
 

Unstructured Big Data Threat Intelligence Parallel Mining Algorithm
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Abstract: To  efficiently  mine  threat  intelligence  from  the  vast  array  of  open-source  cybersecurity  analysis

reports  on the web,  we have developed the Parallel  Deep Forest-based Multi-Label  Classification (PDFMLC)

algorithm. Initially, open-source cybersecurity analysis reports are collected and converted into a standardized

text format.  Subsequently,  five tactics category labels are annotated, creating a multi-label dataset for tactics

classification. Addressing the limitations of low execution efficiency and scalability in the sequential deep forest

algorithm,  our  PDFMLC  algorithm  employs  broadcast  variables  and  the  Lempel-Ziv-Welch  (LZW)  algorithm,

significantly enhancing its acceleration ratio. Furthermore, our proposed PDFMLC algorithm incorporates label

mutual  information  from  the  established  dataset  as  input  features.  This  captures  latent  label  associations,

significantly  improving  classification  accuracy.  Finally,  we  present  the  PDFMLC-based  Threat  Intelligence

Mining  (PDFMLC-TIM)  method.  Experimental  results  demonstrate  that  the  PDFMLC  algorithm  exhibits

exceptional  node  scalability  and  execution  efficiency.  Simultaneously,  the  PDFMLC-TIM  method  proficiently

conducts  text  classification  on  cybersecurity  analysis  reports,  extracting  tactics  entities  to  construct

comprehensive  threat  intelligence.  As  a  result,  successfully  formatted  STIX2.1  threat  intelligence  is

established.

Key words:  unstructured  big  data  mining; parallel  deep  forest; multi-label  classification  algorithm; threat

intelligence

1　Introduction

Cyber  security  analysis  reports,  as  a  form  of  internet-
based  open-source  big  data,  contain  extensive
descriptions  of  Tactics,  Techniques,  and  Procedures
(TTPs)  employed  in  various  network  attacks.  These
TTPs  not  only  derive  the  behavior  characteristics  of
attackers,  but  also  reveal  their  malicious  intent.

Typically, cyber security analysis reports are published
in  an  unstructured  or  semi-structured  format  using
natural  language  descriptions.  However,  natural
language  cannot  be  directly  understood  and  processed
by  machines,  necessitating  entity  extraction  of  TTPs
from  the  reports,  mining  relationships  between  TTPs
entities,  and  transforming  them  into  standard  format
threat intelligence. On the one hand, Sun et al.[1] made
a comprehensive review of the latest research work on
Cybersecurity  Threat  Intelligence  (CTI)  mining  from
multiple  data  sources.  They  made  detailed
investigations and reports on threat intelligence mining
and  threat  intelligence  sharing.  On  the  other  hand,
Arıkan  and  Acar[2] constructed  a  threat  intelligence
generation system based on data mining. However, the
mining  efficiency  of  this  system  cannot  meet  the
efficiency  requirements  and  the  generated  threat
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intelligence  is  not  in  standard  format,  which  is
unfavorable for information exchange and sharing. The
exploration of TTPs in the field of cybersecurity threat
intelligence  has  long  captured  people’s  attention.
Husari  et  al.[3] proposed  an  automated  approach  to
extract  TTPs  from  unstructured  threat  intelligence
texts. Meanwhile, Ge and Wang[4] devised a method to
predict  TTPs  labels  from  threat  intelligence.  Both
methods  aim  to  directly  extract  genuine  TTPs  from
semi-structured  threat  intelligence  texts.  Facing  the
massive  volume  of  internet-based  cyber  security
analysis  reports,  traditional  manual  processing
approaches have become impractical. Thus, there is an
urgent  need  for  a  scheme  and  manner  capable  of
efficiently  and  automatically  extracting  TTPs  entities
and  their  relationships  from  large-scale  cyber  security
analysis reports.

In  general,  of  the  three,  tactics,  techniques,  and
procedures,  tactics  play  the  most  significant  guiding
role  in  the  field  of  cyber  security.  Specifically,  for  a
given  cyber  attack  event,  once  the  tactics  are
determined,  the  corresponding  techniques  and
procedures  possess  clear  directionality.  For  instance,
with  respect  of  the  ATT&CK  model[5],  it  includes  a
total  of  14  attack  tactics,  224  attack  techniques,  and
546  attack  procedures.  For  example,  there  are  only  9
attack techniques corresponding to the data theft tactic,
including  automatic  theft  and  periodic  transfer,  and
among  these  9  techniques,  there  are  merely  8  attack
procedures,  such  as  traffic  duplication  and  Bluetooth
leakage.  It  can  be  observed  that  in  the  process  of  big
data  mining  of  cyber  security  analysis  reports,  TTPs
serve  as  crucial  clues.  Among  them,  the  primary
discovery  and  successful  extraction  of  attack  tactic
entities  are  of  utmost  key  factors,  as  once  the  attack
tactic  entities  are  successfully  identified,  it  becomes
much  easier  to  explore  the “entity-relationship-entity”
triplets  along  the “tactics,  techniques,  and  procedures”
way.  This  way  efficiently  facilitates  building  threat
intelligence.  Hereby,  this  study  focuses  on  the
optimization  objective  of  parallel  mining  of  threat
intelligence  in  large-scale  cyber  security  analysis
reports  published  on  the  Webs,  with  the  specific  goal
of  efficiently  extracting  tactics  entities  from  these
published  reports.  Addressing  on  the  challenge  of
mining  unstructured  data,  the  following  steps  are
undertaken, first, an automated web crawling process is
employed  to  collect  internet-sourced  cyber  security

