
 

Attention-Based CNN Fusion Model for Emotion Recognition
During Walking Using Discrete Wavelet Transform

on EEG and Inertial Signals

Yan Zhao, Ming Guo*, Xiangyong Chen, Jianqiang Sun, and Jianlong Qiu

Abstract: Walking as a unique biometric tool conveys important information for emotion recognition. Individuals

in  different  emotional  states  exhibit  distinct  walking  patterns.  For  this  purpose,  this  paper  proposes  a  novel

approach  to  recognizing  emotion  during  walking  using  electroencephalogram  (EEG)  and  inertial  signals.

Accurate recognition of emotion is achieved by training in an end-to-end deep learning fashion and taking into

account  multi-modal  fusion.  Subjects  wear  virtual  reality  head-mounted  display  (VR-HMD)  equipment  to

immerse in strong emotions during walking. VR environment shows excellent imitation and experience ability,

which  plays  an  important  role  in  awakening  and  changing  emotions.  In  addition,  the  multi-modal  signals

acquired  from  EEG  and  inertial  sensors  are  separately  represented  as  virtual  emotion  images  by  discrete

wavelet  transform  (DWT).  These  serve  as  input  to  the  attention-based  convolutional  neural  network  (CNN)

fusion model. The designed network structure is simple and lightweight while integrating the channel attention

mechanism to extract and enhance features. To effectively improve the performance of the recognition system,

the proposed decision fusion algorithm combines Critic  method and majority  voting strategy to determine the

weight  values  that  affect  the  final  decision  results.  An  investigation  is  made  on  the  effect  of  diverse  mother

wavelet  types  and  wavelet  decomposition  levels  on  model  performance  which  indicates  that  the  2.2-order

reverse  biorthogonal  (rbio2.2)  wavelet  with  two-level  decomposition  has  the  best  recognition  performance.

Comparative  experiment  results  show  that  the  proposed  method  outperforms  other  existing  state-of-the-art

works with an accuracy of 98.73%.

Key words:  walking; multi-modal fusion; virtual reality; emotion recognition; discrete wavelet transform; attention

mechanism

1　Introduction

The  development  of  artificial  intelligence  is
accompanied by technological and economic advances,
with  human-computer  interaction  becoming  more
frequent. Since most of the information exchanged and
disseminated is emotional, people expect the computer

to  understand  and  process  emotional  information  in
addition  to  simply  operating  with  the  mouse  and
keyboard,  which  can  lead  to  positive  effects.  Emotion
recognition  technology  is  to  enable  the  computer  to
realize the ability to receive signals representing human
emotions and infer emotional states to achieve human-
centered  human-computer  interaction.  As  the  key  part 
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of  affective  computing,  emotion  recognition  plays  an
important  role  in  health  care[1],  educational
application[2], and social research[3].

Previous  research  on  emotion  recognition  based  on
facial expressions and speech signals has been already
mature,  but  this  is  considered  challenging  mainly
because the source may not  be reliable  in  some cases.
People  can  cover  up  real  emotions  by  actively
controlling  expressions  and  speech.  For  walking,  it  is
considered  to  be  a  promising  source  of  emotional
information with  natural  characteristics  of  non-contact
and  hard-to-camouflage,  and  there  is  evidence  that
human emotions are expressed to some extent through
walking[4].  The  posture  and  movement  pattern  during
walking  have  obvious  individual  differences  and
uniqueness.  Additionally,  walking-based  research
avoids  many  of  the  privacy  concerns  associated  with
facial  and  speech  emotion  recognition  systems.  The
research on walking motion recognition is the premise
of  emotion  recognition  during  walking,  that  has
applications  in  pedestrian  navigation[5, 6],  distance
estimation[7],  and  criminal  investigation  monitoring[8].
The change of emotion leads to the change of walking
pattern, and the mapping relationship between the two
provides  a  reliable  source  for  automatic  emotion
recognition. For example, partners tend to walk quickly
when  they  reunite  after  a  long  absence,  which  is  a
manifestation  of  positive  emotions.  People  usually
have such walking pattern when they encounter happy
or  desirable  things.  On  the  contrary,  people  are  prone
to  tension  in  terrible  scenes  so  that  they  walk  slowly,
and even the body becomes uncontrolled and stationary
if the emotions persist and intensify.

Access  to  emotional  information  generally  relies  on
visual-based methods and wearable sensors.  Capturing
motion  information  is  intuitive  with  related  devices
such  as  depth  cameras,  but  in  some  cases,  the
monitoring  range  and  shooting  quality  are  easily
limited. The development of wearable sensors provides
a new non-invasive solution for emotion recognition[9].
The  sensor  can  be  flexibly  installed  in  some  parts  of
the  human  body,  and  also  addresses  the  privacy
challenges  faced  by  long-term exposed  to  the  camera.
Wearable  sensors  for  emotion  recognition  mainly
includes physiological sensors and inertial sensors. The
former  can  capture  weak  physiological  signals
controlled by the nervous system, which is reliable and
objective. The latter, such as inertial measurement units
(IMUs),  can  detect  and  measure  acceleration,  angular

velocity,  and  multiple  degrees  of  freedom  (DOF)
motion. It is worth noting that emotional expression is
a  diversified  process,  and  research  on  single  modality
is  not  enough.  With  the  improvement  of  multi-source
heterogeneous  information  fusion  theory,  the
complementation  and  promotion  of  multi-modality
information  can  make  up  for  the  defects  of  single
modality[10].  Therefore,  multi-modality  emotion
recognition  based  on  multi-type  sensor  fusion  has
gradually become a research hotspot[11].

The premise of realizing emotion recognition during
walking  is  to  define  emotion,  and  the  emotion  model
describes  the  expressive  characteristics  of  emotional
state.  Ekman  et  al.[12] found  that  volunteers  in  five
different  cultural  backgrounds  showed  extremely
similar  reactions  in  the  six  basic  emotions  of  anger,
disgust,  fear,  happiness,  sadness,  and  surprise.  The
discrete  emotion  model  can  represent  emotion
intuitively,  but  it  is  hard  to  satisfy  the  complexity  of
emotion. The dimensional emotion model describes the
specific continuity of emotion, which can represent the
intensity  and  change  process.  Russell[13] proposed  a
two-dimensional emotion model that  can represent the
vast  majority  of  emotions  using  valence  and  arousal.
By  adding  the  dominance  dimension,  the  pleasure-
arousal-dominance  (PAD)  model[14] with  high
acceptance  was  proposed,  which  can  theoretically
rexpress infinite emotions.

