  system  or  use  case.  Variable  selection  is
instead  a  process  that  will  require  domain  and  system
knowledge.

4.3　Applying conditional rules

The  secondary  aim  of  the  proposed  work  is  to
introduce  greater  user  control  over  how  the  data  are
placed,  even  with  complex  machine  learning  and
continuously  evaluating  years  worth  of  usage  data.
Users  will  often  have  specific  knowledge  external  to
the system that could ensure optimal placement of data
for  a  specific  event,  such  as  an  urgent  project  where
specific data could experience a surge in usage for only
a single day.

No  system  could  have  expected  that,  but  with  the
addition  of  a  conditional  rule  indicating  that  for  that
day a specific data type would experience heavy levels
of  usage,  it  could  already  be  in  place  (within  hot
storage  tiers)  ready  to  be  used  and  delivering  the
optimum  performance  available.  Conditional  rules  are
not  proposed  just  with  user  input  in  mind,  but  could
also  be  used  to  input  events  and  conditions  that  have
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been  recommended  by  a  machine  learning  algorithm.
Examples of conditional rules are as follows:

⩾● Data age  5 months = archive.
●  If  current  day  is  Monday,  all  PDF  files  are  high

priority.
● Filename containing AUG2016 = hot data.

⩾●  If  write  frequency  read  frequency  =  hot  or
warm.

Similar  to  the  choice  of  variables,  we  make  no
specific  recommendations  on  which  conditional  rules
to apply.  These rules are case specific,  so what  would
be  applicable  to  one  storage  solution  would  not  be
applicable  to  another.  The  rule  statements  used  above
allow for broad classifications of data,  but can also be
made very specific if required. These rules make use of
the identified variables and give them more depth and
specificity.  All  are  determined  by  the  user  and
providing  a  significant  amount  of  influence  over  how
we store the data.

This proposal for conditional rules is that they can be
a constant fixture of the data temperature calculations,
or that the rules can be applied as needed at a moment
of  notice.  This  flexibility  in  customization  allows  for
even  greater  responsiveness  of  the  data  and  its
placement and movement throughout the system.

Conditional rules will be applied exactly the same as
standalone  variables  and  combined  into  a  single  data
temperature  score,  with  the  option  of  determining  a
binary outcome or a ranged outcome as per the number
of available tiers.

4.4　Data temperature scoring algorithm

The  primary  objective  of  a  hot  and  cold  storage
solution  is  to  distinguish  between  frequently  accessed
or “hot” data and rarely accessed or “cold” data based
on  their  relative  importance.  The  optimal  scenario
entails  sorting  all  data  from  the  hottest  to  coldest,
ensuring  that  critical  data  are  stored  in  high-
performance storage and less important data are stored
in lower-cost, slower tiers. However, the complexity of
sorting  increases  when  multiple  variables  are
considered, necessitating multiple comparison sorts for
each variable.  A data temperature scoring algorithm is
proposed  to  address  this  issue.  This  algorithm  applies
scaling and weighting mechanisms to each variable and
rule,  generating  a  single  numeric  score  for  each  data
object  that  represents  its “hotness”.  The  algorithm
employs a more efficient counting sort to organise data
objects based on their calculated scores, optimising the

storage solution by placing data in the appropriate tiers
in an efficient manner.

The  proposed  data  temperature  scoring  algorithm
streamlines  the  sorting  of  data  based  on  multiple
variables in hot and cold storage solutions. Combining
scaling  and  weighting  mechanisms,  it  computes  a
single  numeric  score  for  each  data  object  that  reflects
its  relative  significance.  This  eliminates  the  need  for
multiple  comparison  sorts  per  variable  and  replaces
them with a  more efficient  counting sort,  enabling the
storage system to sort data from the hottest to coldest.
The  capability  of  the  algorithm  to  optimise  storage
performance  ensures  that  frequently  accessed  data  are
readily  available  in  high-performance  tiers,  while  less
frequently  accessed  data  are  stored  in  lower-cost,
lower-performance  tiers,  resulting  in  a  cost-effective
and efficient multi-tiered storage solution.

Figure 6 depicts the scoring process per data object,
at the top of the diagram, the variables and conditional
rules  that  are  applied  to  each  data  object  are  being
inserted  into  the  process,  with  the  final  output  of  the
process being an individual score per each data object.
The phases of the process are explained in detail in the
subsections below.
4.4.1　Scoring per variable/conditions
Scoring  is  a  single  process  that  is  applied  to  each
variable  of  a  data  object,  but  due  to  the  multiple
variables  and  conditionals  used,  we  have  split  the
process into binary or ranged scoring. Binary scoring is
applicable to variables and conditions that only have a
binary  outcome,  and  ranged  scoring  is  instead  for
outcomes that can be split into three or more outcomes,
the  number  of  outcomes  is  determined  by  the  number
of available tiers.

Each variable/conditional that has been identified for
usage  is  scored  equally,  meaning  the  maximum  or
minimum  score  available  is  equal  for  each
variable/conditional  (not  considering  the  addition  of
weightings  in  the  next  stage).  The  maximum  score
range is based on the number of storage tiers in usage,
so 4 tiers of storage result in a score range of 1 through
4.  Within  the  topic  of  feature  scaling/normalization,
this would be similar to the min-max scaling approach.
Min-max scaling is  an alternative approach to Z-score
normalization.  Min-max  has  a  bounded  range  and  so
suppresses  the  effect  of  outliers  with  its  fewer  initial
standard deviations[23].

Range scoring is applied to variables/conditions that
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can  be  split  up  into  multiple  ranges,  the  number  of
ranges  that  are  created  is  based  upon  the  number  of
tiers  of  storage  available.  An  example  of  this  is
presented in Table 1, which displays the scoring range
of  a  4-tiered  storage  for  the  variable  of  data  age.  The
ranges  themselves  are  currently  created  manually,  but
these ranges can be generated automatically according
to the suitability of the storage tiers.

In  situations  where  a  variety  of  variables  were
impractical  or  impracticable,  binary  scoring  was
implemented  as  an  alternative  method.  In  situations

where a range of values for a particular variable cannot
be  determined,  the  binary  scoring  system  provides  a
simple  and  effective  solution.  This  method  of  scoring
uses  the  maximum  and  minimum  values  of  the  range
scoring  system  to  represent “true” and “false”
conditions, respectively. In the binary scoring method,
a  conditional  rule  is  defined  to  determine  whether  a
particular  data  characteristic  is  present  or  absent.  For
instance,  the  passage  describes  a  conditional  rule  that
seeks the presence of a CSV data type. If a data object
is  determined  to  be  of  type  CSV,  it  is  assigned  the
maximum  possible  score  (for  example,  4)  to  indicate
that it is of greater importance (hot data). Alternatively,
if  the data object  is  not  of  type CSV, it  is  regarded as
having a lower priority (cold data) and is assigned the
lowest  possible  score  (for  example,  1). Table  2
illustrates  this  with  an  example  scenario. Table  2
displays various data objects and their respective scores
according to the binary scoring system. If the data type
is CSV, the data item is  given a score of 4,  indicating
that it is a hot data item. If the data type is not CSV, it
is  assigned  a  score  of  1,  indicating  that  it  has  a  lower
priority  in  the  storage  system  and  is  therefore  less
important.

Binary  scoring  is  a  straightforward  and  efficient
method  for  addressing  situations  where  a  simple
true/false  determination  is  adequate.  It  complements
the  more  complex  range  scoring  system  and  expands
the data temperature scoring algorithm’s adaptability to
accommodate  a  variety  of  scenarios  in  multi-tiered
storage  solutions.  By  incorporating  binary  scoring  in
addition to range scoring, the algorithm becomes more
flexible  and  adaptable  to  a  wider  range  of  data
characteristics, allowing for improved optimisation and
decision-making  in  data  placement  within  the  storage
tiers.