analysis  reports,  and  tactics  category  labels  are
annotated to  build  a  dataset  of  threat  intelligence with
tactics  categorization.  Second,  in  response  to  the
limitations  of  low  execution  efficiency  and  lack  of
scalability  in  the  sequential  deep  forest  algorithms,  a
Parallel  Deep  Forest-based  Multi-Label  Classification
(PDFMLC)  algorithm  is  proposed.  This  algorithm
leverages  broadcast  variable  strategies  and  Lempel-
Ziv-Welch (LZW) algorithm[6] for table compression to
decrease  network  latency  and  improve  the  execution
efficiency.  Finally,  the  study  further  developes  and
proposes  the  PDFMLC-based  Threat  Intelligence
Mining  (PDFMLC-TIM)  method,  which  utilizes  the
proposed  PDFMLC  algorithm  for  efficiency  text
classification  to  cyber  security  analysis  reports.  This
approach  enables  high-dimensional  and  multi-label
unstructured data mining, facilitating the acquisition of
threat  intelligence  tactics  entities  and  automatically
transforming  them  into  the  STIX2.1-formatting  threat
intelligence.  The  experiment  results  demonstrate  that
the  PDFMLC  algorithm  exhibits  favorable  node
scalability  and  acceleration  ratio.  Moreover,  the
PDFMLC-TIM  method  efficiently  performs  text
classification  on  cyber  security  analysis  reports,
allowing for effective mining of high-dimensional and
multi-label  unstructured data,  as  well  as  the extraction
of  information  regarding  threat  intelligence  tactics
entities.  These  entities  are  then  automatically
transformed  into  STIX2.1-formattimg  threat
intelligences.

2　Establishment of Intel-Tactics Dataset

Currently,  there  is  a  lack  of  standardized  dataset
specifically  focusing  on  threat  intelligence  within  the
field of cybersecurity[7].  To bridge this gap,  this  paper
undertakes  a  comprehensive  initiative.  We  randomly
collect  and  scrape  more than 12 900 online  open-
source cybersecurity analysis reports from sources such
as  cybersecurity  companies.  Using  our  bespoke
software for annotation, we create a multi-label tactics
dataset  for  threat  intelligence,  named “Intel-tactics”.
The establishment process of Intel-tactics is delineated
in Fig.  1.  For  experimental  convenience,  Intel-tactics
have  been  categorized  into  six  tactical  classifications
aligned  with  the  ATT&CK  model,  as  outlined  in
Table 1. Intel-tactics stands as the primary resource for
both  training  and  evaluating  the  effectiveness  of  the
proposed algorithms.
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3　Parallel  Deep  Forest  Based  Multi-Label
Data Classification Scheme

The  deep  forest  algorithm  exhibits  strong  learning
capabilities  to  achieve  efficient  and  comprehensive
feature  mining.  This  manuscript  first  investigates  and
proposes  the  parallel  multi-granularity  scanning  forest
algorithm and the parallel cascading forest algorithm.

3.1　Parallel multi-granularity scanning forest

As  shown  in Fig.  2,  the  Multi-Grained  Scan  (MGS)
forest  is  separated  into  two  parts:  sliding  window
scanning  and  Spark  parallel  training.  These  two  parts
are  shown  on  the  left  and  right  sides  of Fig.  2.  The
sliding  window  scans  each  training  sample  to  yield
multiple  instances,  which  are  then  delivered  to  Spark
worker  nodes.  Multiple  Spark  worker  nodes  train
random  forests  in  parallel  and  generate  the  output
classification  vectors,  which  are  continuously  merged
to serve as the input to the cascading forest. The sliding
window  scanning  targets  to  expand  the  dimension  of
input  features,  creating  a  richer  feature  set  to  enhance
the  deep  forest’s  learning  capability  of  feature  details
and  improve  the  algorithm’s  classification

generalization  ability.  Assuming  each  input  instance
has m-dimension  features,  using  a  sliding  window  of
size w and  moving s dimensions  each  time,  the
scanning  process  will  yield  new  features  with
dimensions  of w−s+1.  For  example,  for  the  standard
multi-label  dataset “yeast”,  we  set  the  feature
dimension m to 103, the window size to 30, and sliding
it  by  10  dimensions  each  time,  which  results  in  8
feature vectors of dimension 30.

After  completing  the  sliding  window  scanning,  the
training  data  are  fed  to  multiple  Spark  worker  nodes.
By simultaneously training random forests on multiple
Spark  worker  nodes,  parallel  training  is  performed.
Herein each Spark worker node independently trains a
random  forest  using  the  received  data  and  outputs  a
classification vector. After all Spark worker nodes have
completed their training tasks, the classification vectors
are  sent  to  the  mast  Spark  node,  merging  them  to
produce the output of the multi-grained scan forest.

Although  sliding  window  scanning  can  yield  many
features  and  positively  increase  the  feature  dimension
of  the  data  instance,  it  increases  additional
communication  overhead  and  latency  in  transmitting
the training data to the distributed Spark worker nodes,
negatively impacting the overall algorithm’s efficiency.
To  overcome  this  limitation,  inspired  by  literature[8],
the  LZW  compression  algorithm  is  employed  to
compress  the  training  data,  degrading  network
transmission  data  volume  and  mitigating  network
transmission  delays.  When  the  compressed  training
data are delivered to the Spark worker nodes, they are
then  decoded  using  the  LZW  algorithm  to  obtain  the
original  training  data.  The  workflow  of  the  LZW
algorithm is illustrated in Fig. 3.

Further,  the  working  mechanism  in  LZW  algorithm
is  described  as  below.  First,  an  encoding  dictionary
table  is  initialized,  containing  all  possible  single
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Fig. 1    Process of building Intel-tactics dataset.

 

Table 1    Intel-tactics dataset information.
Tactic code Tactic Description

TA0002 Execution Utilizing technical  means to  execute  malicious code on local  or  remote systems,  enabling
control over the target.