In  recent  years,  the  use  of  machine  learning
algorithms to solve the problem of emotion recognition
has  received  extensive  attention.  The  traditional
recognition  algorithm[15, 16] is  necessary  to  manually
extract and construct feature matrix as the input of the
classifier.  These  features  are  generally  empirical  and
difficult to fully reflect the original data. With the rapid
development  of  deep  learning,  deep  neural  networks
(DNN) has shown superior performance and can learn
valuable  features  directly  from  input  data  without
manual extraction. Currently, deep learning techniques
have gained extensive research in emotion recognition.
Aslan[17] converted  electroencephalogram  (EEG)
signals  into  EEG  images  including  time-frequency
domain  information,  and  used  pre-trained  GoogLeNet
to  extract  features  from  EEG  images.  Atanassov  et
al.[18] used  the  pre-training  DNN  model  to  extract
emotion  from  body  posture  and  use  specific  datasets
for training, which expanded on their previous research
on facial emotion recognition. Yin et al.[19] proposed a
new  deep  learning  based  emotion  recognition  method
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using  EEG  sensors.  They  segmented  the  calibrated
EEG  data,  extracted  the  differential  entropy  features,
and  constructed  the  feature  cube  as  the  input  of  the
graph  convolutional  network  (GCN)  and  the  long
short-term  memory  (LSTM)  neural  network.  Fan
et al.[20] proposed a deep convolutional neural network
with attention mechanism for electrocardiogram (ECG)
emotion recognition, in which the attention mechanism
learned  weights  from  the  ECG  features  extracted  by
convolutional neural network (CNN).

The  performance  of  CNN  is  confirmed  by  the
automatic extraction of deep features, and multi-modal
fusion  further  achieves  accurate  real-time  recognition
of  emotions  in  real-world  scenarios.  So  this  paper
proposes  an  attention-based  CNN  fusion  model  for
emotion  recognition  during  walking  using  discrete
wavelet transform on EEG and inertial signals. Figure 1
provides  an  overview  of  all  methods  used  and  the
entire  process.  First,  the  subjects  wearing  the  virtual
reality  head-mounted  display  (VR-HMD)  equipment
are  guided  to  generate  an  immersive  feeling  to
stimulate  emotions,  while  EEG  and  inertial  sensors
begin to collect  walking-motion data.  Then, the multi-
modal data are separately processed and represented as
images  by  discrete  wavelet  transform (DWT)  as  input
to  the  attention-based  CNN  fusion  model  to  extract
features  and  realize  emotion  recognition  during
walking.

The main contributions and innovations of this paper
are as follows:
• Overall, we propose a new approach to recognizing

emotion during walking using inertial and EEG signals,
which takes into account multi-modal fusion and trains
in  an  end-to-end  deep  learning  fashion  to  achieve
accurate emotion recognition.

• Regarding  to  the  sensor  data  representation,  a
simple  and  effective  feature  transformation  method
based  on  DWT  is  designed  to  represent  the  input
signals as time-frequency domain.
• Regarding  to  the  deep  feature  extraction,  we

developed  a  CNN  structure  combined  with  channel
attention  mechanism.  CNN  extracts  discriminative
features  according  to  the  correlation  of  multi-channel
signals  in  the  sensors.  The  channel  attention
mechanism adaptively emphasizes the key parts inside
the feature map to achieve further feature optimization.
• In order to achieve multi-modal fusion, a decision

fusion algorithm is proposed, which uses the evaluation
matrix  and  Critic  method  to  assign  weights  to  the
prediction  labels  that  may  affect  the  final  decision.
According  to  the  majority  voting  strategy,  the  final
prediction  result  of  emotion  during  walking  is
obtained.
• In  order  to  stimulate  real  and  profound  emotions,

this paper uses VR-HMD equipment to enable subjects
to  immersely  interact  with  the  virtual  environment  to
generate happy and fear emotion.

2　Material and Method

2.1　Data collection

This  paper  uses  EEG  sensors  and  inertial  sensors  to
perceive  emotions  from  internal  and  external
manifestations.  The  former  records
electrophysiological  indicators  of  brain  activity,  while
the latter captures walking motion to obtain close-range
data.  According  to  the  relevant  literature[21, 22],  we
install  two  inertial  sensors  and  an  EEG  sensor  on  the
thighs  and  head  of  each  subject  respectively  after
comprehensive  consideration,  which  can  realistically
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Fig. 1    Overview of all the methods and the entire process used in emotion recognition during walking.
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simulate  the  real  scene  of  people  putting  their
smartphones  in  their  trouser  pockets.  Each  inertial
sensor (WIT Inc., CHN) has built-in ICM42605 (3-axis
accelerometer  and  3-axis  gyroscope)  and  MMC3630
(3-axis  magnetometer),  which  have  the  characteristics
of small size, wearable, and low power consumption[23, 24].
The specific parameters of inertial sensor are shown in
Table 1. The EEG sensor (SICHIRAY Inc., CHN) has
built-in  ThinkGear  Asic  Module  (TGAM)  and  50  Hz
notch  filter,  which  adopts  serial  communication
protocol and outputs EEG data at 9600 baud rate.  The
sampling frequencies of inertial sensor and EEG sensor
are 50 Hz and 512 Hz, respectively. Then, the walking-
motion  data  acquisition  platform  is  constructed,  in
which all sensors are connected with the host computer
through  wireless  bluetooth  technology,  as  shown  in
Fig. 2.

VR-based  media  incentive  is  a  new  application  of
emotional  stimulation.  The  media  incentive  is  to
maximize  and  effectively  stimulate  emotions  through
materials  such  as  pictures,  videos,  music,  and  virtual
environments. VR mainly provides virtual environment
and  augmented  reality,  that  imitates  the  experience  in
various scenes and helps to stimulate real  emotions.  It
can  self-proactive  regulation  of  brain  activity  to
enhance  emotional  and  cognitive  processes.  Kim

86◦

et  al.[25] used the VR environment  and a  pad-mounted
pressure sensor to analyze the relationship between gait
and  emotional  state.  So  we  adopt  the  media  incentive
method based on VR. The VR-HMD equipment (iQIYI
Inc.,  CHN)  has  built-in  optical  lenses  with  a  field  of
view of , which needs to be used with mobile smart
phones and controlled by the handle. Subjects use VR-
HMD equipment  to  watch  VR videos  during  walking,
and  collect  three  kinds  of  walking-motion  emotional
data: neutral, happy, and fear.

A  total  of  16  healthy  subjects  are  recruited
throughout  the  school  to  collect  walking-motion
emotional  data,  with  an  equal  ratio  of  males  and
females.  All  subjects  are  mentally  healthy,  with  no
history  of  surgery  or  disease.  To  avoid  any  ambient
noise,  we select a quiet  indoor site for data collection.
After  arriving at  the  experimental  site,  all  subjects  are
told  to  wear  EEG  sensor  and  inertial  sensors  on  the
head and thighs respectively in advance, and then walk
back  and  forth  in  the  room  according  to  their  own
habits.  In  this  paper,  inertial  sensors  and EEG sensors
continuously  track  the  subjects’ movements  and  brain
waves,  thereby  generating  time  series  for  further
analysis. First, the subjects are familiar with the indoor
environment,  and  then  they  are  asked  to  walk  for  two
minutes  to  collect  walking-motion  data  in  a  neutral
emotional condition. Second, subjects wear a powered-
on  VR-HMD  device  and  select  and  play  VR  videos
from  an  online  VR  video  library  according  to  their
preferences  to  induce  pleasure.  The  happy  VR  video
content  is  that  players  get  close  to  small  animals  and
interact  with  them  such  as  feeding  and  playing.  After
watching  the  VR  video  in  advance  to  fully  immerse

