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Abstract: Open  Air  Interface  (OAI)  alliance  recently  introduced  a  new  disaggregated  Open  Radio  Access

Networks  (O-RAN)  framework  for  next  generation  telecommunications  and  networks.  This  disaggregated

architecture is open, automated, software defined, virtual,  and supports the latest advanced technologies like

Artificial Intelligence (AI) Machine Learning (AI/ML). This novel intelligent architecture enables programmers to

design  and  customize  automated  applications  according  to  the  business  needs  and  to  improve  quality  of

service  in  fifth  generation  (5G)  and  Beyond  5G  (B5G).  Its  disaggregated  and  multivendor  nature  gives  the

opportunity to new startups and small vendors to participate and provide cheap hardware software solutions to

keep  the  market  competitive.  This  paper  presents  the  disaggregated  and  programmable  O-RAN architecture

focused  on  automation,  AI/ML  services,  and  applications  with  Flexible  Radio  access  network  Intelligent

Controller  (FRIC).  We  schematically  demonstrate  the  reinforcement  learning,  external  applications  (xApps),

and automation steps to implement this disaggregated O-RAN architecture. The idea of this research paper is

to implement an AI/ML enabled automation system for software defined disaggregated O-RAN, which monitors,

manages,  and performs AI/ML-related services,  including the model  deployment,  optimization,  inference,  and

training.
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Reinforcement  Learning  (RL); external  Applications  (xApps); Artificial  Intelligence  (AI); Machine
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1　Introduction

The  upcoming  software  defined  automated  networks,
called  sixth  generation  (6G),  is  a  revolutionary
technology  which  eliminates  bandwidth,  latency,
energy  efficiency,  and  performance  limits  on
worldwide  connectivity.  6G  is  expected  to  transform
telecommunication  networks  from  the  Internet  of

Everything  (IoE)  to  Intelligent  Networks  by  enabling
Artificial  Intelligence  Machine  Learning  (AI/ML)
applications  to  connect  trillion  of  sensors,
computational  devices,  and  mobile  devices  and
machines.  6G is  positioned  as  a  cutting-edge  business
technology that  enhances lifestyles worldwide through
innovative  applications,  like  connected  autonomous
systems,  smart  grid  &  energy  management,  advance
remote sensing & imaging,  smart  healthcare,  extended
reality, flying vehicles, robotics, and telemedicine. For
successful  implementation  of  these  use-cases,  6G
systems  must  offer  near  real-time  low  latency,  wide
bandwidth,  wide  coverage  &  connectivity,  better
energy  efficiency,  wide  frequency  band  (in  THz),  and
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intelligent  automated  applications  across  multivendor
devices.  A  versatile  network  is  required  to  enable  the
co-existence of various services by considering all their
unique  features.  The  traditional  Open  Radio  Access
Networks  (O-RAN)  do  not  support  all  these  services,
therefore O-RAN optimization is the need of time and
new  business  opportunities.  The  private  sector  and
academic  community  are  employing  virtual  and
programmable  technologies,  like  Software  Defined
Network  (SDN),  to  enhance  the  software  orientation,
intelligence,  and  energy  efficiency  of  mobile  radio
networks.  These  advancements  aim  to  fulfill  the
specific service demands. Another approach to increase
adaptability  and  intelligence  is  to  divide  the  Radio
Access  Network  (RAN)  component  into  functional
layers,  aligning  with  the  needs  of  the  mentioned
services.

The new O-RAN architecture represents a significant
paradigm  shift  with  aims  to  move  the
telecommunication and network providers  towards  the
AI/ML  enabled  automation  system  for  software-
defined  disaggregated  O-RAN.  The  fundamental
concept  of  O-RAN  is  to  pull  the  key  programmable
components from the computing hardware and control
and  manage  them  through  automated  software
programs.  The  disaggregated  components  will
communicate  and  connect  via  open  and  standardized
interfaces,  like  E2,  A1,  O1,  etc.  In  order  to
accommodate  automated  programed  applications,  O-
RAN  has  created  a  Flexible  Radio  access  network
Intelligent Controller (FRIC). In order to improve RAN
management,  monitoring,  orchestration,  and
performance,  and  simplify  operational  tasks,  FRICs
supports  Machine  Learning  (ML)  applications.  6G
caters to the demands of future telecommunication and
network  businesses  by  implementing  real-time
operations,  such  as  radio  resources  selection,  like
channels,  device  mobility  management,  and frequency
administration.  These  processes  include  device  real-
time  resource  allocation  and  arrangement,  energy
allocation,  and  real-time  radio  link  connection,  all
tailored  to  encounter  the  exact  requirements  of
numerous applications.

Programmability,  virtual,  and  openness  are  the
important  characteristics  of  O-RAN,  however  the  key
point is to upgrade the existing designs to ones that are
smarter  and  more  autonomous.  O-RAN is  designed  to
support the latest technologies and data science tools to

optimize  and  automate  the  O-RAN  system.  An
essential  requirement  for  introducing  a  high  level  of
intelligence is the development of a robust architecture
design  that  enables  algorithms  to  nonstop  understand
and effectively utilize system data. In order to support
Artificial Intelligence (AI) and ML capabilities, as well
as  manage  the  growing  complexity  of  envisioned
networks, the O-RAN functionality and building blocks
need  to  be  extended  beyond  traditional  manually
programmed  approaches.  The  initial  step  towards
allowing  AI  and  ML  algorithms  to  manage  advanced
RAN  functions  is  the  implementation  of  flexible
system  disaggregation  and  open  interfaces.  These
fundamental  concepts  enable  operators  to  separate
RAN  elements  from  distinct  manufacturers  while
maintaining  compatibility  &  interoperability  among
multiple vendors.

Disaggregated  O-RAN  results  serve  as  the
foundation by handing over management to AI and ML
algorithms. The placement of advanced models and the
adoption  of  intelligent  agent-based  systems  are
particularly  significant  for  addressing  complex
problems that demand high levels of security and trust.
The near-Real-Time RAN Intelligent  Controller  (near-
RT  RIC)  and  the  non-Real-Time  RAN  Intelligent
Controller (non-RT RIC) are crucial entities that show
a  pivotal  role  in  the  new  automated  system  for
disaggregated O-RAN. These controllers determine the
optimisation  justification  of  O-RAN  operations  based
on  their  respective  decision  timescales,  with  the  near-
RT RIC focusing on minimizing latency. Additionally,
the  functionality  of  the  Central  Unit  (CU)  and
Distributed  Unit  (DU)  programmable  intelligent
controllers  are  complemented  by  the  availability  of
apps.  As  these  applications  are  programmable,  open,
and  flexible  for  implementation  and  deployment  on
both the non-RT RIC and near-RT RIC, depending on
the use  cases.  Non-RT RIC monitors  long-term trends
and  patterns  for  telecommunication  resources
performance, and employs AI/ML methods to perform
corrective  actions  through  Service  Management  and
Orchestration  (SMO)  reconfiguration  via  O1  interface
or  via  creation  of  A1  policies.  Non-RT  RIC  trains
relevant  AI/ML models  deployed  at  near-RT RIC.  On
the  other  hand,  near-RT  RIC  enables  optimized  RAN
actions  through  execution  of  deployed  AI/ML  models
in near-real-time by considering both O1 configuration
and received A1 policies. Disaggregated O-RAN is, in
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general,  revolutionizing  the  telecom  industry  by
fostering  vendor  diversity,  flexibility,  interoperability,
cost  effectiveness,  automation,  innovation,  and
cooperation.  It  gives  telecom  operators  the  ability  to
create  networks  that  are  more  adaptable,  scalable,  and
economical,  which  ultimately  benefits  customers  by
enabling  greater  connection,  quicker  and  customized
services,  and  more  competition  in  the  market.
Disaggregated  O-RAN  enables  operators  to  select
hardware  and  software  components  from  a  variety  of
vendors  by  utilizing  open  interfaces,  standardization
initiatives, a wide-ranging vendor ecosystem, plug-and-
play  compatibility,  and  rigorous  validation  &  testing.
This  multivendor  strategy  encourages  innovation  and
competition  while  enabling  telecom  operators  to
customize  their  network  architecture  to  meet  their
business  needs.  In  the  end,  it  offers  operators  in  the
telecom  sector  greater  flexibility,  scalability,  and  cost
effectiveness.

This  paper  introduces  the  innovative  concept  of
Reinforcement  Learning  (RL)  within  the  O-RAN
framework, wherein intelligent agents interact with the
system,  receive  rewards  and  penalties,  and  optimize
their  actions  to  enhance  network  performance.  The
paper combines RL with the Markov Decision Process
(MDP),  a  well-established  technique  for  simulating
complex  systems,  to  create  a  method  for  optimizing
action  selection  in  O-RAN,  and  deploy  the  Deep  Q-
Network  (DQN)  algorithm,  which  utilizes  neural
networks,  enhances  the  adaptability  of  O-RAN  in
complex  and  large-scale  scenarios.  Additionally,  the
use  of  target  and  prediction  networks  within  DQN
ensures  consistent  and  stable  decision-making.
Automation  in  resource  allocation  and  scheduling,
achieved  through  DQN  learning,  results  in  efficient
resource  utilization.  Integration  of  ML  Operations
(MLOps)  principles  bridges  the  gap  between  machine
learning  model  development  and  operation,  ensuring
the  continuous  and  reliable  operation  of  ML  models
within  the  dynamic  O-RAN  environment.  The  paper
also  sheds  light  on  the  challenges  of  manual  model
deployment,  emphasizing  the  need  for  automation  to
overcome  scalability,  consistency,  and  maintenance
issues  effectively.  Overall,  this  paper  introduces
groundbreaking  approaches  to  RL,  MDP,  and  DQN
algorithms  in  O-RAN,  promising  improved  network
performance and resource allocation through intelligent
automation,  while  highlighting  the  significance  of
MLOps  in  managing  machine  learning  models  in

evolving network environments.
Section 2 of this paper shows a literature survey and

details  of  relevant  research  works.  We  survey  all
aspects  of  O-RAN,  FRIC,  integration  of  O-RAN
components,  and  AI/ML  technologies.  Section  3
discusses  the  evolution  of  O-RAN  from  traditional
monolithic methods to a new programable system, and
shows the new included features of O-RAN. Sections 4
and  5  discuss  the  standard  AI/ML  enabled  automated
system  for  software  defined  disaggregated  O-RAN
architecture  and  newly  added  AI/ML  components.
Finally,  Section  6  depicts  and  implements  the  RL  for
automation  system.  Section  7  is  about  the  open
problems and future scope for further innovation of the
system.

