
 

Limits of Depth: Over-Smoothing and Over-Squashing in GNNs
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Abstract: Graph Neural Networks (GNNs) have become a widely used tool for learning and analyzing data on

graph structures, largely due to their ability to preserve graph structure and properties via graph representation

learning.  However,  the  effect  of  depth  on  the  performance  of  GNNs,  particularly  isotropic  and  anisotropic

models, remains an active area of research. This study presents a comprehensive exploration of the impact of

depth  on  GNNs,  with  a  focus  on  the  phenomena  of  over-smoothing  and  the  bottleneck  effect  in  deep  graph

neural  networks.  Our  research  investigates  the  tradeoff  between  depth  and  performance,  revealing  that

increasing depth can lead to over-smoothing and a decrease in performance due to the bottleneck effect. We

also examine the impact of node degrees on classification accuracy, finding that nodes with low degrees can

pose challenges for accurate classification. Our experiments use several  benchmark datasets and a range of

evaluation metrics to compare isotropic and anisotropic GNNs of varying depths, also explore the scalability of

these models. Our findings provide valuable insights into the design of deep GNNs and offer potential avenues

for future research to improve their performance.

Key words:  Graph  Neural  Networks  (GNNs); learning  on  graphs; over-smoothing; over-squashing; isotropic-

GNNs; anisotropic-GNNs

1　Introduction

The  growing  use  of  graph-structured  data  in  a  wide
range  of  real-world  applications  has  led  to  a  surge  of
interest  in  machine-learning  techniques  that  are
specifically  designed  to  operate  on  graphs.  This
includes  applications  such  as  social  networks,
recommender  systems,  hyperlinked  web  documents,
knowledge  graphs,  and  molecule  simulation  data
generated  by  scientific  computation[1–3].  In  recent
years,  Graph  Neural  Networks  (GNNs)  have  emerged
as  a  powerful  method  for  representation  learning  on
graphs.  The  effectiveness  of  GNNs  for  representation
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learning  on  graphs  has  been  demonstrated  in  various
studies[4–6]. One of the unique features of GNNs is their
use  of  neural  message  passing,  which  involves
exchanging  vector  messages  between  nodes  and
updating  them  using  neural  networks.  GNNs  utilize  a
message-passing  algorithm  to  update  the  hidden
embedding  of  each  node  in  the  vertex  set 
during  each  iteration.  This  update  is  based  on  the
information  gathered  from  the  graph  neighborhood

 of the node. The graph, denoted as 
consists of a set of vertices , a set of edges , and a
feature matrix . During the message-passing process,
the  algorithm  aggregates  features  from  neighboring
nodes  in ,  and  then  the  node  combines  the
information  gathered  from  its  neighbors  with  its  own
information  to  construct  a  new  vector,  and  the
collection of such new vectors results in the generation
of  an  embedding  matrix .  This  allows  the  GNN  to
effectively  capture  and  leverage  the  structural
information  inherent  in  the  graph  to  improve
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representation  learning.  The  general  GNN  framework
representing  a  single  message  passing  layer  with
adjacency  matrix ,  feature  matrix ,  and  weight
matrix  is  (with  a  schematic
representation  of  message  passing  phenomenon  given
in Fig. 1).

Our  approach instantiates  a  class  of  isotropic-GNNs
based on a node update equation that treats every “edge
direction” equally,  i.e.,  each  neighbor  receives  the
same weight value, resulting in an equal contribution to
the update of the center node. Isotropic-GNNs include
vanilla GNNs, such as Graph Convolutional Networks
(GCNs)[7] and  GraphSage[8].  In  contrast,  our  approach
involves  implementing  anisotropic-GNNs,  where  each
edge  direction  is  treated  distinctly  in  the  update
equation. This allows for a more nuanced treatment of
the  structural  information  present  in  the  graph,
potentially  leading  to  improved  performance  in
representation learning tasks. Popular anisotropic-GNN
includes  Graph Attention  Network  (GAT)[9].  We have
also  implemented  popular  non-GNN approaches,  such
as  Label  Propagation  (LP)[10] and  the  Multi-Layer
Perceptron  (MLP).  These  methods  utilize  either  label
information or the feature matrix, unlike GNNs, which
rely on the underlying relationships, as depicted in Fig. 2.