Another  benefit  of  using  these  ranges  is  that  the
temperature  score  is  not  weighted  specifically  to  one
data  variable,  it  is  instead  relatively  equal  due  to  the
normalization  and  balancing  that  occur.  This  also
means that the addition of user specified rules does not
totally  dominate  the  temperature;  instead,  they  are
factored together equally. This is in part to prevent user
 

Table 2    Example  of  a  binary  score  for  a  4-tiered  storage
environment.

Data type Score description Score value
If data type is CSV Hot 4

If data type is not CSV Frozen 1

 

Multiple
variables per

data

Conditional
rules per

data

Scoring per
variable/condition

Ranged or binary

Apply weighting to
score value

Calculating data
temperature for
individual data

Ranged Binary

 
Fig. 6    Overview  of  the  data  temperature  scoring  process
per variable/condition.

 

Table 1    Example  of  a  range  score  for  a  4-tiered  storage
environment.

Scoring range Score description Score value
Data age < 1 week Hot 4
⩽1 week Data age < 2 weeks Warm 3
⩽ ⩽2 weeks Data age  1 month Cold 2

Data age > 1 month Frozen 1
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requests  from totally  dominating  the  score  and  let  the
combined  score  overall  determines  where  the  data  are
actually positioned.

Considering  our  proposed  example  of  4  tiers,  if  we
assume  that  each  data  item  temperature  score  is
calculated  by  6  variables  (combination  of  ranged  or
binary),  the  maximum total  score  is  going to  be  24 as
can be seen in Fig. 7. Similarly, so at the minimum, the
minimum coldest score available would be a score of 6
as  can  be  seen  in Fig.  8.  If  we  increase  the  tiers  or
variables  used,  the  min/max  scores  will  also  increase,
but  the  opportunity  for  each  data  object  to  score  the
same remains balanced.
4.4.2　Weighting
Here,  we  determine  the  relative  importance  of  the
variables identified within the scope of our system. The
assignment  of  weight  to  a  specific  variable  is  largely
dependent  on  the  scope  and  evaluation  of  the  specific
system.  The  weighting  can  pertain  to  multiple  factors
such  as  user  benefit  (all  users  or  specific  users),
operational  requirement  (regularization  needs,  etc.),
I/O  performance,  archiving  procedures,  update
frequencies, or data size.

Due to the scale of data available, instead of ranking
all  data  variables  in  comparison  to  each  other,  we
instead gather the values from our identified variables,
apply the weighting identified above, and then combine
them into  a  convenient  score  per  data  item;  this  score
represents  the  temperature  of  that  specific  piece  of
data.

The  standard  weighting  of  each  variable  or
conditional  is  1,  with  an  increase  or  decrease  in  this
weight as needed to increase or decrease the priority of
the  specific  value;  e.g.,  a  weighting  of  0.5  would
reduce the impact of that specific score, but similarly, a

weighting  of  4  would  greatly  increase  the  amount  of
impact  a  single  variable  has  upon  the  overall
temperature.

The  scaling/balance  afforded  by  the  prior  section
should  be  adequate  without  the  need  for  additional
weighting,  but  for  added  user  control,  we  propose  the
addition  of  applying  a  weighting  to  each  individual
variable of a data object.

We propose a minimum range of 0.5 and a maximum
of  2.  This  is  to  prevent  user  bias  from  heavily
influencing  the  scores  while  still  allowing  for
customization within the existing variables used. Using
the  examples  in  the  prior  section  as  a  basis,  the
potential lowest score available now becomes 3 and the
highest  available  score  becomes  48,  as  presented  in
Fig. 9.

The  min  and  max  above  are  not  realistic,  as  if  you
are  applying  a  max  or  min  weighting  to  everything,
then  you  might  as  well  apply  it  to  nothing.  A  more
realistic  example  would  be  applying  it  to  a  single
variable  such  as  in Fig.  10.  The  double  weighting
applied to variable 1 means that it  will  overall  score a
higher value compared to the other variables, even if it
scores  1  from a  colder  tier,  it  will  be  weighted  higher
and more important than 1 from the other variables.

4.5　Calculating the temperature of data

The  final  process  of  calculating  each  data  object’s

 

Variable 1 = 4 (hot) × 1
Variable 2 = 4 (hot) × 1
Variable 3 = 4 (hot) × 1
Variable 4 = 4 (hot) × 1
Variable 5 = 4 (hot) × 1
Variable 6 = 4 (hot) × 1

Maximum available score

24

 
Fig. 7    Scoring per variable, all hot scores.

 

Variable 1 = 1 (frozen) × 1
Variable 2 = 1 (frozen) × 1
Variable 3 = 1 (frozen) × 1
Variable 4 = 1 (frozen) × 1
Variable 5 = 1 (frozen) × 1
Variable 6 = 1 (frozen) × 1

Maximum available score

6

 
Fig. 8    Scoring per variable, all frozen scores.

 

Variable 1 = hot (4) × 2
Variable 2 = hot (4) × 2
Variable 3 = hot (4) × 2
Variable 4 = hot (4) × 2
Variable 5 = hot (4) × 2
Variable 6 = hot (4) × 2

Maximum available score

48

Variable 1 = cold (1) × 0.5
Variable 2 = cold (1) × 0.5
Variable 3 = cold (1) × 0.5
Variable 4 = cold (1) × 0.5
Variable 5 = cold (1) × 0.5
Variable 6 = cold (1) × 0.5

Maximum available score

3

 
Fig. 9    Scoring  per  variable,  but  with  double  or  half
weighting applied.
 

Variable 1 = hot (4) × 2
Variable 2 = hot (4) × 1
Variable 3 = hot (4) × 1
Variable 4 = hot (4) × 1
Variable 5 = hot (4) × 1
Variable 6 = hot (4) × 1

Maximum available score

28

 
Fig. 10    Scoring  per  variable,  but  with  max  weighting
applied to a single variable.
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individual  temperature  value  is  that  of  combining  all
the scores and weights of each individual variable and
conditional rules into a single data temperature. Due to
the  normalization/scaling  of  the  data  objects,  we  can
simply  total  the  scores  from  each  variable  used
together  and  have  an  independent  data  temperature
score for each data object within our system.

The proposed calculation is found within Algorithm 1,
it loops through all variables and conditional rules that
were  applied  to  the  system,  first  getting
normalized/scaled by either the ranged-outcome or the
binary-outcome methods  dependant  solely  on  the  type
of value of the variable used. Once a normalized score
has been returned, it is then multiplied by that variables
assigned weighting to increase or decrease the priority
of that variable as is needed. Finally, Algorithm 1 just
totals  up  the  score  achieved  for  each  variable  and  the
conditional  rule,  dataTemperatureScore  being  the  data
temperature  value  that  is  assigned  to  each  data  object
within the system.

The  benefit  of  an  independent  score  is  that  it  never
increases  in  complexity  or  resources  required
regardless  of  the  amount  of  data  actually  stored,  no
sorting  or  reliance  on  thousands  or  millions  of  other
data items and how they score.

Algorithm 1  runs  against  each  data  item and  makes

all  assigned  variables  and  conditional  rules  that  have
been identified prior, the final outcome being that of a
single  data  temperature  value  created  per  data  item.
The output score is  a singular value per data item, the
score is  stored alongside the metadata about each data
object. Algorithm 1 itself is low complexity due to the
normalization  and  scaling  that  occurred  per  each
variable/rule,  without  that  process,  the  majority  of
Algorithm 1 would instead be  aimed at  equalizing the
different  values  and  achieving  some  semblance  of
balance, so specific values were not unfairly weighted.