2　Related Work

Numerous  research  papers  have  been  published  by
various  authors  exploring  the  components  of  4G/5G
RAN.  In  a  comprehensive  analysis  of  the  literature,
Polese  et  al.[1] examined  Cloud-RAN  (C-RAN),
Heterogeneous  Cloud-RAN  (H-CRAN),  Virtualized
Cloud-RAN  (V-CRAN),  Fog-RAN  (F-RAN),  and
presented  their  findings.  Another  survey[2] focuses  on
C-RAN  and  elaborates  the  role  of  advance
applications.  Similar  to  this,  in  Ref.  [3],  the  C-RAN
architecture  is  discussed.  More  precisely,  a  thorough
analysis of how resources is allocated in such an RAN
architecture.  Reference  [4]  utilizes  the  O-RAN design
to  propose  a  machine  learning  centered  approach  for
enhancing gNodeB (gNB) handovers by optimizing the
Self-Organizing  Network’s  (SON)  Automatic
Neighbor Relation (ANR) function. Chinchilla-Romero
et  al.[5] delved  into  team  learning  and  multi-agent
systems,  showcasing  their  implementation  on  the  O-
RAN  design.  The  development  of  O-RAN,  including
architecture,  functionality,  and  implementation,  is
explored  in  Ref.  [6].  Integration  possibilities  with
Beyond  5G  (B5G),  scalability,  energy  efficiency,
resource  management,  and  network  automation
concepts are discussed in Refs. [7, 8]. The challenge of
disaggregation  of  elements  in  O-RAN  is  addressed  in
Refs. [9, 10]. References [11, 12] proposed an advance
method  related  to  the  RL,  where  an  agent  is  learning
from its behavior and dynamically partitions the jobs in
O-RAN, aiming to minimize the ingesting of power in
RAN.  In  Ref.  [13],  a  framework  called “New  Radio
flexibility” (NRflex) is developed to address the slicing
challenge  in  5G  RAN.  NRflex  enables  dynamic

  Sunil Kumar:  AI/ML Enabled Automation System for Software Defined Disaggregated Open Radio Access Networks... 273

 



allocation  of  Bandwidth  Parts  (namely  BWP)  and
wireless  resources  to  system  slices  and  its  associated
operators[14].  The  mapping  of  O-RAN  architecture  to
the  NRflex  framework  for  dynamic  BWP  sizing  is
discussed  in  Refs.  [15, 16].  For  affordable  5G
deployments,  Ref.  [17]  presents  a  new  architecture
framework  called  5G  Non-Public  Networks  (NPN).
References  [18–21]  explore  the  development  of  ML-
based closed-loop results related to the O-RAN design
and demonstrate preliminary O-RAN lab setup, testing,
and validation[22]. The Colosseum network simulator is
utilized  to  deploy  O-RAN,  manage  multiple  network
slices,  and  perform  experimentation[23].  It  should  be
noted that  while several  survey articles discuss 4G/5G
RAN  architectures,  they  mostly  focus  on  earlier
architectures,  like  C-RAN,  H-CRAN,  V-CRAN,  etc.,
and  do  not  address  innovative  O-RAN  design
principles[24–26].  Furthermore,  Deep  Learning  (DL)-
based  studies  addressing  RAN  issues  in  4G/5G
networks  exist[27],  but  they  need  to  be  integrated  into
the  emerging  O-RAN  architecture.  Existing  survey
works on O-RAN provide brief details about its design,
modules,  advantages,  and  disadvantages[28, 29].  This
review  specifically  focuses  on  DL-based  techniques
addressing  resource  management  in  5G and  5G RAN.
The summary of review papers and analysis is given in
Table 1.

3　Evolution of O-RAN

3.1　Monolithic to disaggregated

The  evolution  of  O-RAN  towards  openness  and
interoperability  is  achieved  by  incorporating  the
theories  of  both  C-RANs  and  V-RANs  to  expand  the
features  of  the  RAN.  Traditional  cellular  network
deployment  uses  an  unbreakable,  monolithic,  and
“black box” infrastructure that is unable to separate the
network  infrastructure’s  hardware  and  software.  The
design needs 5G and B5G, which are characterized by
many  network  resources,  real-time  management  and
configuration, cannot be addressed by this vendor lock-
in  strategy  at  this  time.  The  first  method  to  do  away
with  these  restrictions  is  C-RANs,  which  make use  of
some of the cloud’s computational power. The C-RAN
architecture  consists  of  two  main  components  of  O-
RAN. One is the Baseband Units (namely BBUs), and
the  other  one  is  the  Remote  Radio  Heads  (RRHs).
Finally,  C-RANs  connect  both  components  using  the
high speed fronthaul links. The base station is the main

component of C-RAN and we mainly divide it into two
groups: scattered RRHs and BBUs. In this architecture
we place both components on a centralized location[62].
This  central  location  is  in  the  cloud  or  data  center,
facilitates  sharing  of  different  computing  resources,
zero  delay  immediate  and  scalable  scheduling.  This
setup allows for radio resource sharing among multiple
BBUs and efficiently meets fluctuating user demands.

V-RANs  have  built  upon  the  C-RAN  concept  by
leveraging  the  two important  features  of  virtualization
and  programming,  called  Network  Function
Virtualization  (NFV)  and  SDN,  respectively.  To
provide  interoperability,  V-RAN uses  a  smart  concept
of  programmable  controllers.  In  this  method  the
hardware  is  simply  a  forwarding  device  with  very
limited  functionality.  However,  all  the  main  functions
of  the  device  are  in  terms  of  software  or  applications
on  the  cloud.  This  allows  for  the  sharing  of  wireless
resources  among  radio  heads  based  on  evolving
networks  conditions[63].  As  a  result,  new business  and
technology  requirements  like  virtualization,  security,
reliability,  fault  tolerance,  service  management,
orchestration,  and  scalability  of  network  resources
emerged.  Hypervisors,  which  run  guest  operating
systems  like  OpenStack,  and  containers,  such  as
Docker,  running  specific  software  applications  in
isolated  system  settings,  are  among  the  popular
virtualization  methods  employed  to  address  these
needs.

O-RAN,  which  is  now  the  practical  evolution  of
traditional  RAN  methods,  introduces  the  RL  for  self-
network  configuration.  It  incorporates  new
programmable  open  APIs  to  connect  different
components  and  open-source  applications,  which
enables  small  vendors  to  gradually  introduce  new
services  based  on  their  own  needs  or  business
requirements.  O-RAN  also  facilitates  the  rapid  and
efficient  deployment  of  networks  while  ensuring
compatibility  with  legacy  systems[2].  Achieving  this
involves  a  significant  degree of  system disaggregation
to  support  collaboration  between  multiple  suppliers,
although  it  does  introduce  complexities  in  adaptation,
implementation,  security,  and  management  of  critical
resources[64].  To address  these  challenges,  AI  and ML
play  a  crucial  role  in  O-RAN  design,  enabling  a
network  automation  system  to  self-configure  their
resources  as  per  the  need  of  user  or  business.  This
facilitates software splitting and network densification.
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Table 1    Literature survey analysis.

NumberReference Resource management
type and issue Algorithm used Functional block O-RAN

interface Module/Layer

1 [30] Scheduling resource management RL & DNN O-RAN O-DU E2, O1, A1 UL scheduler/NR scheduler
2 [31] Management of resource DNN O-RAN O-DU E2, O1, A1 Resource allocation/NR-MAC
3 [32] Radio resource management LSTM O-RAN O-DU E2, O1, A1 Resource assigignment/NR-MAC
4 [33] Scheduling of radio resource Deep RL (DRL) O-RAN O-DU E2, O1, A1 UL Scheduler/NR scheduler
5 [35] Radio resource management DRL O-RAN O-DU E2, O1, A1 Resource assigignment/NR-MAC

6 [36] Resource management: Resource
management of radio links RNN with LSTM O-RAN O-DU E2, O1, A1 Resource assignment/NR-MAC

7 [34] Resource management: Energy
management in downlink RL O-RAN O-DU E2, O1, A1 Resource assignment/NR-

MAC/PDSCH/high-PHY

8 [37] Resource management: Energy
allocation in downlink RL O-RAN O-DU E2, O1, A1 Resource assignment/NR-

MAC/PDSCH/high-PHY
9 [38] Radio resource management DRL O-RAN O-DU E2, O1, A1 UL scheduler/NR scheduler

10 [39] Resource scheduling
management RL O-RAN O-DU E2, O1, A1 UL scheduler/NR scheduler

11 [40] Resource management: Uplink
power allocation RL O-RAN O-DU E2, O1, A1 Resource assignment/NR-MAC

12 [41] Scheduling resource management RL O-RAN O-DU E2, O1, A1 UL scheduler/NR scheduler

13 [42] Resource management:
Downlink power allocation RL O-RAN O-DU E2, O1, A1 Allocation of resources/NR-

MAC/high-PHY/PDSCH

14 [43] Mobility management: Issue are
related to the handover technique RL and DNN O-RAN O-CU-CP E2, O1, A1 gNB and UE management

15 [44] Mobility management: Issue of
base station power related RL O-RAN O-CU-CP E2, O1, A1 Cell procedure management

