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Abstract: With  the  enhancement  of  data  collection  capabilities,  massive  streaming  data  have  been

accumulated  in  numerous  application  scenarios.  Specifically,  the  issue  of  classifying  data  streams  based  on

mobile sensors can be formalized as a multi-task multi-view learning problem with a specific  task comprising

multiple views with shared features collected from multiple sensors. Existing incremental learning methods are

often single-task single-view, which cannot learn shared representations between relevant tasks and views. An

adaptive multi-task multi-view incremental learning framework for data stream classification called MTMVIS is

proposed to address the above challenges, utilizing the idea of multi-task multi-view learning. Specifically, the

attention  mechanism is  first  used  to  align  different  sensor  data  of  different  views.  In  addition,  MTMVIS  uses

adaptive Fisher regularization from the perspective of multi-task multi-view learning to overcome catastrophic

forgetting  in  incremental  learning.  Results  reveal  that  the  proposed  framework  outperforms  state-of-the-art

methods based on the experiments on two different datasets with other baselines.
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1　Introduction

Data  stream  classification  is  the  process  of  analyzing
big data in real time to enable intelligent systems, such
as  online  system  monitoring,  intelligent  transportation
systems[1],  and  financial  risk  management.  With  the
rapid  development  of  mobile  networks  and  social
media, data stream classification has gained increasing
interest  in  academia  and  industry[2].  In  addition,  data
stream analysis  is  a  crucial  component  of  the  big  data

and analytics technology that enables Industry 4.0[3].
The  demand  for  real-time  data  stream  processing  is

increasing. Therefore, developing incremental learning
methods  is  urgently  needed.  Incremental  learning  is  a
learning  paradigm  that  allows  continuous  model
updating  based  on  new  incoming  data  rather  than
training  it  once  on  the  entire  dataset.  The  purpose  of
incremental  learning is  to  process  the continuous flow
of  information  in  the  real  world,  and  retain,  integrate,
and  optimize  previous  knowledge  based  on  absorbed
new  knowledge.  In  the  field  of  machine  learning,
incremental learning is dedicated to solving a common
flaw  in  model  training:  catastrophic  forgetting[4−6].
That is to say, when a general machine learning model
is  trained  on  an  entirely  new task,  its  performance  on
the  previous  task  will  typically  degrade  prominently.
Multi-task  multi-view  learning  provides  a  useful
paradigm  for  various  types  of  data  collected  from
heterogeneous devices with multiple modalities in real-
world scenarios, such as sensor-based Human Activity
Recognition (HAR)[7] and traffic data analysis in smart

 
   Jun Wang, Maiwang Shi, Xiao Zhang, Yan Li, Yunsheng Yuan,

and Dongxiao Yu are with the School of Computer Science and
Technology,  Shandong  University,  Qingdao  266237,  China.
E-mail: wj_521@sdu.edu.cn; 975255673@qq.com; xiaozhang@
sdu.edu.cn; yhyanli@163.com; 995716009@qq.com; dxyu@
sdu.edu.cn.

   Chenglei  Yang is  with  the School  of  Software,  Shandong
University,  Jinan  250101,  China. E-mail: chl_yang@
sdu.edu.cn.

* To whom correspondence should be addressed.
    Manuscript  received: 2022-11-27;  revised: 2023-04-19;

accepted: 2023-04-25 

BIG   DATA   MINING   AND    ANALYTICS
ISSN  2096-0654    07/15   pp87−106
DOI:  10.26599/BDMA.2023.9020006
Volume 7,  Number 1,  March   2024

 
©  The author(s) 2024. The articles published in this open access journal are distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).



cities.  The goal of multi-task multi-view learning is to
improve  efficiency  and  accuracy  by  jointly  learning
objectives  of  multiple  tasks  with  multiple  views
collected  from  different  sources[8].  Compared  to
models  with  single-task  multi-view  learning,  models
with  multi-task  multi-view  learning  paradigms  have
high efficiency and low inference cost during training.
The  models  are  implemented  in  a  way  that  promotes
generalization capabilities  using simultaneous learning
of  shared  representations  between  related  tasks  and
views[9−11].  However,  research  on  the  application  of
multi-task  multi-view learning  to  incremental  learning
is  limited.  In  the  multi-task  multi-view  scenarios,
learning  a  task  can  first  cause  interference  with
previously  learned  tasks  due  to  updates  in  shared
parameters.  Second,  different  sensors  can  provide
various views, leading to differences in input data that
may  be  ignored  in  the  learning  process.  Finally,  data
imbalance,  in  which  certain  tasks  may  have  more
samples  than  others,  can  lead  to  the  neglect  of  less
represented  tasks  in  favor  of  overrepresented  tasks
during  the  learning  process,  resulting  in  catastrophic
forgetting.

Some  challenges  arise  when  solving  multi-task
multi-view  incremental  data  stream  classification  on
mobile  sensors.  (1)  Sensor  data  are  continuously
generated  at  a  fast  pace,  occupying  a  large  storage
space.  Therefore,  incremental  learning  is  an  urgent
need. (2) Different tasks and views interfere with each
other  in  the  training  process,  and  data  distribution
differs  between  various  tasks  or  views.  Thus,  the
heterogeneity  of  tasks  and  views  often  differs  among
participants  and  sensors  when  performing  the  same
activity.  Using  the  traditional  single-task  single-view
incremental  learning  may  not  effectively  handle  the
specific  catastrophic  forgetting.  (3)  Existing  methods
addressing  catastrophic  forgetting,  such  as  the
traditional  Elastic  Weight  Consolidation  (EWC)
approach[12],  often  ignore  the  significance  of  different
components in the Fisher information matrix and fail to
adapt to the evolution of the model structure. However,
current  data  stream  classification  research  only
partially  addresses  these  challenges,  and  few  attempts
have been made to address all these challenges within a
single framework.

For  example,  the  method  in  Ref.  [13]  was  designed
to  run  on  mobile  devices,  where  convolutional  neural
networks  are  used  to  learn  local  interactions  in  each
perceptual view as well as global interactions between
different  sensor  inputs  and  perform  regression  and

classification tasks based on data from moving sensors.
Reference  [14]  used  incremental  learning  to  build  a
personalized  recognition  model  of  human  activities.
The  algorithm  Learn++  is  an  integrated  method  that
can  use  any  classifier  as  a  basic  classifier.  Reference
[15]  proposed  a  criterion  of  the “Kappa” architecture
(namely  MOLESTRA)  to  ensure  the  utilization  of
cognitive  and  learning  relationships  among  the
streaming  data.  Reference  [16]  transfered  multi-view
data  stream  from  multiple  views  to  a  shared  potential
subspace  and  integrated  distinguishing  information  by
maximizing  and  minimizing  the  interclass  and
intraclass  separability  of  streaming  data,  respectively.
However,  the  existing  work  has  not  addressed  all  the
aforementioned  challenges  of  streaming  data  analysis
within the overall framework.