Dependent on the variables and other conditions such
as  update  frequency,  the  output  value  could  change
greatly between each run, but a change in the assigned
score  does  not  necessarily  equal  the  movement  up  or
down  a  tier  as  each  value  is  updated  accordingly  and
compared against the rest to determine an ideal storage
tier in the section below.

4.6　Sorting

Sorting  is  a  comparative  action  between  two  values,
determining  if  one  value  is  higher  or  lower  than  the
other,  then  applying  this  across  a  much  broader  range
to  gradually  sort  these  values  into  order.  The  problem
with  this  comparative  style  of  ordering is  that  it  has  a
lower bound of O(nlog n) complexity. O(nlog n) is not
the  worst  outcome for  a  sorting  algorithm,  but  having
to run it multiple times against each of our data object
variables  and  conditional  statements  would  result  in  a
lot  of  compute  and  memory  usage  depending  on  the
scale of data objects stored.

Fortunately,  we scaled  and weighted  our  values  and
provided  a  single  score  per  data  object;  we  could  just
sort  this  score  using  a  comparative  sort  as  described
above.  However,  we  have  put  ourselves  in  a  unique
position to use an integer-based sort due to the scaling
process  to  assign  every  data  object  a  single  data
temperature  score.  The  specific  integer-based  sort
proposed is the bucket sort.

The  bucket  sort  on  average  has  a  complexity  of
O(n+k),  which  is  a  decent  linear  sort  (where n is  the
number of data objects and k is the number of distinct
values);  the  problem  is  that  the  basis  for  this  requires
an  even  distribution  between  buckets.  If  one  bucket
instead contained all  values,  then we had to  sort  them
into  a  single  bucket,  this  could  result  in  the  worst
complexity of O(n2).  By adequately defining variables
and  conditions  appropriate  to  the  storage  data,  the

 

Algorithm 1　Calculating overall data temperature of an
object
Data: variables, minScore, and maxScore
Result: dataTemperatureScore
foreach var in variables do
　　if var.type == “range” then
　　　if var.value == Condition 1 then
　　　　var.score = maxScore;
　　　else if var.value == Condition 2 then
　　　　var.score = maxScore(−1);
　　　else if var.value == Condition 3 then
　　　　var.score = maxScore(−2);
　　　else if var.value == Condition 4 then
　　　　var.score = minScore;
　　end
　　else if var.type == binary then
　　　if var.value == true then
　　　　var.score = maxScore;
　　　else if var.value == false then
　　　　var.score = minScore;
　　dataTemperatureScore = var.score × var.weight;
end
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worst  case  scenario  should  be  avoided,  and  the  result
will be a more even distribution of data objects across
the buckets.

Simplified, the bucket sort algorithm operates as per
the  following  instructions,  additionally  conveyed  in
Fig. 11.

● Establish buckets of evenly distributed ranges.
● Distribute each among the bins.
● Sorting occurs within each individual bucket.
●  Buckets  are  visited  in  order  and  the  elements  are

output back into the array.

4.7　Balancing data across storage tiers

Once the scoring of data temperature has been achieved
and an  order  for  all  data  objects  has  been  established,
the  final  step  of  the  data  temperature  process  is
implemented.  The  score  is  used  as  a  comparison
against  each  instance  of  data  to  determine  whether  it
should  be  migrated  upwards  or  downwards  to  a
different  tier  of  storage.  The  goal  of  balancing  data
temperature is not to orderly arrange it from the highest
scoring  to  the  lowest  scoring;  it  is  instead  aimed  at
migrating between various tiers of storage.

Consider  if  a  specific  numerical  order  of  data
temperature was identified for every piece of data, and
then we cleared out all storage and inserted data into it,

the hottest first, until each tier filled up or the data ran
out  of  the  amount  of  movement  required  in  one
instance to actually ensure that all data would be in its
assigned  position,  from  the  hottest  to  coldest.  This  is
just  wasteful.  Instead,  consider  only  moving  specific
data objects up and down as needed, the data only need
to end up in a relevant tier of storage; it does not need
to  be  assigned  to  the  most  perfect  position  within
storage.

In an ideal world, the simplistic solution would be to
order the data by the generated score from the highest
to  lowest  (the  highest  scoring  being  ingested  first  and
gradually  filling  up  each  tier  until  you  ran  out  of
storage  or  items  to  store).  The  problem  with  doing  it
that  way  is  that  it  would  require  a  huge  amount  of
movement  with  potentially  every  data  object  being
moved, this would be an unnecessary waste of I/O and
system resources.

Thankfully,  we  do  not  need  as  much  movement  as
alluded  to  above;  the  first  item  in  the  hot  tier  storage
will have no difference performance wise compared to
the  thousand  items  within  the  same  storage  tier.
Movement  between three  or  more  tiers  of  storage  is  a
lot more manageable than a complete ascending sorting
of every data item, which is unrealistic.

Each of our tiers  of  storage has a temperature range
attributed to it; these ranges are determined by the data
present  in  each  tier.  For  each  tier,  the  average/mean
value  is  stored,  and  the  min  and  max  values  are
currently  stored  within  each  tier.  Maintaining  these
values  lets  us  know  how  much  needs  to  be  scored  to
move  a  temperature  upwards  or  downwards  between
tiers.

Similar  to  the  scoring  process  itself,  the  movement
occurs per item; the movement process is kept separate
from  the  temperature  scoring  and  occurs  after  the
process  completes,  to  prevent  unnecessary  movement.
Consider  that  if  you  calculated  a  new  score  for  each
item and then made the movement action, the next data
item  score  could  override  that,  meaning  you  would
have to move the same data around again.

The premise of this movement is to look at where the
data  are  currently  located,  only  move  it  when
absolutely necessary.  The above movement itself  does
not  occur  automatically  after  the  above  process;
instead, it is added to a movement action list. This step
has been added to further ensure that data are moved as
little as possible. By adding it to such an action list, we
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Fig. 11    Diagram  depicting  a  simplified  interpretation  of
bucket sort.
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can order it appropriately, working from the highest to
the lowest, moving down the tiers as we go.

We  have  split  our  proposed  approach  to  balancing
data into the following three stages:

●  Establishing  upper  and  lower  bounds  of  storage
tiers.

● Assigning movement to data objects.
● Data relocation plan.

4.7.1　Optimal data object for tier placement
Before  any  movement  can  occur,  we  need  to
understand where  a  data  object  should  belong,  but  we
only have a limited amount of space in the higher tiers,
so we need to establish what data will fit in the hottest
tiers  as  well  as  consider  its  data  temperature  score.
Thankfully, the counting sort we implemented can help
us  with  this  type  of  calculation.  By reusing  the  object
counts  from  the  highest  to  the  lowest,  we  can  easily
establish  the  number  of  items  that  will  fit  into  each
storage tier.

For example, in Fig. 12, we have a table that will act
as a visual description of the data sorted into groups for
counting as part  of  the counting sort  algorithm. Along
the  bottom,  there  are  coloured  ranges  that  depict  the
span  of  data  temperature  scores  which  the  individual
tiers  actually  cover.  Note  that  the  value  within  each
range is the amount of storage used and the maximum
amount  of  storage for  that  tier.  Working from right  to
left (the highest to lowest), we are gradually filling up
each tier until we run out of storage for that tier, when
one  tier  of  storage  runs  out  the  next  tier  of  storage
starts counting along (note the coloured background of
the cells that make this more visible).

The pseudocode presented in Algorithm 2 details this
process: initially, we loop through the collection of our
data objects; this collection comes from the prior stage
of calculating data temperature, so each data object has

some generic metadata details such as identifier’s size,
current  tier  location,  and  also  its  data  temperature
score. The prior process also sorted them, so they are in
order  from  the  highest  to  lowest  data  temperature
score.