16 [45] Handover mobility management LSTM O-RAN O-CU-CP E2, O1, A1 gNB and UE management

17 [46] Mobility management: Base
station energy related

Q learning and
RL O-RAN O-CU-CP E2, O1, A1 Cell procedure management

18 [47] Mobility management: Issue
related to the handover technique LSTM O-RAN O-CU-CP E2, O1, A1 gNB and UE management

19 [48] Mobility management: Issues
related to base station RNN and DNN O-RAN O-CU-CP E2, O1, A1 Cell procedure management

20 [49] Mobility management: Issues
related to handover mechanism DNN O-RAN O-CU-CP E2, O1, A1 gNB and UE management

21 [50] Mobility management: Base
station energy related

Actor critic and
DRL O-RAN O-CU-CP E2, O1, A1 Cell procedure management

22 [51]
Mobility management: Related to

User Equipment(UE) and base
station power

DRL O-RAN O-CU-CP E2, O1, A1 UE and cell procedure

23 [52] Mobility management: Issues
related to handover mechanism

Federated
learning O-RAN O-CU-CP E2, O1, A1 gNB and UE management

24 [53] Spectrum management: Channel
estimation DNN O-RAN O-DU E2, O1, A1 PUCCH/high-PHY

25 [54] Spectrum management: Signal
encoding and decoding DNN O-RAN O-DU E2, O1, A1 PUCCH/high-PHY

26 [55] Spectrum management: Channel
estimation DNN O-RAN O-DU E2, O1, A1 PU(D)C(S)CH/high-PHY

27 [56] Spectrum management: Beam
selection DNN O-RAN O-RU E2, O1, A1 Low-PHY

28 [57] Spectrum management: Channel
estimation DNN O-RAN O-DU E2, O1, A1 PU(D)C(S)CH/high-PHY

29 [58] Spectrum management: Feedback
and channel estimation DNN O-RAN O-DU E2, O1, A1 PU(D)C(S)CH/high-PHY

30 [59] Spectrum management: Signal
detection at the receiver DNN O-RAN O-DU E2, O1, A1 PU(D)C(S)CH/high-PHY

31 [60] Spectrum management: Beam
selection RL O-RAN O-RU E2, O1, A1 Low-PHY

32 [61] Spectrum management: Signal
classification LSTM and CNN O-RAN O-DU E2, O1, A1 PU(D)C(S)CH/high-PHY
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The evolution of RAN is illustrated in Fig. 1.

3.2　Advancement of O-RAN

To  construct  a  comprehensive  5G/B5G  system
architecture, it  is essential to incorporate various well-
known  or  cutting-edge  technologies,  such  as  AI/ML
alongside  the  cloud,  programmable,  virtual,  and
interoperable facilities provided by O-RAN.

These  additional  technologies  include  Network
Automation  (NA),  Cloud  Access  Computing  (CAC),
Resource  Optimization  (RO),  Network  Sharing  and
Slicing  (NSS),  Multiple  Mobile  Network  Operator
(MMNO),  and  more.  While  these  characteristics  often
exhibit  interdependencies  and  synergies,  some
functions  can  be  effectively  shared  and  reused.
However,  integration  needs  to  consider  the  impact  of
functional  block  redundancy  on  system  latency  and
performance. Nevertheless, O-RAN-based 5G and B5G
designs  encompass  several  significant  enabling
principles, as outlined below:

Network  automation: The  O-RAN’s  automation,
intelligence,  self-configuration,  self-fault  tolerance  are
examples  of  NA  principles.  NAs  must  add  newly
installed  nodes  and  alarm-triggered  reconfiguration  of
all  active  devices  in  networks,  and  finally  self-
optimization of network resources. The optimization of
resources  includes  interference  management,  mobility
management,  radio  management,  handover  of
connections,  and  power  management.  However,  the
Third  Generation  Partnership  Project  (3GPP)  does  not
provide  any  specific  documentation  for  the  NA
architecture, the O-RAN intelligent controllers that are
installed as iApps in FRIC, xApps in near-RT RIC, and
rApps in non-RT RIC are primarily responsible for NA
functionality.

Cloud access computing: In recent times, there has
been  a  notable  shift  in  data  generation  from  the
network  core  to  the  cloud  edge,  specifically  in
environments  like  manufacturing.  This  paradigm
emphasizes  the  significance  of  processing  data  at  the
edge,  as  it  offers  numerous  benefits,  such  as  reduced
telecommunication  network  latency  (zero  delay),
wireless  congestion,  and  enhances  reliability,  and

improves  availability  using  caching.  To  effectively
address  these  requirements,  the  concept  of  CAC  has
emerged. This enables the provision of data centers or
cloud  computing  capabilities  at  the  network  edge,
bringing  computational  resources  closer  to  the  data
source.  This  proximity  minimizes  network  traffic  by
processing  data  locally,  resulting  in  reduced  latency
and  improved  overall  network  performance.
Furthermore,  CAC  facilitates  flexible  deployment  of
applications  and  services,  enabling  efficient  resource
utilization  and  enhancing  the  scalability  and  agility  of
the  network.  By  leveraging  CAC,  organizations  can
leverage the power of edge computing to optimize data
processing,  enhance  real-time  decision-making,  and
deliver  a  wide  range  of  innovative  applications  and
services to end-users.

Network  sharing  and  slicing: NSS  involves  the
process  of  parallelizing  the  network  infrastructure
while minimizing costs. It enables the division of tasks
among multiple logical networks or slices, each task is
specialized  in  handling  specific  services,  based  on  the
business  needs.  This  allows  for  efficient  allocation  of
network  resources,  ensuring  optimal  performance  and
customization  for  each  service  type.  By  leveraging
NSs,  operators  can  effectively  manage  and  deliver
diverse services over a shared infrastructure, providing
enhanced  flexibility  and  scalability  in  meeting  the
unique demands of various 5G use cases.

Multiple  mobile  network  operator: Network
densification can be significantly enhanced through the
implementation  of  neutral  hosting,  which  enables
MMNOs  to  share  the  same  infrastructure  and  access
the  radio  access  network.  This  is  a  cost-effective  and
shared  wireless  infrastructure  accessible  to  multiple
operators. Neutral Hosting (NH) facilitates the delivery
of  services  to  customers  who  have  contracts  with
multiple hosted operators, offering increased flexibility
and choice. By collaborating with an MMNO, O-RAN
can provide the B5G and 6G services at very low cost,
enabled  by  open  APIs  and  virtualization  concepts  of
cloud and networks. This integration allows MMNO to
combine  their  services  with  other  distinct  offerings
while  ensuring  seamless  connectivity  within  the
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Fig. 1    Evolution of RAN.
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coverage area provided by the neutral host. NH enables
the  efficient  utilization  of  resources  and  promotes
collaboration  among  operators,  ultimately  leading  to
enhanced  service  availability,  improved  network
performance,  and  a  more  diverse  range  of  service
options for end-users.

4　Intelligent  O-RAN  Architecture  &
Components

The  O-RAN  alliance  focuses  on  enhancing  the  RAN
domain  by  introducing  openness,  flexibility,
virtualization,  interoperability,  innovation,  and
intelligence. It achieves this by adopting a fundamental
concept  of  separating  software  from  hardware  and
establishing  open  APIs  connection  between  the
disaggregated  components.  This  approach  enables
operators  to  embrace  APIs  and  standardized  advance
practices,  fostering  MMNO  collaborations  and
interoperability  while  avoiding  vendor  lock-in.  The
reference new framework of the O-RAN, as illustrated

in Fig.  2,  demonstrates  its  support  for  AI/ML
capabilities  and  open  interfaces,  showcasing  its
commitment  to  advancing  intelligent  and  open  RAN
solutions.  Through  the  O-RAN  initiative,  the  industry
is  empowered  to  drive  innovation,  enhance  network
efficiency,  and  enable  seamless  integration  among
diverse network elements.

The  introduction  of  SDN  and  NFV  technologies  in
this  new  architecture  enables  the  inclusion  of
innovative  service  models  and  redefines  the  old
methods  of  communications.  It  allows  the
implementation  of  new  applications,  like  xApp  and
rApp,  to  automate  the  service  model.  The  deployment
of  such  applications  (xApp,  rApp,  and  iApp)  and
service models on top of the RAN infrastructure is the
best possible solution. It is important to note that Fig. 2
illustrates a specific functional split scenario known as
the  three-tier  architecture,  where  you  can  implement
the controllers at separate locations. If you focus on the
architecture,  the non-RT RIC is  placed at  the top with
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Fig. 2    Architecture disaggregated O-RAN.
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AI/ML  components,  near-RT  RIC  with  external  Apps
is  at  the  middle  and  bottom  O-CU  Control  Plane  (O-
CU-CP),  O-CU User Plane (O-CU-UP),  O-Distributed
Unit,  (O-DU),  and  O-Radio  Unit,  (O-RU).  These
components  work  together  to  enable  efficient  and
flexible  management  of  the  RAN,  supporting  the
implementation  of  advanced  functionalities  and
enabling  the  integration  of  diverse  functions  and
provisions within the network.

