
 

Molecular Generation and Optimization of Molecular
Properties Using a Transformer Model
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Abstract: Generating  novel  molecules  to  satisfy  specific  properties  is  a  challenging  task  in  modern  drug

discovery, which requires the optimization of a specific objective based on satisfying chemical rules. Herein, we

aim  to  optimize  the  properties  of  a  specific  molecule  to  satisfy  the  specific  properties  of  the  generated

molecule.  The  Matched  Molecular  Pairs  (MMPs),  which  contain  the  source  and  target  molecules,  are  used

herein, and logD and solubility are selected as the optimization properties. The main innovative work lies in the

calculation related to a specific transformer from the perspective of a matrix dimension. Threshold intervals and

state changes are then used to encode logD and solubility  for  subsequent  tests.  During the experiments,  we

screen the data based on the proportion of heavy atoms to all atoms in the groups and select 12 365, 1503, and

1570 MMPs as the training, validation, and test sets, respectively. Transformer models are compared with the

baseline models with respect to their abilities to generate molecules with specific properties. Results show that

the transformer model can accurately optimize the source molecules to satisfy specific properties.

Key words:  molecular optimization; transformer; Matched Molecular Pairs (MMPs); logD; solubility

1　Introduction
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Generating new molecules  with  desirable  properties  is
a substantial and challenging task in drug discovery. A
drug  requires  balancing  of  multiple  properties,
including  Absorption,  Distribution,  Metabolism,
Elimination,  and  Toxicity  (ADMET),  physical  and
chemical  properties.  Finding  molecules  with  specific
features  in  a  vast  chemical  environment,  where  the
total  number  of  potential  drug  candidates  is  presumed
to be − [1], is difficult.

Molecular  optimization  improves  the  properties  of
initial molecules. Controlling some properties of initial
drug molecules to create directional changes is  crucial
in increasing drug efficiency. Four aspects are typically
involved  in  molecular  generation.  (1)  Database
selection involves choosing appropriate molecular data
according  to  the  task  requirements.  (2)  Molecular
representation  is  the  translation  of  the  selected
molecular  data  into  the  input  form  that  can  be
understood by the computer. (3) Selection of a suitable
generative  model  is  closely  related  to  the  chosen
representation  method  and  the  performance  of  the
model.  (4)  Evaluation  metrics  are  used  to  assess  the
generated new molecules with appropriate indexes.

A  series  of  molecular  representations  have  been
devised over the past few years. The de novo molecular
design has  two common representations.  The first  is  a
sequence-based  representation.  Two  current  examples
of one-dimensional  linear representations are SMILES
and International CHemical Identifier (InCHI)[2]. Some
improved  molecular  representations  based  on
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SMILES[3, 4] have been recently proposed. The second
representation  is  a  graph-based  representation,  where
each  molecule  can  be  represented  as  an  undirected
graph,  with  nodes  and  edges  representing  atoms  and
chemical bonds, respectively. Figure 1 shows a simple
example of this representation.

Different  molecular  generative  models,  such  as
Recurrent  Neural  Networks  (RNNs)[5−7],  Variational
AutoEncoders  (VAEs)[8−14],  Generative  Adversarial
Networks  (GANs)[15−18],  and flow-based models[19−21],
have  been  recently  used  for  molecular  generation.
Some  novel  approaches  have  emerged  from  these
highly  mature  models.  MGCVAE[22] can  effectively
generate drug-like molecules with target properties.  Li
et  al.[23] generated  molecules  based  on  geometric
convolution  with  specific  protein  constraints.
GFVAE[24] inherited the advantages of VAE and flow-
based  methods.  Luo  et  al.[25] proposed  an
autoregressive  sampling  scheme  to  generate  3D
molecules.  MolGPT[26] took  masked  self-attention[27]

for  generating  drug-like  molecules.  Langevin  et  al.[28]

introduced  a  new  algorithm  named  scaffold-
constrained  molecular  generation  to  perform  scaffold-
constrained  molecular  design.  Zhang  and  Chen[29]

proposed a novel molecular deep generative model that
adopts  an  RNN  architecture  coupled  with  a  ligand-
protein  interaction  fingerprint  as  constraints.  The
sequence-to-sequence model with attention mechanism
and the transformer model are employed in Ref. [30] to
generate molecules with desirable properties. A further
study[31] provides  a  general  methodology  for  highly
general  structural  modifications  beyond  Matched
Molecular Pairs (MMPs).