For  each  tier  of  storage,  we  have  a  tier  object
collected together as tierList in Algorithm 2. Each tier
object  has  an  empty  collection  waiting  to  be  filled  by
data  objects.  Looping  through  each  data  object,  the
goal is  to insert  them into a specific tier.  The tiers are
arranged from the highest to lowest (the first tier at 0 is
the highest tier). This is also the reason it is important
that  our  temperature-scored  data  be  ordered  from  the
highest  to  lowest,  so  the  more  high-priority  data  are
first  inserted  into  each  tier.  Before  this  insert  occurs,
we  need  to  check  whether  the  data  object  will  fit  into
the tier.

The  if  statement  in  Algorithm  2  calculates  the
amount  of  space  currently  used  by  the  tier  plus  the
current object size; if this is above the storage capacity,
the data object gets placed into the next tier of storage,
and  we  move  onto  the  next  data  object  in  order.  The
else  statement  occurs  if  enough  space  is  available
within the current tier for our data object. First, the data
object has its proposed tier value updated to match the
tier it  is being inserted into, then it  is inserted into the
current  tier.  Next,  the  current  tier’s  tierStorageUsed
value  is  updated  by  adding  the  current  data  object’s

 

Algorithm 2　Data object to tier placement
Data: dataObjectList, tierList, currentTier, and storageTier tier =
0;
foreach each dataObject in dataObjectList do

>　　if tierList(tier).tierStorageUsed + dataObject.size 
　　　　tierList(tier).tierCapacity then
　　　dataObject into tierList(tier+1).dataObjects; x =
　　　　tierList(tier+1).tierStorageUsed + dataObject.size;
　　　　tierList(tier+1).tierStorageUsed = x;
　　end
　　else
　　　Insert dataObject into tierList(tier).dataObjects; x =
　　　　tierList(tier).tierStorageUsed + dataObject.size;
　　　　tierList(tier).tierStorageUsed = x;

⩾　　　if storageTier  90 of tierList(tier).tierCapacity then
　　　　tierList(tier).isFull = true; tier = tier + 1;
　　dataTemperatureScore = var.score × var.weight;
end
foreach each dataObject in dataObjectList do
　　Insert storageTier.dataObjects into storageTier;
end

 

Data temperature score
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Fig. 12    Filling up the storage tiers capacity from the hottest
to coldest.
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size to its own.
Finally,  a  check  occurs  in  the  form  of  another  if

statement  in  Algorithm  2.  It  checks  the  amount  of
storage space left, and if it is a certain percentage value
full,  then  the  current  tier’s  isFull  value  is  set  to  true,
and we move onto  the  next  tier,  this  check is  done so
that we are not trying to insert every value into the first
tier if a tiny amount of space is left, but it also acts as a
buffer  for  each storage tier.  Once the  initial  loop over
all  available  data  objects  is  completed,  the  tiers  of
storage are looped through and their collections of data
objects  are  combined  into  a  single  collection  of  data
objects  in  the  order  of  the  proposed  tier  of  storage,
ready for the next phase.

Once  the  process  has  worked  its  way  through  our
data  structure  from the  highest  to  lowest  and  split  the
data objects into specific tiers of storage, we will know
what  data  object’s  should  ideally  be  placed  in  which
tiers  (based  upon  our  data  temperature  scoring).
Figure  13 depicts  the  information  we  should  now
understand  about  our  data.  We  know  the  ideal  tier  of
storage  for  each  data  object  and  the  data  temperature
score  of  each  temperature.  With  an  understanding  of
where  our  data  should  optimally  be  located  and  an
understanding of what sort of score range each storage
tier should adhere to, we can now make moves towards
planning to move data into the correct tiers of storage.
4.7.2　Assigning movement to data objects
In  the  prior  section,  we established where  data  should
optimally be located, now we want to avoid movement.
In an ideal  world,  you could remove all  data  and then
reinsert  it  at  the  relevant  tier  into  an  empty  storage
environment, but this is not viable. Instead, we need to
assess  and  plan  to  move  data  or  not  move  data  as
needed.

Working  from  the  highest  to  the  lowest  scoring
again, we check if the tier assigned matches the current
tier, and this informs us if an action needs to be taken.

From this, we can draw three conclusions: the first and
second  are  moving  the  data  object  up  and  down tiers,
and the third is taking no action at all. This is presented
in Fig.  14,  with  this  decision  being  actioned  on  every
data object.

If  the  first  or  second  options  are  the  result,  then  an
entry  is  added  to  the  action  list,  such  as “move  data
object  Y  from  cold  tier  to  hot  tier”.  This  repeats  for
every  data  item until  we  have  a  full  list  of  movement
actions that need to be executed.

Algorithm  3  is  the  simple  process  of  how  we
establish what needs moving using the prior processes
of scoring, sorting, and establishing an ideal position in
storage.  With  the  collection  of  objects  from  the  prior
process of assigning a proposed tier to each data object,
here we check that against the data objects current tier
of  storage.  If  it  matches  the  proposed  location,  then
nothing  happens;  the  data’s  location  does  not  need  to
be changed, but if the tier is different, then a movement
action is generated, consenting the data ID and tier that
it  is  to  be  moved  to,  and  this  occurs  for  each  data
object.
4.7.3　Data relocation plan
In  the  past  two  subsections,  we  presented  what  ideal
tiers each object should be assigned to and proposed a
list  of  actions  that  are  only  going  to  move  what  is
necessary to move. Movement occurs in reverse,  from
the lowest to highest, so the higher tiers of storage are
freed  up,  when  it  comes  to  moving  data  up.  If  all
movement  down  to  the  lower  tiers  has  already  been
completed,  then  there  will  be  no  conflict  with  space
requirements  when trying  to  move  data  upward  to  the
higher tiers, where space is more limited. The proposed
solution  may  become  problematic  if  even  the  lowest
storage  tier  is  of  low  capacity,  but  in  most  cases,  we
can  think  of  the  lowest  commodity  tiers  of  storage  as
being  almost  unlimited  at  this  point,  at  least  in  a
majority of cases.
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Fig. 13    Optimal tier data object locations.
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We  have  not  established  any  clear  boundaries
between  movement  to  tiers  because  if  working  in
reverse order (the lowest to highest), then the tiers will
get  used  in  the  desired  order  anyway,  even  without
explicitly  having  to  establish  that.  This  is  due  to  the
order  in  this  section.  This  is  demonstrated  in Fig.  15,
the  first  diagram  labeled “Phase  1” shows  only  the
lowest scoring data moving down to the lowest tier of

storage  once  all  of  this  movement  completes,  next  is
the “Phase  2” diagram,  slightly  different  here  as  we
have the data moving down and up into the middle tier
of  storage.  Finally, “Phase  3” is  the  remaining  data
actions moving up to the hottest tier of storage.

This  example  has  only  presented  three  tiers  of
storage for simplicity,  but  more tiers  of  storage would
just  result  in  the “Phase  2” style  of  movement  being
repeated as per the number of tiers of storage available.
Once the movement action list has come to an end, so
has  our  movement  policy,  and  all  data  should  now
reside in its most optimal location as determined by our
proposed  data  temperature  score  and  method  of
balancing/moving data.

In Algorithm 3, there is a second loop not discussed
above.  This  is  where  we  action  the  data  movement,
each of the move actions generated is then integrated in
reverse  order,  so  the  movement  of  data  occurs  in  a
downwards  motion  towards  the  colder  tiers  where
storage is more plentiful; this is to prevent any conflicts
with storage tiers being too full to accept data.

5　Experimental and Implementation Detail

The proposed system is based upon existing works not
being  suitable  for  varying  scenarios;  this  means  that
our  experimentation  has  to  demonstrate  that  multiple
use  case  scenarios  have  been  considered  and  tested
against  to  validate  our  primary  objective.  To  achieve
these  tests  on  various  use-cases,  we  determined  that  a
simulated  environment  shown  in Fig.  16 would  be
more  suitable  and  allow  for  the  testing  of  only  the
specific  variables  that  were  required  without  any
concern for external factors influencing our results.