 

Table 1    Main parameters of inertial sensor.
Component Range Resolution

Accelerometer ±16g 0.0005g/LSB
Gyroscope ±2000°/s 0.061°/s/LSB

Magnetometer ±0.0002 T 6.67×10−9 T/LSB
Note: LSB is the abbreviation of the least significant bit.
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Fig. 2    Built walking-motion emotional data acquisition platform.
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them,  the  subjects  are  asked  to  walk  for  two  minutes,
that  is,  to  walk  happily  as  expected.  Third,  to  prevent
the deviation caused by happy emotions to the greatest
extent,  the  walking-motion  data  collection  in  fear
emotions is carried out after an interval of half an hour.
Likewise,  subjects  are  asked  to  walk  for  two  minutes
after  watching  a  frightening  VR  video.  The  fear  VR
video  content  is  to  travel  through  multiple  haunted
houses,  with  ghosts  randomly  teleporting  behind  the
walls  and  corridors  around  the  player.  To  avoid  the
cold  start  effect  of  emotions,  we  only  select  the
emotional data of the subjects in the last minute and a
half.

2.2　Data denoising

There  is  inevitable  noise  interference  in  the  raw  put
data,  involving  electromagnetic  interference  from
inside  the  device  and  packet  loss  in  data
transmission[26].  The  vibrations  generated  when  the
body collides with the sensor can also interfere with the
authenticity of the data. The original denoising method
avoids  the  unnecessary  additional  activities  in  the
experiment,  but  unintentional  motion  always  causes
noise.  Therefore,  further  denoising  is  needed.
Commonly  used  methods  include  moving  average
filtering, Kalman filterings, and wavelet denoising[27].

Kalman  filtering  is  used  for  data  preprocessing  of
inertial sensors, especially accelerometers, gyroscopes,
and  magnetometer[28].  It  estimates  the  state  of  the
target,  establishes  the  state  equation and combines  the
observation  equation  to  process  the  inertial  signal,
finally  realizes  the  accurate  estimation  of  the
information  of  the  target  at  the  next  moment.  This
optimal estimation process is also a filtering process.

EEG  signals  are  weak  and  easily  affected  by  the
power frequency interference of equipment and human
physiological  activities  such  as  eye  movement  and
breathing.  In  this  paper,  the  threshold  wavelet
denoising method and moving average filter are used to
preprocess  the EEG signals.  Four-layer  decomposition
Daubechies  (Db)  discrete  wavelet  is  performed on the
EEG signal. The effect of the hard threshold function is
remarkable,  but  the  reconstructed  signal  oscillates  and
is not smooth. So the moving average filter is used for
smoothing, the equation is as follows:
 

y(n) =
1
l

l−1∑
i=0

x(n− i) (1)

x(n) y(n) l
x(n)

where the input is ,  the output is ,  and  is the
length of .

2.3　Data segmentation

M
T M = {|X1,y1| , |X2,y2| , |Xt,yt | , . . . , |XT ,yT |}

t

Walking-motion is a cyclically repeated process, and it
is  necessary  to  divide  the  entire  time  series  into  sub-
time series, which is to increase the number of samples
to  achieve  more  refined  emotion  recognition.  This
paper  uses  the  sliding  window  method,  as  shown  in
Fig. 3. The selection of the width of the window affects
the  overall  recognition  effect  of  the  system.  If  the
window  width  is  too  large,  multiple  walking  motions
are  contained  within  the  window,  otherwise,  there  is
not  enough  data  to  represent  the  samples.  We  choose
the number of data points collected within two seconds
as  the  window  width.  And  since  the  data  between
adjacent  windows  are  related,  we  set  50% overlap
between  the  two  windows  to  avoid  information  loss.
After segmentation, the dataset in this paper is a set 
of  samples, ,
and the -th sample is represented as
 

Xt =
[
S t,1, S t,2, S t,n, . . . , S t,N

]
(2)

N
S t,n

n yt

Xt

where  is  the  total  number  of  sensors  worn  by  each
subject,  is the sample set of timing signals from the

-th sensor, and  is the manually labeled ground truth
of .

100×9
64×16

Since  the  inertial  signal  and  the  EEG  signal  have
different channel numbers, the EEG signal is shaped to
approximately match the length and channel number of
the  inertial  signal.  According  to  research[29],  it  is
realized  by  converting  a  single-channel  EEG  signal
into a 16-channel signal. Finally, we can obtain inertial
samples with a size of  and EEG samples with a
size of .

2.4　Data representation

For  studying  multiple  data  representations  in  emotion
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Fig. 3    Schematic diagram of data segmentation.
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recognition and increasing the diversity of datasets, this
paper  converts  EEG  and  inertial  signals  into  virtual
emotion  images  through  DWT.  EEG  and  inertial
signals  are  typical  non-stationary  signals  with  strong
randomness and their amplitude and frequency change
with  time.  Fast  Fourier  transform  (FFT)  and  discrete
cosine  transform  (DCT)  have  a  good  solution  to
frequency  domain  transformation,  but  they  are  not
suitable  for  the  application  of  time  domain
transformation.  Wavelet  transform  preserves  the
temporal  and spatial  information of  frequencies  and is
the best candidate for the analysis and representation of
these features in EEG and inertial signals.

DWT analyzes  signals  on  different  frequency  bands
with  different  resolutions  through  two  mutual  filters
that  decompose  the  signal  into  approximation  and
detail  coefficients.  The  coefficients  represent  the  low-
frequency  and  high-frequency  information  of  the
signals,  respectively.  The  wavelet  coefficients  are
obtained  by  inner  product  of  the  input  signal  with  the
mother  wavelet  function  and  the  scaling  function,
which can be computed by
 

wα [k,h] =
1
√

2k

∑
i

x (i)α
(

i−h2k

2k

)
,

wβ [k,h] =
1
√

2k

∑
i

x (i)β
(

i−h2k

2k

) (3)

α(·) β(·)

k h

where  and  are  mutually  orthogonal  basis
functions,  also  called  mother  wavelets  in  discrete
wavelet  decomposition,  is  the  scale  factor,  and  is
the  displacement  factor.  After  comparing  different
mother wavelets including Haar, Daubechies, Symlets,
reverse  biorthogonal,  and  biorthogonal,  we  consider
2.2-order  reverse  biorthogonal  (rbio2.2)  wavelet  for
our proposed method. Section 4.1 describes the details
of the experiments.

