

Unstructured Big Data Threat Intelligence Parallel Mining Algorithm

Zhihua Li, Xinye Yu, Tao Wei, and Junhao Qian*

Abstract: To efficiently mine threat intelligence from the vast array of open-source cybersecurity analysis

reports on the web, we have developed the Parallel Deep Forest-based Multi-Label Classification (PDFMLC)

algorithm. Initially, open-source cybersecurity analysis reports are collected and converted into a standardized

text format. Subsequently, five tactics category labels are annotated, creating a multi-label dataset for tactics

classification. Addressing the limitations of low execution efficiency and scalability in the sequential deep forest

algorithm, our PDFMLC algorithm employs broadcast variables and the Lempel-Ziv-Welch (LZW) algorithm,

significantly enhancing its acceleration ratio. Furthermore, our proposed PDFMLC algorithm incorporates label

mutual information from the established dataset as input features. This captures latent label associations,

significantly improving classification accuracy. Finally, we present the PDFMLC-based Threat Intelligence

Mining (PDFMLC-TIM) method. Experimental results demonstrate that the PDFMLC algorithm exhibits

exceptional node scalability and execution efficiency. Simultaneously, the PDFMLC-TIM method proficiently

conducts text classification on cybersecurity analysis reports, extracting tactics entities to construct

comprehensive threat intelligence. As a result, successfully formatted STIX2.1 threat intelligence is

established.

Key words: unstructured big data mining; parallel deep forest; multi-label classification algorithm; threat

intelligence

1　Introduction

Cyber security analysis reports, as a form of internet-
based open-source big data, contain extensive
descriptions of Tactics, Techniques, and Procedures
(TTPs) employed in various network attacks. These
TTPs not only derive the behavior characteristics of
attackers, but also reveal their malicious intent.

Typically, cyber security analysis reports are published
in an unstructured or semi-structured format using
natural language descriptions. However, natural
language cannot be directly understood and processed
by machines, necessitating entity extraction of TTPs
from the reports, mining relationships between TTPs
entities, and transforming them into standard format
threat intelligence. On the one hand, Sun et al.[1] made
a comprehensive review of the latest research work on
Cybersecurity Threat Intelligence (CTI) mining from
multiple data sources. They made detailed
investigations and reports on threat intelligence mining
and threat intelligence sharing. On the other hand,
Arıkan and Acar[2] constructed a threat intelligence
generation system based on data mining. However, the
mining efficiency of this system cannot meet the
efficiency requirements and the generated threat

 Zhihua Li, Xinye Yu, and Tao Wei are with School of Artificial

Intelligence and Computer Science, Jiangnan University, Wuxi
214122, China. E-mail: zhli@jiangnan.edu.cn; yuxinyeprivate
@163.com; 2407117028@qq.com.

 Junhao Qian is with School of IoT Engineering, Jiangnan
University, Wuxi 214122, China. E-mail: qjhao@jiangnan.
edu.cn.

* To whom correspondence should be addressed.
 Manuscript received: 2023-08-09; revised: 2023-10-23;

accepted: 2023-11-02

BIG DATA MINING AND ANALYTICS
ISSN 2096-0654 14/15 pp531−546
DOI: 10.26599/BDMA.2023.9020032
V o l u m e 7 , N u m b e r 2 , J u n e 2 0 2 4

© The author(s) 2024. The articles published in this open access journal are distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

intelligence is not in standard format, which is
unfavorable for information exchange and sharing. The
exploration of TTPs in the field of cybersecurity threat
intelligence has long captured people’s attention.
Husari et al.[3] proposed an automated approach to
extract TTPs from unstructured threat intelligence
texts. Meanwhile, Ge and Wang[4] devised a method to
predict TTPs labels from threat intelligence. Both
methods aim to directly extract genuine TTPs from
semi-structured threat intelligence texts. Facing the
massive volume of internet-based cyber security
analysis reports, traditional manual processing
approaches have become impractical. Thus, there is an
urgent need for a scheme and manner capable of
efficiently and automatically extracting TTPs entities
and their relationships from large-scale cyber security
analysis reports.

In general, of the three, tactics, techniques, and
procedures, tactics play the most significant guiding
role in the field of cyber security. Specifically, for a
given cyber attack event, once the tactics are
determined, the corresponding techniques and
procedures possess clear directionality. For instance,
with respect of the ATT&CK model[5], it includes a
total of 14 attack tactics, 224 attack techniques, and
546 attack procedures. For example, there are only 9
attack techniques corresponding to the data theft tactic,
including automatic theft and periodic transfer, and
among these 9 techniques, there are merely 8 attack
procedures, such as traffic duplication and Bluetooth
leakage. It can be observed that in the process of big
data mining of cyber security analysis reports, TTPs
serve as crucial clues. Among them, the primary
discovery and successful extraction of attack tactic
entities are of utmost key factors, as once the attack
tactic entities are successfully identified, it becomes
much easier to explore the “entity-relationship-entity”
triplets along the “tactics, techniques, and procedures”
way. This way efficiently facilitates building threat
intelligence. Hereby, this study focuses on the
optimization objective of parallel mining of threat
intelligence in large-scale cyber security analysis
reports published on the Webs, with the specific goal
of efficiently extracting tactics entities from these
published reports. Addressing on the challenge of
mining unstructured data, the following steps are
undertaken, first, an automated web crawling process is
employed to collect internet-sourced cyber security

analysis reports, and tactics category labels are
annotated to build a dataset of threat intelligence with
tactics categorization. Second, in response to the
limitations of low execution efficiency and lack of
scalability in the sequential deep forest algorithms, a
Parallel Deep Forest-based Multi-Label Classification
(PDFMLC) algorithm is proposed. This algorithm
leverages broadcast variable strategies and Lempel-
Ziv-Welch (LZW) algorithm[6] for table compression to
decrease network latency and improve the execution
efficiency. Finally, the study further developes and
proposes the PDFMLC-based Threat Intelligence
Mining (PDFMLC-TIM) method, which utilizes the
proposed PDFMLC algorithm for efficiency text
classification to cyber security analysis reports. This
approach enables high-dimensional and multi-label
unstructured data mining, facilitating the acquisition of
threat intelligence tactics entities and automatically
transforming them into the STIX2.1-formatting threat
intelligence. The experiment results demonstrate that
the PDFMLC algorithm exhibits favorable node
scalability and acceleration ratio. Moreover, the
PDFMLC-TIM method efficiently performs text
classification on cyber security analysis reports,
allowing for effective mining of high-dimensional and
multi-label unstructured data, as well as the extraction
of information regarding threat intelligence tactics
entities. These entities are then automatically
transformed into STIX2.1-formattimg threat
intelligences.