4.1　Non-RT RIC

The  top  layer  of  the  O-RAN  alliance  architecture  is
called Service Management  and Orchestration (SMO),
which  is  made  up  of  a  platform  and  several
microservices  that  serve  as  the  intelligence.  It
implements the non-RT RIC as an interface or module
to  handle  the  service  management  and  orchestration
functions  in  an  open  RAN ecosystem,  complementing
the  real-time  control  capabilities  of  the  RT-RIC.  The
fundamental  principles  to  design  the  non-RT  RIC  are
moved  around  the  AI/ML  model,  accessing  to
information,  user  level  assurance,  dynamic
optimization, and innovation for openness. The roles of
R1, A1, O1, and O2 open interfaces are very important
here,  and  this  framework  uses  R1  to  provides  the
essential  services  to  rApps  and  A1  to  connect  to  the
near-RT RIC with latency above 500 ms. The non-RT
RIC applications, on the other hand, make use of SMO
services,  including provisioning services  and checking
via the O1.  It  enables  RAN elements  and resources to
be  intelligently  optimised  on  a  non-real-time  basis,
often at intervals longer than one second. The goal is to
advance the industry towards an architecture that sends
an intelligent RAN policy across the A1 interface. This
policy  is  predominantly  centered  on  network
performance  metrics,  AI/ML  training,  AI/ML
inference,  and  subscriber  data.  The  information  flow
between  the  different  components  can  be  observed  in
Fig. 2,  illustrating  the  interplay  between  different
components of the architecture in achieving intelligent
RAN  optimization  and  control.  Non-RT  RIC,  in  our
opinion, will benefit the industry the most by enabling
new  services  and  enhancing  user  performance.  It  can
affect  RAN  behavior  by  opening  up  a  wide  range  of
new  use  cases  and  capabilities  that  are  not  currently
possible in existing telecommunication networks.

4.2　Flexible-RIC

The FRIC has been implemented, and the repository is

accessible  on  GitHub.  The  repository  includes  many
xApps  developed  in  C/C++  and  Python,  O-RAN
alliance  compliant  E2  node  agent  emulation,  patches
for the 4G srsRAN and 5G Open Air Interface (OAI),
as well as patches to integrate FRIC with disaggregated
RAN.  It  implements  several  service  models  and  an
integrated emulator also. The service models are tested
and  validated  with  Radio  Frequency  (RF)  simulator
also.  The  tested  and  validated  service  models  are
NG/GTP,  PDCP,  RLC,  MAC,  KPM  v2,  SLICE,  and
TC.  We  also  validate  the  xApps  and  service  models
with real Universal Software Radio Peripheral (USRP)
hardware,  and  results  are  visible  in Figs.  3 and 4.  We
have  tested  the  three  encoding  schemes  ASN.1,
flatbuffer,  and  plain.  These  encoding  schemes  are
developed  depending  on  the  service  type.  We  use
sqlite3 database to store the xApps indication messages
and  data.  Anyone  can  retrieve  useful  data  from  this
database  through  the  APIs,  and  also  can  perform
AI/ML operations. The list of features included in this
version is provided in Table 2, according to component
and service model.

By executing the service model unit test and the three
nodes test, we have tested and validated the integration.
This test mimics a situation including an xApp, a near-
RT RIC, and E2 nodes.  Data are filled out  at  random.
 

 
Fig. 3    FRIC  integration  and  xApp  results  with
disaggregated RAN.
 

 
Fig. 4    Near-RT RIC results with disaggregated RAN.
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To enable  the  multi-language  feature  (i.e.,  C/C++ and
Python)  for  the  xApps,  we  employ  SWIG  as  an
interface  generator.  The  majority  of  tests  can  also  be
started  by  using  the  ctest  automation  framework.
Researchers  can  expand  on  this  work  in  the  future  by
adding ctest as a new dependency.

We fetch statistics  from the E2 agents  using Python
xApps  xapp_gtp_monipy,  at  the  same  time  in  another
window  we  start  a  second  xApp  developed  in  c
xapp_mac_rlc_pdcp_moni.  FRIC  is  currently
functioning  properly  on  an  Ubuntu  20.04  PC,  and  its
multi-agent,  multi-xApp,  and  multi-language  features
have all been put to the test. Wireshark is used to watch
the  flow  of  the  E2AP  messages  as  we  also  test  and
confirm the same. The latency from the E2 agent to the
near-RT  RIC  and  xApp  is  the  delay  that  we  have
noticed  in  our  monitor  xApp.  The  maximum  near-RT
RIC latency of  10 ms stipulated by O-RAN should be
50  times  faster  than  the  latency  on  contemporary
computers,  which  should  be  less  than  200  ms.  The
xApp has written all the data in xapp_db database and
researcher  can  use  this  database  to  further  investigate
and  analyse  through  the  machine  learning  or  artificial
intelligence applications.

The  FRIC  operates  within  a  control  loop  with  a
response  time  ranging  from  10  ms  to  100  ms.  Its
primary  responsibility  is  to  manage  and  optimize  the
O-RAN  nodes,  including  O-CU-CP,  O-CU-UP,  and
O-DU,  along  with  their  associated  resources,  utilizing
the  E2  interface.  To  enhance  the  performance  of  the
O-RAN  nodes,  the  near-RT  RIC  incorporates  various
primitives,  such  as  monitoring,  stop,  suspend,  control,
and  override.  This  layer  applications  known  as
intelligent  xApps,  leverage  these  primitives  and
monitor  real-time  RAN  data  from  RUs.  These  xApps
utilize  the  policy  data  obtained  from  the  non-RT  RIC
through  the  A1  interface  to  deliver  value-added

services.  These  services  include  the  management  of
frequencies, different radio resource allocations, energy
efficiency, services configuration, mobility control, and
other  functionalities  provided  by  xApps.  Through  this
integration  and  utilization  of  near-real-time  data  and
policies,  the  FRIC  enhances  the  overall  performance
and efficiency of the architecture. Command to invoke
the  gNB  is:  sudo.nr-softmodem -O../../../targets/
PROJECTS/GENERIC-NR-5GC/CONF/gnb.band78.sa.fr1.
106PRB.usrpn310.conf–sa–usrp-tx-thread-config  1–
thread-pool 0,2,4,6.

4.3　O-RU, O-DU, O-CU-CP, and O-CU-UP

The  intelligent  controller  O-RU  serves  as  a  logical
node  responsible  for  handling  the  cellular  spectrum
processing  and  low-level  physical  (namely  low-PHY)
layer  tasks  within  the  new  disaggregated  O-RAN
framework.  The physical  layer  functionalities  are  split
into  two  components:  high-level  physical  (namely
high-PHY)  residing  in  the  intelligent  controller  O-DU
and  low-PHY  residing  in  the  intelligent  controller
O-RU.  This  split  architecture  adopts  the  open  front-
haul  interface,  as  defined  in  the  O-RAN  design,  for
communication  between  the  O-DU  and  O-RU.  The
O-DU,  on  the  other  hand,  functions  as  a  logical  node
composed of three primary layers: high-PHY, Medium
Access  Control  (MAC),  and  Radio  Link  Control
(RLC).  Through  the  F1  interface,  the  O-DU  interacts
with  the  O-CU  to  provide  a  range  of  functionalities
related to these layers.

5　Enhanced AI/ML Enabled Framework O-
RAN

Now,  our  focus  is  on  the  potential  of  intelligent
applications  to  enhance  the  productivity  of  O-RAN.
We  begin  by  providing  an  overview  of  existing
applications  of  advanced  technology  in  the  field  of

 

Table 2    Testing and validation service models.
Testing
service
model

4G 5G E2 emulator xApp
Python

xApp
C/C++

Near
RT-RIC

O-RAN
standard

Tested and validated
with USRP

KPM No Yes Yes No Yes Yes Yes Yes
TC No No Yes No Yes Yes No Yes

RLC Yes Yes Yes Yes Yes Yes No Yes
GTP No Yes Yes Yes Yes Yes No Yes
MAC Yes Yes Yes Yes Yes Yes No Yes
SLICE Yes No Yes Yes Yes Yes No Yes
PDCP Yes Yes Yes Yes Yes Yes No Yes
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communications.  As per  the specifications outlined by
the  standard  organizations,  we  categorize  intelligent
applications  into  three  groups  based  on  their  expected
latency  requirements.  These  categories  include  non-
real-time applications,  near-real-time applications,  and
real-time  controllers  that  operate  on  the  DU.
Throughout this section, we explore how AI is utilized
in  O-RAN  across  different  network  levels.  We  delve
into  the  specific  applications  of  AI,  taking  into
consideration  their  latency  needs.  Furthermore,  we
offer  detailed  insights  into  their  historical  context,
practical  implementation,  and  associated  complexities.
By  examining  these  aspects,  we  aim  to  provide  a
comprehensive understanding of the applications of AI
within the O-RAN ecosystem. Very soon,  the O-RAN
Software Community (SC) is planning to introduce the
next  official  software  release.  In  this  new  release  the
more  components  to  AI/ML  framework  will  also  be
included,  and  this  framework  will  introduce  the  basic
modules  and  functions  necessary  for  the  next
generation telecommunication. As shown in Fig. 5, the
O-RAN  alliance  has  widely  defined  the  components,
elements, and functions linked to the AI/ML workflow.
The following major stages and functions are included
in  the  standard  AI/ML  lifecycle  procedure  and

interface framework:
• Host’s capacity to query and discover,
• Generation, training, and selection,
• Deployment and inference of ML models,
• Monitoring the performance, and
• Optimization, termination, reselection, and retraining

of ML models.
When  creating  a  new  architecture  for  the  AI/ML

based  O-RAN  project,  it  is  necessary  to  consider  the
features,  terminologies,  and  components  given  in
Fig.  5.  The  new AI/ML architectures  components  and
modules  are  given in Fig. 6.  The two main computing
platforms−AI training host and AI inferences platforms
are introduced in the architecture. AI training host uses
Training Platform Service (TPS) to  execute the model
training,  and  AI  inference  performs  model  inference
results  with  a  trained  model,  and  AI  management
functions. The best way for implementing this is to use
Kubeflow to deploy the ML models on Kubernetes. We
may  use  the  docker  images  also  as  the  other  option.
This Kubeflow pipeline represents the workflow of ML
modules  related  to  the  training,  from  data  pre-
processing to the validation phase. We can deploy and
execute the pipeline without any complexity, as model
training is performed according to the predefined order.
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Now we can use this model to train wherever we need.
Training host stores data broker and features to deliver
the necessary data for training to the pipeline. After the
execution  of  the  pipeline,  we  must  store  the  trained
model.