Therefore,  an  adaptive  Multi-Task  Multi-View
Incremental  learning  framework  for  data  Stream
classification  (MTMVIS)  is  proposed  to  solve  the
above  challenges.  The  general  overview  of  MTMVIS
is depicted in Fig. 1, where the notations are shown in
Table  1.  First,  a  hierarchical  attention  mechanism  is
used to weigh each measurement value within a certain
time  interval  to  align  data  collected  from  different
sensors  at  the  same  body  location.  Task-view
relationships  with  Multi-gate  Mixture-of-Expert
(MMoE)[17] are  then  comprehensively  modeled  A
gating  network  for  each  task-view,  which  can
determine  a  customized  feature  representation  by
combining  the  output  of  multiple  experts,  is
constructed. In addition, another attention layer is used
to  construct  a  view  fusion  layer  for  each  task  to
measure the importance of different views to the same
task. Inspired by a single-task single-view method, i.e.,
IADM[18], a special adaptive output layer for each task
is  introduced,  and  each  layer  of  the  network  in  the
model  is  trained  to  obtain  a  specialized  feature
representation,  which  serves  as  the  input  to  the  final
output  layer.  Each  task  obtains  a  specific  output
representation by weighting the output combination of
the  multilayer  network.  In  addition,  homoscedastic
uncertainty[19] is used to tune the loss weights of tasks
adaptively  during  training.  Finally,  adaptive  Fisher
regularization  is  employed  to  overcome  the
catastrophic  forgetting  problem.  Results  of  extensive
experiments on two different datasets demonstrate that
MTMVIS is superior to other state-of-the-art methods.
The main contributions can be summarized as follows.

•  A  novel  framework  for  adaptive  multi-task  multi-
view  incremental  learning  is  proposed  to  address  the
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catastrophic  forgetting  problem.  Different  from
traditional incremental learning methods, the proposed
model  utilizes  the  relevant  knowledge  of  multi-task
multi-view learning.

•  Compared  with  traditional  EWC  methods  for
solving  the  catastrophic  forgetting  problem,  adaptive
Fisher  regularization  is  introduced  to  enhance  the
scalability of the model.

• The proposed approach is evaluated on the basis of
two  real  datasets,  namely  RealWorld-HAR[20] and
GLass  Eating  And  Motion  (GLEAM)[21],  to
demonstrate  the  effectiveness  and  efficiency  of
MTMVIS.

2　Related Work

2.1　Multi-task  learning  for  data  stream
classification

The  volume  of  data  stream  displaying  heterogeneity

has  been  increasing  with  the  rise  of  mobile  networks.
Moreover,  different  participants  exhibit  various
features  for  the  same  activity  due  to  variations  in
sensor  worn,  usage  environment,  or  personal  habits,
which  cannot  be  resolved  using  traditional  single-task
models.  Multi-task  learning  approaches  generally
provide superior prediction results because the noise of
a single model is biger than the combined noise of the
corresponding multiple models. Multi-task learning is a
machine  learning  paradigm  that  leverages  inter-task
correlations. This approach learns all relevant tasks and
knowledge  among  these  tasks  simultaneously  to
enhance  generalization  performance[22].  The  two  most
common  approaches  for  multi-task  learning  are  hard
parameter sharing and soft parameter sharing according
to Ref. [10]. Previous work has focused on joint feature
selection  and  feature  learning,  where  task  correlations
are represented as mutual blocks of tasks[23−25].

Most  work  assumes  that  multiple  tasks  utilize  a
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Fig. 1    Overview of the proposed MTMVIS framework. Specifically, each layer of the multi-task multi-view neural network is
used to extract features separately, and the attention layer is employed to weight the output of all layers of the multi-task multi-
view  deep  neural  network  as  the  final  output  layer  for  each  task.  Adaptive  Fisher  regularization  is  utilized  to  alleviate
catastrophic forgetting problems and enhance model scalability. The details of multi-task multi-view deep neural network are
shown in Fig. 3 in the following Section 3.1. The notations appearing in this figure are shown in Table 1.

  Jun Wang et al.:  Incremental Data Stream Classification with Adaptive Multi-Task Multi-View Learning 89

 



shared  representation.  However,  in  practical
applications,  sharing  a  set  of  common  features  for  all
tasks  often  ignores  task-specific  features  due  to  task
heterogeneity.  Some  recent  methods  have  proposed
different  viewpoints.  Inspired  by  Mixture-of-Expert
(MoE)[26],  Ref.  [17]  proposed  MMoE,  which
introduces  multiple  expert  networks  and  then
introduces  a  gating  network  for  each  task.  The  gating
network  learns  different  combinations  of  expert
networks  for  each  task;  that  is,  adaptive  weighting  is
performed  on  the  output  of  the  expert  network.  In
addition,  the  conventional  method  for  multi-task  loss
simply  adds  the  loss  of  each  task  or  sets  a  uniform
weight  loss.  Furthermore,  manually  adjusting  the
weights  is  an  inefficient  and  difficult  task.  Reference
[19]  proposed  the  methed  of  setting  the  weight  of  the
loss  function  of  different  tasks  by  considering  the

homoscedastic uncertainty between different tasks.
Furthermore,  some  works  consider  data  stream

classification  based  on  multi-task  learning.  For
example, Ref. [27] proposed a multi-task deep learning
architecture for maritime surveillance using Automatic
Identification  System  (AIS)  data  streams.  Multi-task
learning is used to learn multiple tasks simultaneously
via  shared  layers  and  task-specific  layers.  The  fusion
layer is utilized to combine the learned representations
from  different  tasks  and  produces  a  final  prediction.
Additionally,  Ref.  [28]  proposed a  novel  approach for
multi-task  data  stream  classification  using  a  double-
coupling learning method. The proposed model mainly
focuses  on  coupling  the  mutual  influences  between
different  tasks  and  the  temporal  relationship  within
data  streams  to  achieve  multi-task  data  stream
classification  and  avoid  catastrophic  forgetting.
Furthermore,  MOLESTRA[15] combines  multi-task
grouping  and  overlapping  learning  techniques  with
sliding learning windows for data stream classification.
Moreover,  Ref.  [29]  developed  two  complex  models
based on a fully convolutional network to predict node
and  edge  flows,  which  are  connected  and  trained
together  by  coupling  their  respective  potential
representatives  to  the  middle  layer.  However,  most
existing studies only consider multiple tasks and fail to
analyze  additional  fine-grained  information.  Some
models  cannot  even handle incremental  data  or  ignore
the  existing  catastrophic  forgetting  problem  in  multi-
task  incremental  learning.  Developing  approaches  for
predicting  data  stream  classification  incrementally
using  multi-task  learning  is  necessary  to  solve  task
heterogeneity to address the aforementioned issue.

2.2　Multi-view  learning  for  data  stream
classification

The  sensors  located  in  different  parts  of  the  body
acquire  a  considerable  amount  of  information  due  to
the  increase  in  the  number  of  various  sensors.  For
instance,  sensors  located  in  distinct  areas  of  the  body
are  often  considered  distinct  views.  Moreover,  co-
learnable  features  exist  across  different  views.
Therefore,  a  multi-view  learning  approach  can  be
employed to tackle this issue.