The  metrics  of  evaluating  generative  models  of

performance  can  be  roughly  classified  into  three
catalogs  according  to  different  evaluation  objects.  (1)
The evaluation metrics of the entire molecule set aim to
assess  the  difference  between  the  generated  and  test
sets,  such  as  the  average  Tanimoto  similarity
coefficient  between  two  molecule  sets,  and  generate
the  validity  of  the  molecular  set,  novelty,  and
uniqueness.  (2)  Evaluation  metrics  for  evaluating
individual molecules in the molecular set are utilized in
the  following  examples.  Bickerton  et  al.[32] used
Quantitative  Estimate  of  Drug-likeness  (QED),  which
is the concept of desirability, to measure drug-likeness.
Frechet  ChemNet  Distance  (FCD)[33] is  a  measure  of
distribution  between  training  sets  and  generated
molecules.  Synthetic  accessibility  and  ring  sizes  are
considered  in  penalized  logP[34].  (3)  Assessment  of
generative  models  with  benchmark  suites  is
demonstrated in GuacaMol[35] and MOSES[36].

The issue of molecular optimization can be framed as
a  machine  translation  problem[37] in  natural  language
processing,  where  a  text  is  translated  from  one
language  to  another.  A  way  to  translate  initial
molecules  into  target  molecules  with  optimized
properties based on SMILES must be determined. The
datasets  comprise  a  set  of  MMPs.  The  application  of
MMPs  is  a  widely  used  design  strategy  by  medicinal
chemists  due  to  its  intuitive  nature.  The  MMPs
(including  reverse  transformations)  are  extracted  from
ChEMBL[38] using  an  open-source  MMP  tool[39].  A
transformer  is  used  in  this  study  to  generate  new
molecules  with  specific  properties  from  initial
molecules.

2　Method

2.1　Molecule and property representation

The SMILES representation of molecules[40] is used in
models to train a set of MMPs. Figures 2a and 2c show
examples.

logD and solubility are chosen as specific properties
in  this  article.  logD  is  the  logarithm  of  the  partition
coefficient  of  a  compound  between  an  organic  phase
(e.g.,  octanol)  and an aqueous phase (e.g.,  buffer)  at  a
given pH. logD mainly affects the physicochemical and
metabolic properties, as well as the activity and toxicity
of compounds. Solubility is a type of physical property;
for example, the maximum number of certain materials
is  dissolved  in  100  g  of  solvent  under  a  certain
temperature.  One of  the most  crucial  characteristics  in

 

SMILES

Representation

2D structure 3D conformer

CCOC(=O)C1=C(C)N(c2cccc(C(F)(F)F)c2)
C(=O)N(C)C1c1ccc(C#N)cc1C(=O)NC

 
Fig. 1    Example of molecular representation.
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the  search  for  new  drugs  lies  in  their  solubility.
Compounds  with  low  solubility  can  have  numerous
undesirable  effects,  such  as  poor  absorption  and
bioavailability  after  oral  administration  of  drugs  and
aggravated patient burden due to frequent high doses of
medication.  Moreover,  several  drug  properties
affecting  ADMET  are  related  to  the  two  properties.
Digitally  labeling  the  features  that  have  an  important
impact  on  the  task  is  necessary  to  reduce  the  learning
difficulty  of  models  and  enable  them  to  learn  the
chemical  structures  of  molecules  and  the  complex
relationships  between  the  physics,  chemistry,  and
biology of  molecules  effectively.  Molecular  properties
are  generally  measured  by  quantified  property

fractions.  Therefore,  logD  and  solubility  must  be
encoded  as  corresponding  vectors[41] by  one-hot
encoding  before  inputting  specific  properties  into
models.  The  fractions  for  the  properties  of  each  drug
are different. Requiring consistency for every property
fraction  is  unreasonable  when  coding  molecular
properties,  and  a  reasonable  coding  method  must  be
defined. The solubility can be encoded in the following
three states: from low to high, from high to low, and no
change.  Thresholds  must  be  set  to  distinguish  and
measure these states. However, the value range of logD
is  relatively  large  and  needs  a  detailed  description;
therefore,  logD  is  encoded  as  the  range  interval.
Figure 2b provides additional details.