N

N +1 N

Figure  4 shows  the  approximation  coefficients  (cA)
and  detail  coefficients  (cD)  of  the  rbio2.2  wavelet
obtained  from  the x-axis  acceleration  signal. -level
decomposition  of  discrete  wavelet  transform  can  get

 coefficients (  approximate coefficients and one
detail  coefficient),  which  can  accurately  represent  the
signal. Half of the samples can be eliminated according
to  the  Nyquist  theorem,  which  constitutes  a  level  of
decomposition, and this operation keeps increasing the
frequency  resolution.  The  length  of  the  coefficients  is
approximately halved on a continuous level and can be
calculated as

 

L = floor
(

l−1
2

)
+ l f (4)

floor(·) l
l f

where  is  the  round-down  function,  is  the
length  of  the  input  signal,  and  is  half  the  length  of
the  filter.  The  reconstructed  signal  is  composed  of
detail  coefficients  decomposed  at  each  layer  and
approximate coefficients of the last layer.

h×w× c
h w c

The  input  data  need  to  be  converted  as  formatted
tensors  in  CNN,  which  is  represented  as ,
where , ,  and  are  height,  width,  and  number  of
channels,  respectively.  The  matrix  obtained  after
representation  from  inertial  and  EEG  sensor  data  is
two-dimensional  with  a  channel  number  of  1,  and  its
form  corresponds  exactly  to  the  grayscale  image.  The
inertial  signal  subsequences  are  segmented  from  the
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Fig. 4    Wavelet  decomposition  of  DWT  at  the  fourth
decomposition  level  of  the x-axis  acceleration  signal  using
rbio2.2 as mother wavelet.
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inertial  signals  and  normalized.  Then,  the  sampling
points  in  each  subsequence  after  discrete  wavelet
transform are corresponding to the gray value to obtain
images.

2.5　Attention-based CNN fusion model

The  attention-based  CNN  structure  of  our  proposed
emotion  recognition  method  includes  a  feature
extraction module and an attention module as shown in
Fig.  5.  We  use  parallel  and  serial  pure  convolutional
layers  to  form  the  backbone  for  extracting  deep
features,  thus  alleviating  the  structural  complexity.
After  obtaining  the  multi-dimensional  feature  map,
channel  attention  is  used  to  focus  on  the  salient  parts
and seek the most critical parts.
2.5.1　CNN architecture
CNN  architecture  mainly  consists  of  convolutional
layers and pooling layers. The convolution layer is the
core of the CNN, and the convolution kernel moves in
the input data matrix in the form of a sliding window,
and the distance of each movement is called stride. The
number  of  convolution kernels  determines  the  number
of  channels  in  the  output  matrix.  In  the  pooling  layer,
the  dimension  of  the  feature  map  can  be  reduced  by
adjusting the size and stride of the convolution kernel,
thereby reducing the number of network parameters.

T{∣∣∣Xw
1 ,y1

∣∣∣ , ∣∣∣Xw
2 ,y2

∣∣∣ , ∣∣∣Xw
t ,yt

∣∣∣ , . . . , ∣∣∣Xw
T ,yT

∣∣∣} t

After  DWT signal  representation,  we  have  prepared
the  input  format  for  CNN.  Here  are  samples

,  and  the  sample
is represented as
 

Xw
t =

[
S w

t,1, S w
t,2, S w

t,n, . . . , S w
t,N

]
(5)

S w
t,n

i j
d

for  each  input ,  CNN  uses  a  two-dimensional
convolution operation to extract features layer by layer.
The convolution values mapped at the position ( , ) of
the -layer feature map as
 

Fd
i, j =

(
Fd−1×K

)
i, j
=

P−1∑
p=0

Q−1∑
q=0

Fd−1
i+p, j+pKp,q (6)

d Kp,q

p q P Q
where  is  the  convolution  layer  index,  is  the
value of the kernel function at position ( , ),  and 
are  the  height  and  width  of  the  convolution  kernel,
respectively.

1×3 5×5 7×7

2×2

To  extract  and  optimize  the  correlation  features
between  the  multi-channel  signals  of  each  sensor,  we
design a CNN structure for EEG and inertial signals as
shown  in Fig.  6.  The  principle  is  to  use  multiple
convolution  kernels  of  different  sizes  to  extract  the
features  of  different  signal  channels  in  parallel,  and
then  two  convolution  layers  are  used  to  optimize  the
extracted  features.  By  designing  network  parameters,
the  concatenated  feature  map is  arranged according to
the channel  dimension,  which needs to ensure that  the
length and width of  the feature maps are consistent  as
shown  in Fig.  7.  The  proposed  CNN  structure  adds
batch  normalization  (BN)  layers  to  speed  up  network
training  and  convergence.  Each  convolutional  layer
performs  two-dimensional  convolution,  followed  by  a
BN layer  and  a  ReLU activation  function.  First,  there
are 64 convolution kernels of size , , and 
to detect the features of different signal channels. Then
continue  to  use  two  convolutional  layers  to  optimize
the features,  each convolutional layer is followed by a
pooling  layer,  and  the  size  of  the  built-in  pooling
kernel is . After the second max-pooling layer, the
feature  matrix  is  flattened  into  a  feature  vector.  The
specific  parameters  of  CNN  structure  are  shown  in
Table 2.
2.5.2　Attention mechanism
The  main  function  of  CNN  is  to  extract  features,  and
the  task  of  feature  optimization  is  handed  over  to  the
attention  mechanism.  We  use  an  attention  mechanism
to  learn  the  correlations  in  channel  dimensions  of  the
feature  matrix.  According  to  the  learned  correlation,
the  channel  weight  matrix  is  obtained  and  multiplied
with  the  original  feature  matrix  to  enhance  the  part
with  key  information.  The  specific  structure  of  the
proposed attention mechanism is shown in Fig. 8.

 

Feature map
Channel attention Output matrix

Attention module
Input matrix

Feature extraction module 
Fig. 5    Attention-based CNN structure containing feature extraction module and attention module.
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F

F = {F1,F2, . . . ,Fc} c

F

Fc

The  feature  map  after  CNN  can  be  expressed  as
, where  is the number of channels

of .  Firstly,  the  average-pooling  and  max-pooling  of
 are  used  to  extract  the  global  spatial  information.

Average-pooling  and  max-pooling  calculate  the
average  and  maximum  values  of  elements  in  the
pooling window, respectively. Both are used for feature
dimension reduction, they are defined as
 

outmax-pooling =max[x1, x2, . . . , xn] (7)
 

outavg-pooling =mean [x1, x2, . . . , xn] (8)

x
Fmax Favg

Conv1d(·)

c× r c

where  is  the  input  data,  so  the  maximum  pooling
feature  and the average pooling feature  can
be  obtained.  Then,  two-layer  one-dimensional
convolution  is  used  to  realize  the
information interaction between channels. The number
of convolution kernels in the two layers is  and ,
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Fig. 6    CNN architecture for EEG and inertial signals.
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Image represeantation

Concatenated feature map

(a) Schematic diagram of multi-channel signal feature extraction for EEG and inertial sensor

(b) Parallel structure of multiple convolutional layers 
Fig. 7    Illustration of the feature extraction module.