2　Establishment of Intel-Tactics Dataset

Currently, there is a lack of standardized dataset
specifically focusing on threat intelligence within the
field of cybersecurity[7]. To bridge this gap, this paper
undertakes a comprehensive initiative. We randomly
collect and scrape more than 12 900 online open-
source cybersecurity analysis reports from sources such
as cybersecurity companies. Using our bespoke
software for annotation, we create a multi-label tactics
dataset for threat intelligence, named “Intel-tactics”.
The establishment process of Intel-tactics is delineated
in Fig. 1. For experimental convenience, Intel-tactics
have been categorized into six tactical classifications
aligned with the ATT&CK model, as outlined in
Table 1. Intel-tactics stands as the primary resource for
both training and evaluating the effectiveness of the
proposed algorithms.

 532 Big Data Mining and Analytics, June 2024, 7(2): 531−546

3　Parallel Deep Forest Based Multi-Label
Data Classification Scheme

The deep forest algorithm exhibits strong learning
capabilities to achieve efficient and comprehensive
feature mining. This manuscript first investigates and
proposes the parallel multi-granularity scanning forest
algorithm and the parallel cascading forest algorithm.

3.1　Parallel multi-granularity scanning forest

As shown in Fig. 2, the Multi-Grained Scan (MGS)
forest is separated into two parts: sliding window
scanning and Spark parallel training. These two parts
are shown on the left and right sides of Fig. 2. The
sliding window scans each training sample to yield
multiple instances, which are then delivered to Spark
worker nodes. Multiple Spark worker nodes train
random forests in parallel and generate the output
classification vectors, which are continuously merged
to serve as the input to the cascading forest. The sliding
window scanning targets to expand the dimension of
input features, creating a richer feature set to enhance
the deep forest’s learning capability of feature details
and improve the algorithm’s classification

generalization ability. Assuming each input instance
has m-dimension features, using a sliding window of
size w and moving s dimensions each time, the
scanning process will yield new features with
dimensions of w−s+1. For example, for the standard
multi-label dataset “yeast”, we set the feature
dimension m to 103, the window size to 30, and sliding
it by 10 dimensions each time, which results in 8
feature vectors of dimension 30.

After completing the sliding window scanning, the
training data are fed to multiple Spark worker nodes.
By simultaneously training random forests on multiple
Spark worker nodes, parallel training is performed.
Herein each Spark worker node independently trains a
random forest using the received data and outputs a
classification vector. After all Spark worker nodes have
completed their training tasks, the classification vectors
are sent to the mast Spark node, merging them to
produce the output of the multi-grained scan forest.

Although sliding window scanning can yield many
features and positively increase the feature dimension
of the data instance, it increases additional
communication overhead and latency in transmitting
the training data to the distributed Spark worker nodes,
negatively impacting the overall algorithm’s efficiency.
To overcome this limitation, inspired by literature[8],
the LZW compression algorithm is employed to
compress the training data, degrading network
transmission data volume and mitigating network
transmission delays. When the compressed training
data are delivered to the Spark worker nodes, they are
then decoded using the LZW algorithm to obtain the
original training data. The workflow of the LZW
algorithm is illustrated in Fig. 3.

Further, the working mechanism in LZW algorithm
is described as below. First, an encoding dictionary
table is initialized, containing all possible single

Start

End

HTML format
security reports

PDF format
security reports

TXT format
security reports

Intel-tactics
datasets

Fig. 1 Process of building Intel-tactics dataset.

Table 1 Intel-tactics dataset information.
Tactic code Tactic Description

TA0002 Execution Utilizing technical means to execute malicious code on local or remote systems, enabling
control over the target.

TA0040 Impact Attackers attempt to manipulate, disrupt, or compromise systems and data.

TA0005 Defense evasion Defense evasion refers to the actions taken by attackers to avoid detection throughout the
entire intrusion process.

TA0010 Exfiltration Attackers attempt to steal and disclose data.

TA0011 Command and control Attackers attempt to communicate with infected machines and send instructions to these
devices.

TA0009 Collection Attackers collect information, and the sources of this information are usually related to the
attacker’s objectives.

 Zhihua Li et al.: Unstructured Big Data Threat Intelligence Parallel Mining Algorithm 533

characters. Then, the prefix P is initialized as empty,
and the next character C in the character stream is read.
If the character C is an end-of-file marker, it indicates
that all data compression is complete. If the character C
is not an end-of-file marker, it checks whether the
combination of prefix P and character C exists in the
dictionary. If P + C is in the dictionary, the next
character in the character stream is read and assigned to
C. If P + C is not in the dictionary, the code word W
for the prefix P is output, P + C is added to the
dictionary, C’s value is assigned to P, and then the next

character in the character stream is read until the end of
the file is reached.
3.1.1　Cascading forest structure
Typically, as the number of layers in a random forest
increase, the model’s generalization capability gets
stronger, allowing it to learn more effective
information. This paper proposes the structure of a
Cascading Forest (CF), which stacks multiple layers of
random forests in a cascading scheme, as shown in
Fig. 4.

The input of the cascading forest consists of three

Spark master
node

Sliding window
scanner

m-dimensional features

Slide s-dimensional
each time

w-dimensional
sliding window

Train
random
forest

Send compressed feature
vector to work node

Spark work node

Random forest

Transfer classification
vectors to master node

Spark master node
Concatenate classification

vectors from multiple worker
nodes as vector S

Classification vectors Classification vectors

Random forest

Spark work node

Output
classificatio n

vectors

…

…

… …

Scanner generate
(m–w)/s+1 feature
vectors

LZW algorithm
compresses

feature vectors

Fig. 2 General view of parallel multi-granularity scanning forest.

Start

Initialize dictionary to all possible single
characters and let prefix P be empty

Let current character C be the
next byte in the character stream

Yes

End P + C in the
dictionary? P = P + C

No

Yes

Output the word W
corresponding to P

Add P + C to the
dictionary,

then let P = C

Is it the
end of file?

Fig. 3 LZW algorithm process.