5.1　Experimental environment

The  presented  algorithms  and  variables  will  be  tested
on  a  simulator,  a  simulation  is  ideal  for  our  current
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Fig. 14    Flow  of  the  decision  involved  in  creating  a  data
movement action.

 

Algorithm 3　Moving data objects into storage
Data: sortedDataObjectList, moveAction, and moveActionList
foreach dataObject in sortedDataObjectList do

! =　if dataObject.currentTier  dataObject.proposedTier then
　　　moveAction = new MoveAction();
　　　moveAction.dataObjectId = dataObject.id;
　　　moveAction.targetTier = dataObject.proposedTier; Insert
　　　moveAction into MoveActionList;
　end
end
foreach each storageTier in storageTierList do
　　migrate moveAction.dataId into StorageTier matching
　　　moveAction.targetTier;
end
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Fig. 15    Three non-explicit phases of data movement.
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requirements,  as  we  can  explore  the  potential  of  the
proposed variables in a controlled manner based on the
objectives  of  our  research.  The  simulator  is  split  into
two  components,  one  is  the  data  and  data  store
simulator,  which  represents  our  tiered  storage
infrastructure  filled  with  data  with  multiple
characteristics,  the  second  is  a  user  query  simulator,
which  will  simulate  user  queries  against  the  data  and
data store simulator.

Individual  scenarios  created  to  test  various  types  of
usage  then  have  an  impact  on  how  both  components
operate. The simulator has been programmed in JAVA.
The  goal  of  the  simulator  is  to  test  the  variables  and
algorithms  proposed  by  our  research,  the  success  of
each will be determined by two scores generated from
our  simulations  and  then  evaluated.  The  fields  are  as
follows:

● Query  cost: Each  simulated  user  query  will
generate a score based upon the tier of storage it has to
query  on,  this  score  will  be  totaled.  Lower  score  is
more optimal.

● I/O  movement: Over  simulation  as  a  whole,  the
amount of movement that occurs will be totaled. Lower
score is more optimal.

5.2　Data store simulator

The  data  store  simulator  is  our  simplified
representation  of  a  storage  environment  with  multiple
tiers of storage. It initially establishes itself by inserting
the number of storage tiers, the breakdown of the tiers
as  percentages,  and  the  number  of  total  data  blocks
across  the  whole  data  store.  Data  blocks  are  our
method  of  representing  storage,  each  data  block  has  a
fixed  position  within  the  data  store  and  is  assigned  a
temperature  tier,  a  data  block  has  space  to  assign  a
single  data  object.  Data  and  data  blocks  within  our
simulator  are  all  of  a  fixed  size;  this  simplifies  the
storage  space  to  precisely  what  we  want  to  simulate
and removes unnecessary complexity.

Figure  17 displays  a  compact  version  of  our  data
store  simulator.  It  only  has  three  tiers  of  storage
represented  and  six  total  data  blocks  across  the  whole
data  store.  The  following  values  generated  using  this
data store simulator:

● Number of storage tiers: 3.
●  Breakdown  of  storage  tiers  (percentage):  10%,

30%, and 60%.
● Total number of data blocks: 6.
To  increase  the  size  of  the  data  store  simulator,  the

attribute  of  total  number  of  data  blocks  has  to  be
increased, similarly if more tiers or differences in how
the tiers are weighted then the attributes just have to be
adjusted  accordingly  when  setting  up  the  simulator.
The  simulator  used  for  our  results  for  example  uses
roughly  five  hundred  data  blocks  split  across  three
storage tiers.

It  was  explained  above  that  the  data  block’s  are
fixed, so in Fig. 17, Data Block 1 is always within the
hot tier and Data Block 5 is always located in the cold
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Fig. 17    Data store simulator.
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tier,  it  is  instead  the  data  that  move  between  data
block’s,  each  piece  of  data  only  existing  within  one
data  block.  Replication  is  important  and  does
massively impact query performance, but this has also
been ignored to simplify storage to our current research
objects.

5.3　Data object

The  simulator’s  data  object  is  where  all  features  of
each data item are stored but also various statistics that
are  used  to  generate  various  scores  from  the  data,  as
explained  above  data  objects  are  assigned  to  a  data
block,  but  can  then  move around between data  blocks
during the data temperature movement phase.

Each data object has the following features:
● Data ID: Unique identifier for each data object.
● Creation DateTime: DateTime that the data were

first added into the data store simulator.
● Data  type: Specifies  the  sort  of  data,  e.g.,  sales

and  forecasting.  This  is  used  by  some  scenarios  to
target specific data.

● Data  priority: Specific  data  can  be  essential  to
success so requires a higher weighting.

These are features, each data object is assigned when
created. Data ID and creation DateTime are automated,
but  data  type  and  data  priority  are  governed  by  the
scenario that  is  chosen.  Data priority is  also special  in
that  it  is  also  affecting  the “query  score” value,  high
priority data should be in the higher tiers of storage, to
reflect the negative impact of putting high priority data
in lower tiers of storage when the query cost is doubled
for high priority data:

● User queries Data 16 located in warm tier.
●  User  queries  high  priority  Data  2022  located  in

warm tier.
● User queries Data 18 located in hot tier.
● User queries high priority Data 2032 located in hot

tier.
Each data object also captures the following stats of

the data:
● Access count: Count the number of times the data

object has been queried against.
● Last  accessed  DateTime: DateTime  of  the  last

query on the data object.
● Movement  counter: Track  the  number  of  times

the  data  object  has  been  moved  between  tiers  of
storage.

● Last  movement: Track  whether  the  last

movement was up a tier or down a tier.
These stats  about  the  data  are  gathered or  generated

throughout  the  query  process  and  are  then  used  to
determine  a  data  object’s  individual  data  temperature
value.

Further  details  of  how  each  feature/statistic  of  the
data  is  used  to  determine  temperature  will  be  covered
in  detail  within  the  data  temperature  section,  as  its
usage can change between implementations.

5.4　User query simulator

The  user  query  simulator  is  the  component  of  our
simulator  that  manages  all  the  users  and  the  queries
they  make.  Similar  to  the  data  store  simulator,  the
actions  of  the  user  query  simulator  are  constrained  by
what  is  established  within  the  current  scenario.  The
scenario tells the user query simulator how many users
total will be created, the min/max range for the number
of  queries  they will  make,  specific  target  data criteria,
and the ability to specify specialist users that have their
own associated rules.
5.4.1　User
The simulator has consideration for two types of users,
the first a standard user and the second a high priority
user. Practically they do the same thing, but depending
on  the  specific  scenario  in  place,  high  priority  users
will have additional rules. High priority users represent
system users that are working on particular projects or
where  their  work  is  mission  critical  to  a  business’s
operations.  The  defining  difference  is  that  priority
users double the “query cost” value, so the lower tier of
storage they have to query to, then the query cost will
be much higher.
5.4.2　Query
Queries  within  the  simulator  are  simple,  User  No.  1
targets  data  object  A  and  that  constitutes  a  query  for
our  purposes,  no  actual  data  exists,  so  a  simple
interaction between the user and the data object are all
that  is  needed (the  primary action of  the  interaction is
that of updating the statistics within the data object).