 

Table 2    Parameters of CNN structure.
Layer name Number of kernels Kernel size Stride Padding

Parallel Conv [64, 64, 64] [(1, 3), 5, 7] 1 [(0, 1), 2, 3]
Conv1 128 3 1 0

Max-pooling 1 None 2 2 0
Conv2 64 3 1 0

Max-pooling 2 None 2 2 0

 

Feature
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Fig. 8    Structure of the channel attention mechanism.
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r

c
Fc

respectively, where  is the scale factor in the range of
0  to  1.  After  that,  two  vectors  are  added  according  to
the corresponding positions of the elements to obtain -
dimensional vector  is obtained, as follows:
 

Fc = Conv1d
(
Favg

)
+Conv1d(Fmax) =

[Favg,1,Favg,2, . . . ,Favg,c]+ [Fmax,1,Fmax,2, . . . ,Fmax,c] =
[Fc,1,Fc,2, . . . ,Fc,c]

(9)

c
Finally,  the  sigmiod  activation  function  is  used  to

obtain the -dimensional vector, and the value of each
element  is  the  weight  corresponding  to  each  channel
belonging to [0, 1]. The output of sigmiod function is
 

outscore =
exp(Fc)

exp(Fc)+1
(10)

and  the  mapping  structure  of  channel  attention  is  as
follows:
 

Fatten = F ⊙outscore (11)
⊙where  represents  the  multiplication of  elements  one

by one.
2.5.3　Fusion
Multi-modal  data  fusion  in  emotion  recognition  is
performed  at  different  levels  and  divided  into  input-
level  fusion,  feature-level  fusion,  and  decision-level
fusion. Input-level fusion is the fusion of the input data
phase,  preserving  as  much  information  as  possible.
Feature-level  fusion  is  to  perform  fusion  after  feature
extraction,  which  greatly  retains  the  original
information  while  realizing  data  compression.
Decision-level  fusion is  integrated at  the  classification
and  discrimination  level,  with  a  high  fault  tolerance
rate,  and  higher-level  decision-making  can  be  made
according to application requirements.

100×18

Feature-level  fusion. Input-level  data  fusion  is
considered  for  processing  the  processed  two  inertial
sensor signals. The inertial signals of each emotion are
fused using concatenation, resulting in an image of size

.  Feature-level  fusion  can  comprehensively
utilize  multimodal  features  to  achieve  complementary
advantages,  which  improves  the  robustness  and
accuracy of  the  system.  After  extracting features  from
the  EEG  and  inertial  sensors,  we  independently
compute  the  feature  vectors  obtained  from  each
modality after passing through the flattening layer. And
the  feature  vectors  corresponding  to  each  emotion  are
concatenated to obtain a new high-dimensional feature
vector. We can connect the feature matrix by

 

Ffusion = concat(Finertial,FEEG) (12)

Ffusion concat(·)where  is  the  fused  feature,  and 
represents  the  connection  operation.  Moreover,  it  is
necessary  to  balance  the  new  features,  which  means
that the various types of features stitched together have
the  same  numerical  scale.  We  apply  Min-Max
normalization  to  the  resultant  features  and  map  to  the
range of [0, 1] according to the following:
 

y =
xin−min(xin)

max(xin)−min(xin)
(13)

y xinwhere  is  the  normalized  data  and  is  the  original
data.

Decision-level  fusion. The  prediction  results
obtained  by  individual  recognition  are  usually  given
equal  weights,  and  then  the  emotional  prediction  is
obtained  through  specific  fusion  strategies.  However,
this  lacks  consideration  of  the  correlation  between the
multi-modal  data.  In  addition,  strong  classification
models  are  easily  overwhelmed  by  some  weak
classification  models.  We  propose  a  decision  fusion
algorithm  considering  a  single  modality  model  and  a
feature fusion model. The algorithm uses Critic method
to assign weights pairs to the predicted labels and fuse
them according to the majority voting strategy.

a
X = {x1, x2, . . . , xp, . . . ,

xn} b
xp

M = {mp1,mp2, . . . ,mpq, . . . ,mpb}
mpq

q

The Critic method is to comprehensively measure the
objective weight of the indicators based on the contrast
strength  of  the  evaluation  indicators  and  the  conflict
between the indicators. The fusion strategy refers to the
research[30].  Assuming that  there  is  a  class  emotion,
the  sample  can  be  expressed  as 

.  We assume that  there are  classification models.
For the test sample , the classification result using b
models  is  expressed as ,
where  represents  the  classification  result  of  the
p-th  test  sample  under  the -th  classification  model.
Then,  the  Critic  weight  majority  voting  algorithm can
be represented by
 

Γe = argmax
e∈(1,2,...,a)

b∑
i=1

γeiθi(e) (14)

where
 

θi(e) =

1, xp ∈ emotion e;

0, otherwise
(15)

rgh (1 ⩽ g ⩽ a,1 ⩽ h ⩽ b)
a b

R

  represents  the  recall  of  the
-th class emotion under the -th classification model,

the valuation matrix  as
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R =


r11 r12 · · · r1b
r21 r22 · · · r2b
...

... · · ·
...

ra1 ra2 · · · rab

 (16)

S h Ch

b
Then, the index variability  and index conflict 

of  the -th  classification  model  are  expressed  in  the
form of  standard  deviation  and correlation  coefficient,
respectively, as follows:
 

S h =

√√√√ a∑
i=1

(rih− r̄h)2

a−1
(17)

 

Ch =

b∑
j=1

1− c jh (18)

 

r̄h =
1
a

a∑
i=1

rih (19)

c jh

j h
where  represents  the  correlation  coefficient
between  the -th  classification  model  and  the -th
classification model.

YThe greater the amount of information , the greater
the  role  of  the j-th  evaluation  index  in  the  entire
evaluation  index  system,  and  more  weights  should  be
assigned to it.
 

Yh = S h×Ch (20)
γh h

e
Finally,  the  weight  of  the -th  classification

model for the -th emotion can be obtained as
 

γh =
Yh
b∑

i=1

Yi

(21)

3　Classification Module and Loss Function

j

After  obtaining  emotional  features,  a  classification
module  is  designed  to  map  high-dimensional  features
into  a  low-dimensional  space  for  emotion recognition.
First,  the  features  are  flattened  to  obtain  a  one-
dimensional  vector,  which  is  then  mapped  through  a
multi-layer  neural  network.  The  output  of  the -th
neuron as
 

y j = f

θ+ n∑
i=1

ωi jxi

 (22)

xi i ωi j i
j θ

where  is the -th input,  is the weight of the -th
input of the -th neuron, and  is the bias.

To  significantly  reduce  the  phenomenon  of
overfitting  in  machine  learning,  dropout  is  used  as  a

i

trick for training deep neural networks. To significantly
reduce  the  phenomenon  of  overfitting  in  machine
learning,  dropout  is  used  as  a  trick  for  training  deep
neural  networks  by  ignoring  a  certain  proportion  of
feature detectors (hidden layer node value is 0) in each
training batch. The last fully connected layer maps the
dimension  to  the  number  of  emotion  types.  The
detection and recognition of each emotion are achieved
based  on  the  output  scores  generated  by  the  softmax
layer. The softmax score of the -th emotion as
 

softmax(yi) =
eyi

n∑
j=1

ey j

(23)

During  the  model  training  process,  the  learning  rate
and  batch  size  are  set  to  0.001  and  8,  respectively.
Gayscale images are selected as the input to the neural
network,  and  the  average  error  is  calculated  by
comparing the actual prediction results  with the actual
output results. For multi-classification tasks, we use the
cross-entropy  loss  function  to  measure  the  deviation
between real values and predicted values:
 

Loss = −
n∑

i=1

p(xi) log q(xi) (24)

p(xi) xi q(xi)where  is the true value of the input  and  is
the predicted value.