 

logD change
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log10 (50μM)≈1.7

CCC(O)c1ccn(CCCCN2CCN(c3cc(C(F)
(F)F)nc(C(C)(C)C)n3)CC2)c(=O)n1

logD: 3.153
Solubility: 2.713
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logD: 1.087
Solubility: 2.023
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logD: 3.536
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(a) Source molecule

(c) Generated molecule

(b) Property coding

(d) Transformer  
Fig. 2    Molecule and property representation.
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Source  molecules  must  be  connected  with  the
encoded  SMILES  with  property  changes  in  the  input
process  to  transform  source  molecules  into  target
molecules  with  specific  properties,  and  the  generated
target  sequences  are  the  SMILES of  target  molecules.
The general process is shown in Fig. 3.

{A, B, C}

(A, C) ∈ A×C −→ B ∈ B
A×C

B

(A, C) ∈ A×C

This  task  aims  to  provide  a  set  of  MMPs ,
where A, B,  and C represent  the  source  molecule,  the
target  molecule,  and  the  property  change  between A
and B,  respectively.  The  model  will  learn  a  mapping

 during  the  training  process,
where  represents input space including all source
molecules  with  property  changes,  and  represents
output space including all target molecules. Given any
group , the model can generate a diverse
set  of  target  molecules  with  certain  properties  during
the testing process.

2.2　Transformer  architecture  and  calculation
details

The  transformer  architecture  will  be  comprehensively
interpreted  for  the  generation  of  molecules  with
specific  properties  proposed  in  this  article.  The
transformer  is  also  a  classical  encoder-decoder  mode.
The specific flow chart is shown in Fig. 4. The specific
calculation  process  of  the  transformer  is  analyzed  on
the basis of matrix operation.
2.2.1　Encoder

I ∈ Rn × l × d

P ∈ Rn × l × d

The input part of the encoder comprises two parts: the
word-coding  matrix  and  the  position-
coding matrix , where n, l,  and d represent
the number of source sequences, the maximum number
of  words,  and  the  dimension  of  the  word  vector,
respectively.  The  position-coding  matrix P represents
the  position  information  of  each  word  in  a  sentence.

 

Input:

Transformer block 1

Transformer block 6

…

Transformer block 2

Output: 
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...
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0

1
0
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Fig. 3    Training process of molecular optimization work.
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Numerous ways to generate position-coding vectors are
available. The commonly used method is to generate a
one-hot  location  code  according  to  the  position  of  a
word in a sentence. Trigonometric functions are used in
this  article  for  position  coding,  as  shown  in  the

following:
  

PE (pos,2i) = sin
( pos
10002i/d

)
,

PE (pos,2i+1) = cos
( pos
10002i/d

) (1)

 

Decoder

Encoder

Multihead self-attention

Feed forward
neural network

Layer normalization

Layer normalization

I '

I+P+I '

Skip

I ''

I '''

...

IN

Skip

I+P

K VQ

Mask multihead self-attention

 Multihead encoder-decoder 
self-attention

Skip

Skip

Skip

ON

Feedforward
neural network

Layer normalization

Layer normalization

Layer normalization

O+PO

O '

O+PO+O '

QN KN V '

...

Q K V

O ''+O '''

I ''+I ''' O '''

O ''''

O '''''

O ''''+O '''''

O ''

 
Fig. 4    Flowchart of the transformer block.
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PE

I′ ∈ Rn × l × d

where  represents the position encoding vector,  pos
represents the position of the word in the sentence, and
i represents  the  position  index of  the  encoding vector.
The  input  matrix I + P is  transformed  linearly  to
generate  the  matrices Q, K,  and V.  However,  in  the
actual training process, I + P is directly assigned to Q,
K,  and V.  The  word  length  is  different.  Therefore,
padding,  which  uses  zero  to  fill  each  word  to  the
maximum word length, must be employed. Q, K, and V
are inputted into the multihead self-attention module to
calculate the attention distribution to obtain the matrix

,
 

I′ =MultiHead (Q,K,V) (2)

I′

I+P+ I′ ∈ Rn × l × d

The residual of the original input I + P and attention
distribution  are  then  computed  to  obtain  the  output
matrix .