TA0040 Impact Attackers attempt to manipulate, disrupt, or compromise systems and data.

TA0005 Defense evasion Defense evasion refers  to the actions taken by attackers  to avoid detection throughout  the
entire intrusion process.

TA0010 Exfiltration Attackers attempt to steal and disclose data.

TA0011 Command and control Attackers  attempt  to  communicate  with  infected  machines  and  send  instructions  to  these
devices.

TA0009 Collection Attackers collect information, and the sources of this information are usually related to the
attacker’s objectives.
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characters.  Then,  the  prefix P is  initialized  as  empty,
and the next character C in the character stream is read.
If the character C is an end-of-file marker,  it  indicates
that all data compression is complete. If the character C
is  not  an  end-of-file  marker,  it  checks  whether  the
combination  of  prefix P and  character C exists  in  the
dictionary.  If P + C is  in  the  dictionary,  the  next
character in the character stream is read and assigned to
C.  If P + C is  not  in  the  dictionary,  the  code  word W
for  the  prefix P is  output, P + C is  added  to  the
dictionary, C’s value is assigned to P, and then the next

character in the character stream is read until the end of
the file is reached.
3.1.1　Cascading forest structure
Typically,  as  the  number  of  layers  in  a  random forest
increase,  the  model’s  generalization  capability  gets
stronger,  allowing  it  to  learn  more  effective
information.  This  paper  proposes  the  structure  of  a
Cascading Forest (CF), which stacks multiple layers of
random  forests  in  a  cascading  scheme,  as  shown  in
Fig. 4.

The  input  of  the  cascading  forest  consists  of  three
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Fig. 2    General view of parallel multi-granularity scanning forest.
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parts:  the  output  vector S from the  multi-grained  scan
forest,  the  label  mutual  information M of  labels  in
dataset, and the output classification vector V from the
previous  layer  of  the  CF.  When  constructing  the  first
layer  of  the  CF,  the  multi-label  mutual  information M
needs to be computed. The vectors S and the feature M
are created as  broadcast  variables  and delivered to the
distributed  Spark  worker  nodes.  At  the  Spark  worker
nodes, the vectors S, multi-label mutual information M,
and classification vector V are integrated as the training
data for training the random forest. After all the Spark
worker nodes in the current layer complete the training
tasks,  the  classification  vectors  yielded  by  each  Spark
worker node are transmitted to the master node, and the
average  of  these  classification  vectors  is  calculated  to
obtain  the  new  vector V.  For  the  second  layer  of  the
CF,  the  average  of  the  classification  vectors  from  the
first  layer  is  assigned  to  vector V,  then  the  random
forest  is  trained  accordingly.  This  process  is  ongoing
until reaching the last layer of the CF.

At this stage, the average of the classification vectors
is  calculated,  which  serves  as  the  recognition
probability  for  the  target  classification  labels  of  the
dataset.
3.1.2　Re-usage of broadcast variables
In the parallel CF, the output vector S and label mutual
information M from the multi-grained scan forest need
to  be  re-used  on  the  Spark  worker  nodes,  which  is
shown  in Fig.  4.  Each  level  of  the  CF  requires  the
concatenation  of  vector S and  feature M to  obtain  the
final  training  data.  Namely,  vector S and  feature M

need  to  be  repeatedly  used  on  different  levels  and
Spark nodes to avoid redundant access from the master
Spark  node.  To  improve  the  algorithm’s  efficiency,
reduce  the  execution  time,  and  avoid  data  duplication
during transmission, the strategy of re-usage broadcast
variables  is  adopted.  As  illustrated  in Fig.  5,  vector S
and  feature M are  configured  as  Spark  broadcast
variables. Spark broadcast variables are distributed and
read-only variables that are stored in the memory of the
Spark worker nodes. They can be repeatedly accessed,
eliminating  the  need  for  redundant  data  transmission
between the Spark nodes.
3.1.3　Label mutual information
Through  the  analysis  of  the  collected 12 900 cyber
security  analysis  reports,  we  observe  that  due  to  the
logical coherence and semantic relationships present in
natural language descriptions, there exists a wide range
of  associations  among  tactics  entities,  which  often
provide  detailed  descriptions  of  the  emerged  attack
events.

The  capability  to  discover  and  explore  these
associations  positively  impacts  the  algorithm’s  final
classification accuracy and practicality. To enhance the
sensitivity  of  the  deep  forest  algorithm  to  these
associations,  the  label  mutual  information  is  cast  into
the  parallel  cascade  forest  and  integrated  as  a  feature
into  the  deep  forest’s  input.  The  label  mutual
information is represented by
 

H (x) = −
∑

p (x) log (p (x)) (1)
 

 

Spark
master
node

Output vector S of the
multi-grain scan forest

Calculate the mutual information entropy feature
of the dataset

Create broadcast variables for vector S and mutual
information feature M, initialize vector V to be empty

Send vector V to Spark worker nodes

No

Output the predicted
classification probability

Yes

Is it the last
layer of a

cascade forest?