Multi-view  learning  emulates  the  consistency  and
diversity  among  multiple  data  views,  resulting  in
superior learning performance compared to single-view
approaches.  In  traditional  multi-view  learning,
functions are employed to model specific views, and all
functions  are  jointly  optimized  to  leverage  redundant

 

Table 1    Notations used in this paper.
Variable Description

K Number of tasks
V Number of views
S Number of sensors
N Amount of data in one window

xn,s
k,v

n s
v k

The -th data generated by the -th senson from
the -th view of the -th task in one window

Xkl

l
k

Data generated by the -th attention layer for the
-th task in one window

x̂k,v k
Sum of the representation of all measurements

weighted by the attention values for the -th task

x̄k,v
v

k
Feature representation of the -th view

of the -th task

x̃k,v
Gate’s output representation of the

v-th view of the k-th task

X̂ x̂k,v

Sum of the representation of all input feature
vectors , weighted by the attention values

X̄ x̄k,v

Sum of the representation of all input feature
vectors , weighted by the attention values

X̃ x̃k,v

Sum of the representation of all input feature
vectors , weighted by the attention values

X⃗R
x̃k,vFusion represention of feature , weighted

by the attention values
tm mTotal number of time windows within the -th stage

λMV
LMVHyperparameter on multi-view loss 

in training process

λMT
LMTHyperparameter on multi-task loss 

in training process

θ
mp

k
p

m k
-th parameter in the mode after the training

of the -th stage for the -th task

Fmp

k
p

m k
-th diagonal value of the diagonal Fisher matrix

of the -th stage for the -th task
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views  effectively  with  identical  inputs,  thereby
enhancing  learning  performance[30].  Multi-view
learning is also frequently employed to enhance single-
view  clustering  techniques[31].  Reference  [32]
discovered that Expectation-Maximization (EM) based
multi-view  algorithms  demonstrate  considerably
superior  performance  to  their  corresponding  single-
view  counterparts.  Furthermore,  recent  studies  have
demonstrated  that  multi-view spectral  clustering  holds
substantial  research  implications.  References  [33−35]
provided  insights  into  the  challenges  and  approaches
encountered  by  Low-Rank  Representations  (LRR)  in
multi-view  data  clustering.  Reference  [33]  proposed
structured  LRR  via  decomposing  potential  low-
dimensional  data  clustering  representations  that
characterize the data clustering structure of each view.
Reference  [34]  demonstrated  that  LRR  essentially
comprises  an  optimized  local  structure  for  spectral
clustering,  which  is  a  potential  clustering  orthogonal
projection-based  representation,  leading  to  a  highly
desirable  multi-view  consensus.  Reference  [35]
developed  an  effective  and  efficient  approach  to
learning  low-rank  kernelized  hash  functions  that  are
shared across views.

Moreover,  the  co-training  algorithm[36] utilizes  a
view predictor  to forecast  other  view labels,  which,  in
turn,  extends  the  training  dataset.  Reference  [37]
constructed  a “co-regularization” specification
associates  with  data,  where  a  synthetic  eproduction
kernel  associated  with  a  single  Reproducing  Kernel
Hilbert  Space  (RKHS),  simulated  the  theoretical
analysis,  and  extended  the  algorithm  for  co-
regularization.  References  [22, 38]  explored  the  basis
vectors  of  two  sets  of  variables  by  maximizing  the
correlation  between  their  basis  vectors.  Therefore,
these  vectors  were  directly  applied  to  dual-view  data
for  selecting  shared  potential  subspaces.  Further
development  of  these  vectors  was  realized  in  multi-
view regression[39].

Some  existing  works  consider  data  stream
classification  based  on  multi-view  learning.  For
example, Ref. [40] built an integrated global clustering
model  on  each  data  block,  integrating  data  from
multiple  views  in  a  streaming  manner  through a  split-
merge  clustering  algorithm  applied  at  each  time
window.  Reference  [16]  transfered  multi-view
streaming  data  from  different  views  to  a  shared
potential  subspace,  and  integrated  distinguishing
information  by  minimizing  and  maximizing  the
intraclass and interclass separability of streaming data,

respectively. However, all these methods are only used
to  address  single-task  learning.  The  proposed
MTMVIS focuses on the multi-task learning paradigm
based on multi-view learning.

2.3　Multi-task multi-view learning

The  research  on  multi-task  multi-view  learning  has
recently generated a wide range of interest. Many real-
world scenarios can be formalized as multi-task multi-
view  learning  problems,  such  as  human  activity
recognition  and  news  classification.  Reference  [8]  is
the  earliest  work  on  multi-task  multi-view  learning,
which  presented  a  graph-based  framework  where  an
effective  algorithm  was  proposed  to  manipulate  the
framework  (namely  GraM2).  However,  GraM2  can
only  handle  data  with  nonnegative  eigenvalues.
Reference  [41]  assumes  that  the  views  of  different
prediction models should be congruent, considering the
idea  of  common  normalization.  Therefore,  Ref.  [42]
proposed  a  highly  general  algorithm  (namely  CSL-
MTMV),  which  assumes  that  multiple  relevant  tasks
with  the  same  view  should  be  shared  in  a  low-
dimensional  common  subspace.  Inspired  by  linear
discriminant  analysis,  Ref.  [43]  focused  on  double
heterogeneity  through the  shared  latent  space  between
multiple  views.  Reference  [44]  introduced  algorithm
MFM  based  on  a  multi-linear  decomposition  machine
through  learning  the  multi-linear  structure  shared  by
task-specific  feature  maps  and  task-views.  A  unified
deep  learning  framework  (namely  DMTMV)[11] was
proposed  to  solve  multi-task  multi-view  problems  by
establishing  three  types  of  networks:  feature-sharing
network,  specific  feature  network,  and  task  network,
and  using  layer-by-layer  regularization  to  update
parameters.  However,  these  methods  have  generally
assumed that  views and tasks are independent  and not
studied  the  fine-grained  task-view  interaction
relationship.

2.4　Incremental  learning  for  data  stream
classification

The  change  in  data  distribution  over  time  is  usually
called concept drift, which is a challenging problem in
data  stream  classification.  A  considerable  amount  of
recent work has been studying incremental  learning to
address  the  aforementioned  problem[45−47].
Specifically,  incremental  learning  can  continuously
process  the  continuous  flow of  information in  the  real
world  and  absorb  new  knowledge.  Simultaneously,
incremental  learning  can  retain  or  even  integrate  and
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optimize previous knowledge. Learning from emerging
data  from  nonstationary  data  distribution  is  inevitably
prone  to  inducing  catastrophic  forgetting[4,5].
Incremental  learning  uses  three  different  paradigms,
namely,  regularization[48],  replay[49],  and  parameter
isolation,  to  address  the  catastrophic  forgetting
problem.  Among  these  paradigms,  Ref.  [12]  is  one  of
the representatives of regularization. At the end of each
training  iteration,  the  EWC  method  computes  a
diagonal Fisher matrix from the final loss,  where each
value  is  a  parameter  reflecting  the  importance  of  the
model  to  which it  belongs.  In  the  next  iteration of  the
training  process,  the  model  uses  a  regularization  term
to limit the variation of the parameters.

Incremental  learning  for  data  stream  classification
has  always  been  a  long-standing  research  field[12, 45].
An  ensemble-based  incremental  learning  method  for
unbalanced  streaming  data  is  proposed  by  Ref.  [50],
the  algorithm  for  concept  drift,  which  reduces  class
imbalance  by  using  bagging-based  subsets  and
employs  different  methods  to  focus  on  class-specific
performance. Inspired by the Hoeffding Decision Tree
(HDT)[51] for  efficient  data  stream  classification,
Ref. [52] used the proposed learning procedure in HDT
to adapt  to  the  recently  introduced fuzzy decision tree
and  utilized  a  uniform  fuzzy  partition  for  each  input
feature  to  address  the  data  stream  classification
problem.  Reference  [53]  proposed  a  new  incremental
semi-supervised  learning  framework  based  on
streaming  data  to  address  the  problem  of  insufficient
labeled  samples  in  data  stream  classification.  This
framework  uses  autoencoders  for  learning  features
generated  from  streaming  data  to  normalize  the
network  construction  by  establishing  pairwise
similarity  and  dissimilarity  constraints.  However,  the
existing  approaches  only  focus  on  solving  the
catastrophic  forgetting  of  models  in  single-task
scenarios.  Data  stream  classification  can  generally  be
formalized  as  a  multi-task  multi-view  problem.
Therefore,  using  the  idea  of  multi-task  multi-view
learning  may  be  necessary  to  solve  catastrophic
forgetting.