The  overarching  aspiration  of  advanced  algorithms
like  AI/ML  is  to  feed  insights,  predictions,  or
recommended  actions  for  unidentified  system
scenarios.  These  algorithms  aim  to  establish  a
relationship  between  system  input  and  output  in  the
form  of  features  and  dependent  variables,  in  order  to
achieve  specific  objectives.  In  this  pursuit,  three
primary categories are identified which are suitable for
network  scenarios:  Supervised  Learning  (SL),
UnSupervised  Learning  (USL),  and  Reinforcement
Learning  (RL).  These  categories  are  differentiated
based on the methodologies employed to discover this
mapping  between  inputs  and  outputs.  SL  involves
training  the  model  on  labeled  data,  where  the  desired
outputs  are  known,  enabling  the  model  to  learn  from
examples  and  make  predictions  on  unseen  data.  USL,
on  the  other  hand,  explores  unlabeled  data  to  identify
patterns,  relationships,  or  clusters  without  any
predefined  target  outputs.  RL  entails  an  interactive
learning  process  where  an  agent  learns  through  trial
and error by receiving feedback from the environment,
aiming  to  maximize  a  reward  signal.  By  leveraging
these  AI/ML  categories,  with  aim  to  trigger  alerts,
predictions,  or  suggested  actions  pertaining  to  various
network  scenarios,  such  as  traffic  forecasting,  cell
congestion  warnings,  and  power  configuration  for
maximizing  throughput.  These  techniques  play  a
crucial role in enabling intelligent decision-making and
optimization within the network environment. The first

two  branches  of  AI  and  ML  completely  rely  on
previously  gathered  samples  that  link  inputs  and
outcomes.  Regression  problems  and  classification
problems are  examples of  problems where the outputs
might either be numerical values or categorical values.
This  new  architecture  is  specifically  engineered  to
leverage  the  power  of  AI  and ML,  which  is  playing  a
critical  role  in  various  cross-layer  aspects.  One  such
area  is  automating  the  management  of  radio
frequencies. To enable this functionality, an AI or ML
model is hosted at an edge component of O-RAN, such
as  the  O-DU.  The  models  are  trained  using  the
principles of advanced learning algorithms, such as SL,
USL  and  RL,  and  take  charge  of  controlling  O-RU
parameters.  This  includes  dynamically  managing
power  levels  and  allocating  bandwidth  in  resource
blocks.  By  analyzing  real-time  data  and  making
intelligent predictions, the AI or ML models within the
O-RAN  architecture  optimize  the  utilization  of  radio
resources,  enhancing  overall  system  performance  and
efficiency. Conversely, tasks that involve beamforming
parameter configuration, dynamic resource assignment
in  network  slices,  and  the  installation  of  virtual
network  functions,  which  are  typically  less  time-
sensitive  but  computationally  intensive,  can  be
allocated  to  higher  layers  within  the  O-RAN
architecture,  such  as  the  non-RT  RIC  or  SMO.  By
distributing these processes to higher layers, which can
handle  higher  computational  loads  and  offer  greater
flexibility,  the  O-RAN  architecture  ensures  efficient
resource utilization and system scalability. This enables
the  deployment  of  advanced  functionalities  and
services  while  maintaining  optimal  performance  and
responsiveness in the overall network.
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5.1　Newly  added  AI/ML  components  in  standard
O-RAN framework

To  support  automated  and  intelligent  administration
features,  separate  AI/ML-specific  processes  and
standardized  modules  have  been  built.  The  key
components of O-RAN along with their interconnected
interfaces,  facilitate  both  online  and  offline  training
and  inference  while  hosting  AI  and  ML  capabilities
across  network  domains.  Offline  training,  which
involves time-consuming processes to train a model, is
essential in O-RAN. On the other hand, online learning
involves  real-time  agents  that  interact  with  their
environment,  learn  from  their  experiences,  and  adapt
accordingly. In order to make timely decisions, O-RAN
relies  on  pre-trained  models,  underscoring  the
significance  of  offline  training  support.  There  are  two
crucial  building  blocks  which  are  responsible  for
executing  the  ML  workflow  within  the  new
architecture. The main point in the newly added feature
is  to  note  that,  at  the  time  of  employing  SL  and  USL
algorithms,  we  must  deploy  the  ML  training  node  in
the  non-RT  RIC  module.  However,  it  is  up  to  the
researcher to deploy the ML models as per the need in
any  module.  In  contrast  to  this  if  you  are  using
reinforcement  learning,  it  is  necessary  to  deploy  the
ML training host and ML inference host or actor within
the  same  module.  The  same  module  means  either  in
non-RT  RIC  or  the  near-RT  RIC.  This  ensures
effective  coordination  and  execution  of  the
reinforcement learning process within O-RAN.

5.2　Deployment of AI/ML module

SL: it can be implemented in centralized or distributed
(federated)  manners.  O-RAN  can  use  federated
learning because it  is  also built  on a split  architecture.
This  mechanism  permits  agents  to  construct  an
intelligent  module  utilizing  their  correct  data  without
sharing them to the cloud. Once the model is ready, the
weights  of  the  local  models  are  sent  to  the  cloud  for
aggregation  of  all  models  at  the  centralized  system.
Then,  this  final  aggregated  model  is  forwarded  to  the
learners.  Using  this  method,  we  can  reduce  the
congestion  on  the  network  as  we  are  sharing  only  the
weights  of  the  model  instead  of  entire  model  data.  In
the  context  of  O-RAN,  various  SL  techniques  are
employed  to  address  different  challenges  and
applications.  Basically,  security  concerns,  intrusion
detection,  and  mitigating  DDOS  attacks  are  tackled

using algorithms, such as logistic regression. These SL
methods  play a  crucial  role  in  ensuring the  robustness
and effectiveness of O-RAN systems across a range of
security  and  performance-related  tasks.  We  can  use
algorithms like linear regression, logistic regression, K
Nearest  Neighbor  (KNN),  Classification  and
Regression Tree (namely CART), SVM, Naïve Bayes,
and  extreme  gradient  boosting.  We  have  two
deployment  options:  Option  1:  Non-RT  RIC  (ML
training  host  and  ML  inference  host),  Option  2:  Non-
RT  RIC  (ML  training  host)  and  near-RT  RIC  (ML
inference host).

USL: It  is  a  type  of  learning  that  does  not  need
labelled input data. In contrast to the SL approach, this
learning method’s issue set is much more limited. This
group  includes  standard  data  processing  algorithms,
like  K-means  clustering  and  PCA,  which  are  used  as
steps  in  various  machine  learning  processes.  We  have
two  options  to  deploy  USL:  Option  1:  Non-RT  RIC
(ML  training  host  and  ML  inference  host),  Option  2:
Non-RT RIC (ML training host) and near-RT RIC (ML
inference host).

RL: By  interacting  with  its  environment,  an  agent
can  learn  patterns  and  decision-making  techniques
through  RL.  As  opposed  to  SL,  it  does  not  require
labelled  data.  To  obtain  the  necessary  precision,
however,  accurate  environment  modelling  and
occasionally  more repetition than SL is  needed.  Many
communications  use  cases,  including  packet  routing,
beamforming, handover optimization, and others, have
made use of RL.

The  recently  launched  5G  is  more  complicated  and
complex compared to the previous generation in terms
of range, bandwidth, network architecture, base station,
number  of  physical  layer  parameters,  and  distribution
of components. Manual management and monitoring of
such  complex  systems  is  not  feasible  to  improve  the
quality  of  experience.  Therefore,  now  there  is  a  need
for  an  automated  network  system  to  increase  the  user
experience  and  to  reduce  the  operational  costs.  RL  is
the  best  approach to  solve  complex network problems
and  to  service  automation.  RL  aims  to  identify  the
optimal  strategies  for  complex  network  systems  in
dynamic  environments  by  learning  from  interactions
between  system  resources  and  their  surroundings.  It
possesses  the  capability  to  handle  intricate  scenarios,
like cellular systems and their interactions with users in
diverse conditions. However, RL necessitates extensive
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trial-and-error  experiences  to  effectively  learn,  which
highlights  the  importance  of  generating  a  substantial
amount of cost-efficient experience data. While an RL
agent  can  directly  interact  with  real  systems  for
training,  this  approach  may  lead  to  system  instability
and  negative  user  experiences  during  the  exploration
phase,  where  the  agent  takes  unexplored  paths  to
understand  the  system.  To  address  these  challenges,
simulation  environments  are  commonly  employed  to
provide  a  large  volume  of  experience  without  risking
real  systems  and  user  services.  Nevertheless,
simulations have their limitations as they may not fully
capture  the  complex  interactions  found  in  real-world
systems  and  environments.  Bridging  the  gap  between
simulations  and  real-world  phenomena  is  therefore  a
crucial task in order to train and deploy AI/ML models
effectively  in  such  complex  systems.  We  have  two
deployment options for reinforcement learning: Option
1:  Non-RT  RIC  (ML  training  host  and  ML  inference
host),  Option  2:  Non-RT  RIC  (ML  training  host)  and
near-RT  RIC  (ML  inference  host). Table  3 shows  the
references included in this paper to provide the AI/ML
enabled  automations  system  for  software  defined
disaggregated O-RAN.