Spark
master
node

Vector V is the average of
multiple classification

vectors

Random forestRandom forest

… …

Spark work node
O = splice (S, M, V)

Spark work node
O = splice (S, M, V)

 
Fig. 4    General view of parallel cascade forest.
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H (X|Y) = −
∑
x, y

p (x, y) log (p (x | y)) (2)

H (X | Y)

p (x | y)

where X and Y are  the  classification  labels  in  the
dataset,  and x and y are  the  values  of  labels X and Y,
which  can  be  either  0  or  1,  indicating  membership  or
non-membership  to  the  corresponding  classification
label.  According  to  the  Ref.  [9], H (x)  represents  the
expectation  of  the  amount  of  information  that  is
entropy.  is  defined  as  the  mathematical
expectation  of  the  entropy  of  the  conditional
probability  distribution X over Y under  the  given
condition Y. p (x)  represents  the  joint  probability
density  of  values x and y, p (x)  and p (y)  are  the
probabilities  of  values x and y for  labels X and Y,
respectively.  is  the  probabilities  of  values x
which  under  condition y, p (x,  y)  is  joint  density
function of x and y.  The definition and the calculation
of mutal information are as follows:
 

I (X;Y) = H (X)−H (X|Y) (3)
 

I (X;Y) =
∑

x

∑
y

p (x, y) log (
p (x, y)

p (x) p (y)
) (4)

I (X;Y)where  denotes the mutual information between
labels X and Y.  Generally,  the  higher  the  mutual
information value, the stronger the association between
the two labels[10].

I (X;Y)

In the parallel cascade forest, the mutual information
between  all  labels  is  computed  to  select  all  mutual
information  which  > t,  to  build  the  feature

vector of mutual information M.  The threshold value t
is  determined  through  empirical  experiment  from
numerous  trials.  Subsequently  the  mutual  information
feature  vector M,  the  classification  vector  of  the
cascade  forest V,  and  the  classification  vector  of  the
multi-grained scan forest S are  combined to create the
input features for the next layer of the cascade forest.

3.2　PDFMLC algorithm

RDDDI

With  the  combination  of  the  proposed  parallel  multi-
grained scan forest and parallel cascade forest, further,
we  present  PDFMLC  algorithm,  as  described  in
Algorithm 1. In this algorithm, Lines 1−9 represent the
parallel  multi-grained  scan  forest,  while  Lines  10−21
denote  the  parallel  cascade  forest.  In  the  proposed
PDFMLC algorithm, F represents the input features of
the  multi-label  classification  dataset, d denotes  the
number  of  layers  in  the  deep  forest,  DI  is  the  index
used  for  partitioning  the  dataset  into  training  and  test
sets,  and y represents  the  algorithm’s  final  predicted
label category. The execution process of the algorithm
is briefly described as follows. First, the input features
F are  scanned  using  a  sliding  window,  and  the  scan
results  are  delivered  to  the  distributed  Spark  worker
nodes  after  compression  using  the  LZW  algorithm.
Then, the dataset index DI is read to create a delivered
resilient  delivered  dataset .  Parallel  training  of
random  forests  is  conducted  on  the  distributed  Spark
work  nodes,  and  the  corresponding  classification
vectors  are  output.  After  all  Spark  worker  nodes
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Fig. 5    Multiplexing broadcast variable.
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complete  training  task,  the  classification  vectors  are
transferred to the master node for merging, resulting in
the multi-grained scan forest’s classification vector S.

Upon completing the multi-grained scan forest stage,
the  mutual  information M for  the  labels  is  computed,
and  both M and  the  classification  vector S are
broadcasted  to  the  distributed  Spark  worker  nodes.
Next,  the  label  mutual  information M,  classification
vector S,  and  the  classification  vector V from  the
previous layer of the cascade forest are concatenated as
inputs to build the cascade forest  layer by layer.  After
training  each  layer  of  the  cascade  forest,  the
classification  vector V is  updated,  where  the  update
strategy  involves  taking  the  average  of  multiple
classification  vectors.  Finally,  the  last  layer  of  the
cascade forest outputs the predicted label probability.

Regarding  the  time  complexity  of  the  PDFMLC
algorithm, it mainly stems from the multi-grained scan
forest  and  the  cascade  forest.  The  time  complexity  of
the multi-grained scan forest  primarily depends on the
process of building the forest model. Let us denote the
number  of  instances  as n,  the  feature  dimension  as m,
and  the  number  of  trees  in  the  forest  as L.  Then,  the

O (mn log2 (n))

O (Kmn log2 (n))

O (mn log2 (n))

time  complexity  of  the  multi-grained  scan  is
. On the other hand, the time complexity

of  the  cascade  forest  mainly  arises  from  constructing
the  multi-layered  random  forests.  Assuming  the
cascade forest has K layers, with n instances, m feature
dimensions,  and L trees  in  the  forest,  the  time
complexity  of  the  cascade  forest  is .
Consequently,  the  overall  time  complexity  of  the
PDFMLC  algorithm  is .  It  is  worth
noting  that  the  PDFMLC  algorithm  leverages  the
parallel  training  of  forests  on  the  distributed  Spark
cluster.  By  placing  these  forests  on  different  Spark
nodes  and  training  them  simultaneously,  unnecessary
waiting  in  the  sequence  mode  is  effectively  avoided,
positively decrease the algorithm’s execution time.

4　PDFMLC-Based  Threat  Intelligence
Mining Method

To  achieve  the  extraction  and  classification  of  tactics
entity  from cyber  security  analysis  reports,  we  further
propose the threat intelligence mining method based on
the PDFMLC (PDFMLC-TIM) method as described in
Algorithm  2.  The  PDFMLC-TIM  algorithm  is
primarily  designed  for  mining  PDF  or  HTML
formatted  cyber  security  analysis  reports.  HTML files
are handled using the Beautiful Soup library[11], where
irrelevant  information,  like  advertisements,  images,
and  URL  links,  are  filtered  out.  For  PDF-formatted
reports, PDFminer[12] is treated for conversion, filtering
out  unrelated  content,  such  as  images  and  headers.
Subsequently,  both  HTML and PDF formatted  reports
are  unified  and  converted  into  text  format.  The  text-
formatting  data  are  preprocessed  using  Term
Frequency-Inverse Document Frequency (TFIDF)[13, 14]