3　MTMVIS:  Adaptive  Multi-Task  Multi-
View  Incremental  Learning  Framework
for Data Stream Classification

Owing  to  the  nonstationary  distribution  characteristics
of  streaming  data,  old  knowledge  is  disturbed  by  new
knowledge  when  the  knowledge  is  continuously

acquired from nonstationary data distribution, resulting
in  a  rapid  decline  in  overall  performance.  This
phenomenon  is  called  catastrophic  forgetting.
Incremental learning is introduced to address the issue
of catastrophic forgetting in data streams. Furthermore,
the  following  two  scenarios  involving  sensor  data  are
examined: the first scenario’s data from the same type
of sensors are gathered from different participants, and
the second scenario’s data are collected from different
parts  of  the  same  body  using  various  sensors.  Task
heterogeneity or view heterogeneity arise because each
participant  or  sensor  behaves  differently  for  the  same
activity.  Each  participant  is  assumed  to  represent  a
specific task, and each sensor corresponds to a view, as
shown  in Fig.  2.  A  multi-task  multi-view  incremental
learning approach is adopted to tackle these scenarios.
Therefore,  an  adaptive  multi-task  multi-view
incremental  learning  framework  for  data  stream
classification, called MTMVIS, is proposed as depicted
in Fig.  1.  Specifically,  the  proposed  MTMVIS  first
aligns  the  data  to  extract  features  effectively.  Then,
MTMVIS  uses  MMoE[17] to  select  appropriate  expert
networks  for  different  task-views  and  construct  a
special  view  fusion  layer  for  each  task.  Finally,
MTMVIS combines adaptive Fisher regularization and
task  homoscedasticity  uncertainty[19] to  solve  the
catastrophic  forgetting  problem.  The  details  of  the
MTMVIS are presented as follows.

3.1　Problem statement

K
V

M tm
T m ∈ . . . ,M

Xk,v = {x1
k,v, x

2
k,v, . . . , x

N
k,v} k ∈ {1, 2, . . . , K}

v ∈ {1, 2, . . . , V} N

Using  incremental  learning  to  predict  the  data  stream
classification  on  the  mobile  sensors  and  improve  the
overall performance of the model via multi-task multi-
view  learning  is  considered  in  this  paper.  tasks,
where  each  task  comprises  different  views,  are
presented considering a real-world scenario of different
individuals  wearing  multiple  sensors  of  the  same
number  on  different  body  parts.  Specifically,  the
streaming  data  generated  by  sensors  are  manually
divided  into  stages,  and  each  stage  has  time
windows with  seconds, where {1, 2, }. The
activities that appear in different stages, such as sitting,
running,  and  climbing  up,  are  assumed  to  be  random
and  repeatable  considering  the  general  situation;
incremental  learning must be used to distinguish these
activities.  For  each  stage,  the  data  from  different
sensors  in  each  time  window  can  be  represented  as

,  where  and
,  and  indicates  the  total  amount  of
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generated  data.  In  the  proposed  model,  can  be
generat- ed  by  different  sensor  data  at  the  same
moment through the same attention layer,  as shown in
Fig.  3,  where .  Within  the -th  stage,
the data of the -th task can be denoted as . The
goal  is  to  learn  an  adaptive  multi-task  multi-view
incremental  model  to  achieve  the  mapping  from  data
collected  by  different  sensors  to ,  where 
represents the label of the -th task at the -th stage,
 

f
({

Xt
k

}tm
t=0

)
→ ym

k (1)

3.2　Data alignment

In  the  collected  datasets,  the  input  data  come  from
different  sensors,  which  have  various  effects  on  the
prediction  results  of  the  same  activity  simultaneously.
In addition, different measurement values generated in
the same time interval may have various effects on the
prediction  results.  The  hierarchical  attention
mechanism  is  introduced  to  perform  the  above
situations  separately  to  address  heterogeneity.  The
attention  mechanism  can  assign  weights  based  on  the
importance  of  different  parts  and  is  already  widely
used in computer vision tasks. Specifically, in the first
part of the attention layer, the data of different sensors
located in the same part of the body are aligned, and a

T
fixed-length  feature  vector  is  generated  during  each
time interval with  seconds. In the second part of the
attention  layer,  the  different  measurement  values
generated  in  the  same  time  interval  are  weighted  to
achieve the alignment of different data generated in the
same time interval.

The details of each part of the attention layer can be
formalized as follows:
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where  is  the  attention  value  representing  the
significance of the data collected by the -th sensor, and

.  is  the -th  feature  representation
vector  of  the  sensor,  and  is  the  sum  of  the
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Participant 1 (Task 1) Different sensing view

Data stream from View 3
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Data stream from View 2

Running
Participant 2 (Task 2) 

Fig. 2    Assumption  indicates  that  each  participant  represents  a  specific  task,  each  sensor  corresponds  to  a  view,  and  the
collected data by the sensor are the data stream. Task heterogeneity and view heterogeneity arise because each participant or
sensor behaves differently for the same activity.  Thus,  the multi-task and multi-view incremental  learning method is  used to
solve these problems.
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representation  feature  vectors  of  all  sensors  weighted
by  the  above  attention  values.  is  the  attention
value,  which  evaluates  the  significance  of  the -th
measurement, and  is the sum of the representation
feature  vectors  of  all  measurements  weighted  by  the
above attention values.  Function ( )  is  used as  the
activation function to enhance the nonlinear capability.

 are  parameters  that  must  be
determined by learning.

The  learning  capability  of  the  model  is  further
improved  by  using  a  fully  connected  neural  network
with two hidden layers at the output,
 

x̄k,v = FCL
(
x̄k,v
)

(4)

FCL(·)
x̄k,v

v

where  represents  the  fully  connected  neural
network  with  two  hidden  layers,  and  denotes  the
feature representation of the -th view of k-th task.

3.3　Task-views  shared  layer  with  multi-gate
mixture-of-experts

After  computing  the  representation  of  each  view  of

FCL(·)
K ×V E

each  task  within  the k-th  stage,  we  then  model  the
relationship  among  task-views.  Most  prior  studies
utilized  soft-sharing  constraints  and  are  based  on  the
division  of  the  Multi-Task  Multi-View  Learning
(MTMVL)  problem  into  multiple  multi-task  learning
problems, which are considered as separate approaches.
Moreover, in these studies, it is assumed that all views
are  conditionally  independent[11, 42, 43],  and  finer-
grained  task-view-interaction  correlations  are  ignored.
Inspired  by  MMoE  and  the  recent  MoE  layer,  we
propose an MMoE network with feature representation
obtained  by  for  each  view  of  each  task.  The
MMoE network consists of  gates and  experts,
as shown in Fig. 3. Here, the gating is a trainable gated
network  that  selects  different  combinations  of  experts
to  process  the  input  data.  The  gated  network  for  each
task view achieves selective use of experts by different
final  output  weights,  and  the  gated  network  for
different task views can learn different combinations of
experts.  Based on the  output  of  multiple  experts,  each
task  view  can  get  customized  feature  representations
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Fig. 3    Multi-task multi-view deep neural network of the proposed model MTMVIS. The MTMVIS model initially aligns the
data  to  facilitate  optimal  feature  extraction.  Subsequently,  this  model  employs  MMoE  to  choose  the  most  suitable  expert
network for  diverse  task views and establishes  a  specialized view fusion layer for  each task.  The notations  appearing in  this
figure are shown in Table 1.
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which will help in the training of specific tasks.
MMoE  networks  can  formally  be  identified  as

follows:
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where  is  the  representation  generated  by  the  FCL
layer,  represents  output  representation  of  the -th
expert,  is  the  weight  of  the -th  expert, 
represents  the  gate’s  output  representation  of  the v-th
view of the k-th task, and  are the parameters
that  need to  be learned.  We utilize  the  function 
as the activation function.