 534 Big Data Mining and Analytics, June 2024, 7(2): 531−546

parts: the output vector S from the multi-grained scan
forest, the label mutual information M of labels in
dataset, and the output classification vector V from the
previous layer of the CF. When constructing the first
layer of the CF, the multi-label mutual information M
needs to be computed. The vectors S and the feature M
are created as broadcast variables and delivered to the
distributed Spark worker nodes. At the Spark worker
nodes, the vectors S, multi-label mutual information M,
and classification vector V are integrated as the training
data for training the random forest. After all the Spark
worker nodes in the current layer complete the training
tasks, the classification vectors yielded by each Spark
worker node are transmitted to the master node, and the
average of these classification vectors is calculated to
obtain the new vector V. For the second layer of the
CF, the average of the classification vectors from the
first layer is assigned to vector V, then the random
forest is trained accordingly. This process is ongoing
until reaching the last layer of the CF.

At this stage, the average of the classification vectors
is calculated, which serves as the recognition
probability for the target classification labels of the
dataset.
3.1.2　Re-usage of broadcast variables
In the parallel CF, the output vector S and label mutual
information M from the multi-grained scan forest need
to be re-used on the Spark worker nodes, which is
shown in Fig. 4. Each level of the CF requires the
concatenation of vector S and feature M to obtain the
final training data. Namely, vector S and feature M

need to be repeatedly used on different levels and
Spark nodes to avoid redundant access from the master
Spark node. To improve the algorithm’s efficiency,
reduce the execution time, and avoid data duplication
during transmission, the strategy of re-usage broadcast
variables is adopted. As illustrated in Fig. 5, vector S
and feature M are configured as Spark broadcast
variables. Spark broadcast variables are distributed and
read-only variables that are stored in the memory of the
Spark worker nodes. They can be repeatedly accessed,
eliminating the need for redundant data transmission
between the Spark nodes.
3.1.3　Label mutual information
Through the analysis of the collected 12 900 cyber
security analysis reports, we observe that due to the
logical coherence and semantic relationships present in
natural language descriptions, there exists a wide range
of associations among tactics entities, which often
provide detailed descriptions of the emerged attack
events.

The capability to discover and explore these
associations positively impacts the algorithm’s final
classification accuracy and practicality. To enhance the
sensitivity of the deep forest algorithm to these
associations, the label mutual information is cast into
the parallel cascade forest and integrated as a feature
into the deep forest’s input. The label mutual
information is represented by

H (x) = −
∑

p (x) log (p (x)) (1)

Spark
master
node

Output vector S of the
multi-grain scan forest

Calculate the mutual information entropy feature
of the dataset

Create broadcast variables for vector S and mutual
information feature M, initialize vector V to be empty

Send vector V to Spark worker nodes

No

Output the predicted
classification probability

Yes

Is it the last
layer of a

cascade forest?

Spark
master
node

Vector V is the average of
multiple classification

vectors

Random forestRandom forest

… …

Spark work node
O = splice (S, M, V)

Spark work node
O = splice (S, M, V)

Fig. 4 General view of parallel cascade forest.

 Zhihua Li et al.: Unstructured Big Data Threat Intelligence Parallel Mining Algorithm 535

H (X|Y) = −
∑
x, y

p (x, y) log (p (x | y)) (2)

H (X | Y)

p (x | y)

where X and Y are the classification labels in the
dataset, and x and y are the values of labels X and Y,
which can be either 0 or 1, indicating membership or
non-membership to the corresponding classification
label. According to the Ref. [9], H (x) represents the
expectation of the amount of information that is
entropy. is defined as the mathematical
expectation of the entropy of the conditional
probability distribution X over Y under the given
condition Y. p (x) represents the joint probability
density of values x and y, p (x) and p (y) are the
probabilities of values x and y for labels X and Y,
respectively. is the probabilities of values x
which under condition y, p (x, y) is joint density
function of x and y. The definition and the calculation
of mutal information are as follows:

I (X;Y) = H (X)−H (X|Y) (3)

I (X;Y) =
∑

x

∑
y

p (x, y) log (
p (x, y)

p (x) p (y)
) (4)

I (X;Y)where denotes the mutual information between
labels X and Y. Generally, the higher the mutual
information value, the stronger the association between
the two labels[10].

I (X;Y)

In the parallel cascade forest, the mutual information
between all labels is computed to select all mutual
information which > t, to build the feature

vector of mutual information M. The threshold value t
is determined through empirical experiment from
numerous trials. Subsequently the mutual information
feature vector M, the classification vector of the
cascade forest V, and the classification vector of the
multi-grained scan forest S are combined to create the
input features for the next layer of the cascade forest.

3.2　PDFMLC algorithm

RDDDI

With the combination of the proposed parallel multi-
grained scan forest and parallel cascade forest, further,
we present PDFMLC algorithm, as described in
Algorithm 1. In this algorithm, Lines 1−9 represent the
parallel multi-grained scan forest, while Lines 10−21
denote the parallel cascade forest. In the proposed
PDFMLC algorithm, F represents the input features of
the multi-label classification dataset, d denotes the
number of layers in the deep forest, DI is the index
used for partitioning the dataset into training and test
sets, and y represents the algorithm’s final predicted
label category. The execution process of the algorithm
is briefly described as follows. First, the input features
F are scanned using a sliding window, and the scan
results are delivered to the distributed Spark worker
nodes after compression using the LZW algorithm.
Then, the dataset index DI is read to create a delivered
resilient delivered dataset . Parallel training of
random forests is conducted on the distributed Spark
work nodes, and the corresponding classification
vectors are output. After all Spark worker nodes

Master node

Memory manager

Classification vector S

Classification vector S

Classification vector S

Broadcast

Work node

Work node

Memory manager

Memory manager

Mutual information feature M

Mutual information feature M

Mutual information feature M

Fig. 5 Multiplexing broadcast variable.

 536 Big Data Mining and Analytics, June 2024, 7(2): 531−546

complete training task, the classification vectors are
transferred to the master node for merging, resulting in
the multi-grained scan forest’s classification vector S.

Upon completing the multi-grained scan forest stage,
the mutual information M for the labels is computed,
and both M and the classification vector S are
broadcasted to the distributed Spark worker nodes.
Next, the label mutual information M, classification
vector S, and the classification vector V from the
previous layer of the cascade forest are concatenated as
inputs to build the cascade forest layer by layer. After
training each layer of the cascade forest, the
classification vector V is updated, where the update
strategy involves taking the average of multiple
classification vectors. Finally, the last layer of the
cascade forest outputs the predicted label probability.