and  encoded  into  fixed-length  output  vectors  to
represent  the  textual  features  of  the  cyber  security
analysis reports. The TFIDF features serve as the input
to  the  deep  forest  classification  algorithm,  which
eventually  outputs  labels  for  threat  intelligence  tactics
entities,  thus  achieving  automatic  classification  and
recognition  of  tactics  entity.  Further,  the  PDFMLC-
TIM  method  can  yield  threat  intelligence  in  terms  of
the  STIX2.1  standard  based  on  the  extracted  tactics
entities.  The  time  complexity  of  the  PDFMLC-TIM
method mainly  comes  from the  iterative  invocation  of
the  PDFMLC  algorithm,  as  shown  in  Line  11  in
Algorithm  2.  For  each  text-format  file,  the  PDFMLC
algorithm  is  called  to  extract  tactics  entity.  Assuming
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O (kpq)

there  are p text-format  files,  the  depth  of  trees  in  the
forest  is k,  and  the  number  of  trees  in  the  forest  is q,
thus the time complexity is .

5　Experiment and Analysis

5.1　Experiment arrangements

The  experiment  configuration  parameters  are  listed  in
Table 2. A Spark cluster is set up using 4 servers, i.e., 4
Spark nodes. Each node is equipped with an Intel Xeon
2.20 GHZ processor, 4 GB RAM, and runs on CentOS
7.6.1810  operation  system.  The  Spark  cluster
environment  version  used  is  Spark  3.1.4,  and  Python
version is 3.6.8. The relevant experiment configuration
parameters are shown in Table 3. The maximum depth
of the parallel deep forest is set to 10, and the cascade
forest  consists  of  8  forest  ensembles.  The  number  of

parallel nodes is set as 5, and the evaluation indice for
decision tree is the Gini coefficient.

5.2　Datasets

To validate the effectiveness of the proposed PDFMLC
algorithm, four benchmark Mulan multi-label standard
datasets  are  selected[15].  80% of  the  instances  are
randomly extracted without replacement as the training
set,  while  the  remaining  instances  are  used  as  the  test
set.  The  Intel-tactics  created  in  Section  2  is  primarily
used  to  validate  the  practicality  of  the  proposed
PDFMLC-TIM  method  for  mining  the  tactics  entities
of  threat  intelligence.  The  detailed  information  of  the
experimental datasets is listed in Table 4.

5.3　Evaluation indices

The accelerate ratio is used to express the performance
improvement[16] of  parallel  computing  and  sequence
execution, and the speedup ratio is defined as
 

S c =
T1

Tc
(5)

T1

Tc

c
S c

S c

S c = c S c

where  represents  the  time  required  for  sequential
execution  of  the  algorithm,  represents  the  time
required for running the algorithm on an -node Spark
cluster[17],  denotes  the  accelerate  ratio  of  the
algorithm.  A  larger  indicates  less  time  cost  in
parallel  computing  mode,  thus  indicating  better
performance of the parallel algorithm. When , 
is  referred  to  as  the  desire  accelerate  ratio,  which
means excellent scalability of the parallel algorithm.

5.4　Effectiveness of PDFMLC-TIM

PDFMLC algorithm’s effectiveness is validated on the

 

 

 

Table 2    Experiment configuration.
Parameter Value

Operating system CentOS 7.6.1810
CPU Intel Xeon 2.20 GHZ

Memory/GB 4 GB
Program language Python 3.6.8

Spark cluster Spark 3.1.4
Development tool PyCharm Community Edition 20 202.1

 

Table 3    Experiment parameters of PDFMLC.
Parameter Value
max_layer 10
num_forest 8
num_node 5
Criterion Gini

 

Table 4    Dataset information.

Dataset Training
dataset

Test
dataset

Number of
features

Number of
classes

yeast 1933 484 103 14
scene 1925 482 294 6
enron 1361 341 1001 53

genbase 529 133 1186 27
intel-
tactics 10 320 2580 500 5
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standard  multi-label  dataset  Mulan.  At  the  same  time,
we  compare  it  with  the  algorithms  deep  forest[18],
random  forest[19],  and  extra  trees[20].  The  experiment
results are shown in Fig. 6.

As shown in Fig. 6, the accuracy of PDFMLC on the
dataset  yeast  is  67.39%,  which  is  the  best  one  among
the  four  compared  algorithms.  On  dataset  scene,  the
PDFMLC  algorithm  achieves  an  accuracy  of  93.24%,
outperforming  deep  forest  by  0.48%.  Both  the
algorithms  exhibite  comparison  recognition
performance,  which  can  be  attributed  to  the  relatively
limited number of label categories in the scene dataset
and  an  abundant  instance  size,  resulting  in  higher
classification accuracy for deep forest.

On enron dataset, the PDFMLC algorithm attains an
accuracy  of  70.24%,  whereas  deep  forest  achievs  an
accuracy of 68.38%, indicating a 1.86% lower accuracy
for  deep  forest  in  comparison  to  PDFMLC.  For  the
genbase  dataset,  the  PDFMLC  algorithm  obtains  an
accuracy of 86.83%,  surpassing deep forest  by 0.15%.
Across  all  four  datasets,  the  PDFMLC  algorithm
consistently  outperforms  deep  forest,  particularly
demonstrating  1.86% higher  accuracy  on  the  enron
dataset.  This  can  be  attributed  to  the  PDFMLC
algorithm’s  integration  of  label  mutual  information,
capturing  correlations  among  label  categories.
Furthermore,  by  incorporating  the  original  features  as
new  training  features  and  passing  them  to  subsequent
cascaded  layers  for  classification,  the  PDFMLC
algorithm  effectively  improves  the  classification
accuracy.  This  method  contributes  to  the  enhanced
performance of the algorithm.