3.4　View fusion layer

Based  on  the  assumption  that  all  views  are
conditionally  independent,  the  traditional  method
transforms the  multi-task  multi-view learning problem
into  the  multi-task  learning  problem;  that  is,  the
previous  multi-task  multi-view  learning  model  simply
represented the average of the output of all views as the
task  output.  In  our  work,  after  getting  a  better
representation  of  task-view  features,  we  use  an
additional  attention  layer  to  fuse  view  features  from
each  task.  Considering  that  different  views  may
contribute  differently  to  different  tasks,  we  utilize  an
attention  layer  to  calculate  the  importance  of  each
view.

For a single task, its attention layer can be formalized
as follows:
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tanh
(
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dk,v v
{wk,v,bk,v}

tanh

where  is  the importance measure of  the -th view
for the k-th task, and  are the parameters that
need  to  be  learned.  We  use  function  as  our
activation function to enhance the nonlinear capability.

Thus,  we  utilize  regularization  term  to  represent
multi-view loss as follows:
 

LMV = λMV

K∑
k=1

V∑
v=1

1
V

∥∥∥ fk (·)− fk,v (·)
∥∥∥

2 (7)

fk ·
k fk,v ·

v
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where ( ) represents the view fusion function for the
-th  task  with  all  views  fusion,  we  utilize ( )  to

denote the task-view-specific model function for the -
th view of -th task,  is a hyperparameter.

3.5　Adaptive output layer

A  considerable  amount  of  stream  data  is  constantly
evolving  in  nature.  That  is,  the  joint  distribution
between the ground truth and the input  features varies
due  to  concept  drift[54].  If  the  changes  in  the
distribution  are  ignored,  then  the  performance  of  the
previously  obtained  distribution  would  have  been
markedly  degraded,  consequently  leading  to  a
catastrophic  forgetting  problem[55].  Some  works
recently  utilize  the  Fisher  information  matrix[56] to
address  the  above  problem.  However,  these  works
ignore  the  significance  of  the  different  components  in
the  Fisher  information  matrix.  Therefore,  inspired  by
IADM[18],  a  special  adaptive  output  layer  is  proposed
for each task. Unlike the original network that uses the
final feature representation for prediction, in MTMVIS,
Fig. 1 shows that customized feature representations in
the adaptive output layer are obtained at the end of the
attention layer as the input part of the final output layer
by training each network layer in the model. Each task
obtains  a  specific  output  representation  that  will  help
improve  the  overall  prediction  performance  by
weighing  the  combination  of  the  multilayer  network
output.

The details of the adaptive output layer for each task
can be formalized as follows:
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where , , and  denote the attention value that
evaluates  the  significance  of  the  input  feature  vector

, , and , respectively; , , and  denote the
sum  of  the  representation  of  all  input  feature  vectors

, ,  and ,  respectively,  weighted  by  the
attention values.  is the attention value that assesses
the  significance  of  the -th  layer,  where

, and  denotes
the  task  output. ,

,  and  are  the  parameters  that  must  be
learned.

Cross  entropy  is  used  in  the  current  work.  The
classification loss can be formalized as follows:
 

LCL =

K∑
k=1

∥yk −Fk∥2 (13)

3.6　Modeling  tasks  relationship  with
homoscedastic uncertainty

Simultaneously,  MTMVIS  is  concerned  with  the  joint
optimization  of  multiple  related  tasks.  The
conventional  method  aims  to  define  a  total  loss
function,  which  is  a  linear  combination  of  the  loss  of
each individual task.  However,  manually adjusting the
weight  parameters  is  expensive  and  tricky.  If  the
weight  values  of  the  loss  of  different  tasks  are  quite
different, then a certain task will dominate the value of
the overall loss, and the final network learning process
will  eventually  be  affected  by  the  loss  of  other  tasks.
Inspired  by  Ref.  [19],  the  loss  for  each  task  is
automatically  traded  off  by  homoscedastic  uncertainty
during  the  model  training  to  address  the  above
problems. The relative weights of each task in the total
loss function are adjusted by deriving a multi-task loss
function  based  on  the  maximum likelihood  estimation

of  the  normal  distribution  of  task-dependent
uncertainties.  Specifically,  the  multi-task  loss  function
is rewritten as follows:
 

LMT = λMT

K∑
k=1

Lk (Xk, θk,σk) (14)

Lk(·) k
Xk k θk

k σk

k λMT

where  is the classification loss function for the -
th task,  is the input data for the -th task,  denotes
the  model  parameters  for -th  task,  and  is  the
standard  deviation  of  the  Gaussian  distribution  as  the
noise of the -th task.  is a hyperparameter.

The  similarity  likelihood  is  adjusted  to  compress  a
scaled  version  of  the  model  output  via  the  softmax
function,
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The output can be written as
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k
where  is  the -th element  of  the vector 
for  the -th  task.  The  classification  loss  with
uncertainty  is  represented  by  using  the  negative  log
likelihood as follow:
 

Lk (Xk, θk,σk) =
C∑

c=1

−log p (y = c|Xk, θk,σk) =

1
σ2

k

C∑
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log p (y = c|Xk, θk)+ log σk (17)

σk

σk

where  represents the relevant weight loss for the k-th
task.  The  corresponding  weight  increases  when 
decreases,  which  effectively  balances  the  loss  weights
of  different  tasks  and  helps  improve  overall
performance.

3.7　Adaptive Fisher regularization for overcoming
catastrophic forgetting

A  model  that  adapts  to  new  data  often  suffers  from
catastrophic  forgetting,  where  it  forgets  what  it  has
learned  before.  This  phenomenon  poses  a  practical
challenge  for  incremental  learning,  i.e.,  minimally
forgetting  previous  knowledge.  Previous  work  has
focused  on  protecting  old  knowledge  from  being
overwritten by new knowledge by imposing constraints
on  the  loss  function  of  the  new  task  to  address  the
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abovementioned  challenge.  This  study  takes  the
following  view:  the  distribution  of  instances  does  not
change significantly within a short period, such that the
interest  of  users  in  following  an  online  information
stream  remains  stable.  Moreover,  a  drift  detection
algorithm can be employed in highly complex cases to
partition the stream into epochs with relatively smooth
underlying  distributions.  Therefore,  using  the  Fisher
information  matrix  is  proposed  to  regularize  the
conditional  likelihood  distribution  at  each  stage  as  a
forgetting  metric.  This  matrix  can  be  represented  as
follows:
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=
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Fmp
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where  denotes  the -th  diagonal  value  of  the
Fisher  matrix  computed  after  the  training  of  the -th
stage for the -th task, while  is the -th parameter
in the model after the training of the -th stage for the

-th task.
Notably,  Eq.  (18)  only  considers  the  Fisher

information matrix of the previous stage and disregards
all  previous  stages,  which  may  still  lead  to  interval
forgetting.  Moreover,  in  the  incremental  setting,
different hidden layers of the neural network may have
various  importance  due  to  the  network  structure
evolution  with  an  attention  mechanism,  resulting  in
different  parts  of  the  Fisher  information  matrix  with
various significance in successive stages. The attention
weights  are  incorporated  into  the  relevant  parameters
of  the  Fisher  regularization  to  address  this  issue  and
gradually  align  the  posterior  distribution  of  the  neural
network trained at each stage. Therefore, Eq. (18） can
be further expressed as
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where , “ ” represents
multiplying  with  the  parameters  of  the
corresponding  layer  in  the  Fisher  matrix,  and  is  a
hyperparameter that  determines the significance of the
first m stages  compared  to  the  new  stage.  This
continuous  average  shows  that  the  previously  learned
stages have less impact than the most recently learned
stages.  can be calculated in the following:
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where  represents the loss value evaluated on the
-th  sample  of  the -th  stage  in  the -th  task,  and

 is  the  saved  diagonal  Fisher  matrix  computed
after the training of the -th stage.