6　Proposed  Reinforcement  Learning  &
Automation

Intelligent  agents,  or  a  group  of  such  agents,  can  be
deployed  in  interactive  environments  to  learn  through
their  own  behavior  by  utilizing  feedback  from  their
actions and experiences, and training itself according to
the rewards, penalty, and error. Intelligent agents in O-
RAN communicate  with  other  modules  of  the  system,
such  as  O-RAN  Controller  (ORC),  to  exchange
information  and  receive  high-level  instructions.  They
leverage standardized interfaces and protocols, such as

s′

the  E2  interface,  to  communicate  with  the  ORC  and
other  network  entities,  enabling  seamless  coordination
and  collaboration  among  different  components.  This
RL  intelligent  agents  interact  with  system,  receive
rewards  and  penalties  based  on  the  outcomes  of  its
events. The objective of RL is to enable agents to select
appropriate  action  strategies  that  maximize  their
cumulative rewards. To achieve this, we use a process
called MDP in the first step and RL in the second step.
The  MDP  is  commonly  employed  to  simulate  the
studied systems, and RL is then used to control the best
action plan. The MDP involves a set of actions (a ∈ A),
a set of states (s ∈ S), a transition function (P (s; a; ))
that describes the state transitions once taking an action
on  the  state,  and  a  reward  function  (R (s; a))  that
assigns rewards for actions performed at a given state.
In  the  context  of  O-RAN,  deep  deterministic  policy
gradient,  trust  region  policy  optimization,  Dyna-Q,
Monte-Carlo tree search, Q-learning, DQN, and multi-
armed  bandit  learning  algorithms  can  be  applied.
However,  this  paper  specifically  focuses  on  the
deployment  of  the  DQN  algorithm.  Q-learning  is
suitable  for  finite  MDPs  with  small  state  and  action
spaces, aiming to identify correct module based on the
rewards  earned.  It  works  on  a  simple  principle:
maximizing  total  reward  leads  to  the  best  policy.  On
the other hand, DQN, which utilizes a neural network,
is  employed  when  the  application  complexity  is  high,
and the state and action matrix table is in large volume.
To  enhance  the  performance  of  operating  xApps,  the
intelligent  agents  are  placed  at  FRIC  module  of  O-
RAN  as  depicted  by  Step  1  in Fig.  7.  When  the
performance  of  operating  xApps  is  enhanced,  it  is
observed  that  there  is  an  increased  in  efficiency  with
higher  scalability  and  better  utilization  of  network
resources, which leads to reduced network congestion,

 

Table 3    Papers related to the O-RAN AI/ML algorithm.
Number Algorithm Algorithm type Research papers

1 Safe, associative, and inverse Reinforcement [10−15, 17, 19, 23, 48, 53]
2 Clustering algorithms Unsupervised [20]
3 Data mining algorithms Unsupervised [3]
4 Logistic regression Supervised [21]
5 Random forest Supervised [46]
6 SVM security and time series Supervised [54]
7 Naïve Bayes Supervised [58]
8 Neural network Supervised [60]
9 Decision tree Supervised [63]
10 KNN Supervised [65]
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optimized  data  transmission,  and  improved  overall
network  performance.  It  benefits  not  only  the  xApps
themselves,  but  also  other  applications  and  services
running  on  the  network.  These  intelligent  agents  will
interact  with  the  intelligent  O-RU,  intelligent  O-DU,
intelligent  O-CU-CP,  and intelligent  O-CU-UP,  which
are  placed  in  the  external  environment.  These  agents
will regularly use the E2 interface as an AI/ML enabled
automated  system  for  software  defined  disaggregated
O-RAN to  optimise  the  RAN performance.  The  agent
enabled  xApp  performs  actions  through  the  E2
interface  and  controls  the  network  resources  in  real
time  as  depicted  in  Step  2  of Fig.  7.  To  address
challenges  related  to  the  lower  layer  resource  radio
channel  allocation  and  management,  an  intelligent
agent  can  modify  the  resource  allocation  and
scheduling  strategy of  the  MAC layer  in  the  O-DU to
meet  business  requirements,  as  shown  in  Step  2  of
Fig.  7.  After  performing  an  action,  the  intelligent
agents  collect  the  information  (reward  and  updated
state)  of  the  intelligent  system  through  the  open  O1
API  through  non-RT  RIC,  as  depicted  as  Step  3  in
Fig.  7.  In  that  scenario,  the  reward  is  calculated
according  to  the  user’s  behavior,  and  the  updated
system  state  is  represented  by  the  total  resources
(bandwidth  and number  of  users).  By utilizing RL,  an

automated  and  optimal  resource  allocation  and
scheduling  strategy  can  be  developed,  thereby
improving the overall user experience.

Q′ (s′; a′; ′)

Q′ (s′; a′; ′)

In  the  case  of  DQN,  we  are  using  Neural  Network
(NN),  which  works  on  the  concept  of  current  state  as
an input, and in output it generates Q-values (rewards),
enabling intelligent agents to make informed decisions
on dynamically  allocating network resources  based on
real-time  observations  and  rewards  for  each  possible
action.  DQN learning specifically incorporates  the use
of  two  neural  networks  to  facilitate  the  learning
process.  The  first  NN  is  Target  Network  (TN)  and
represented by states and actions like  and
the  other  NN  is  Prediction  Network  (PN)  and
represented  by Q (s; a;  ).  During  each  iteration  of  the
learning  loop,  the  prediction  network Q (s; a;  )  is
updated,  allowing it  to continuously assess the current
state  of  actions  within  the  network.  Meanwhile,  the
target  value  is  generated  by  employing  the  target
network ,  which  plays  a  vital  role  in  the
learning  process.  In  Step  4,  the  DQN  algorithm  is
highlighted.  The  TN  and  PN  enable  intelligent  agents
to  make  informed  resource  allocation  decisions  based
on  real-time  observations  and  rewards.  The  TN  is
periodically  synchronized  with  the  PN  to  maintain
stability  and  reliability,  and  a  loss  formula  is  used  for

 

Non-RT RIC

A1 interface

xApp xApp
Loss function

Fo
r l

oo
p

Pr
ed

ic
tio

n
ne

tw
or

k

N
ew

 s
ta

te
 S

R
ew

ar
d 

R

St
ep

 2
: A

ct
io

n 
a t

 b
y 

xA
pp

 to
w

ar
ds

 O
-R

U

Ta
rg

et
 n

et
ow

rk

Q′ (s′, a′) Q (s, a)

Back
propagation

xApp

Communication interface (REST, E2AP, RMR)

St
ep

 3
: R

ew
ar

d 
R

t a
nd

 s
ta

te
 S

t+
1

St
ep

 4
: M

L 
m

od
el

iApp iApp

RAN management RAN DB Utilities

Message handler

E2AP abstraction

E2 interface

O-CU-CP

O-CU-UP

O-DU

O-RU

St
ep

 1
: S

ta
te

 S
t f

ro
m

 O
-R

U
 to

w
ar

ds
 x

Ap
p

Southbound interface

Agent

E2
AP

E2
SM

Agent Agent Dataset DBMS

Intelligent agent

iApp

 
Fig. 7    Network automation reinforcement learning framework.
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efficient  learning.  This  step  contributes  to  optimizing
system performance and resource allocation in O-RAN.
This  synchronization  process  ensures  that  the  target
network  remains  consistent  and  provides  a  reliable
baseline  for  assessing  the  effectiveness  of  actions
taken. By utilizing these two neural networks and their
synchronization  through  cloning,  DQN  learning  in  O-
RAN  enables  intelligent  agents  to  make  informed
decisions  regarding  resource  allocation  based  on  real-
time  observations  and  rewards.  This  approach
contributes to the optimization of system performance,
efficient  sharing  of  manageable  and  controllable
intelligent resources within the O-RAN ecosystem.

We use a  loss  formula given in  Eq.  (1)  to  minimize
the loss function between the outputs of the two NNs,
DQN seeks to do the following:
 

L =
(
r+λmax Q′

(
s′, a′, θ′

)−Q (s, a, θ)
)2 (1)

a′ ∈ A, λ
θ θ

where  is  the  discount  factor, r is  the  reward,
and  is the learning weight of the DQN.  is updated
for every iteration.

6.1　Automation process implementation

O-RAN  places  a  strong  emphasis  on  the  widespread
deployment  of  advanced  techniques,  like  ML  based
deep  learning  to  promote  automation  and  make
intelligent  RAN  applications  possible.  However,
creating ML models  with  consistent  performance over
the course of their lifetimes is a huge issue. In order to
ensure  the  reliable  operation  of  RAN  applications,
efforts  must  be  taken  to  prevent  ML  models  from
degrading  as  a  result  of  changing  data  profiles.  To
address  this,  there  is  an  urgent  need for  automation at
all stages of DL development, such as data preparation
from  raw  data,  training  a  good  model,  assessment,
validation,  continuous  monitoring  of  data  profiles  and
actual  model  performance.  In  order  to  connect  the
development  (Dev)  and  operation  (Ops)  parts  of
machine  learning  systems,  or  MLOps,  this  section
examines  how  DevOps  principles  might  be  applied.
MLOps  enables  seamless  integration  and  deployment
of  machine  learning  models  within  the  O-RAN
ecosystem. The intensity of automation always directly
impacts  the  performance  of  existing  models  based  on
input  data  profiles,  streamlines  the  development,
testing,  and  deployment  processes.  MLOps  facilitates
the  continuous  monitoring  and  management  of  ML
models  in  O-RAN  automation.  With  new  practices  in
place,  operators  can  check  real-time  processes,  detect

anomalies,  and  implement  necessary  updates  or
improvements.  The  subsequent  sections  delve  into  the
fundamental aspects of MLOps, outlining the levels of
automation across all ML processes.
6.1.1　Manual  deployment  of  ML  models  in