Regarding the time complexity of the PDFMLC
algorithm, it mainly stems from the multi-grained scan
forest and the cascade forest. The time complexity of
the multi-grained scan forest primarily depends on the
process of building the forest model. Let us denote the
number of instances as n, the feature dimension as m,
and the number of trees in the forest as L. Then, the

O (mn log2 (n))

O (Kmn log2 (n))

O (mn log2 (n))

time complexity of the multi-grained scan is
. On the other hand, the time complexity

of the cascade forest mainly arises from constructing
the multi-layered random forests. Assuming the
cascade forest has K layers, with n instances, m feature
dimensions, and L trees in the forest, the time
complexity of the cascade forest is .
Consequently, the overall time complexity of the
PDFMLC algorithm is . It is worth
noting that the PDFMLC algorithm leverages the
parallel training of forests on the distributed Spark
cluster. By placing these forests on different Spark
nodes and training them simultaneously, unnecessary
waiting in the sequence mode is effectively avoided,
positively decrease the algorithm’s execution time.

4　PDFMLC-Based Threat Intelligence
Mining Method

To achieve the extraction and classification of tactics
entity from cyber security analysis reports, we further
propose the threat intelligence mining method based on
the PDFMLC (PDFMLC-TIM) method as described in
Algorithm 2. The PDFMLC-TIM algorithm is
primarily designed for mining PDF or HTML
formatted cyber security analysis reports. HTML files
are handled using the Beautiful Soup library[11], where
irrelevant information, like advertisements, images,
and URL links, are filtered out. For PDF-formatted
reports, PDFminer[12] is treated for conversion, filtering
out unrelated content, such as images and headers.
Subsequently, both HTML and PDF formatted reports
are unified and converted into text format. The text-
formatting data are preprocessed using Term
Frequency-Inverse Document Frequency (TFIDF)[13, 14]

and encoded into fixed-length output vectors to
represent the textual features of the cyber security
analysis reports. The TFIDF features serve as the input
to the deep forest classification algorithm, which
eventually outputs labels for threat intelligence tactics
entities, thus achieving automatic classification and
recognition of tactics entity. Further, the PDFMLC-
TIM method can yield threat intelligence in terms of
the STIX2.1 standard based on the extracted tactics
entities. The time complexity of the PDFMLC-TIM
method mainly comes from the iterative invocation of
the PDFMLC algorithm, as shown in Line 11 in
Algorithm 2. For each text-format file, the PDFMLC
algorithm is called to extract tactics entity. Assuming

 Zhihua Li et al.: Unstructured Big Data Threat Intelligence Parallel Mining Algorithm 537

O (kpq)

there are p text-format files, the depth of trees in the
forest is k, and the number of trees in the forest is q,
thus the time complexity is .

5　Experiment and Analysis

5.1　Experiment arrangements

The experiment configuration parameters are listed in
Table 2. A Spark cluster is set up using 4 servers, i.e., 4
Spark nodes. Each node is equipped with an Intel Xeon
2.20 GHZ processor, 4 GB RAM, and runs on CentOS
7.6.1810 operation system. The Spark cluster
environment version used is Spark 3.1.4, and Python
version is 3.6.8. The relevant experiment configuration
parameters are shown in Table 3. The maximum depth
of the parallel deep forest is set to 10, and the cascade
forest consists of 8 forest ensembles. The number of

parallel nodes is set as 5, and the evaluation indice for
decision tree is the Gini coefficient.

5.2　Datasets

To validate the effectiveness of the proposed PDFMLC
algorithm, four benchmark Mulan multi-label standard
datasets are selected[15]. 80% of the instances are
randomly extracted without replacement as the training
set, while the remaining instances are used as the test
set. The Intel-tactics created in Section 2 is primarily
used to validate the practicality of the proposed
PDFMLC-TIM method for mining the tactics entities
of threat intelligence. The detailed information of the
experimental datasets is listed in Table 4.

5.3　Evaluation indices

The accelerate ratio is used to express the performance
improvement[16] of parallel computing and sequence
execution, and the speedup ratio is defined as

S c =
T1

Tc
(5)

T1

Tc

c
S c

S c

S c = c S c

where represents the time required for sequential
execution of the algorithm, represents the time
required for running the algorithm on an -node Spark
cluster[17], denotes the accelerate ratio of the
algorithm. A larger indicates less time cost in
parallel computing mode, thus indicating better
performance of the parallel algorithm. When ,
is referred to as the desire accelerate ratio, which
means excellent scalability of the parallel algorithm.

5.4　Effectiveness of PDFMLC-TIM

PDFMLC algorithm’s effectiveness is validated on the

Table 2 Experiment configuration.
Parameter Value

Operating system CentOS 7.6.1810
CPU Intel Xeon 2.20 GHZ

Memory/GB 4 GB
Program language Python 3.6.8

Spark cluster Spark 3.1.4
Development tool PyCharm Community Edition 20 202.1

Table 3 Experiment parameters of PDFMLC.
Parameter Value
max_layer 10
num_forest 8
num_node 5
Criterion Gini

Table 4 Dataset information.

Dataset Training
dataset

Test
dataset

Number of
features

Number of
classes

yeast 1933 484 103 14
scene 1925 482 294 6
enron 1361 341 1001 53

genbase 529 133 1186 27
intel-
tactics 10 320 2580 500 5

 538 Big Data Mining and Analytics, June 2024, 7(2): 531−546

standard multi-label dataset Mulan. At the same time,
we compare it with the algorithms deep forest[18],
random forest[19], and extra trees[20]. The experiment
results are shown in Fig. 6.

As shown in Fig. 6, the accuracy of PDFMLC on the
dataset yeast is 67.39%, which is the best one among
the four compared algorithms. On dataset scene, the
PDFMLC algorithm achieves an accuracy of 93.24%,
outperforming deep forest by 0.48%. Both the
algorithms exhibite comparison recognition
performance, which can be attributed to the relatively
limited number of label categories in the scene dataset
and an abundant instance size, resulting in higher
classification accuracy for deep forest.

On enron dataset, the PDFMLC algorithm attains an
accuracy of 70.24%, whereas deep forest achievs an
accuracy of 68.38%, indicating a 1.86% lower accuracy
for deep forest in comparison to PDFMLC. For the
genbase dataset, the PDFMLC algorithm obtains an
accuracy of 86.83%, surpassing deep forest by 0.15%.
Across all four datasets, the PDFMLC algorithm
consistently outperforms deep forest, particularly
demonstrating 1.86% higher accuracy on the enron
dataset. This can be attributed to the PDFMLC
algorithm’s integration of label mutual information,
capturing correlations among label categories.
Furthermore, by incorporating the original features as
new training features and passing them to subsequent
cascaded layers for classification, the PDFMLC
algorithm effectively improves the classification
accuracy. This method contributes to the enhanced
performance of the algorithm.