Parameters  related to multi-view loss  and multi-task
loss  by  integrating  parameters  relates  to  classification
loss.  In  the  next  training  iteration,  the  proposed
MTMVIS  uses  a  method  that  preferentially  preserves
the  above  parameters  to  overcome  the  catastrophic
forgetting  problem.  The  formula  for  calculating  the
loss function is as follows:
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4　Experiment

Experiments  using  two  real-world  human  activity
recognition  datasets  are  conducted  in  this  section  to
demonstrate  that  the  proposed  model  outperforms
many existing baselines. A detailed introduction to the
two  datasets  used,  the  baseline,  and  the  experimental
setup  are  first  presented.  The  effectiveness  of  the
proposed MTMVIS is then demonstrated.

4.1　Dataset descriptions

(1)  RealWorld-HAR[20]: The  dataset  comprises
motion sensor data for various activities, including stair
climbing and jumping. Four males and four females are
selected  from  a  pool  of  15  participants  to  join  in  the
experiment.  The  acceleration  of  seven  body  positions
during  each  activity  is  recorded  using  sensors:  chest,
forearm,  head,  calf,  thigh,  upper  arm,  and waist.  Each
participant  is  regarded  as  a  separate  task,  and  each
body position is  considered a distinct  view to perform
behavioral  recognition  for  each  participant.  Thus,  this
dataset has eight tasks and seven views.

(2) GLEAM[21]: The GLEAM dataset is a collection
of  head  motion  tracking  data  gathered  from  Google
Glass,  comprising  2  hours  of  data  spanning  various
activities,  such  as  eating  and  walking.  These  labeled
data  obtained  from  the  head-mounted  sensor  can  be
utilized  to  identify  diet  and  other  activities,  ultimately
aiding  patients  with  chronic  diseases.  The  dataset
includes  data  from  all  the  sensors  of  Glass,  which
include  acceleration,  gravity,  linear  acceleration,
rotation,  gyroscope,  magnetic  field,  and  light. Table  2
provides  a  brief  description of  these sensors.  The data
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are  collected  from  38  participants  aged  18–21,  and
eight  of  them are  randomly selected as  experimenters,
each having six views (light sensor data are not used).

4.2　Baselines

Some  baselines  are  presented  in  this  study  and
compared with the proposed method.

• DMTMV[11]: This  baseline  is  a  deep  multi-task
multi-view  approach  in  the  unified  framework,  which
learns  not  only  nonlinear  feature  representation  and
classifier  but  also  the  relationship  between  tasks  in
nonlinear models.

• ASM2TV[57]: This  baseline  is  a  semi-supervised
multi-task  multi-view  learning  algorithm.  ASM2TV
presents  a  new  perspective  named  gating  control
policy,  a  learnable  task-view-interacted  sharing  policy
that  adaptively  selects  the  most  desirable  candidate
shared block for any view across any task.

• IADM[18]:    An     incremental     adaptive    model,
provides  an  additional  attention  model  to  the  hidden
layers  which  prevents  forgetting  by  exploiting  the
attention-based  Fisher  information  matrix  to  address
the  capacity  sustainability  problem.  Specifically,  the
method  incorporates  the  attention  weights  obtained
through  learning  into  the  corresponding  model
parameters  of  the  abovementioned  matrix  when
computing the Fisher information matrix.

• MTIS: A multi-task multi-view neural network and
adaptive  Fisher  regularization  are  used  to  train  the
model sequentially. MTIS is the same as the MTMVIS
structure,  except  that  the  attention  mechanism  is  not
used  in  the  view  fusion  layer.  Instead,  the  average  of
the  output  results  of  all  views  is  used  as  the  output
vector of each task.

• MVIS: A multi-task multi-view neural network and
adaptive  Fisher  regularization  are  used  to  train  the

model sequentially. MVIS is the same as the MTMVIS
structure,  except  that  only  one  expert  is  used  in  the
MMoE layer.

4.3　Experiment settings

T

{10−6,10−5, . . . ,106} λ

10−4 F1
AUC

The  model  is  trained  one  after  another  with  stages  of
sequential  style.  The  model  no  longer  stores  training
data after completing each training stage. Each activity
occurs  thrice,  and  the  sequence  of  activities  in  each
stage  is  randomly  arranged.  Specifically,  the
measurement values from different sensors in a certain
time window ( = 2.5 s in default) are used as the input
for  action  recognition.  For  both  datasets,  70% of  the
data  are  randomly selected  as  the  training set,  10% of
the data are the validation set, and the rest of the data is
chosen  for  testing.  Adam  is  chosen  as  the  optimizer
due  to  the  use  of  adaptive  Fisher  regularization  to
tackle  the  catastrophic  forgetting  problem.

 is  utilized  for  hyperparameter ,
 for  learning  rate.  Accuracy,  F1-score  ( ),

precision,  and  are  used  to  measure  the  model
performance.

4.4　Experiment results

4.4.1　Numerical results
Table  3 and Fig.  4 display  the  results  of  the  proposed
framework and all  baselines under four metrics on the
dataset  RealWorld-HAR[20].  Meanwhile, Table  4 and
Fig.  5 display  the  results  of  the  proposed  framework
and  all  baselines  under  four  metrics  on  dataset
GLEAM[21]. The evaluation metrics, which are derived
from eight tasks on two datasets, RealWorld-HAR [20]
and  GLEAM[21] (Tables  3 and 4,  respectively),  are
reported,  and  the  change  curves  of  four  metrics  (see
Figs.  4 and 5)  with  the  number  of  training  stages  on
two  datasets  RealWorld-HAR[20] and  GLEAM[21] are
presented. The following observations are provided.

•  Compared  with  baselines,  the  proposed  MTMVIS
reaches the best predictive performance on four metrics
of all tasks on two real-world datasets.

•  DMTMV  and  ASM2TV  are  not  designed  for
incremental learning scenarios. Thus, the performances
of  DMTMV  and  ASM2TV  sharply  decrease  when
faced with the training of sequential stages. The results
show  that  when  completing  all  stages  of  training,
compared  with  DMTMV  and  ASM2TV,  the  four
metrics are improved by approximately 45%.

•  The  performance  of  IADM  is  worse  than  that  of
MTMVIS, indicating that the attention mechanism has

 

Table 2    Properties of different sensors.
Sensor What it measures Unit
Linear

acceleration
Acceleration forces along 3 axes,

excluding gravity m/s2

Gravity Forces of gravity along 3 axes m/s2

Accelerometer Acceleration forces along 3 axes,
including gravity m/s2

Rotation
vector

Rotation vector component
along 3 axes −

Gyroscope Rate of rotation rad/s

Geomagnetic Geomagnetic field strength
along 3 axes

Micro-Tesla
(μT)

Light Environment luminance lux
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Table 3    Experimental  results  on  the  dataset  RealWorld-HAR[20] are  shown  in  bold  for  the  best  model  performance  and
underlined  for  the  second-best  results.  MTMVIS  generally  achieves  the  best  performance  and  classification  results  on  all
evaluation metrics for all presented tasks.