The  data  object  that  a  user  query  is  pretty  much
random,  and  so  could  be  any  of  the  data  objects  that
have  been  added  into  the  data  storage  simulator.  The
only  time  this  is  not  the  case  is  when  the  scenario
dictates  that  only  certain  types  of  data  should  be
queried  by  a  specific  type  of  user.  Then  the  user  is
instead restricted to  choosing data  objects  of  that  type
or potentially another feature that is not data type.
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5.5　Data temperature variable configuration

Our proposed solution is that of making use of suitable
variables and conditions relevant to specific data usage
scenarios,  instead  of  the  one  size  fits  all  approach.
Thus, we prepare a selection of variables to be used in
our  simulated  environment.  Each  proposed
configuration  of  variables  and  conditional  rules  has
been  designed  to  the  best  match  the  scenario  outlined
below.  The  variables  and  conditional  rules  for  each
variable  configuration  (VC)  alongside  an  explanation
on  the  motivations  for  combining  such  variables  and
what  the  proposed  outcome  are  in  the  rest  of  this
section.
5.5.1　Variable Configuration 1 (VC1)
● Variables:

– Age [ranged].
– Usage frequency [ranged].
● Conditional rules:
– None.
This  configuration of  variables  is  to  act  as  a  control

and represents the prevalent data temperature variables
currently  used  as  standard.  Usage  frequency  is  the
combination  of  read  and  write  activity  upon  the  data
objects.
5.5.2　Variable Configuration 2 (VC2)
● Variables:

– Who accessed [binary].
– Frequency of usage [ranged].
● Conditional rules:
– None.
This configuration is focused primarily on usage and

who  the  data  are  being  used  by  to  determine  what  is
important.
5.5.3　Variable Configuration 3 (VC3)
● Variables:

– Write frequency [ranged].
● Conditional rules:
– If day is weekday or weekend [binary].
In  this  configuration,  writes  are  a  priority,  and  we

know  data  are  used  different  between  weekends  and
weekdays.
5.5.4　Variable Configuration 4 (VC4)
● Variables:

– Age [ranged].
– Who accessed [binary].

● Conditional rules:
– Data type equals “data type A” [binary].
Variable  Configuration  4  is  focused  towards  a

specific data type, but has been combined with age and
who accessed,  so  the  data  age  out  over  time  and  with
considerations  for  if  high  priority  users  are  requiring
the data.
5.5.5　Variable Configuration 5 (VC5)
● Variables:

– Read frequency [ranged].
● Conditional rules:
– Tag equals “Tag A” [binary].
– Tag equals “Tag B” [binary].
– Tag equals “Tag C” [binary].
Reading  of  data  objects  is  more  important,  with

priority  being  given  to  three  specifically  tagged  data
objects.
5.5.6　Variable Configuration 6 (VC6)
● Variables:

– Age [ranged].
– Usage frequency [ranged].
– Created by [binary].
– Size [ranged].
– Who accessed [binary].
● Conditional rules
– Data type equals “data type A” [binary].
– Tag equals “Tag C” [binary].
– If day is weekday [binary].
Where  Variable  Configuration  1  was  the  control,

Configuration 6 is an extreme and has just had multiple
variables  bundled  together  with  no  specific  goal  in
mind. Unlike the other configurations, it does not have
a matching scenario.
5.5.7　Variable Configuration 7 (VC7)
● Variables:

– Any.
● Conditional rules:
– Any.
The  six  prior  variable  configurations  above  were

planned  and  served  a  purpose.  This  configuration
instead  will  pseudo-randomly  select  any/all  variables
and conditional rules featured in the six configurations
above.

5.6　Use case scenarios

This  research  targets  varying  types  of  user  and  data
access  patterns,  meaning  we  cannot  adequately  test
against  a  single  kind  of  scenario  where  all  data  and
users are equal, we instead propose various scenarios to
test  our  variables  and  algorithms.  The  individual
scenarios  have  been  constructed  with  real-world  use
cases  in  mind  but  also  with  considerations  for  the
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variables we have proposed; the scenarios are relevant
because  they  for  one  indicate  what  sort  of  scenario
each  variable/algorithm  excels  at  but  also  where  they
fail to perform and potentially hinder performance.

The  scenarios  described  below  first  present  the
configuration  and  established  rules  of  the  scenario
before  explaining  the  use  case  it  represents  and  the
specific goals the scenario aims to test.
5.6.1　Scenario 1
This  scenario  represents  the  current  standard  and  will
act as our control. The latest data will be queried more
often  and  some  data  items  will  be  frequently  queried,
even if not of the latest dataset.

Scenario features:
● 100% standard users.
●  New  data  are  added  into  the  scenario  after  every

simulated day.
●  User  queries  will  have  a  preference  towards  new

data objects.
●  A  set  of  data  objects  (First  10% of  the  original

dataset)  will  repeatedly  be  queried  regardless  of
newness.

●  Recommended  configuration:  Variable
Configuration 1.
5.6.2　Scenario 2
Scenario  2  is  demonstrative  of  an  environment  where
there  is  a  smaller  group  of  users  that  require  high
priority usage over the rest of users. Data are not aged
out  in  this  scenario,  instead it  focuses  on the  usage of
data and who it is being used by.

Scenario features:
● 80% standard users and 20% high priority users.
● New data are not added in this scenario.
●  Recommended  configuration:  Variable

Configuration 2.
5.6.3　Scenario 3
Scenario  3  is  representative  of  a  high  write
environment,  the  data  being  written  take  a  higher
priority than data that are being read. The scenario also
has much different usage of data depending on whether
it are a weekday or not, data written at the weekend are
much more important than that the data written within
the weekday.

Scenario features:
● New data are not added in this scenario.
● Scenario has a higher number of writes than reads

(60/40 split).
●  Recommended  configuration:  Variable

Configuration 3.
5.6.4　Scenario 4
Scenario  4  is  interested  in  newer  data,  that  is
influenced by who accessed it and if it is off a specific
data type.

Scenario features:
●  New  data  are  added  into  the  scenario  after  every

simulated day.
●  Recommended  configuration:  Variable

Configuration 4.
5.6.5　Scenario 5
This  scenario  is  heavily  influenced  by  users  tagging
specific  data  objects,  certain  tags  are  then  flagged  as
important. In this scenario, the tagged objects will have
a higher priority to our users.

Scenario features:
● New data are not added in this scenario.
● Data objects can have multiple tags.
●  Recommended  configuration:  Variable

Configuration 5.

5.7　Simulating data temperature

Simulation  combines  the  variable  configuration,
scenario,  storage,  and user query simulator being used
together.  The  variable  configuration  and  the  scenario
establish the rules based on which these simulators will
act.  For example, Scenario 2 applied to the user query
simulator  tells  it  to  generate  80% standard  users  and
20% flagged as high priority, other than being flagged
differently, they will act the same as other users unless
a rule specifies otherwise. The specialist users will not
impact data temperature values unless we apply a data
temperature  variable  configuration  that  is  specifically
targeting that type of user.

5.8　Scoring

Scoring  is  applied  in  two  ways,  one  is  based  upon
queries  and  the  second  is  based  upon  data  movement.
A  total  score  is  given  that  combines  them,  but  the
individual  scoring  are  evaluated  in  Section  6  also.  In
our  testing,  a  low score  is  always  better. Query-based
scoring  is  pretty  much  that  a  simulated  user  query  is
performed,  and  a  score  is  awarded.  The  value  of  the
score  is  based  upon  the  tier  of  storage  that  is  being
queried,  if  the  data  object  being  queried  is  more
accessible to the user, i.e., in the hotter tiers of storage
then the better,  so a  lower score is  awarded,  e.g.,  user
queries a data object in the cold tier of storage score for
that query would be a 3, next user queries a data object
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in  the  hot  tier  and  scores  a  1  (assuming  a  3-tier  hot,
warm, and cold architecture).

Movement-based scoring instead looks at how much
data  are  actually  moved  around  during  the  balancing
process,  data  should  be  moving  around,  but  excessive
movement  is  detrimental  to  system  performance,  so
should be reduced where possible.