To validate the parallelization effectiveness of the
proposed algorithm, the PDFMLC algorithm and the
deep forest algorithm are compared on four standard
datasets with respect of execution time and speedup

ratio, as shown in Figs. 7 and 8, respectively. Deep
forest adopts the typical sequence mode, which
multiple forests in the same layer are trained serially.
PDFMLC algorithm, on the other hand, is a
parallelized one of the deep forest algorithm based on
Spark cluster, where random forests are delivered to
the distributed Spark nodes and trained in parallel
computing. The PDFMLC algorithm exhibites the best
speedup ratio on the yeast dataset, reaching 4.65. This
can be attributed to the fact that the yeast dataset has
the largest number of instances among the four
compared datasets, with 1933 samples, and its number
of classification labels is 2.3 times that of the scene
dataset. Due to the smaller instance sizes of the scene
and enron datasets, the speedup ratios on these datasets
are slightly lower at 4.49 and 4.35, respectively, with a
decrease of 0.16 and 0.3 compared to the yeast dataset.
The genbase dataset, which has the smallest instance
size among the four compared datasets, also achieves a
speedup ratio of 4.13. These experiment results
demonstrate the potential of the PDFMLC algorithm
based on Spark cluster parallelization in handling big
data, particularly in scenarios with a large number of
instances and classification labels.

Figures 9 and 10 illustrate the comparison of the

100

Random forest
Deep forest PDFMLC

Extra trees

80

60

Ac
cu

ra
cy

 (%
)

40

yeast scene
Multi-label dataset

enron genbase

20

0

Fig. 6 Accuracy of the compared algorithms.

100

80

Deep forest
PDFMLC

Ex
cu

tio
n

tim
e

(m
in

)

60

40

20

0
yeast scene enron genbase

Multi-label dataset
Fig. 7 Execution time of deep forest and PDFMLC.

5

4

3

Ac
ce

le
ra

te
 ra

tio

2

1

0
yeast scene enron genbase

Multi-label dataset
Fig. 8 Accelerate ratio of PDFMLC on four datasets.

 Zhihua Li et al.: Unstructured Big Data Threat Intelligence Parallel Mining Algorithm 539

accelerate ratio and execution time between the
PDFMLC algorithm and the deep forest algorithm for
the MGS forest and the CF on the benchmark datasets.
Across all four standard datasets, the PDFMLC
algorithm consistently achieves a speedup ratio
surpassing 3.97 for the cascaded forest phase, with the
highest ratio reaching 4.83 on the yeast dataset.

Notably, from Figs. 9 and 10, it is clear that the
cascaded forest phase of the PDFMLC algorithm
outperforms the multigranular scan forest phase in
terms of speedup efficiency. This distinction can be
attributed to the additional initialization operations
required by the multigranular scan forest, including the
transmission of training data to each node and the
merging of output results from different nodes. Such
operations inevitably incur network transmission
latency, consequently diminishing the speedup ratio of
the multigranular scan phase. In contrast, the PDFMLC
algorithm leveraged the usage of broadcast variables to
store the classification vector obtained in the MGS
phase for the CF phase. Once transmitted initially,
these broadcast variables can be subsequently re-used,
effectively minimizing network transmission time and

enhancing the overall speedup ratio. Generally, the
scalability of an algorithm’s parallelization is enhanced
by increasing the scale of Spark nodes. Figure 11
illustrates the variation of algorithm runtime with the
number of Spark nodes. The experiment results
compare the performance of the Hadoop-based parallel
deep forest algorithm, Improved Parallel Deep Forest
algorithm combining with Information Theory
(IPDFIT)[21] with the Spark-based parallel deep forest
algorithm PDFMLC. As shown in Fig. 11, it can be
observed that on the yeast dataset, when only one node
is used, the values of runtime of the both compared
algorithms are similar. This is because a single node
cannot fully exploit the advantages of Spark’s resilient
delivered datasets, but still incurs resource overhead in
maintaining RDD objects, spurring an extended
runtime. However, as the number of nodes increases,
the runtime difference between the PDFMLC and
IPDFIT algorithms gradually widens. On the scene
dataset, when the number of cluster nodes ranges from
1 to 5, the PDFMLC algorithm outperforms the
IPDFIT algorithm, primarily due to the disk I/O
operations required during the execution stages of
Hadoop, as well as the need to write data to disk after
each task and read data from disk for the sequence task,
thereby increasing the runtime. In contrast, Spark
cluster utilizes delivered resilient data storage,
maintaining delivered data in memory and performing
direct memory-to-memory data operations and network
transfers, resulting in shorter runtime. On the enron
dataset, as the number of nodes increases, the runtime
difference between the two algorithms becomes more
significant. On the genbase dataset, when the Spark
cluster consists of five nodes, the IPDFIT algorithm
exhibits longer runtime compared to that of the
PDFMLC algorithm. It shows that the PDFMLC
algorithm maintains a good speedup ratio as the
number of nodes increases, and when the number of
nodes reaches 5, a significant reduction in runtime is
achieved.

Label mutual information is used to control which
information is regarded in the label mutual information
feature vector M and serves as the input for the
cascaded forest phase. When the threshold is set high,
highly correlated entity label pairs are selected. While a
lower threshold enables the selection of a larger
number of label pairs, it facilitates the capture of more
diverse information regarding label associations.

0

20

40

60

80

Ti
m

e
(m

in
)

100
PDFMLC-CF
PDFMLC-MGS
Deep forest-CF
Deep forest-MGS

120

yeast scene enron genbase
Multi-label dataset

Fig. 9 Execution time of PDFMLC algorithm at MGS and
CF stage.

0

1

2

3

Ac
ce

le
ra

te
 ra

tio 4

5 MGS
CF

yeast scene enron genbase
Multi-label dataset

Fig. 10 Accelerate ratio of the PDFMLC algorithm at
various stages.

 540 Big Data Mining and Analytics, June 2024, 7(2): 531−546

Figure 12 shows the experiment results on the impact
of label mutual information threshold on multi-label
classification results. Label pairs with mutual
information greater than the threshold are included in
the feature vector for labeling mutual information.
From Fig. 12a, it is clear that for the yeast dataset, the
algorithm achieves better classification performance
when the label mutual information threshold is set as
0.4. Increasing the labeling mutual information
threshold from 0.4 to 0.7 does not impact the
classification performance of the PDFMLC algorithm.
This is because that no label pairs has mutual
information values delivered within the range of 0.4 to
0.7, thus the label mutual information features selected
with these thresholds are identical and do not impact
the accuracy. When the label mutual information
threshold is set below 0.4, label pairs with low
correlation are included in the label mutual information
feature vector, causing interference and resulting in
poorer classification performance.