I+P+ I′ = {xi jk}n × l × d I′′ ∈ Rn × l × d
Afterward,  layer  normalization  is  performed  on

 to  obtain ,  and  the
specific calculation is shown in the following:
 

µi j =

n∑
k=1

xi jk,

σi j =
n

√√√ d∑
k=1

(xi jk −µi j)2,

x̂i jk =
xi jk −µi j

σi j ,

i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , l}, and k ∈ {1, 2, . . . , d}
(3)

I′′

I′′′ ∈ Rn × l × d

I′′ I′′′

I′′+ I′′′

 is  inputted  into  a  fully  connected  feedforward
neural  network  to  obtain ,  and  residual
calculation between  and  is performed to acquire

.

I′′+ I′′′
Layer  normalization  operation  is  then  performed  on

.  The  above  equation  presents  the  detailed
operation of a block.  The number of blocks set  in this
training  is  six.  The  entire  encoder  module  comprises
six blocks, and the final output is obtained.
2.2.2　Decoder

O ∈ Rn1 × l1 × d

PO ∈ Rn1 × l1 × d

The  decoder  input  also  comprises  the  following  two
parts:  the  word-coding  matrix  and  the
position-coding  matrix .  In  the  model
training  process,  the  decoder’s  input  word-coding
matrix is the target sequence. In addition, the decoder’s
input  is  time  sequential  (that  is,  the  output  of  the
previous  step  is  the  input  of  the  current  step).
Therefore,  introducing  the  mask  matrix  in  order  is
necessary to calculate the attention distribution.

O+PO

Q K V
O+PO

Q K V

The  input  matrix  is  transformed  linearly  to
generate  the  matrices , ,  and .  However,  in  the
actual  training  process,  is  directly  assigned  to

, ,  and . Similar to the encoder, 0 must be added
to short word vectors.

Q K V M

O′ ∈ Rn1 × l1 × d

, , ,  and mask matrix  are then inputted into
the  mask  multihead  self-attention  module  to  calculate
attention  distribution,  and  matrix  is
obtained,
 

O′ =MaskMultiHead
(
Q, K, V , M

)
(4)

O+PO O′

O+PO+O′ ∈ Rn1 × l1 × d

O+PO+O′

O′′ ∈ Rn1 × l1 × d

Afterward,  the  residual  between  the  original  input
 and the attention distribution  is computed to

obtain  the  output  matrix ,  and
the  layer  normalization  of  is  then
performed to acquire .

IN QN KN

O′ V
′

QN KN V
′

O′′′

The encoder information should be inputted into the
decoder.  Encoder  output  can  obtain  and ,
and  can  obtain  through  a  linear  transformation.
The cross-attention distribution of , , and  can
be used to obtain ,
 

O′′′ =MultiHead
(
QN , KN , V

′) (5)

IN QN KN

O′′ V
′

O′′ O′′′

O′′+O′′′

O′′+O′′′ O′′′′ O′′′′

O′′′′′

O′′′′+O′′′′′

The  cross-attention  distribution  synthesizes  the
output  of  the  encoder  and  the  intermediate  result
information  of  the  decoder.  However,  in  the  actual
training process,  is directly assigned to  and ,
and  is  directly  assigned  to .  Next,  the  residual
between  and  is calculated to obtain the output
matrix .  The  layer  normalization  operation  is
performed  on  to  obtain ,  and  is
inputted into a fully connected neural network to obtain

.  Residual  operation  is  conducted  to  obtain
,  and  the  layer  normalization  operation  is

finally conducted again.