To  validate  the  parallelization  effectiveness  of  the
proposed  algorithm,  the  PDFMLC  algorithm  and  the
deep  forest  algorithm  are  compared  on  four  standard
datasets  with  respect  of  execution  time  and  speedup

ratio,  as  shown  in Figs.  7 and 8,  respectively.  Deep
forest  adopts  the  typical  sequence  mode,  which
multiple  forests  in  the  same  layer  are  trained  serially.
PDFMLC  algorithm,  on  the  other  hand,  is  a
parallelized one of  the  deep forest  algorithm based on
Spark  cluster,  where  random  forests  are  delivered  to
the  distributed  Spark  nodes  and  trained  in  parallel
computing. The PDFMLC algorithm exhibites the best
speedup ratio on the yeast dataset,  reaching 4.65. This
can  be  attributed  to  the  fact  that  the  yeast  dataset  has
the  largest  number  of  instances  among  the  four
compared datasets, with 1933 samples, and its number
of  classification  labels  is  2.3  times  that  of  the  scene
dataset.  Due to  the  smaller  instance  sizes  of  the  scene
and enron datasets, the speedup ratios on these datasets
are slightly lower at 4.49 and 4.35, respectively, with a
decrease of 0.16 and 0.3 compared to the yeast dataset.
The  genbase  dataset,  which  has  the  smallest  instance
size among the four compared datasets, also achieves a
speedup  ratio  of  4.13.  These  experiment  results
demonstrate  the  potential  of  the  PDFMLC  algorithm
based  on  Spark  cluster  parallelization  in  handling  big
data,  particularly  in  scenarios  with  a  large  number  of
instances and classification labels.

Figures  9 and 10 illustrate  the  comparison  of  the
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accelerate  ratio  and  execution  time  between  the
PDFMLC algorithm and  the  deep  forest  algorithm for
the MGS forest and the CF on the benchmark datasets.
Across  all  four  standard  datasets,  the  PDFMLC
algorithm  consistently  achieves  a  speedup  ratio
surpassing 3.97 for the cascaded forest phase, with the
highest ratio reaching 4.83 on the yeast dataset.

Notably,  from Figs.  9 and 10,  it  is  clear  that  the
cascaded  forest  phase  of  the  PDFMLC  algorithm
outperforms  the  multigranular  scan  forest  phase  in
terms  of  speedup  efficiency.  This  distinction  can  be
attributed  to  the  additional  initialization  operations
required by the multigranular scan forest, including the
transmission  of  training  data  to  each  node  and  the
merging  of  output  results  from  different  nodes.  Such
operations  inevitably  incur  network  transmission
latency, consequently diminishing the speedup ratio of
the multigranular scan phase. In contrast, the PDFMLC
algorithm leveraged the usage of broadcast variables to
store  the  classification  vector  obtained  in  the  MGS
phase  for  the  CF  phase.  Once  transmitted  initially,
these broadcast  variables  can be subsequently re-used,
effectively  minimizing  network  transmission  time  and

enhancing  the  overall  speedup  ratio.  Generally,  the
scalability of an algorithm’s parallelization is enhanced
by  increasing  the  scale  of  Spark  nodes. Figure  11
illustrates  the  variation  of  algorithm  runtime  with  the
number  of  Spark  nodes.  The  experiment  results
compare the performance of the Hadoop-based parallel
deep  forest  algorithm,  Improved  Parallel  Deep  Forest
algorithm  combining  with  Information  Theory
(IPDFIT)[21] with  the  Spark-based  parallel  deep  forest
algorithm  PDFMLC.  As  shown  in Fig.  11,  it  can  be
observed that on the yeast dataset, when only one node
is  used,  the  values  of  runtime  of  the  both  compared
algorithms  are  similar.  This  is  because  a  single  node
cannot fully exploit the advantages of Spark’s resilient
delivered datasets, but still incurs resource overhead in
maintaining  RDD  objects,  spurring  an  extended
runtime.  However,  as  the  number  of  nodes  increases,
the  runtime  difference  between  the  PDFMLC  and
IPDFIT  algorithms  gradually  widens.  On  the  scene
dataset, when the number of cluster nodes ranges from
1  to  5,  the  PDFMLC  algorithm  outperforms  the
IPDFIT  algorithm,  primarily  due  to  the  disk  I/O
operations  required  during  the  execution  stages  of
Hadoop, as well as the need to write data to disk after
each task and read data from disk for the sequence task,
thereby  increasing  the  runtime.  In  contrast,  Spark
cluster  utilizes  delivered  resilient  data  storage,
maintaining delivered data  in  memory and performing
direct memory-to-memory data operations and network
transfers,  resulting  in  shorter  runtime.  On  the  enron
dataset,  as  the number of  nodes increases,  the runtime
difference  between  the  two  algorithms  becomes  more
significant.  On  the  genbase  dataset,  when  the  Spark
cluster  consists  of  five  nodes,  the  IPDFIT  algorithm
exhibits  longer  runtime  compared  to  that  of  the
PDFMLC  algorithm.  It  shows  that  the  PDFMLC
algorithm  maintains  a  good  speedup  ratio  as  the
number  of  nodes  increases,  and  when  the  number  of
nodes  reaches  5,  a  significant  reduction  in  runtime  is
achieved.