4　Experiment

F1 F1

All emotional samples are divided into ten parts, eight
of which are used as training data to train the proposed
model  using  leave-one-out  cross-validation,  and  the
remaining  two  parts  are  used  as  the  test  data  of  the
trained model.  Then, the training data are divided into
five  parts,  four  of  which  are  used  for  training  and  the
rest  for  validation.  This  process  is  repeated  five  times
until every data is used for validation. The recognition
performance  of  the  three  different  emotions  is
evaluated  according  to  four  evaluation  indicators:
accuracy  (ACC),  precision  (PRE),  recall  (REC),  and

 score ( ).

4.1　Evaluation  of  details  about  mother  wavelets
and decomposition levels in DWT

A  comparative  analysis  was  carried  out  on  the  most
effective  mother  wavelet  type  in  the  discrete
decomposition  of  EEG  and  inertial  signals  collected
during  walking  in  three  emotions.  Wavelets  with  high
support  tend  to  have  difficult  to  detect  the  closely
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F1

F1

F1

spaced  features  used  to  recognize  different  emotional
states  during  walking,  and  the  support  of  wavelets
should  be  small  enough  to  separate  the  features  of
interest.  Therefore,  the  mother  wavelets  selected  for
comparison  include  Haar,  2-order  Daubechies  (Db2),
2-order  Symlets  (Sym2),  2.2-order  reverse
biorthogonal  (rbio2.2),  and  2.2-order  biorthogonal
(bior2.2)  for  the  recognition  of  three  different
emotions,  and  the  comparison  results  are  shown  in
Table  3.  For  each  emotional  data  after  wavelet
decomposition  and  reconstruction,  the  attention-based
CNN  structure  mentioned  in  Section  2.5  is  followed.
Firstly, the specific effect of the EEG signal after DWT
as  the  input  of  the  attention-based  CNN  structure  on
the  recognition  of  three  emotions  during  walking  is
analyzed.  It  can be seen from Table  3 that  the rbio2.2
mother  wavelet  achieves  the  best  performance,  with
accuracy,  precision,  recall,  and  score  of  84.39%,
85.48%,  84.36%,  and  84.74%,  respectively.  The
performance of the models using Haar mother wavelet
decomposition  is  relatively  lower  than  other  wavelets,
with  accuracy,  precision,  recall,  and  score  of
77.22%,  78.82%,  77.25%,  and  77.78%,  respectively.
The main reason is  that  Haar wavelet  transform is  not
sensitive  enough  to  the  local  feature  of  EEG  signals,
which  may  lead  to  the  loss  of  emotional  information.
Then the influence of inertial signal on the recognition
effect  of  different  emotional  states  during  walking  is
analyzed,  rbio2.2  and  Haar  have  almost  the  same
performance.  The  accuracy,  precision,  recall,  and 
score  of  Haar  are  97.05%,  97.15%,  97.20%,  and
97.18%,  respectively,  and  the  accuracy,  precision,
recall,  and  score  of  rbio2.2  are  97.05%,  97.10%,

97.20%,  and  97.15%,  respectively.  The  results  show
that rbio2.2 and Haar wavelet can accurately extract the
local  emotional  features  of  low  frequency  and  high
frequency  in  the  inertial  signal,  and  retain  the  useful
emotional  information  in  the  original  signal.  The
comparison  of  model  accuracy  performance  for
wavelet  decomposition  with  different  types  of  mother
wavelets  is  shown  in Fig.  9.  It  can  be  seen  that  the
model  using  rbio2.2  wavelet  has  the  highest  accuracy
compared  to  other  mother  wavelets  for  EEG  and
inertial signals. So this paper uses rbio2.2 as the mother
wavelet for discrete decomposition of EEG and inertial
signals.

This  paper  also  compares  the  evaluation  of  emotion
recognition  performance  of  rbio2.2  mother  wavelet
decomposition level.  The increase  and decrease  of  the
decomposition  layer  has  an  impact  on  the  recognition
of  emotions  during  walking.  The  increase  of  the
decomposition layer  leads  to  signal  distortion,  and the
decrease  of  the  decomposition  layer  cause  the
emotional  features  in  the  signal  to  not  be  fully
characterized.  Level  0  refers  to  the  performance  of  an
attention-based  CNN  model  trained  using  signals
without  DWT  to  recognize  emotions  during  walking.
Figure  10 shows  the  recognition  accuracy  of  three
emotions  with  different  wavelet  decomposition  levels.
The  DWT  of  rbio2.2  mother  wavelet  with  a  2-level
decomposition for EEG and inertial signal has the best
recognition  effect  of  three  emotions.  The  analysis  in
Fig.  10 shows  that  with  the  increase  of  the
decomposition  degree,  the  recognition  accuracy  of
different  emotions  tends  to  increase,  and  the  accuracy
performance  reach  97.05% and  84.39% in  the  2-level
decomposition  for  inertia  and  EEG  signals, 

Table 3    Performance  of  EEG  and  inertial  signals  on
wavelet  decomposition  with  different  types  of  mother
wavelets.

Input signal Wavelet
name

ACC
(%)

PRE
(%)

REC
(%)

F1

(%)

EEG signal

Haar 77.22 78.82 77.25 77.78
Db2 82.28 82.58 82.43 82.50

Sym2 78.48 79.50 79.00 79.06
bior2.2 81.43 82.19 81.52 81.79
rbio2.2 84.39 85.48 84.36 84.74

Inertial signal

Haar 97.05 97.15 97.20 97.18
Db2 94.94 95.33 95.00 95.14

Sym2 96.20 96.49 96.24 96.35
bior2.2 96.20 96.29 96.40 96.34
rbio2.2 97.05 97.10 97.20 97.15
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Fig. 9    Comparison  of  the  accuracy  performance  for  EEG
and  inertial  signals  in  wavelet  decomposition  of  different
types of mother wavelets.
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respectively.  Then  the  performance  of  the  accuracy
tends  to  decrease  with  the  increasing  degree  of
decomposition.  The  reason  behind  the  downgrade  can
be traced back to the fact that an increase in level leads
to  loss  of  emotional  information.  In  addition,  the
increase  of  the  decomposition  level  increases  the
complexity of the algorithm. The specific performance
of  the  recognition  of  three  emotions  with  different
levels of wavelet decomposition is shown in Table 4.