ON ∈ Rn1 × l1 × d

The above is the detailed operation of a block. In this
experiment,  six  blocks  are  stacked  to  form  the  entire
decoder  module,  and  the  obtained  output  is

.  The  word  in  the  vocabulary  that
currently  predicts  the  maximum  probability  is
identified, and the word vector is used as input for the
next  stage.  The  steps  are  repeated  until  the ”end”
character is selected.
2.2.3　Multihead self-attention
Numerous  works  related  to  transformers  do  not
comprehensively  introduce  the  calculation  method  of
multihead  self-attention  through  examples.  For  the
convenience of illustration, the head is set to 2, and the
head of the actual training process is 8.
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a1

a2 a3 ∈ Rdl × 1 qi ∈ Rdk × 1

ki ∈ Rdk × 1 vi ∈ Rdl × 1

Wq ∈ Rdk × dl

Wk ∈ Rdk × dl Wv ∈ Rdl × dl

qi

Wq1 ∈ Rdm × dk Wq2 ∈ Rdm × dk

qi1 ∈ Rdm × 1 qi2 ∈ Rdm × 1

ki

vi ki1 ∈ Rdm × 1 ki2 ∈ Rdm × 1

vi1 ∈ R(dl/2) × 1 vi2 ∈ R(dl/2) × 1

Take Fig. 5 as an example. Given the input vector ,
, ,  query  vector ,  key  vector

, and value vector  can be obtained
by  linear  transformation  through  matrix ,

,  and .  A linear transformation
is  then  performed  on  the  query  vector  through
matrix  and  to  obtain

 and .  Similarly,  the  same
operation  is  performed  on  key  vector  and  value
vector  to  obtain ,  and

, ,  respectively.  The
specific calculation is as follows:
  

qih =Wqh ·Wq ·ai,

kih =Wkh ·Wk ·ai,

vih =Wvh ·Wv ·ai,

i ∈ {1, 2, 3}, h ∈ {1, 2} (6)

where h represents the number of heads.
The  vectors  are  then  integrated  for  the  matrix

calculation,
  

Q1 = (q11, q21, q31) =Wq1 ·Wq ·A,
K1 = (k11, k21, k31) =Wk1 ·Wk ·A,
V1 = (v11, v21, v31) =Wv1 ·Wv ·A,

 


Q2 = (q12, q22, q32) =Wq2 ·Wq ·A,
K2 = (k12, k22, k32) =Wk2 ·Wk ·A,
V2 = (v12, v22, v32) =Wv2 ·Wv ·A (7)

αih

For  each  head,  the  query  and  key  vectors  should  be
used to calculate the corresponding attention score. The
calculation formula of the l components of the attention
vector  is as follows:
 

αih
l = (qih)T · kih,

i, l ∈ {1, 2, 3}, h ∈ {1, 2} (8)

Then,  the  attention  score  matrix  is  obtained  as
follows:
  

Λ1 = (α11, α21, α31) =
(K1)T ·Q1
√

dm
,

Λ2 = (α12, α22, α32) =
(K2)T ·Q2
√

dm

(9)

βihThe normalized attention distribution  is obtained
after the softmax layer,
 

βih
j =

eα
ih
j

3∑
n=1

eα
ih
n

,

i, j ∈ {1, 2, 3}, h ∈ {1, 2} (10)

 

Softmax

Attention calculation

α1

α11 α12

b11 b12 b21 b22 b31

b3b2b1

b32

α21 α22 α31 α32

β11 β12 β21 β22 β31 β32

q1

q11 q12 k11 k12 v11

v11

v12

v12

q21 q22 k21 k22 v21 v22

v21 v22

q31 q32 k31 k32 v31 v32

v31 v32

k1 v1 q2 k2 v2 q3 k3 v3

α2 α3

W v

W v2W v1W k2W k1W q2W q1W v2W v1W k2W k1W q2W q1W v2W v1

… …

… …

… …

… …

… …

… …

… …

… …

… …

… …

… …

… …

… …

… …

… …

W k2W k1W q2W q1

W kW qW vW kW qW vW kW q

* * * * * *

WO

 
Fig. 5    Flow chart of multihead self-attention.
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βih Vh

bih ∈ R(dl/2) × 1

Attention distribution vector  and value matrix 
should  be  used  for  each  head  to  obtain  the  output