O-RAN
At  this  time  of  development,  an  entire  ML  process,
including  development  and  deployment  of  learning
models,  is  carried  out  manually.  The  key  steps
involved  in  this  process,  which  take  place  within  the
non-RT RIC layer,  are illustrated in Fig.  6.  Each step,
from  data  collection,  cleaning,  preparation  to  model
training,  testing  and  deployment,  is  performed
manually.  The  manual  approach  entails  progressing
from one action to the next, relying on source code that
is  interactively  executed  until  an  executable  model  is
generated  and  deployed.  We  deploy  this  executable
model  using  the  A1  to  the  near-RT  RIC  layer.
However,  this  approach  is  equivalent  to  infrequently
updating  ML  models,  which  is  not  suitable  for  serval
reasons  First,  due  to  the  complexity  of  the  network,
managing  scalable  resources  is  very  challenging.
Second,  dynamic  changes  inherent  in  wireless  RAN
environments. Adjustments in the dynamic radio access
states  or  modifications  in  the  input  data  representing
the  states  can  lead  to  a  decline  in  the  performance  of
the  system.  Therefore,  it  is  imperative  to  introduce
automation into the ML system within the RAN section
to address these challenges effectively.
6.1.2　Automation ML models in O-RAN
To  enable  the  automation,  the  upper  layer  module
continuously monitors the effectiveness of ML models
through the A1 interface. The A1 interface serves as a
communication  link  between  different  RIC  modules
within  the  system  architecture,  facilitating  the
exchange  of  control  information  and  enabling
coordination  between  these  modules.  The  monitoring
process  in  O-RAN  involves  real-time  collection  of
metrics,  data,  and  feedback  from  the  FRIC  module.
The  upper  layer  module  analyzes  behavior,  accuracy,
efficiency,  and  overall  performance  of  deployed  ML
models.  This  monitoring  enables  informed  decision-
making  and  appropriate  actions  based  on  observed
results,  ensuring  correct  functionality  and  expected
outcomes  of  the  ML  models.  It  detects  performance
issues,  anomalies,  and  deviations  from  desired
behavior, safeguarding optimal operation within the O-
RAN  ecosystem. Figure  8 illustrates  the  automated
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machine  learning  process.  The  subsequent  description
outlines the key features and components of this level:

• Models undergo automatic Continuous Training
(CT)  based  on  triggers  from  the  ML  pipeline  and
fresh data.

•  Continuous  Delivery  (CD)  of  models: The
machine  learning pipeline  ensures  continuous  delivery
of prediction services. It is a twofold process, Firstly, it
ensures  that  the  O-RAN  ecosystem  remains  updated
with  the  most  accurate  and  relevant  models,  keeping
pace  with  the  changing  dynamics  of  the  network
environment.  By  integrating  newly  trained  models
seamlessly,  operators  can  leverage  the  predictive
capabilities  to  optimize  network  performance,
intelligent  resource  allocation,  and  overall  user
experience.  Secondly,  the  automation  of  the
deployment process eliminates manual intervention and
saves  time.  This  streamlined  delivery  mechanism
enhances  efficiency,  allowing  operators  to  focus  on
analyzing  the  outcomes  and  refining  the  ML  models,
ultimately  leading  to  improved  network  operations
within the O-RAN framework.

• Continuous Integration/Continuous Development
(CI/CD) pipeline: As of now we are using the manual
level  of  trained  model,  which  is  utilized  to  provide
prediction  services.  However,  at  the  automated  levels,
CI/CD  training  pipeline  is  deployed,  to  deliver

prediction  services.  The  deployment  process  can  be
easily  replicated and scaled to  accommodate  changing
data  volumes  or  evolving  requirements.  It  allows
operators  to  handle  larger  datasets,  train  models  on
more powerful hardware, and incorporate new features
or  algorithms  into  the  pipeline  without  significant
manual  effort.  This  automated  deployment  ensures  a
streamlined process for consistently delivering accurate
prediction services.

•  Testing  and  validation  of  model: Once  the  ML
pipeline  is  established,  it  operates  automatically  in
response  to  triggers.  To  leverage  recent  data  for
creating  new  models,  automated  data  and  model
validation  become  necessary.  Data  validation  ensures
that  the  pipeline’s  execution  is  either  halted  or  the
models are retrained. Retraining is crucial in two main
scenarios:  (1)  Data  schema  skews  refer  to  situations
where  the  training  pipeline  receives  data  that  do  not
conform  to  the  expected  schema  or  structure  which
occur when the pipeline receives unexpected data, such
as  new  features,  missing  expected  features,  or
unforeseen  feature  values.  For  example,  if  a  new data
source is  integrated into the pipeline,  it  may introduce
additional  features  that  are  not  previously  considered.
To address these concerns, the ML pipeline needs to be
temporarily  paused  and  updated.  The  development
team needs to modify the pipeline’s configuration, data
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Fig. 8    Non-RT RIC AI/ML component steps.
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processing steps, and feature handling to accommodate
the new data schema. This ensures that the pipeline can
effectively  handle  and  process  unexpected  data,
maintaining  the  integrity  of  the  ML  models  being
trained.  (2)  Data  value  skews  occur  when  there  are
changes in the statistical characteristics and patterns of
the  data  used  for  training.  This  can  happen  due  to
various factors, such as shifts in user behavior, network
conditions,  or  external  factors  impacting  the  data.
When data value skews occur, it is crucial to retrain the
ML  models  to  adapt  to  these  modifications.  By
retraining  the  models  with  the  updated  data,  they  can
capture the new patterns and make accurate predictions
in  the  current  context.  Additionally,  the  validation
process  takes  place  after  training  the  new  models  to
thoroughly  test  and  validate  them  before  deploying
them.

•  Data  about  management: In  order  to  facilitate
troubleshooting  of  faults  and  anomalies,  metadata
management  is  employed.  The  metadata  encompasses
comprehensive details about each execution of the ML
pipeline.  This  includes  information  such  as  the
parameters  and  arguments  used  by  the  executor  and
pipeline,  timestamps  for  each  step’s  execution,
references  to  the  outputs  of  each  step,  indications  for
potential  rollbacks  to  previous  models,  and  other
relevant information.

•  Trigger  steps  of  ML  pipeline: The  execution  of
the ML pipeline can be automated based on various use
cases.  These  triggers  determine  when  the  models
should  be  updated  or  retrained.  The  triggers  can  be
categorized as follows:

(1) On-demand: It  enables manual execution of the
ML  pipeline  as  needed.  It  allows  users  to  initiate  the
pipeline  when  specific  conditions  or  requirements
arise.

(2)  Scheduled: The  pipeline  trigger  automates  the
execution  of  the  ML  pipeline  on  a  regular  basis.  It
ensures  that  the  pipeline  is  refreshed  with  fresh  and
readily available data at predetermined intervals.

(3)  Ad  hoc  data  availability: The  pipeline  is
triggered when new data become accessible.

(4)  Deterioration  of  model  performance: The
pipeline  is  activated  when  the  performance  of  the
models  starts  to  decline  due  to  changes  in  data
distribution.

Overall,  metadata  management  and  the  selection  of
appropriate  triggers  enhance  the  efficiency  and
effectiveness of the ML pipeline, ensuring that models

are updated and retrained when necessary.
6.1.3　Decision-making and control
Finally,  the  outputs  are  utilized  for  decision-making,
monitoring  and  controlling  the  system  environment.
This  process  involves  actions,  such  as  resource
allocation,  traffic  optimization,  interference
management,  or  network  configuration.  Automated
decision-making  processes  leverage  the  predictions  or
recommendations  of  the  AI/ML  models  to  guide  and
automate network operations in real time.

6.2　Enhancing  energy  efficiency  in  O-RAN
through AI and DRL optimization

Energy consumption is always a big challenge for any
computing  system,  in  5G  and  B5G  networks  also.
Now,  AI  can  play  a  crucial  role  to  save  the  energy  in
such  systems  by  applying  different  approaches,  like
intelligent  task  allocation  and  resource  optimization.
Proposed  algorithms  in  recent  research  optimize  the
offloading  selection  in  computing  systems,  while
autonomous  control  methods  are  designed  to  reduce
energy  consumption.  These  AI  applications  enable
efficient  resource  utilization,  reduce  redundancy,  and
contribute to green wireless networking. In O-RAN, an
Energy-Efficient  (EE)  method  employs  a  multi-agent
DRL model. It jointly optimizes throughput and power
consumption  by  providing  a  power  allocation
technique  for  active  Radio  Units  (RUs)  and  their
physical  resource  blocks.  DRL’s  suitability  for
optimization,  effortless  model  inference  and
deployment,  and  trial-and-error  interactions  without
extensive  training  data  make  it  an  ideal  approach  for
EE  optimization  in  O-RAN.  By  integrating  AI-driven
energy efficiency techniques, O-RAN can significantly
reduce  energy  consumption,  enhance  resource
utilization,  and  create  a  greener  wireless  networking
ecosystem. Further advancements in RF devices, RAN
components,  and  AI  algorithms  will  contribute  to
greater  energy  conservation  and  sustainability  in
telecommunications.

7　New Research Area & Future Scope

Disaggregated  O-RAN architecture  is  still  in  the  early
phases  of  development.  Although  this  design  offers  a
variety  of  novel  features  and  capabilities,  there  are
important  issues  that  must  be  resolved  before  it  is
widely  adopted.  We  will  talk  about  some  of  these
challenges  and  possible  future  research  trajectories  in
this conversation.

  Sunil Kumar:  AI/ML Enabled Automation System for Software Defined Disaggregated Open Radio Access Networks... 287

 



7.1　Enhancing  RAN models  for  robust  RAN slice
service  level  agreement  assurance  in  5G
networks

In 5G networks, network slicing is a crucial feature that
enables  the  creation  and  management  of  customized
networks  to  meet  specific  service  requirements.  This
flexibility allows different services and applications to
have  tailored  functionality,  performance,  and  user
groups. To ensure the quality of service, Service Level
Agreements  (SLAs)  are  established  for  each  network
slice.  However,  the existing RAN models  face several
challenges  in  effectively  supporting  RAN  slice  SLA
assurance use cases,  necessitating further  research and
development.

• Inadequate  performance  measurements: The
current  RAN  performance  measurement  frameworks
and  information  models  are  insufficient  to  meet  the
diverse requirements of different RAN slices. They do
not  provide  the  necessary  granularity  and
customization  needed  to  monitor  and  control  the
performance  of  individual  slices.  This  limitation
hampers  the  ability  to  ensure  SLA  compliance  for
RAN  slices.  Future  research  should  focus  on
developing  enhanced  performance  measurement
mechanisms  specifically  tailored  for  RAN  slice  SLA
assurance.