4.2　Evaluation  of  different  data  representation
methods

To further evaluate the effect of the data representation
on  the  recognition  of  different  emotions  during
walking,  we  conducted  an  experimental  analysis.  The
proposed  DWT-based  data  representation  is  compared
with  FFT  and  DCT,  which  have  gained  attention  for
their  suitability  for  signal  processing in  deep learning.
Table 5 shows the emotion recognition performance of

F1

F1

F1

F1

different  data  representation  methods.  For  EEG  and
inertial  signals,  the  proposed  method  for  signal
representation  using  DWT  achieves  the  highest
recognition  accuracy  for  three  emotions.  In  the  EEG
signal  representation,  the  overall  performance of  DCT
is  better  than  FFT,  and  its  accuracy,  precision,  recall,
and  score  are  75.53%,  77.49%,  75.36%,  and
76.06%,  respectively,  while  the  accuracy,  precision,
recall,  and  score  of  FFT  are  69.20%,  70.75%,
69.56%, and 69.78%, respectively. The performance of
FFT is better than that of DCT in the representation of
inertial signals, with accuracy, precision, recall, and 
score  of  90.30%,  90.56%,  90.65%,  and  90.57%,
respectively, and the accuracy, precision, recall, and 
score  of  DCT  are  85.65%,  86.68%,  85.86%,  and
86.19%,  respectively. Figure  11 intuitively  shows  the
specific performance of the evaluation indicators of the
three  data  representation  methods  in  the  overall
emotion  recognition  system.  The  reason  why  we
choose DWT as the representation of EEG and inertial
signals  is  that  DCT  and  FFT  can  only  convert  the
emotional  signal  from  the  time  domain  to  the
frequency  domain,  which  shows  the  corresponding
amplitude  at  different  frequencies.  DWT can  not  only
examine the frequency domain feature of the emotional
signal  in  the  local  time  domain  process,  but  also
examine  the  time  domain  characteristics  of  the  local
frequency  domain  process.  Therefore,  DWT  enables
well transform and process non-stationary signals such
as  EEG  and  inertial  signals  in  emotion  recognition
during walking.

4.3　Evaluation of the effectiveness of the attention
mechanism

Just  as  humans  can  allocate  different  attention  to
different  places  when  doing  complex  work,  the
attention  mechanism  can  give  neural  networks  the
ability  to  focus  on  their  feature  maps.  To  verify  the
effectiveness  of  the  CNN  structure  based  on  the
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Fig. 10    Comparison of the accuracy performance for EEG
and  inertial  signals  in  wavelet  decomposition  of  different
levels.

 

Table 4    Performance  of  EEG  and  inertial  signals  on
wavelet decomposition with different levels.

Input
signal

Decomposition
level

ACC
(%)

PRE
(%)

REC
(%)

F1

(%)

EEG signal
(rbio2.2)

0 77.64 78.04 77.82 77.55
1 78.48 79.68 78.74 78.91
2 84.39 85.48 84.36 84.74
3 78.48 78.78 78.90 78.84
4 73.00 74.32 73.23 73.67

Inertial
signal

(rbio2.2)

0 95.36 95.56 95.71 95.57
1 96.62 96.79 96.95 96.78
2 97.05 97.10 97.20 97.15
3 90.30 90.66 90.63 90.64
4 86.50 86.86 86.82 86.73

 

Table 5    Performance  comparison  of  different  data
representation methods.

Input signal Method ACC
(%)

PRE
(%)

REC
(%)

F1

(%)

EEG signal
FFT 69.20 70.75 69.56 69.78
DCT 75.53 77.49 75.36 76.06
DWT 84.39 85.48 84.36 84.74

Inertial signal
FFT 90.30 90.56 90.65 90.57
DCT 85.65 86.68 85.86 86.19
DWT 97.05 97.10 97.20 97.15
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F1

F1

F1

attention  mechanism,  we  design  a  channel  attention
mechanism  to  assign  weights  and  divide  the
importance  of  the  channels  of  the  obtained  feature
maps.  For  the  CNN  structure  without  attention
mechanism, we directly input the obtained feature map
to  the  classification  module  after  the  flattening  layer.
Table  6 shows  the  specific  performance  evaluation  of
the attention mechanism. For EEG signal, the accuracy,
precision,  recall,  and  score  of  the  emotion
recognition  system  are  improved  by  4.64%,  5.25%,
4.08%, and 4.65%, respectively. For inertial signal, the
accuracy, precision, recall, and  score of the emotion
recognition  system  are  improved  by  3.80%,  3.56%,
3.72%, and 3.66%, respectively. For feature fusion, the
accuracy, precision, recall, and  score of the emotion
recognition  system  are  improved  by  1.69%,  1.66%,
1.65%,  and  1.66%,  respectively.  Compared  with  the
CNN  structure  without  the  attention  mechanism,  the
accuracy  of  the  attention-based  CNN  structure  is
improved by a maximum of 5.25% and a minimum of
1.65%. Figure  12 shows  the  confusion  matrix  of  the
recognition results of the samples in different emotions
based  on  the  attention-based  CNN  architecture.  Each
column and each row of the confusion matrix represent
the predicted emotional category and the real emotional
category of the sample, respectively, where each data is
the  proportion  of  the  number  of  specific  emotional
samples to the total number of samples in the test set.
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Fig. 11    Specific performance comparison of the three data
representation methods.
 

Table 6    Performance evaluation of the effectiveness of the attention mechanism.
Method Input ACC (%) PRE (%) REC (%) F1  (%)

Without attention mechanism
EEG signal 79.75 80.23 80.28 80.09

Inertial signal 93.25 93.54 93.48 93.49
Feature fusion 94.09 94.21 94.37 94.28

With attention mechanism
EEG signal 84.39 85.48 84.36 84.74

Inertial signal 97.05 97.10 97.20 97.15
Feature fusion 95.78 95.87 96.02 95.94
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Fig. 12    Confusion matrices for the attention-based CNN architecture.

    200 Big Data Mining and Analytics, March 2024, 7(1): 188−204

 



4.4　Evaluating  the  decision  fusion  algorithm  of
EEG and inertial signals

F1

We  consider  two  aspects  in  decision-level  fusion.  On
one  hand,  feature  fusion  considers  the  correlation
between  EEG  and  inertial  signals.  On  the  other  hand,
the decision-making ability of each model participating
in  the  decision  fusion  is  evaluated,  and  the  Critic
method  is  used  to  add  weights  to  the  majority  voting
mechanism.  To  evaluate  the  performance  of  the
proposed decision fusion algorithm on the performance
of  emotion  recognition  system,  we  compare  with
majority  voting  and  decision  fusion  algorithm without
feature  fusion,  and  the  results  are  shown  in Table  7.
The  decision  fusion  algorithm  does  not  have  feature
fusion, which means that only EEG and inertial signals
are  fused.  Its  accuracy,  precision,  recall,  and  score
are  97.47%,  97.54%,  97.58%,  and  97.55%,
respectively. The decision fusion algorithm proposed in
this  paper  considers  feature  fusion,  and  the  accuracy,
precision,  recall,  and F1 score  are  98.73%,  98.77%,
98.82%,  and  98.79%,  respectively.  Therefore,  feature
fusion  plays  a  role  in  supplementing  emotional
information  and  reducing  emotional  prediction  errors.
For  majority  voting,  it  performs  moderately,  with
accuracy,  precision,  recall,  and F1 score  of  97.89%,
98.01%,  97.95%,  and  97.98%,  respectively. Figure  13
shows  the  confusion  matrix  comparing  the  three
decision fusion methods. Compared with the other two

methods,  the  proposed  decision  fusion  algorithm
improves  the  recognition  of  happiness  and  fear
emotions,  and  the  number  of  samples  misclassified  as
other  emotions  is  significantly  reduced.  The  proposed
decision  fusion  algorithm solves  the  problem of  equal
opportunity  of  emotion  recognition  system  in  most
voting,  and  improves  the  accuracy  of  emotion
recognition during walking to a certain extent. In multi-
modal  fusion,  the  decision  fusion  algorithm  considers
the correlation between the two input modes of inertia
and  EEG signals,  which  is  reflected  in  feature  fusion.
In terms of accuracy, the proposed fusion algorithm is
significantly  better  than  the  majority  voting  and
decision  fusion  algorithms  without  feature  fusion.  In
general, the decision fusion algorithm proposed in this
paper  is  effective  for  improving  the  recognition
performance of three emotions during walking.