, as shown in the following:
 

bih =

3∑
l=1

βih
l · v

lh,

i ∈ {1, 2, 3}, h ∈ {1, 2} (11)

Concatenating the two head vectors,
 

B =
(

b11 b21 b31

b12 b22 b32

)
(12)

WO ∈ Rdl × dlThe  given  parameter  matrix  is
combined, and the output matrix is obtained as follows:
 

O =WO ·B ∈ Rdl × 3 (13)

Finally, the overall calculation can be obtained,
 

O =WO ·Concat


V1 · softmax

(
(K1)T ·Q1
√

dm

)
V2 · softmax

(
(K2)T ·Q2
√

dm

)
 (14)

2.2.4　Additional transformer information
Specific  parameters  trained  with  the  transformer  are
shown  in Table  1,  where H represents  the  number  of
heads  in  the  multihead  attention  mechanism,  and N
represents the number of transformer blocks, as well as
the training parameters of the Adam optimizer and the
parameters set during the training process.

Using  multihead,  the  parameter  matrix  can  form
multiple  subspaces,  and  the  overall  size  of  the  matrix
remains  the  same.  However,  the  dimension  size
corresponding to  each head is  changed.  Therefore,  the
matrix can learn various pieces of information, but the
computation amount is similar to that of a single head.
In Eq. (14),  when softmax is used to process attention

√
dmscores,  division  by  is  necessary  to  control  the

vanishing  gradient  problem  effectively.  Residuals  and
layer  normalization  can  be  used  in  the  transformer.
These steps can also be added to other training models
to improve the training performance.

3　Experiment and Result

3.1　Baseline

The  transformer  is  compared  with  the  Seq2Seq[30],
MGCVAE[22], and JT-VAE[13] baselines.

Transformer  uses  sequences  to  represent  molecules.
Seq2Seq also utilizes sequences, while MGCVAE and
JT-VAE  employ  graphs  to  represent  molecules.  The
three  comparison  methods  and  transformer  belong  to
the  encoder-decoder  mode;  therefore,  the  comparison
experiment will be highly sufficient. The main purpose
is  to  compare  the  efficiency  of  the  transformer  with
other  models  in  generating  molecules  that  satisfy  the
required properties.

3.2　Data preparation

<

<

<

Transformer and baseline models are trained on a set of
MMPs[42] extracted  from  ChEMBL[43] with  property
changes  between  source  and  target  sequences.  The
selected  molecules  are  standardized  using  MolVS[44].
The  molecular  pairs  are  processed  in  accordance  with
the  following  constraints:  number  of  heavy  atoms 
50; number of heavy atoms in the R group  10; ratio
of  heavy  atoms  in  the  R  group  0.5;  AZFilter = 
CORE[45] to  filter  out  low-quality  compounds.  Each
molecule’s  property  values  are  within  three  standard
deviations  of  all  molecule  property  values.  Then,
12 365,  1503,  and 1570 MMPs are randomly sampled
as  the  training,  validation,  and  test  sets,  respectively,
from full molecules.

3.3　Evaluation metrics

For each initial molecular test set, 10 unique and valid
molecules  are  generated,  and  these  generated
molecules  are  not  identical.  The  number  of  molecules
satisfying the specific changes of logD and solubility is
then  calculated.  The  ADMET  property  prediction
model[30] is  used  to  compute  the  properties  of
generated  molecules.  The  model  error  (test  RMSE)  is
considered  if  a  generated  molecule  satisfies  its
desirable  properties.  For  logD,  the  error  between  the
generated  and  target  logD  values  is  guaranteed  to  be
less  than  0.4.  For  solubility,  a  standard  must  also  be
established to frame the threshold range.