6　Result and Discussion

Using  the  simulators  outlined  in  Section  5.1,  we  have
gathered  the  results  presented  here.  We  constructed
five scenarios, with each scenario designed to simulate
a distinct type of system usage and user activity. Each
scenario has its own optimal variable configuration, but
we  will  test  each  variable  configuration  against  each
scenario,  in  addition  to  random  (using  pseudo-
randomly  selected  variables)  and  extreme  variable
configurations  (using  multiple  variables  with  no
targeted benefit).

The first scenario and variable configuration is under
our  control,  as  it  is  based  on  the  current  data
temperature,  the age and frequency of  data  usage,  and
the  usage  of  data.  Random  is  not  a  specific
configuration like the others; rather, score values were
assigned  pseudo-randomly  to  the  data  positions  and
used in lieu of the full process carried out for the other
configurations.

We  present  the  results  from  the  perspective  of  a
scenario,  with  the  most  desirable  outcome  being  that
the variable configuration designed for it is the optimal
one.  The  worst  outcome  should,  in  theory,  be  the
random or extreme configuration, but it could easily be
one  of  the  other  configurations,  as  each  could  be
configured in a way that benefits its target scenario but
not the others.

In this section,  the authors describe the outcomes of
their study’s variable configurations. The first scenario
serves as the baseline and is based on the existing data
temperature method, which takes into account data age
and  usage  frequency.  A  new  configuration  referred  to
as “random” is  introduced  in  which  score  values  are
assigned  to  data  positions  pseudo-randomly,  as
opposed  to  the  full  process  used  by  the  other
configurations.  The  results  are  presented  from  the
vantage point of a particular scenario, with the optimal
variable  configuration  tailored  to  it.  The  total  score,
which  is  comprised  of  scores  for  data  movement  and
data  position  at  query  time,  the  better  the  outcome.

Stackable column charts are used to illustrate the query
and movement scores for each variable configuration.

Continuous querying of data with a high temperature
score  would  result  in  its  placement  in  a “hot” storage
location, where it would remain unmoved during score
sorting  and  balancing.  The  addition  of  new  data  and
user  preference  for  new  data  keeps  costs  low,  as  new
data  initially  receive  the  highest  score  and  are  swiftly
placed  in  a  hot  or  warm  tier,  reducing  the  cost  of
querying new data. Even though maintaining older data
and  prioritizing  new  data  are  contradictory  variables,
the  query  cost  remains  low.  If  new data  were  initially
stored  on  the  lowest  tier,  query  and  movement
expenses  would  increase.  It  is  more  cost-effective  to
gradually  age  data  downward  as  it  is  balanced  within
the  system  as  opposed  to  rapidly  moving  it  up  and
down as new data accumulate behind it.

6.1　Scenario 1

This  scenario  represents  the  current  standard  and  acts
as our control. The latest data were queried more often,
and  some  data  items  were  frequently  queried,  even  if
they  were  not  in  the  latest  dataset.  The  optimal
configuration  for  this  scenario  was  Variable
Configuration 1.

In Fig.  18,  for  Scenario  1,  we  see  that  the  optimal
configuration of VC1 scores the best overall, followed
closely by VC2 and VC4. The VC1 scoring the lowest is
expected because this is the scenario it should perform
best in, as it is designed to accommodate the variables
of new data and a specific set of data that is frequently
requested.  It  scored  very  low  on  the  query  cost  and
then relatively low on movement, topped only by VC4’s
lower score of 62. The low query score of 28 in VC1 is
likely  due to  the  specific  set  of  data  continually  being
queried, despite new data being added, this maintains a
set  of  data  that  are  constantly  low  cost  to  query  and
thus provides a lower result overall.
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Fig. 18    Scenario  1  query  and  movement  stacked  column
graph.
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The  continual  querying  would  maintain  an  overall
high  temperature  score  and  result  in  this  continually
queried data being allocated a “hot” storage location, a
location  that  the  data  would  most  likely  already  be
sorted in, so it would require zero movement when the
overall  scores  were sorted and balanced.  It  would still
maintain its “hot” position or at least movement from a
“warm” tier position. The addition of new data and the
user prevalence for new data would also keep this cost
low. Data would get added and score the highest due to
being  the  newest,  so  the  sorting/balancing  of  the
proposed  process  would  place  it  into  a  hot/warm  tier
immediately,  reducing  the  cost  of  any  new  data
queried.

The query cost of 71 is still low considering the two
variables  are  opposed,  one  maintaining the  older  data,
the  other  forcing  new  data  to  be  given  priority.  The
majority of the movement is, no doubt, due to the new
data coming into the system and getting pushed down.
If the latest data were initially stored in the lowest tier,
they  would  lead  to  increased  query  and  movement
costs.  This  is  because the  initial  query would be high,
accessing  lower-scoring  cold  tiers.  Additionally,  the
cost  of  moving  the  data  up,  only  to  have  it  quickly
move back down with new rising data, would result in
more  overall  movement  compared  to  a  system  where
data age gradually and are balanced within the tiers.

VC2 and VC4 were also making use of traits used in
VC1 such as age or frequency of usage, so they shared
a similar boost to performance. The low query score of
VC2 is for the same reason as VC1, and its  benefit  of
data  continuously  scoring  high  due  to  its  repeated
usage.  Meaning  less  movement  spent  on  moving  data
around and having to have it rebalanced, also equaling
more  time  with  data  in  an  optimal  location  and
reducing query cost. VC4 received a similar benefit but
has a much higher movement score due to the fact that
instead of data being maintained in position even with
new  data  being  added,  it  instead  has  to  continually
move new data down tiers as it gets added into storage
to  maintain  the  optimal  data  position  and a  low query
score.

The configurations of VC3 and VC5 did not perform
much  worse,  which  is  slightly  surprising  given  the
score  distance  between  them  and  configurations  VC6
and VC7, which scored considerably worse. Both VC3
and VC5 use a sub-typing of usage, which are read and
write. For this scenario, part of the time they would get

some  benefit  out  of  usage,  but  the  other  half  they
would not get any benefit due to the wrong type of data
usage  encountered.  This  would  explain  the  higher
movement  cost,  as  data  would  see  some  read/write
usage  and  be  sorted  into  one  location,  but  then  the
usage would be very different shortly after and see the
data  moving  out  of  its  assigned  tier.  Thus  increasing
the cost of the query overall.

The  mismatch  of  so  many  variables  for  VC6/VC7
with  only  two  simple  inputs  meant  that  the  scoring
process  was  handing  out  both  high  and  low
temperature  scores  to  all  new incoming data,  meaning
the  new  data  were  not  sorted  immediately  into  the
higher  tiers  and  received  a  much  higher  cost  to  query
overall.

One of our primary points is that we should not only
be focused on usage/time variables for calculating data
priority,  but  in  the  context  of  this  scenario,  the  only
valid variables are usage/time, so they are what is used,
and  they  are  what  performs  the  best  overall.  So  it  is
important  to  consider  that  usage  and  time  are  not  the
only variables, but in specific instances they can be the
only valid choice to make.

6.2　Scenario 2

Scenario 2,  as depicted in Fig.  19,  is  demonstrative of
an environment where there is a smaller group of users
that  require  high  priority  usage  over  the  rest  of  users.
Data  are  not  aged  out  in  this  scenario,  instead,  it
focuses  on the  usage of  data  and who it  is  being used
by.  The  optimal  configuration  for  this  scenario  was
Variable Configuration 2.