When the label mutual information threshold is set
above 0.7, although highly correlated label pairs are
selected, the limited number of label pairs surpassing

this threshold leads to a smaller set of generated
features, which does not significantly enhance the
algorithm’s performance, resulting in average
classification accuracy. From Fig. 12b, it shows that on
the scene dataset, when the label mutual information
threshold exceeds 0.1, the accuracy of the tactics
classification decreases. However, when the threshold
is set as 0.04, the incorporated label mutual
information feature improves the classification
accuracy to 93.76%. From Fig. 12c, on the enron
dataset, the highest accuracy for tactics classification is
obtained when the label mutual information threshold
is set as 0.1, incorporating a significant amount of label
association information, the accuracy reaches 67.09%.
When the label mutual information threshold equals or
exceeds 0.2, the classification accuracy decreases as
critical label pair association information is filtered out.
From Fig. 12d, on the genbase dataset, a better
performance is observed when the label mutual
information threshold is set as 0.04, with an accuracy
of 84.87%. However, when the threshold exceeds 0.1,
the algorithm’s classification performance slightly
declines to an accuracy of 84.27%, as a large

90

80

70

Ex
ct

io
n

tim
e

(m
in

)

60

50

40

30

20

10
1 2 3

Number of Spark cluster nodes
(a) yeast

4

PDFMLC
IPDFIT

5

Ex
ct

io
n

tim
e

(m
in

)

60

50

40

30

20

10

1 2 3
Number of Spark cluster nodes

(b) scene

4

PDFMLC
IPDFIT

5

90

80

70

Ex
ct

io
n

tim
e

(m
in

)

60

50

40

30

20

10
1 2 3

Number of Spark cluster nodes
(c) enron

4

PDFMLC
IPDFIT

5

Ex
ct

io
n

tim
e

(m
in

)

50
45
40
35
30
25
20
15
10

1 2 3
Number of Spark cluster nodes

(d) genbase

4

PDFMLC
IPDFIT

5

Fig. 11 Node expansion of the PDFMLC and IPDFIT algorithms.

 Zhihua Li et al.: Unstructured Big Data Threat Intelligence Parallel Mining Algorithm 541

proportion of label mutual information values fall
within the range of 0 to 0.1, resulting in the filtering
out of crucial association information. These
experiment results indicate that in data mining of
unstructured data, especially for multi-label dataset,
incorporating label mutual information can enhance the
learning and generalization capability of random
forests.

5.5　Efficiency of PDFMLC-TIM

To validate the practicality and efficiency of the
developed PDFMLC-TIM method, the comparison
experiments are conducted on the intel-tactics dataset.
The following algorithms are selected for comparison:
random forest, rcATT[22], deep forest, extra trees,
Support Vector Classification (SVC)[23], and
GaussianNB. First, the cyber security analysis reports
that are evaluated by the BCSE model[24] in the intel-
tactics are preprocessed by converting the text into
term frequency features using TF-IDF counting[13, 14].
Then, the PDFMLC algorithm is employed to classify
the term frequency features and output the
corresponding tactics category labels. The experiment
results of the PDFMLC algorithm on the Intel-tactics
are shown in Table 5.

As shown in Table 5, the PDFMLC algorithm
achieves the highest F1-score of 70.93% and the
highest recall rate of 81.48%. This is because the
PDFMLC algorithm integrates parallel multi-
granularity scanning forests, parallel cascade forests,
and label mutual information, which allows for better
exploration of latent feature information, more detailed
features, and potential correlations among features,
resulting in improved tactics classification
performance. In comparison, rcATT trains multiple
binary classifiers for tactics category label
classification, with each classifier individually
classifying a specific tactics category. By treating each
category independently, the algorithm overlooks the

67.65

67.60

67.55

Ac
cu

ra
cy

 (%
)

67.50

67.45

67.40

0 0.2 0.4
Mutual information entropy threshold

(a) yeast (b) scene

(c) enron (d) genbase

0.6 0.8 1.0

93.760

93.755

Ac
cu

ra
cy

 (%
)

93.750

93.745

93.740

0 0.2 0.4
Mutual information entropy threshold

0.6 0.8 1.0

67.0
67.2

66.8

66.4
66.6

Ac
cu

ra
cy

 (%
)

66.0
66.2

65.6
65.8

65.4
65.2

0 0.2 0.4
Mutual information entropy threshold

0.6 0.8 1.0

84.9

84.7

84.8

Ac
cu

ra
cy

 (%
)

84.6

84.4

84.5

84.3

84.2
0 0.2 0.4

Mutual information entropy threshold
0.6 0.8 1.0

Fig. 12 Comparison of the results of different mutual information entropy thresholds.

Table 5 Performance of different algorithms on Intel-
tactics.

(%)
Algorithm name F1-score Precision Recall

PDFMLC 70.93 62.79 81.48
rcATT 57.38 57.77 56.99

Deep forest 70.82 64.15 79.04
Extra trees 56.19 49.98 64.17

SVC 68.39 64.32 73.02
GaussianNB 55.41 51.17 60.42

 542 Big Data Mining and Analytics, June 2024, 7(2): 531−546

correlations among tactics category labels.
Furthermore, the Intel-tactics consists of 5 tactics
category labels, requiring training of 5 binary
classifiers, which increases the computation overhead.
Deep forest is an ensemble learning algorithm that
enhances the input instance features through multi-
granularity scanning forests. It generates features of
different scales using sliding windows to enrich feature
information at different granularities. The stacked
cascade forest structure is then utilized to learn the
underlying features, where the output of the previous
layer serves as the input for the next layer, ultimately
predicting the classification labels. During the
prediction phase, the outputs from multiple random
forests are combined to derive the final predicted
category. This approach effectively mitigates the
negative impact of overfitting and outliers, resulting in
an F1-score of 70.82%, indicating good recognition
capability for tactics entity. Extra trees, which is
similar to random forests, is an ensemble learning
method with a high level of randomness. During
training, extra trees randomly select splitting
thresholds, whereas random forests search for optimal
thresholds. This inherent randomness makes extra trees
less prone to overfitting, and the random selection of
thresholds speeds up training. However, this also leads
to worse performance, as reflected in its F1-score of
only 56.19%. SVC is a popular machine learning
algorithm used for multi-label classification. It
achieves classification by finding the optimal
hyperplane that separates different class data.