 

Table 1    Training parameters of transformer.
Parameter Description Value

H Number of heads in self-attention 8
N Number of transformer blocks 6

d_model Dimensions of the input and output 256

d_ff Extended dimension of the
feedforward layer 2048

batch_size Size of batch 128
num_epoch Number of epoch 60

adam_beta1 Exponential decay rate for the 1st
moment estimates 0.9

adam_beta2 Exponential decay rate for the 2nd
moment estimates 0.98

adam_eps Small value for numerical stability 10−9
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The  generated  and  initial  molecules  are  then
analyzed,  and  the  performance  between  the  models  is
compared  with  the  proportion  of  molecules  satisfying
specific  properties. Figure  6 shows  the  property
distribution  of  source  and  target  molecules  on  the
training  set.  Dark  areas  have  highly  concentrated
molecules. The reverse transformation is represented in
the  data  set.  Thus,  the  distribution  of  the  source
molecule properties is  comparable to that of the target
molecule properties.

3.4　Conditional vs. unconditional transformer

This part of the test compares a conditional model with
input  source  molecules  and  specific  properties  to  an
unconditional model with input source molecules only.
From 1570  initial  test  molecules,  10  unique  and  valid
molecules  are  generated,  which  must  differ  from  the
original molecules.

Figure  7 shows  the  performance  of  the  conditional
and  unconditional  transformers  satisfying  two  specific
properties.  This  experiment  uses  the K-sample
Anderson-Darling  test[46].  This  test  is  employed  to
examine if a data sample came from a population with
a  specific  distribution.  This  figure  shows  that  the
performance  of  the  conditional  transformer  is  better
than  that  of  the  unconditional  transformer.  Of  the  10
molecules  generated  per  initial  molecule,  conditional
and  unconditional  transformers  averaged  6  and  3,
respectively.

3.5　Transformer vs. baseline models

This  experiment  compares  the  performance  of  the
transformer  and  the  three  other  methods  under  the
same  test  set  and  provides  the  same  specific
performance constraints.

Table  2 shows  the  ratio  of  generated  molecules
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Fig. 6    Distributions and properties of source and target molecules in training.
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satisfying specific properties to all generated molecules
for  different  methods.  The  second  test  set  is  selected
under  the  condition  that  R  group  0.5  (the  ratio  of
heavy atoms in R group  0.5). The performance of the
transformer  is  better  than  that  of  Seq2Seq.  MGCVAE
and JT-VAE also show good performance.

Moreover, the transformer is compared with baseline
models  based  on  the  evaluation  metrics  of  MOSES.
Validity refers to the generation of satisfying the rules
of  chemical  molecules  that  account  for  the  proportion
of  all  generated  molecules.  Uniqueness  is  the
proportion of  different  molecules  that  are  formed,  and
Unique@10 000 stands  for  the  uniqueness  value
obtained per 10 000 generated molecules. Novelty refers
to  the  proportion  of  generated  molecules  that  are
different  from  the  source  dataset  of  those  in  all
generated  molecules.  FCD  is  calculated  using  the
features of generated molecules and those molecules in
the dataset. A low FCD value means that the model has
successfully  captured  the  statistical  information  of  the
dataset.  IntDiv  evaluates  the  chemical  diversity  of
generated molecules and detects whether the model has
a pattern collapse, and the value range is [0, 1].

As  shown  in Table  3 shows  100% validity  because
the  formation  of  molecules  requires  the  generation  of
10  unique  valid  molecules  for  each  initial  molecule.
Additional unique molecules can be generated through

JT-VAE,  thus  ensuring  the  diversity  of  molecules.
Transformer  achieves  the  best  performance  in  novelty
and  FCD,  ensuring  the  differentiation  between
generated  and  training  set  molecules  as  well  as
effectively  capturing  the  distribution  information  of
training  set.  The  four  methods  for  Internal  Diversity
(IntDiv) are the same, which can achieve high chemical
diversity.