The  scenario  is  very  focused  on  satisfying  a  very
specific  group  of  users,  this  would  probably  explain
why the score is as low as it is for VC2 as it is a very
focused  and  niche  set  of  scoring  requirements  and
conditions.  Coming  in  the  second  was  VC4,  this  is
again due to this configuration also including the same
prevalence  towards  the  higher  priority  users  that  are
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Fig. 19    Scenario  2  query  and  movement  stacked  column
graph.
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accessing  the  system,  the  other  fields  used  in  VC4
would  have  decreased  the  score  in  this  instance.  The
remaining  configurations  are  pretty  consistent,  hitting
around 130−140, this is strange for VC6 and VC7, we
can  change  the  121  scores  from  VC7  up  to  random
chance,  but  it  is  strange  that  the  chaos  of  VC6  did  as
well as it did for this much more user-focused scenario.

6.3　Scenario 3

Scenario 3, as depicted in Fig. 20, is representative of a
high  write  environment,  the  data  being  written  take  a
higher  priority  than  data  that  are  being  read.  The
scenario  also  has  much  different  usage  of  data
depending  on  whether  it  is  a  weekday  or  not,  data
written  at  the  weekend are  much more  important  than
the  data  written  within  the  weekday.  The  optimal
configuration  for  this  scenario  was  Variable
Configuration 3.

VC3  performed  the  best  overall,  with  much  lower
query  and  movement  scores  than  the  closest
configuration by 23 points,  with VC6 scoring close to
double  that  of  VC3.  VC3  is  the  most  appropriate
configuration,  but  we  would  not  have  expected  it  to
perform  this  well,  the  scenario  does  have  a  slight
preference  for  data  writes,  but  this  would  not  reflect
such a drastic scoring variance.

VC7  also  performed  strangely  well,  this  is  most
likely due to a random selection of a write preferential
“conditional  rule”,  otherwise  we  would  expect  it  to
have performed very similarly to VC6.

The other VCs performed similarly within a range of
20  points  of  each  other,  VC2  performed  considerably
worse than the others,  but  nothing too concerning that
would warrant further investigation.

6.4　Scenario 4

Scenario  4,  as  depicted  in Fig.  21,  is  interested  in
newer data, that is influenced by who accessed it and if

it is off a specific data type. The optimal configuration
for this scenario was Variable Configuration 4.

VC4  performed  the  best,  scoring  lowest  in  both
query  and  movement,  this  will  be  due  to  the  usage  of
both “age” and “who  accessed” variables  giving  data
priority.  This  will  also  be  the  reason  VC2  performed
well also, as it also uses the “who accessed” variable to
determine priority.

The  outliers  for  this  scenario  would  be  VC1  and
VC7,  VC1  because  it  has  the “age” variable,  and  so
would  have  expected  it  to  perform  similarly  to  VC2
and  not  score  as  high  as  it  did.  VC7  because  it
managed  to  score  so  low  despite  being  a  random
selection of variables similar to VC6, which performed
the worst overall.

6.5　Scenario 5

Scenario 5, as depicted in Fig. 22, is heavily influenced
by users  tagging specific  data  objects,  certain  tags  are
then  flagged  as  important.  In  this  scenario,  the  tagged
objects  will  have  a  higher  priority  for  our  users.  The
optimal  configuration  for  this  scenario  was  Variable
Configuration 5.

An immediate and noticeable difference across these
results  compared  to  the  others  is  that  they  are  all
slightly lower values than the previous results, this, we
presume, is in part due to the lack of “new data” being
added.
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Fig. 20    Scenario  3  query  and  movement  stacked  column
graph.
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Fig. 21    Scenario  4  query  and  movement  stacked  column
graph.
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Fig. 22    Scenario  5  query  and  movement  stacked  column
graph.
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VC5  performed  the  best  with  the  lowest  results
overall  in  both  query  and  movement  scores,  this  was
expected  with  the  heavily  tag-focused  scenario,
resulting  in  a  lower  query  cost  and  less  movement
overall.  This  was  strangely  followed  very  closely  by
VC6  our “extreme” implementation  of  a  varied
assortment  of  attributes.  VC6  does  use  tags,  so  by
chance,  the  scenario  potentially  favored  this  specific
type of “Tag C” that VC6 used.

The  other  variable  configurations  performed  around
the  150−160  range  with  very  similar  query  and
movement  scores.  Surprisingly,  VC3  performed  much
better than the others with no discernible reason, as no
tagging  or  benefit  to  new  objects  is  offered  in  VC3.
Another  surprise  is  that  VC7  performed  worse,  even
though  it  was  using  a  random  selection  of  attributes
and conditions. We would have thought it would be in
line with the scoring of VC1, VC2, and VC4 at least.

7　Conclusion and Future Work

The  primary  objective  of  this  work  was  to  present  a
solution  that  combined  numerous  user  and  system
variables, allowing for more performance-relevant data
placement  within  tiered-storage  solutions.  Essentially,
we  were  presenting  an  extended  definition  of “data
temperature” that  encapsulated more than just  age and
usage variables.

The  presented  variables  and  algorithms  have
provided  a  clear  benefit  when  used  with  the  scenario
that  they  have  been  specifically  configured  for,
compared  to  the  control,  or  when  used  against  an
alternative  scenario.  This  was  an  expected  outcome,
and  a  different  result  would  have  been  concerning  for
the proposed research. The existing simple variables of
age and usage that acted as the control performed well
and  even  beat  some  proposed  variable  configurations,
not  considerably,  but  this  was  either  due  to  too  much
movement or not enough due to how the weighting of
what should and should not move worked out.

Our  research  promotes  a  more  bespoke  attitude
toward  data  movement.  Similar  to  choosing  a  specific
database  type  or  storage  mediums  that  match  specific
requirements,  the  choice  of  how  your  data  move
throughout a storage solution should also be presented
as a point of customization in an effort to get the most
benefit out of your tiered storage solution.

The  primary  issue  with  the  research  as  presented  at
present is that it has been tested on a simulation and not

a real working system being used by actual users. The
experiment  presented  has  attempted  to  propose  a
simplified abstraction of a real system, but a simulation
can never really hold up to experiments in reality. The
simulator  did  provide  it  with  a  relatively  controlled
environment  to  test  out  various  configurations  in  a
convenient and simpler manner, making it ideal at this
current level of research.

A  potential  limitation  of  the  research  to  system
performance  is  that  by  complicating  the  process  with
too  many  or  conflicting  variables,  this  in  turn  would
hinder  system  performance  by  either  data  not  being
moved  where  it  is  most  optimal,  or  even  too  much
movement  occurring,  which  in  turn  would  hinder
performance. Admittedly, for a majority of use cases, a
standard data temperature of age and usage, will  work
admirably,  but  for  more  specific  use  cases  where
priority  data  usage  can  not  be  determined  by  age  or
usage  alone,  we  see  more  benefit  from  our  proposed
variables and algorithms.

Other  topics  worthy  of  exploration  include
identifying  additional  variables  not  covered  in  this
work  that  could  be  used  to  gauge  a  dataset’s
temperature.  Further  validation  and  testing  are
required,  with  real  world  case  studies  being  the  most
ideal. This also prompts research into the discovery of
metadata  characteristics  unique  to  an  individual  case
study,  as  not  all  variables  will  be  appropriate  for  all
applications.  Our  proposed  solution  presented  an
opportunity  for  greater  user  control  and  input  in
determining a data’s priority and ideal location, but as
was  discussed  above,  greater  user  control  can  also
result  in  a  decrease  in  performance,  not  even
considering  the  overhead  and  cost  of  managing  and
implementing  these  additional  data  temperature
variables, so this is something worth exploring further.

In  future,  the  investigations  are  also  required  into
machine  learning  to  determine  future  and  expected
patterns in priority,  working towards a more proactive
system, and ensuring data is where it needs to be prior
to  users  actually  needing  it  there.  We  also  need  to
investigate  the  effect  that  the  number  of  tiers  has  on
data temperature,  the different  weights that  need to be
applied to  reflect  these changes,  the  frequency of  data
movement,  and  the  impact  on  I/O  costs  when  data
move too much between tiers.
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