In the case of the Intel-tactics, multiple binary SVC
classifiers are trained, with each classifier determining
whether the security text belongs to a specific tactics

category. SVC performs well in tactics multi-label
classification, achieving an F1-score of 68.39%, which
is only 1.36% lower than that of the PDFMLC method.
GaussianNB is a variant of the naive Bayes algorithm
that calculates the probability of given feature values
belonging to each class using Bayesian probability.
GaussianNB performs poorly in Intel-tactics
classification, with an F1-score of only 55.41%. These
experiment results prove that the PDFMLC algorithm
exhibits certain comparative advantages.

5.6　Practice of PDFMLC-TIM method

In the field of cybersecurity threat intelligence,
different vendors typically provide their own cyber
security analysis reports for the same cyber-attacking
event. This adds to the complexity of generating threat
intelligence for the attacks we encounter. In open-
source data, we use the hogfish attack as an example to
validate whether PDFMLC-TIM could successfully
generate relevant threat intelligence for the attack.
Figure 13 illustrates the term frequency distribution of
two cyber security analysis reports from two different
vendors regarding the Hogfish attack[25]. Reference
[26] investigates the relationships between security
reports. These two reports share many common high-
frequency terms, such as “redleaves”, “dll”, and “C2”,
“redleaves” refers to a malicious software frequently
used by the Hogfish attack group in their various cyber
activities. The term “dll” indicates their attack method
involves Dynamic-Link Libraries (DLLs) and may
include techniques like DLL injection to execute
malicious code. “C2” signifies that the organization
establishes command-and-control communication after
compromising a host and sends malicious instructions

35

30

25

(a) Term frequency distribution of Hogfish in Report 1 (b) Term frequency distribution of Hogfish in Report 2

20

W
or

d
fre

qu
en

cy

15

10

5

0

7

8

6

5

4

W
or

d
fre

qu
en

cy

3

2

1

0

ac
ce

ntu
re

20
18

red
lea

ve
s

se
cu

rity

ca
mpa

ign

ho
gfi

sh DLL

res
erv

ed

wind
ow

s C2
20

18

red
lea

ve
s

ca
mpa

ign

fol
low

ing

co
mpil

ed

ac
ce

ntu
re DLL

bin
ary

wind
ow

sC2

Fig. 13 Word frequency for Hogfish attack.

 Zhihua Li et al.: Unstructured Big Data Threat Intelligence Parallel Mining Algorithm 543

to the infected host. Given this reality, it is necessary to
integrate threat intelligence to form a unambiguous and
comprehensive threat intelligence. Here, the following
approach is adopted. First, depending on the features
generated by the TFIDF method, the similarity between
different reports is calculated. Then, we merge the
threat intelligence with the obtained high similarity.
Furthermore, the proposed PDFMLC-TIM method is
utilized to yield the Stix2.1-formatting security threat
intelligence regarding the well-known Att@ck model
for the Hogfish attack, as depicted in Fig. 14.

As shown in Fig. 14, the following information can
be obtained: (1) Tactics behavior with the identifier
"TA0002" corresponds to attackers attempting to
execute malicious programs on devices, and a website
link associated with TA0002 is provided. (2) The
tactics behavior named “command and control” refers
to attackers attempting to establish network channels
with infected devices and send malicious commands,
indicating the intent to initiate C2 attacks. (3) The
website link to ATT&CK is provided for “command
and control”, facilitating network security engineers to
directly access information and descriptions related to
C2 attacks, such as corresponding techniques and
methods. Obviously, this threat intelligence is valuable
in guiding network security engineers to address on
detecting abnormal network communications and
unusual processes on devices, thereby effectively and
efficiently preventing network attack incidents, such as
Hogfish attack. This also demonstrates the
effectiveness of the PDFMLC-TIM method in the

open-source data environment. Even when dealing with
different reports of the same attack, it provides
valuable threat intelligence.

6　Conclusion and Future Work

Automated mining of tactics entities and overall threat
intelligence enables seamless sharing and direct
utilization of threat intelligence. This paper addresses
on mining tactics entities from unstructured data in
cybersecurity analysis reports and introduces the
PDFMLC algorithm. The algorithm utilizes broadcast
variables and the LZW algorithm to enhance
acceleration. Additionally, it incorporates label mutual
information into the dataset as input features, capturing
intricate factors and potential label associations.
Several experiments are conducted, validating the
algorithm’s excellent acceleration ratio, node
scalability, and superior classification capabilities.
Furthermore, a PDFMLC-TIM method is developed for
mining tactics entities within unstructured data. A real
experiment showcase the method’s effectiveness
during a public network attack event, achieving
STIX2.1-formatted threat intelligence for the incident.
We aim for our method to address network security
issues in both the Internet of Things (IoTs) and the
internet, as discussed in Refs. [27, 28]. However, it is
important to note that the proposed PDFMLC
algorithm and the related method currently focus solely
on mining tactics, without addressing techniques and
procedures. Our future research will concentrate on
automating the mining process for each TTP entity and
exploring the parallelism within the presented
algorithm.

Acknowledgment

This work was supported by the Smart Manufacturing
New Model Application Project Ministry of Industry and
Information Technology (No. ZH-XZ-18 004), the Future
Research Projects Funds for the Science and Technology
Department of Jiangsu Province (No. BY2013015-23), the
Fundamental Research Funds for the Ministry of
Education (No. JUSRP211A41), the Fundamental
Research Funds for the Central Universities (No.
JUSRP42003), and the 111 Project (No. B2018).

References

 N. Sun, M. Ding, J. Jiang, W. Xu, X. Mo, Y. Tai, and J.
Zhang, Cyber threat intelligence mining for proactive

[1]

Tactic: Execution
The attacker attempts to run

malicious code on the system

Tactic: command and control
The attacker attempts to

communicate with the infected
host and send instructions

Fig. 14 Threat intelligence of Hogfish attack.

 544 Big Data Mining and Analytics, June 2024, 7(2): 531−546

cybersecurity defense: A survey and new perspectives,
IEEE Commun. Surv. Tut., vol. 25, no. 3, pp. 1748–1774,
2023.
 S. M. Arıkan and S. Acar, A data mining based system for
automating creation of cyber threat intelligence, in Proc.
9th Int. Symp. Digital Forensics and Security (ISDFS),
Elazig, Türkiye, 2021, pp. 1–7.

[2]

 G. Husari, E. Al-Shaer, M. Ahmed, B. Chu, and X. Niu,
TTPDrill: Automatic and accurate extraction of threat
actions from unstructured text of CTI sources, in Proc.
33rd Annu. Computer Security Applications Conf.
(ACSAC), Orlando, FL, USA, 2017, pp. 103–115.