Label  mutual  information  is  used  to  control  which
information is regarded in the label mutual information
feature  vector M and  serves  as  the  input  for  the
cascaded forest  phase.  When the threshold is  set  high,
highly correlated entity label pairs are selected. While a
lower  threshold  enables  the  selection  of  a  larger
number of label pairs, it facilitates the capture of more
diverse  information  regarding  label  associations.
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Figure  12 shows  the  experiment  results  on  the  impact
of  label  mutual  information  threshold  on  multi-label
classification  results.  Label  pairs  with  mutual
information  greater  than  the  threshold  are  included  in
the  feature  vector  for  labeling  mutual  information.
From Fig. 12a, it is clear that for the yeast dataset, the
algorithm  achieves  better  classification  performance
when  the  label  mutual  information  threshold  is  set  as
0.4.  Increasing  the  labeling  mutual  information
threshold  from  0.4  to  0.7  does  not  impact  the
classification  performance  of  the  PDFMLC algorithm.
This  is  because  that  no  label  pairs  has  mutual
information values delivered within the range of 0.4 to
0.7, thus the label mutual information features selected
with  these  thresholds  are  identical  and  do  not  impact
the  accuracy.  When  the  label  mutual  information
threshold  is  set  below  0.4,  label  pairs  with  low
correlation are included in the label mutual information
feature  vector,  causing  interference  and  resulting  in
poorer classification performance.

When  the  label  mutual  information  threshold  is  set
above  0.7,  although  highly  correlated  label  pairs  are
selected,  the  limited  number  of  label  pairs  surpassing

this  threshold  leads  to  a  smaller  set  of  generated
features,  which  does  not  significantly  enhance  the
algorithm’s  performance,  resulting  in  average
classification accuracy. From Fig. 12b, it shows that on
the  scene  dataset,  when  the  label  mutual  information
threshold  exceeds  0.1,  the  accuracy  of  the  tactics
classification  decreases.  However,  when  the  threshold
is  set  as  0.04,  the  incorporated  label  mutual
information  feature  improves  the  classification
accuracy  to  93.76%.  From Fig.  12c,  on  the  enron
dataset, the highest accuracy for tactics classification is
obtained  when  the  label  mutual  information  threshold
is set as 0.1, incorporating a significant amount of label
association  information,  the  accuracy  reaches  67.09%.
When the label mutual information threshold equals or
exceeds  0.2,  the  classification  accuracy  decreases  as
critical label pair association information is filtered out.
From Fig.  12d,  on  the  genbase  dataset,  a  better
performance  is  observed  when  the  label  mutual
information  threshold  is  set  as  0.04,  with  an  accuracy
of  84.87%.  However,  when the  threshold exceeds  0.1,
the  algorithm’s  classification  performance  slightly
declines  to  an  accuracy  of  84.27%,  as  a  large
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proportion  of  label  mutual  information  values  fall
within  the  range  of  0  to  0.1,  resulting  in  the  filtering
out  of  crucial  association  information.  These
experiment  results  indicate  that  in  data  mining  of
unstructured  data,  especially  for  multi-label  dataset,
incorporating label mutual information can enhance the
learning  and  generalization  capability  of  random
forests.

5.5　Efficiency of PDFMLC-TIM

To  validate  the  practicality  and  efficiency  of  the
developed  PDFMLC-TIM  method,  the  comparison
experiments  are  conducted  on  the  intel-tactics  dataset.
The following algorithms are selected for comparison:
random  forest,  rcATT[22],  deep  forest,  extra  trees,
Support  Vector  Classification  (SVC)[23],  and
GaussianNB.  First,  the  cyber  security  analysis  reports
that  are  evaluated  by  the  BCSE model[24] in  the  intel-
tactics  are  preprocessed  by  converting  the  text  into
term  frequency  features  using  TF-IDF  counting[13, 14].
Then,  the  PDFMLC algorithm is  employed to  classify
the  term  frequency  features  and  output  the
corresponding  tactics  category  labels.  The  experiment
results  of  the  PDFMLC  algorithm  on  the  Intel-tactics
are shown in Table 5.

As  shown  in Table  5,  the  PDFMLC  algorithm
achieves  the  highest  F1-score  of  70.93% and  the
highest  recall  rate  of  81.48%.  This  is  because  the
PDFMLC  algorithm  integrates  parallel  multi-
granularity  scanning  forests,  parallel  cascade  forests,
and  label  mutual  information,  which  allows  for  better
exploration of latent feature information, more detailed
features,  and  potential  correlations  among  features,
resulting  in  improved  tactics  classification
performance.  In  comparison,  rcATT  trains  multiple
binary  classifiers  for  tactics  category  label
classification,  with  each  classifier  individually
classifying a specific tactics category. By treating each
category  independently,  the  algorithm  overlooks  the
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Fig. 12    Comparison of the results of different mutual information entropy thresholds.

 

Table 5    Performance  of  different  algorithms  on  Intel-
tactics.

(%)
Algorithm name F1-score Precision Recall

PDFMLC 70.93 62.79 81.48
rcATT 57.38 57.77 56.99

Deep forest 70.82 64.15 79.04
Extra trees 56.19 49.98 64.17

SVC 68.39 64.32 73.02
GaussianNB 55.41 51.17 60.42
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correlations  among  tactics  category  labels.
Furthermore,  the  Intel-tactics  consists  of  5  tactics
category  labels,  requiring  training  of  5  binary
classifiers,  which  increases  the  computation  overhead.
Deep  forest  is  an  ensemble  learning  algorithm  that
enhances  the  input  instance  features  through  multi-
granularity  scanning  forests.  It  generates  features  of
different scales using sliding windows to enrich feature
information  at  different  granularities.  The  stacked
cascade  forest  structure  is  then  utilized  to  learn  the
underlying  features,  where  the  output  of  the  previous
layer  serves  as  the  input  for  the  next  layer,  ultimately
predicting  the  classification  labels.  During  the
prediction  phase,  the  outputs  from  multiple  random
forests  are  combined  to  derive  the  final  predicted
category.  This  approach  effectively  mitigates  the
negative impact of overfitting and outliers, resulting in
an  F1-score  of  70.82%,  indicating  good  recognition
capability  for  tactics  entity.  Extra  trees,  which  is
similar  to  random  forests,  is  an  ensemble  learning
method  with  a  high  level  of  randomness.  During
training,  extra  trees  randomly  select  splitting
thresholds,  whereas  random forests  search  for  optimal
thresholds. This inherent randomness makes extra trees
less  prone  to  overfitting,  and  the  random  selection  of
thresholds speeds up training. However, this also leads
to  worse  performance,  as  reflected  in  its  F1-score  of
only  56.19%.  SVC  is  a  popular  machine  learning
algorithm  used  for  multi-label  classification.  It
achieves  classification  by  finding  the  optimal
hyperplane that separates different class data.