<

< <

The numerical transformation of logD and solubility
is  analyzed.  The test  set  is  framed,  and test  molecules
with  high  logD  and  low  solubility  are  selected  (2 
logD  4.5  and  solubility  1.7).  Initial  molecules
must be optimized to produce new molecules with low
logD  and  high  solubility.  As  shown  in Fig.  8,  the
properties  of  the  source  molecule  are  plotted  on  the
left,  and  those  of  the  predicted  molecules  are  on  the
right  (the  predicted  values  of  the  properties  of  the  10
predicted molecules generated for each initial molecule
are  numerically  averaged).  The  prediction  of  specific
properties  by  a  transformer  can  extensively  widen  the
distribution  of  generated  molecules,  which  markedly
improves  the  diversity  of  molecules  with  specific
properties. Most compounds become slightly soluble as
logD  increases,  and  a  link  is  observed  between  logD
and solubility[47].  Some molecules may not follow this
pattern  because  other  properties  might  affect
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Fig. 7    Conditional transformer vs. unconditional transformer.

 

Table 2    Comparison  of  the  ratio  of  generated  molecules
satisfying specific properties based on different methods.

(%)
Test set Transformer Seq2Seq MGCVAE JT-VAE
Original 55.23 44.93 54.03 54.56
R < 0.5 94.45 87.23 92.46 91.68

 

Table 3    Comparison  of  transformer  and  baseline  models
based on MOSES.

Model Validity Unique@10000 Novelty FCD/test IntDiv
Transformer 1.000 0.996 0.981 5.442 0.867

Seq2Seq 1.000 0.979 0.963 8.560 0.866
MGCVAE 1.000 0.998 0.979 6.096 0.866
JT-VAE 1.000 0.999 0.964 6.139 0.867
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molecules.  Future  work  may  need  to  consider
additional  properties,  such  as  stability  and  toxicity,
comprehensively.

Figure  9 shows  an  example  of  different  molecules
with  specific  properties  generated  by  transformer  and
baseline models concerning the initial molecule and the
specific  properties.  Three  molecules  are  selected  from
each  model  for  observation.  Each  of  the  resulting
molecules  has  some  modifications  to  the  original
molecules and has the required specific properties. The
molecules  in  the  wireframe  of  the  same  color  are
identical. Thus, the molecules produced by the baseline

and  transformer  models  may  overlap.  Some  details
must  still  be  uncovered.  For  example,  the  error  of
molecules  generated  by  transformers  MGCVAE  and
JT-VAE  in  specific  properties  is  small,  and  the
generated molecules can effectively satisfy the required
properties.  Overall,  the  transformer  and  other  models
can  generate  different  sets  of  molecules  with  specific
properties.

4　Conclusion and Challenge

The  molecular  property  optimization  problem  can  be
defined  as  a  machine  translation  problem,  which
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Fig. 8    Property distribution of initial molecules and generated molecules.
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Fig. 9    Examples of different molecules with specific properties generated from transformer and baseline models.
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generates  new  molecules  with  specific  properties  by
inputting  the  initial  molecules  and  specific  properties
into  the  model.  The  optimization  performance  of  the
transformer  is  better  than  Seq2Seq  and  has  its
advantages  compared  with  MGCVAE  and  JT-VAE.
The  transformer  and  these  methods  have  produced
different new molecules with specific properties.

Ten unique and valid molecules are generated in this
article,  satisfying  specific  properties  for  each  initial
molecule  in  the  test  set  and  ensuring  their  uniqueness
from  the  initial  molecules.  The  conditional  and
unconditional  transformer  models  are  compared.  At
least  50% of  the conditionally constrained transformer
can  generate  six  molecules  satisfying  certain
properties,  while  the  unconditional  transformer  can
only  have  three  molecules.  The  optimization
performance of the transformer and baseline models is
also compared. The transformer ensures the difference
between  the  generated  molecules  and  the  training  set
molecules,  and can effectively  capture  the  distribution
information of the training set. The performance of the
three  baseline  methods  is  different  from  that  of  the
transformer.  However,  these  methods  still  produce
some  molecules  that  satisfy  specific  properties.  The
optimized use of these models will help in substantially
enriching  different  molecules.  The  current  study
encounter  some  challenges.  A  transformer  is  a  model
based  on  sequence  representation.  In  the  subsequent
work,  additional  models  based  on  the  graph
representation should also be included for comparison.
In  addition  to  logD  and  solubility,  other  specific
properties  should  also  be  regarded  to  generate
additional  new  molecules.  These  conditions  and  other
difficulties will be considered in future research efforts.
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