4.5　Two-category classification of emotions during
walking

The  purpose  of  the  two-category  classification  is  to
study the prediction accuracy of the model proposed in
this  paper  for  each  of  the  two  emotions  (3
combinations  in  total),  which  are  a  set  of  3  basic
emotions,  including  neutral  and  happy,  neutral  and
fear,  and  happy  and  fear.  The  comparison  results  of
three  kinds  of  emotion  combination  recognition  are
shown  in Table  8.  Neutral-happy  has  the  highest
classification  performance  with  accuracy,  precision,
recall,  and F1 score  of  99.38%,  99.31%,  99.44%,  and
99.37%, respectively. Happy-fear is slightly inferior to
the  other  two,  its  accuracy,  precision,  recall,  and F1
score  are  93.37%,  93.34%,  93.56%,  and  93.36%,
respectively.  It  can  be  seen  that  the  walking  motion
under  neutral  emotion  is  distinct  and  easy  to  identify
from those under happiness and fear.

 

Table 7    Performance  evaluation  of  the  effectiveness  of  the
proposed decision fusion algorithm.

(%)
Method ACC PRE REC F1

Proposed decision fusion 98.73 98.77 98.82 98.79
Without feature fusion 97.47 97.54 97.58 97.55

Majority voting 97.89 98.01 97.95 97.98
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Fig. 13    Confusion matrix comparison of three decision fusion methods.
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4.6　Comparison  with  other  existing  state-of-the-
art works

This paper compares the performance of our proposed
multi-modal  emotion  recognition  method  with  three
state-of-the-art  works.  The  premise  of  the  comparison
of these methods is to use the data set proposed in this
paper,  and  the  division  of  training  set,  validation  set,
and  test  set  remains  unchanged. Table  9 summarizes
the  comparison.  Zhang  et  al.[31] developed  a
physiological  signal-based,  mean-threshold,  and
decision-level  fusion  algorithm  based  on  EEG  and
PERipheral  physiological  signals  to  explore  emotion
recognition. The algorithm first selects emotion-related
features  from  the  signals,  and  then  uses  classical
classifiers  such  as  Gaussian  Naive  Bayes,  Linear
Regression, and Support Vector Machine to establish a
single-modal  classification  model.  Finally,  the
decision-level  fusion  algorithm  is  used  to  integrate
these  into  a  new  integrated  classification  model  to
improve  the  classification  accuracy.  Its  accuracy,
precision,  recall,  and F1 score  are  92.05%,  92.40%,
92.36%,  and 92.38%,  respectively. The main reason is
that  although  the  features  extracted  manually  can
intuitively  reflect  the  correlation  with  emotions,  they
may  ignore  some  useful  functions  and  cannot  be
applied to different scenarios. Liu et al.[32] constructed
an  importance  attention  network  with  complementary
modalities.  Considering  that  there  is  a  certain
complementary  relationship  between  the  importance
differences  between  multiple  modes,  they  fuse  the
reconstructed  features  to  obtain  multi-modal  features
with good interactivity. And it achieves performance of

95.33%,  95.48%,  95.67%,  and  95.40% for  accuracy,
precision,  recall,  and F1 score,  respectively.  Xu
et  al.[33] proposed  a  bi-modal  emotion  recognition
framework  composed  of  parallel  convolution  (Pconv)
module  and  attention-based  bi-directional  long  short-
term  memory  (BLSTM)  module.  Pconv  module
provides  more  effective  representation  capabilities  to
extract multi-dimensional social features using parallel
methods,  and  attention-based  BLSTM  module
strengthens  the  extraction  of  key  information  and
maintains  the  correlation  between  information.  Its
accuracy,  precision,  recall,  and F1 score  are  96.75%,
96.03%, 96.93%, and 96.48%, respectively. These two
tasks  complement  each  other  by  feature  fusion  of
different data patterns, thereby ensuring robustness and
improving  the  accuracy  of  emotion  recognition,  but
lack  flexibility  and  anti-interference  compared  to
decision-level  fusion.  Overall,  our  proposed  method
achieves  higher  system  performance  than  other
methods,  which  is  attributed  to  the  attention-based
CNN  structure  extracting  the  most  discriminative
features and decision fusion algorithm flexibly assigns
label weights.

5　Conclusion

This paper proposes a method for recognizing emotions
during  walking  using  EEG  and  inertial  signals.  The
subjects  are  accompanied  by  immersive  emotions
during  walking  through  VR-based  media  incentives
and complete the acquisition of multi-modal emotional
data.  We  propose  and  evaluate  the  effectiveness  of
DWT-based data representation methods, and use them
as input to the attention-based CNN structure to extract
significant  parts  of  relevant  features.  The  proposed
decision  fusion  algorithm  combines  the  Critic  method
and  majority  voting  strategy  to  fully  consider  the
influence  of  EEG  and  inertial  signals  on  emotion
recognition.  Compared  with  other  state-of-the-art
methods  reimplemented  on  the  dataset  constructed  in
this  paper,  the  proposed  method  has  the  highest
accuracy of 98.73%. An interesting approach for future
research  involves  the  efficient  combination  of  kinect
depth  cameras  and wearable  sensors.  We also  hope  to
explore  a  graph  convolutional  neural  network  model
that can process human skeleton images to analyze the
influence  of  walking  joint  trajectories  on  emotion
recognition  performance.  At  the  same  time,  we  are
looking for a new method based on gait analysis, which
can  combine  temporal  features  and  spatial  features

 

Table 8    Comparison  of  the  classification  performance  of
three types of emotion combinations.

(%)
Emotion ACC PRE REC F1

Neutral-happy 99.38 99.31 99.44 99.37
Neutral-fear 98.65 98.73 98.59 98.64
Happy-fear 93.37 93.34 93.56 93.36

 

Table 9    Comparison  with  other  existing  state-of-the-art
works on the dataset proposed in this paper.

(%)
Method ACC PRE REC F1

Zhang et al.[31] 92.05 92.40 92.36 92.38
Liu et al.[32] 95.33 95.48 95.67 95.40
Xu et al.[33] 96.75 96.03 96.93 96.48
This paper 98.73 98.77 98.82 98.79
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according  to  the  gait  cycle  to  accurately,  and  stably
recognize the emotion during walking.
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