In  the  case  of  the  Intel-tactics,  multiple  binary  SVC
classifiers are trained, with each classifier determining
whether  the  security  text  belongs  to  a  specific  tactics

category.  SVC  performs  well  in  tactics  multi-label
classification, achieving an F1-score of 68.39%, which
is only 1.36% lower than that of the PDFMLC method.
GaussianNB is  a  variant  of  the  naive  Bayes  algorithm
that  calculates  the  probability  of  given  feature  values
belonging  to  each  class  using  Bayesian  probability.
GaussianNB  performs  poorly  in  Intel-tactics
classification, with an F1-score of only 55.41%. These
experiment  results  prove  that  the  PDFMLC  algorithm
exhibits certain comparative advantages.

5.6　Practice of PDFMLC-TIM method

In  the  field  of  cybersecurity  threat  intelligence,
different  vendors  typically  provide  their  own  cyber
security  analysis  reports  for  the  same  cyber-attacking
event. This adds to the complexity of generating threat
intelligence  for  the  attacks  we  encounter.  In  open-
source data, we use the hogfish attack as an example to
validate  whether  PDFMLC-TIM  could  successfully
generate  relevant  threat  intelligence  for  the  attack.
Figure 13 illustrates the term frequency distribution of
two  cyber  security  analysis  reports  from two different
vendors  regarding  the  Hogfish  attack[25].  Reference
[26]  investigates  the  relationships  between  security
reports.  These  two  reports  share  many  common  high-
frequency terms, such as “redleaves”, “dll”, and “C2”,
“redleaves” refers  to  a  malicious  software  frequently
used by the Hogfish attack group in their various cyber
activities.  The term “dll” indicates their attack method
involves  Dynamic-Link  Libraries  (DLLs)  and  may
include  techniques  like  DLL  injection  to  execute
malicious  code. “C2” signifies  that  the  organization
establishes  command-and-control  communication after
compromising  a  host  and  sends  malicious  instructions
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Fig. 13    Word frequency for Hogfish attack.
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to the infected host. Given this reality, it is necessary to
integrate threat intelligence to form a unambiguous and
comprehensive  threat  intelligence.  Here,  the  following
approach  is  adopted.  First,  depending  on  the  features
generated by the TFIDF method, the similarity between
different  reports  is  calculated.  Then,  we  merge  the
threat  intelligence  with  the  obtained  high  similarity.
Furthermore,  the  proposed  PDFMLC-TIM  method  is
utilized  to  yield  the  Stix2.1-formatting  security  threat
intelligence  regarding  the  well-known  Att@ck  model
for the Hogfish attack, as depicted in Fig. 14.

As  shown in Fig.  14,  the  following  information  can
be  obtained:  (1)  Tactics  behavior  with  the  identifier
"TA0002"  corresponds  to  attackers  attempting  to
execute malicious programs on devices,  and a website
link  associated  with  TA0002  is  provided.  (2)  The
tactics  behavior  named “command  and  control” refers
to  attackers  attempting  to  establish  network  channels
with  infected  devices  and  send  malicious  commands,
indicating  the  intent  to  initiate  C2  attacks.  (3)  The
website  link  to  ATT&CK  is  provided  for “command
and control”, facilitating network security engineers to
directly  access  information  and  descriptions  related  to
C2  attacks,  such  as  corresponding  techniques  and
methods. Obviously, this threat intelligence is valuable
in  guiding  network  security  engineers  to  address  on
detecting  abnormal  network  communications  and
unusual  processes  on  devices,  thereby  effectively  and
efficiently preventing network attack incidents, such as
Hogfish  attack.  This  also  demonstrates  the
effectiveness  of  the  PDFMLC-TIM  method  in  the

open-source data environment. Even when dealing with
different  reports  of  the  same  attack,  it  provides
valuable threat intelligence.

6　Conclusion and Future Work

Automated mining of tactics entities and overall threat
intelligence  enables  seamless  sharing  and  direct
utilization  of  threat  intelligence.  This  paper  addresses
on  mining  tactics  entities  from  unstructured  data  in
cybersecurity  analysis  reports  and  introduces  the
PDFMLC  algorithm.  The  algorithm  utilizes  broadcast
variables  and  the  LZW  algorithm  to  enhance
acceleration.  Additionally,  it  incorporates label  mutual
information into the dataset as input features, capturing
intricate  factors  and  potential  label  associations.
Several  experiments  are  conducted,  validating  the
algorithm’s  excellent  acceleration  ratio,  node
scalability,  and  superior  classification  capabilities.
Furthermore, a PDFMLC-TIM method is developed for
mining tactics entities within unstructured data.  A real
experiment  showcase  the  method’s  effectiveness
during  a  public  network  attack  event,  achieving
STIX2.1-formatted  threat  intelligence  for  the  incident.
We  aim  for  our  method  to  address  network  security
issues  in  both  the  Internet  of  Things  (IoTs)  and  the
internet,  as  discussed  in  Refs.  [27, 28].  However,  it  is
important  to  note  that  the  proposed  PDFMLC
algorithm and the related method currently focus solely
on  mining  tactics,  without  addressing  techniques  and
procedures.  Our  future  research  will  concentrate  on
automating the mining process for each TTP entity and
exploring  the  parallelism  within  the  presented
algorithm.
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