[3]

 W. Ge and J. Wang, SeqMask: Behavior extraction over
cyber threat intelligence via multi-instance learning,
Comput. J., doi: 10.1093/comjnl/bxac172.

[4]

 MITRE ATT&CK, https://attack.mitre.org/, 2019.[5]
 G. Wang, H. Peng, Y. W. Tang, and Y. Q. Jin, Error repair
technology of Lempel-Ziv-Welch (LZW) compression
data, (in Chinese), Trans. Beijing Inst. Technol., vol. 40,
no. 5, pp. 562–569, 2020.

[6]

 S. X. Lin, Z. J. Li, T. Y. Chen, and D. J. Wu, Attack tactic
labeling for cyber threat hunting, in Proc. 24th Int. Conf.
Advanced Communication Technology (ICACT),
Pyeongchang, Republic of Korea, 2022, pp. 34–39.

[7]

 R. Rahim, M. Dahria, M. Syahril, and B. Anwar,
Combination of the Blowfish and Lempel-Ziv-Welch
algorithms for text compression, World Trans. Eng.
Technol. Educ., vol. 15, no. 3, pp. 292–297, 2017.

[8]

 P. E. Latham and Y. Roudi, Mutual information,
Scholarpedia, vol. 4, no. 1, p. 1658, 2009.

[9]

 M. Zbili and S. Rama, A quick and easy way to estimate
entropy and mutual information for neuroscience, Front.
Neuroinform., vol. 15, p. 596443, 2021.

[10]

 Curmmy, Beautiful soup documentation, https://www.
crummy.com/software/BeautifulSoup/bs4/doc/index.html,
2023.

[11]

 PDFminer, https://euske.github.io/pdfminer/, 2014[12]
 J. Deng, G. Y. Shi, T. H. Cai, J. Zhu, and L. B. Huai,
Research on the method of filling of the incomplete poems
of famous monks in the tang dynasty based on TF-IDF, (in
Chinese), Mod. Comput., vol. 25, no. 8, pp. 7–11&15,
2019.

[13]

 S. Kalra, L. Li, and H. R. Tizhoosh, Automatic
classification of pathology reports using TF-IDF features,
arXiv preprint arXiv: 1903.07406, 2019.

[14]

 G. Tsoumakas, E. Spyromitros-Xioufis, J. Vilcek, and I.
Vlahavas, MULAN: A java library for multi-label

[15]

learning, J. Mach. Learn. Res., vol. 12, pp. 2411–2414,
2011.
 E. P. Xing, Q. Ho, P. Xie, and D. Wei, Strategies and
principles of distributed machine learning on big data,
Engineering, vol. 2, no. 2, pp. 179–195, 2016.

[16]

 J. X. Shao, Y. N. Xing, F. Z. Nan, X. Zhao, T. H. Ma, and
Y. R. Qian, Improved CK-means+algorithm and parallel
implementation, (in Chinese), Comput. Eng. Des., vol. 43,
no. 5, pp. 1240–1248, 2022.

[17]

 Z. H. Zhou and J. Feng, Deep forest, arXiv preprint arXiv:
1702.08835, 2017.

[18]

 L. Breiman, Random forests, Mach. Learn., vol. 45, no. 1,
pp. 5–32, 2001.

[19]

 P. Geurts, D. Ernst, and L. Wehenkel, Extremely
randomized trees, Mach. Learn., vol. 63, no. 1, pp. 3–42,
2006.

[20]

 Y. Mao, J. Geng, and L. Chen, Improved parallel deep
forest algorithm combining with information theory, (in
Chinese), Comput. Eng. Appl., vol. 58, no. 7, pp. 106–115,
2022.

[21]

 V. Legoy, M. Caselli, C. Seifert, and A. Peter, Automated
retrieval of ATT&CK tactics and techniques for cyber
threat reports, arXiv preprint arXiv: 2004.14322, 2020.

[22]

 S. R. Gunn, Support vector machines for classification and
regression, Technical report, https://see.xidian.edu.cn/
faculty/chzheng/bishe/indexfiles/new_folder/svm.pdf,
2023.

[23]

 F. Li, X. Yu, R. Ge, Y. Wang, Y. Cui, and H. Zhou,
BCSE: Blockchain-based trusted service evaluation model
over big data, Big Data Mining and Analytics, vol. 5, no.
1, pp. 1–14, 2022.

[24]

 Proteus-Cyber, Cyber security report about Hogfish,
https://proteuscyber.com/privacy-database/news/6493-
abuse-of-legitimate-security-tools-and-health-sectorcyberse-
curity, 2022.

[25]

 H. Wang, K. Qin, G. Duan, and G. Luo, Denoising graph
inference network for document-level relation extraction,
Big Data Mining and Analytics, vol. 6, no. 2, pp. 248–262,
2023.

[26]

 Y. Huo, J. Fan, Y. Wen, and R. Li, A cross-layer
cooperative jamming scheme for social internet of things,
Tsinghua Science and Technology, vol. 26, no. 4, pp.
523–535, 2021.

[27]

 M. Moutaib, T. Ahajjam, M. Fattah, Y. Farhaoui, B.
Aghoutane, and M. El Bekkali, Application of internet of
things in the health sector: Toward minimizing energy
consumption, Big Data Mining and Analytics, vol. 5, no.
4, pp. 302–308, 2022.

[28]

Zhihua Li received the BEng degree from
Wuxi Light Industry University, China in
1992, and the MEng and PhD degrees from
Jiangnan University, China in 2002 and
2009, respectively. He currently is a
professor at Jiangnan University, China.
His research interests include network
technology, parallel/distributed computing,

information security, edge computing, and mobile computing.

Xinye Yu received the BEng degree from
Jiangnan University, China in 2022. He
currently is a master student at Jiangnan
University, China. His main research
interest is information security.

 Zhihua Li et al.: Unstructured Big Data Threat Intelligence Parallel Mining Algorithm 545

Tao Wei received the BEng degree from
Hubei University of Technology, China in
2020. He currently is a master students at
Jiangnan University, China. His research
interests include parallel computing and
IoT engineering technology.

Junhao Qian received the MEng degree
from Jiangnan University, China in 1998.
He currently is a full professor at School of
IoT Engineering, Jiangnan University,
China. His research interests include edge
computing, cloud computing, and
agricultural IoT engineering technology.

 546 Big Data Mining and Analytics, June 2024, 7(2): 531−546