Method Task
Metric

Accuracy F1-score Precision AUC

DMTMV

Task 1 0.3291 0.2619 0.2619 0.3319
Task 2 0.3412 0.2810 0.2721 0.3547
Task 3 0.2893 0.2456 0.2713 0.3019
Task 4 0.3281 0.2711 0.2814 0.3320
Task 5 0.2697 0.2191 0.2557 0.2714
Task 6 0.2772 0.2453 0.2133 0.2937
Task 7 0.3803 0.3385 0.3513 0.3919
Task 8 0.3815 0.2703 0.2917 0.4003

Average 0.3246 0.2666 0.2748 0.3347

ASM2TV

Task 1 0.3858 0.3172 0.3169 0.3913
Task 2 0.3549 0.2923 0.2713 0.3615
Task 3 0.2958 0.2491 0.2729 0.3030
Task 4 0.3217 0.2983 0.2713 0.3312
Task 5 0.2739 0.2451 0.2715 0.3019
Task 6 0.2815 0.2513 0.2302 0.3161
Task 7 0.3769 0.3297 0.3521 0.3927
Task 8 0.3979 0.3581 0.3879 0.4289

Average 0.3361 0.2926 0.2968 0.3533

IADM

Task 1 0.5138 0.4416 0.4349 0.5387
Task 2 0.5107 0.4603 0.4951 0.5417
Task 3 0.4711 0.4571 0.4329 0.5015
Task 4 0.5096 0.4505 0.4618 0.5125
Task 5 0.4658 0.4024 0.3997 0.4884
Task 6 0.5139 0.3617 0.3917 0.4808
Task 7 0.5611 0.4949 0.5029 0.5892
Task 8 0.5790 0.5127 0.5215 0.5875

Average 0.5156 0.4477 0.4551 0.5300

MTIS

Task 1 0.5938 0.5486 0.5601 0.6377
Task 2 0.6016 0.5812 0.5711 0.6424
Task 3 0.6283 0.5410 0.5329 0.6595
Task 4 0.5962 0.5415 0.5430 0.6101
Task 5 0.5358 0.5124 0.5207 0.5674
Task 6 0.5639 0.5310 0.5409 0.6198
Task 7 0.6110 0.5593 0.5619 0.6382
Task 8 0.5813 0.5411 0.5512 0.6165

Average 0.5890 0.5445 0.5477 0.6240

MVIS

Task 1 0.5819 0.5261 0.5315 0.6239
Task 2 0.5718 0.5081 0.5106 0.6115
Task 3 0.5816 0.5203 0.5311 0.6058
Task 4 0.5618 0.4828 0.5101 0.6131
Task 5 0.4962 0.4533 0.4716 0.5666
Task 6 0.5115 0.4810 0.4619 0.5691
Task 7 0.5729 0.5116 0.5041 0.6032
Task 8 0.5713 0.5463 0.5317 0.5976

Average 0.5561 0.5037 0.5066 0.5989
(To be continued)
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superior  performance  in  processing  time  series
perception  data  in  incremental  learning.  The  idea  of
multi-task  multi-view  learning  also  plays  a  role  in
improvement.

• The performance of MTIS is lower than that of the
proposed  MTMVIS,  because  MTIS  discards  the
attention  mechanism  of  the  view  fusion  layer  and
directly averages the output of all views. This approach
ignores  the  importance  of  different  sensors  for  the
same activity and the impact of sensor data at different
times.  By  contrast,  considering  the  different
importance  of  various  views  in  the  same  task  is
beneficial  for  learning  the  invariant  features  between
views and improving overall performance.

•  The  performance  of  MVIS  is  worse  than  that  of
MTMVIS,  because  harmful  interference  or  negative
feedback cannot be avoided when all  task-views share
the same expert network.

• The performance of MTMVIS can be maintained at
a  stable  level  under  repetitive  activities.  For  instance,
on dataset GLEAM[21] shown in Fig. 5, from the first to
the  third  stage,  all  metrics  decrease  due  to  the

catastrophic  forgetting  problem.  However,  the
performance  of  the  model  improves  from  the  third  to
the  fourth  stage.  This  phenomenon  is  because  the
activities in the first and fourth stages are both talking,
and  the  proposed  MTMVIS  consolidates  important
parameters for talking.
4.4.2　Ablation studies
A series of ablation studies is further conducted on the
effect  of  each  component  to  validate  the  effectiveness
of  the  proposed  MTMVIS. Table  5 reports
performance  improvement  results  (in  percent)  on  both
datasets  compared  to  IADM.  Specifically,  the
following observations are presented.

•  Compared  to  single-task  single-view  models,
MTMVIS generally achieves significant improvements
of over 23% and 15% for all metrics on the RealWorld-
HAR and GLEAM datasets, respectively.

•  MTIS  can  also  achieve  17% and  11% significant
improvements  on  all  metrics  on  two  datasets.  This
finding indicates that the appropriate number of experts
often has a considerable effect on model improvement.

• MVIS has not significantly enhanced with 8% and

Table  3　Experimental  results  on  the  dataset  RealWorld-HAR[20] are  shown  in  bold  for  the  best  model  performance  and
underlined  for  the  second-best  results.  MTMVIS  generally  achieves  the  best  performance  and  classification  results  on  all
evaluation metrics for all presented tasks. (Continued)

Method Task
Metric

Accuracy F1-score Precision AUC

MTMVIS

Task 1 0.6774 0.6539 0.7661 0.7885
Task 2 0.6511 0.5963 0.6319 0.7619
Task 3 0.6530 0.6243 0.6172 0.7519
Task 4 0.6456 0.5191 0.6267 0.7388
Task 5 0.5497 0.5186 0.5262 0.7341
Task 6 0.5763 0.5615 0.5749 0.7128
Task 7 0.6581 0.6243 0.6296 0.7517
Task 8 0.6524 0.5601 0.6153 0.7413

Average 0.6330 0.5823 0.6235 0.7476
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Fig. 4    Experimental results with metrics accuracy and F1-score on dataset RealWorld-HAR.
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Table 4    Experimental  results  on the dataset GLEAM[21] are shown in bold for the best  model performance and underlined
for the second-best results. MTMVIS generally achieves the best performance on all valuation metrics for all presented tasks.