•  Dynamic configuration challenges: The dynamic
nature  of  RAN  slices  poses  a  challenge  for  existing
RAN models  in  terms of  dynamically configuring and
adapting  RAN  behavior  to  meet  slice-specific
performance requirements. The current models lack the
capability to adjust and fine-tune RAN behavior in real
time  based  on  changing  network  conditions  and  slice-
specific  needs.  Addressing  this  challenge  requires
research  and  development  efforts  to  enable  dynamic
configuration mechanisms that ensure continuous SLA
compliance for RAN slices.

•  Standardization  efforts: Interoperability  and
seamless  operation  of  RAN  slices  from  different
vendors  are  essential  for  effective  RAN  slice
management and SLA assurance. However, the lack of
standardized  frameworks,  protocols,  and  interfaces
hinders  the  consistent  enforcement  of  SLAs  across
heterogeneous  RAN  deployments.  Future  research
should  focus  on  standardization  efforts  to  define
common  specifications  and  guidelines  that  enable
interoperability  and  harmonization  of  RAN  slice
management and assurance mechanisms.

• Integration of AI/ML techniques: The integration
of AI/ML techniques has the potential to enhance RAN
slice  SLA  assurance.  AI/ML  algorithms  can  enable
proactive  decision-making,  dynamic  optimization,  and
adaptive  behavior  based  on  performance  information
and  slice-specific  requirements.  However,  the  current
RAN models lack the necessary AI/ML capabilities to
support  RAN slice SLA assurance.  Further  research is
needed to explore the integration of AI/ML techniques
into  RAN models,  specifically  focusing  on  RAN slice
performance management and SLA enforcement.

7.2　Unsolved issues in RAN sharing

RAN  sharing  is  a  collaborative  approach  in  the
telecommunications  industry  where  multiple  network
operators  join  forces  to  optimize  the  deployment  of
wireless  communication  services.  By  sharing
infrastructure  components  like  base  stations,  antennas,
and  spectrum  resources,  operators  can  reduce  costs,
increase  network  capacity,  and  accelerate  the
implementation  of  advanced  technologies  such  as  5G.
Challenges and unsolved issues are as follows:

• Feasibility of sharing RAN functions: One of the
key  challenges  in  RAN  sharing  is  determining  which
specific  RAN  functions  should  be  shared  among
operators.  Ensuring  effective  coordination  between
these  functions  when  multiple  operators  control  the
same  physical  layer  remains  an  unsolved  issue.
Resolving this challenge requires defining standardized
protocols  and  mechanisms  to  facilitate  seamless
coordination  and  efficient  resource  utilization  among
participating operators.

•  Implementation  challenges: Implementing  RAN
sharing  involves  overcoming  various  technical  and
operational  hurdles.  A  significant  challenge  lies  in
developing  a  common  interface  that  enables  effective
communication  between  shared  network  nodes,
regardless  of  the  hardware  manufacturer  or  vendor.
Achieving  interoperability  and  smooth  data  exchange
among  diverse  devices  and  vendors  remains  an  open
issue.  Addressing  this  challenge  requires  establishing
industry-wide  standards  and  protocols  to  ensure
seamless  integration  and  efficient  communication  in
multi-vendor environments.

•  Security  aspects: Security  is  a  critical  concern
when  sharing  RAN  resources  among  operators.
Granting external actors access to the hosting operator’s
resources and allowing them to orchestrate the partner
operator’s  resources  pose  security  risks.  Addressing
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these  risks  and  ensuring  secure  access  to  shared
resources  are  ongoing  challenges.  Robust  security
frameworks,  authentication  mechanisms,  and  access
control  protocols  need  to  be  developed  to  protect
against unauthorized access and safeguard the integrity
of the shared RAN infrastructure.

7.3　Sharing non-RT RIC data with 5G core

The  challenges  and  future  research  scope  in  sharing
non-RT  RIC  data  with  the  5G  core  are  significant.
Non-RT  RIC,  or  non-real-time  RAN  intelligent
controller,  plays  a  crucial  role  in  managing  and
optimizing  the  radio  access  network  in  5G.  However,
integrating non-RT RIC with the 5G core poses certain
obstacles.

• Need for mapping the analytic information content
from  the “generally  useful” data  structures  published
across R1 into the specific data structures expected by
the  5G  core  Network  Functions  (NFs).  This  mapping
process  ensures  compatibility  and  effective  utilization
of the analytics data.

• Establishment of a suitable framework to enable the
sharing  of  non-RT  RIC  data  with  the  5G  core.  The
passage  presents  two options:  one  with  the  SMO/non-
RT RIC acting as an NetWork Data Analytics Function
(NWDAF)  and  another  with  a  separate  NWDAF.
Further  investigation  is  necessary  to  determine  the
optimal approach.

Future research scope in the area is as follows:
• Refining the mapping mechanisms between non-RT

RIC  and  the  5G  core  NFs  to  ensure  seamless
integration and efficient data exchange.

•  Exploring  alternative  architectures  and  protocols
for  sharing  non-RT  RIC  data,  such  as  the  proposed
options  of  SMO/non-RT  RIC  as  an  NWDAF  or  a
separate NWDAF.

By  addressing  these  challenges  and  conducting
further  research  in  these  areas,  researchers  can  unlock
the  full  potential  of  non-RT  RIC  in  enhancing  the
performance and capabilities of the 5G network.

7.4　Advancing  O-RAN:  Challenges  in  inter-
vendor  standardization,  management
frameworks,  security,  performance
optimization, and seamless integration

• Inter-vendor standardization: Collaborative efforts
among  vendors  and  standardization  bodies  are  needed
to  establish  common  interfaces,  protocols,  and
standards to enhance interoperability and compatibility

in disaggregated O-RAN.
•  Management  and  orchestration  frameworks:

Research  should  focus  on  developing  efficient  and
scalable  management  and  orchestration  frameworks
tailored  for  disaggregated  O-RAN  architectures.  This
includes  automation,  network  slicing,  and  intelligent
resource allocation mechanisms.

•  Security  enhancements: Future  research  should
address  security  concerns  specific  to  disaggregated O-
RAN,  including  threat  detection,  prevention,  and
mitigation  techniques.  Robust  authentication,
encryption,  and access control  mechanisms need to be
developed.

•  Performance         optimization         techniques:
Investigating  advanced  optimization  techniques  for
resource  allocation,  load  balancing,  and  traffic
management  in  disaggregated  O-RAN  can  enhance
network efficiency and quality of service.

•  Seamless  integration strategies: Research should
explore  strategies  for  seamless  integration  of
disaggregated  O-RAN  with  existing  infrastructure,
such  as  legacy  base  stations  and  core  networks.  This
includes  defining  migration  paths  and  compatibility
frameworks.

7.5　Scope of multi-agent platform

To  enhance  network  performance  and  coordination
across  numerous  agents,  virtualized  O-RAN  can
benefit  from the  application  of  the  Multi-Agent  Team
Learning  (MATL)  concept.  Base  stations,  virtual
network functions, and centralized controllers are only
a few of the parts and organizations that collaborate to
administer the network in virtualized O-RAN.

•  Decentralized  decision-making: With  MATL,
agents  in  virtualized  O-RAN  can  make  decentralized
decisions  based  on  local  observations  and  interactions
with  the  network  environment.  Each  agent  can  learn
and  adapt  its  decision-making  process  using
techniques,  such  as  RL  or  game  theory.  The
decentralized  decision-making  allows  agents  to
respond  to  network  dynamics  and  optimize  their
actions for improved network performance.

•  Adaptation  to  changing  network  conditions:
Virtualized  O-RAN  networks  are  subject  to  varying
network  conditions  and  requirements.  MATL  enables
agents to adapt their behaviors and policies in response
to changing network dynamics. Agents can learn from
their own experiences as well as from interactions with
other  agents,  allowing  for  continuous  adaptation  and
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optimization in dynamic network environments.
• Knowledge sharing and transfer: MATL enables

agents  to  share  knowledge  and  experiences  with  each
other.  Agents  can  exchange  information  about  their
learned policies, observations, and rewards to facilitate
collective  learning.  This  knowledge  sharing  helps  in
the  transfer  of  valuable  insights  and  enables  agents  to
make informed decisions based on shared knowledge.

8　Conclusion

In  conclusion,  this  paper  demonstrates  an  adoption  of
software-defined  disaggregated  O-RAN,  presents  a
compelling opportunity for the implementation of next-
generation  multi-vendor  networks.  This  study  has
provided an overview of the key architectural concepts
underpinning  disaggregated  O-RAN,  with  a  specific
concentration  on  integration  of  advanced  components
within  the  architecture.  This  paper  explores  all  the
steps  of  FRIC  integration  with  O-RAN,  and  tests
successfully  with  emulation,  simulation,  and  real
USRP  hardware.  We  also  test  the  FRIC  multi-agent,
multi-xApp,  and  multi-language  features  by  running
C++  and  Python  xApps  simultaneously.  Additionally,
we  have  explored  previous  works  in  deep  learning
based  RAN  with  network  automation  reinforcement
learning  framework  and  discussed  their  potential
integration  into  the  newly  developed  AI/ML-enabled
automation  system  for  software-defined  disaggregated
O-RAN.  To  ensure  the  effectiveness  of  deployed
learning  models,  case  studies  on  the  deployment  of
reinforcement learning in O-RAN have been presented
along  with  insights  into  automation  steps  of
implementation and automating key elements of the RL
process.  The design of  the AI/ML-enabled automation
system for software-defined disaggregated O-RAN and
the application of RL within this architecture have been
discussed in detail. Furthermore, we have touched upon
emerging research aspects and the future scope related
to  enhancing  RAN models  for  robust  RAN slice  SLA
assurance  in  5G  networks,  unsolved  issues  in  RAN
sharing and sharing non-RT RIC data with 5G core.
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