Method Task
Metric

Accuracy F1-score Precision AUC

DMTMV

Task 1 0.4713 0.4164 0.4377 0.4781
Task 2 0.4651 0.4301 0.4201 0.4739
Task 3 0.4328 0.4027 0.4152 0.4653
Task 4 0.4218 0.3934 0.4455 0.4539
Task 5 0.4918 0.4772 0.4801 0.4918
Task 6 0.4129 0.4239 0.4011 0.5063
Task 7 0.4152 0.3712 0.3731 0.4498
Task 8 0.4390 0.4256 0.4318 0.4435

Average 0.4437 0.4176 0.4256 0.4703

ASM2TV

Task 1 0.4993 0.4617 0.4812 0.5101
Task 2 0.5106 0.4694 0.4719 0.5017
Task 3 0.4937 0.4414 0.4501 0.5072
Task 4 0.5075 0.4673 0.4797 0.5017
Task 5 0.5161 0.4979 0.4898 0.5129
Task 6 0.4910 0.4713 0.4687 0.5007
Task 7 0.4637 0.4281 0.4196 0.4967
Task 8 0.4790 0.4443 0.4506 0.4845

Average 0.4951 0.4602 0.4640 0.5019

IADM

Task 1 0.6635 0.6108 0.6246 0.7015
Task 2 0.6946 0.6317 0.6291 0.7016
Task 3 0.6038 0.6046 0.6182 0.6892
Task 4 0.6014 0.6252 0.6351 0.6139
Task 5 0.6922 0.6314 0.6467 0.7086
Task 6 0.6933 0.6741 0.6406 0.6120
Task 7 0.6725 0.6009 0.6012 0.6702
Task 8 0.6253 0.6052 0.6111 0.6811

Average 0.6558 0.6230 0.6258 0.6723

MTIS

Task 1 0.7796 0.7315 0.7512 0.8015
Task 2 0.7401 0.7266 0.7187 0.7804
Task 3 0.7193 0.6843 0.6801 0.7417
Task 4 0.7341 0.7014 0.7020 0.7582
Task 5 0.7926 0.7414 0.7307 0.8034
Task 6 0.7613 0.7134 0.7306 0.7819
Task 7 0.7051 0.6950 0.6705 0.7221
Task 8 0.7112 0.7063 0.6881 0.7312

Average 0.7429 0.7125 0.7090 0.765

MVIS

Task 1 0.7501 0.7226 0.7403 0.7901
Task 2 0.7226 0.7015 0.7163 0.7453
Task 3 0.6880 0.6461 0.6218 0.7011
Task 4 0.7116 0.6416 0.6198 0.7031
Task 5 0.7413 0.7210 0.7114 0.7506
Task 6 0.7211 0.7198 0.6912 0.7114
Task 7 0.6584 0.6424 0.6283 0.6827
Task 8 0.6543 0.6279 0.6330 0.7107

Average 0.7059 0.6779 0.6703 0.7244
(To be continued)
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4% significant  improvements  on  all  metrics  on  two
datasets.  This  finding  shows  that  negative  feedback  is
often  unavoidable  when  only  one  expert  network  is
shared.

•  MTMVS  has  the  same  structure  as  MTMVIS,
except  that  it  only  uses  the  output  of  the  last  layer  as
the  final  output.  Moreover,  the  performance  of

MTMVS  is  substantially  close  to  the  proposed
MTMVIS,  with  21% and  11% significant
improvements on all  metrics on the two datasets.  This
finding indicates that the combination of the outputs of
different layers as the final output performs better than
only the output of the last layer as the final output.

•  Overall,  each  component  contributes  to  the

Table 4　Experimental results on the dataset GLEAM[21] are shown in bold for the best model performance and underlined
for the second-best results. MTMVIS generally achieves the best performance on all valuation metrics for all presented tasks.

(Continued)

Method Task
Metric

Accuracy F1-score Precision AUC

MTMVIS

Task 1 0.8012 0.7681 0.7590 0.8423
Task 2 0.7993 0.7902 0.7825 0.8304
Task 3 0.7501 0.7406 0.7669 0.7945
Task 4 0.7885 0.7616 0.7641 0.8125
Task 5 0.8199 0.7383 0.7873 0.8353
Task 6 0.8016 0.7921 0.7998 0.8405
Task 7 0.7533 0.7423 0.7413 0.8047
Task 8 0.7729 0.7988 0.7677 0.7892

Average 0.7859 0.7665 0.7711 0.8187
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Fig. 5    Experimental results with metrics accuracy and F1-score on dataset GLEAM.

 

Table 5    Ablation studies on two datasets. The overall percentage improvement via all quantitative metric compared to IADM
is presented.

(%)

Dataset Method
Result

∆Accuracy ∆F1-score ∆Precision ∆AUC

RealWorld-HAR

MTIS 14% 21% 20% 18%
MVIS 8% 13% 11% 13%

MTMVS 20% 23% 24% 23%
MTMVIS 23% 27% 27% 28%

GLEAM

MTIS 13% 19% 13% 14%
MVIS 7% 8% 7% 7%

MTMVS 15% 16% 17% 16%
MTMVIS 19% 23% 23% 21%
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performance achieved by the final model.
4.4.3　Parameter analysis
Further  experiments  are  conducted  considering  the
parameters  presented  below  to  explore  the  effect  of
different  learning  parameters  on  the  effectiveness  and
efficiency of the proposed MTMIS.

(1) Number of experts: The influence of the number
of  experts  on  the  model  performance  (Fig.  6)  is
investigated  on  two  datasets,  namely  RealWorld-
HAR[20] and GLEAM[21]. The best model performance
is  observed  on  both  datasets  when  the  number  of
experts is 5. The model performance does not improve
significantly,  and  the  curve  tends  to  be  flat  as  the
number  of  experts  increases.  The  model  performance
on datasets slightly improves as the number of experts
increases;  thus,  no  significant  difference  is  observed
under  statistical  testing.  With  this  exciting  discovery,
the  model  can  achieve  the  best  performance  with  the
least  number  of  experts,  which  will  help  reduce  the
number  of  network  parameters,  increase  the
convergence speed, and reduce memory consumption.

(2) Attention weight: As depicted in Fig. 7, it shows
the attention weight matrix for the output layer on two
datasets.  The  results  show that  the  largest  weights  are

in  the  shallow  layers  in  the  initial  stage.  Deep  layers
obtain  additional  weights  as  the  stages  change.  Thus,
the  weight  evolution  indicates  that  MTMVIS  can
perform  model  selection.  Moreover,  different  stages
have various  attention  weight  matrices,  indicating  that
MTMVIS  learns  additional  discriminative  features  in
task-view  sharing  layer  and  view  fusion  layers.  Thus,
multi-task  multi-view  learning  can  play  a  significant
role  in  incremental  learning  to  solve  catastrophic
forgetting.

In  addition,  the  adaptive  multi-task  multi-view
incremental  learning  framework  can  reflect  excellent
effects  on  highly  complex  network  structures.  For
traditional  models,  if  the  network  structure  is  too
complex,  then  the  overall  convergence  speed  of  the
model  will  be  markedly  reduced,  and  the  natural
performance  will  also  decrease.  The  proposed  model
can adaptively make the suitable choice along with the
training process.

5　Conclusion

An adaptive multi-task multi-view incremental learning
framework  for  data  stream  classification,  namely
MTMVIS,  is  proposed  in  the  current  work  to  address
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Fig. 6    Model performance with different numbers of experts.

 

(a) Attention weight matrix of RealWorld-HAR[20]
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Fig. 7    Attention weight matrix of the output layer with the change in stage on two datasets.
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the  catastrophic  forgetting  problem  in  incremental
learning.  MTMVIS  heuristically  uses  a  hierarchical
attention mechanism to align data collected by different
sensors  in  different  views.  In  addition,  MTMVIS
utilizes  adaptive  Fisher  regularization  from  the
perspective  of  multi-task  multi-view  learning  to
preserve  knowledge  in  previous  stages.  The
experimental  results  demonstrate  its  superiority,
achieving  better  model  performance  than  other
advanced models on two public datasets. The proposed
MTMVIS has achieved several  exciting results,  which
can  effectively  alleviate  the  catastrophic  forgetting
problem  in  incremental  learning.  Numerous  unlabeled
samples  exist  in  real-world  scenarios.  Thus,  future
work  aims  to  extend  the  proposed  model  using  semi-
supervised learning to improve its overall performance.
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