GNNs,  however,  have  the  problem  that  model
performance  degrades  as  the  number  of  layers
increases.  The  reason  for  this  is  that  the  deep  GNN
models  lose  the  node’s  local  information  which  is
essential  for  the  optimization  of  a  downstream  task
through  many  message-passing  steps.  Over-
smoothing[11–13] is  the  term  used  to  describe  this
behavior.  In  addition  to  the  over-smoothing  problem,

deep graph neural networks can also suffer from over-
squashing[14, 15].  Over-squashing  occurs  when
messages are aggregated over a lengthy path, leading to
a  bottleneck  effect  where  the  volume  of  data  is
compressed  into  fixed-size  vectors.  This  can  result  in
information  loss  and  reduced  performance  for  GNNs,
particularly  in  deep  architectures  where  message
passing  occurs  over  multiple  layers.  To  put  it  simply,
GNNs can struggle  when dealing with  a  large  volume
of data that needs to fit into a limited space, and when
trying  to  transmit  information  over  a  significant
distance.  Thus,  it  is  important  to  consider  both  the
over-smoothing  and  over-squashing  effects  when
designing  deep  GNNs  to  ensure  that  they  can
effectively  handle  the  complexity  of  graph-structured
data.

The criterion we use to identify appropriate  datasets
in our study is  their  ability to differentiate  statistically
between  the  effectiveness  of  GNNs  and  other  non-
GNN models. We collect a total of 5 datasets[16, 17] and
5  models  that  are  widely  used  in  various  fields  in  the
PyTorch  and  PyTorch  geometric[18] frameworks.  For
fair  comparisons,  we  use  consistent  experimental
settings as reported in the literature. To conduct further
research,  researchers  can  easily  extend our  parameters
by  adding  new  models  with  different  features  and
arbitrary  datasets  from  their  own  experiments.  Our
work has made the following significant contributions:

●  By  employing  both  theoretical  and  experimental
methodologies,  our  study  examines  the  impact  of
neighborhood  information  quality  on  the  accuracy  of
node  classification  tasks.  We  conduct  a  thorough
investigation  into  the  potential  over-smoothing
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Fig. 1    Conceptual  representation  of  the  message  passing  procedure.  Each  node  starts  off  with  an  initial  embedding  vector
( )  (left).  Each  pair  of  linked  nodes  receives  node  information  via  the  message-passing  method  (center).  As  a
consequence, when the message has passed, each node gets its own information as well as neighbor information integrated into
a  single  embedding  vector  ( , )  (right).  This  represents  a  message  passing  among  1-hop  neighborhoods  and  this
process continues for k-hop neighborhoods.
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problems  that  can  arise  with  deep  GNN  architectures,
using  datasets  of  varying  sizes:  small-scale,  medium-
scale,  and  large-scale.  We  ensure  consistent
experimental  conditions  by  running  each  experiment
multiple  times  with  the  same  training  settings  to
eliminate any biases and ensure fair comparisons.

k

●  The  study  demonstrates  the  presence  of  over-
squashing  issues  in  deep  GNN  architectures.  As  the
GNN model incorporates -hop neighborhood around a
node,  particularly  in  large  datasets  where  the  average
node  degree  is  high,  the  bottleneck  effect  is
demonstrated.  This  conclusion  is  drawn  from  a
comprehensive  evaluation  of  GNN  on  real-world
networks and benchmark datasets of varying sizes.

●  We  also  examine  the  correlation  between  node
degree  and  classification  accuracy,  and  our  results
suggest  that  nodes  with  lower  degrees  pose  a  greater
challenge for achieving high accuracy in classification
tasks.  Furthermore,  we  evaluate  the  scalability  of
various  underlying  architectures  on  multiple  datasets
and  identify  the  architectures  that  demonstrate  the
highest levels of scalability.

The  organization  of  this  article  can  be  outlined  as
follows.  Section  2  discusses  the  related  works  in  the
field.  Section  3  defines  the  theoretical  and
mathematical  formulation  of  several  GNN  and  non-
GNN  algorithms,  and  the  over-smoothing  and  over-
squashing  issues.  The  experimental  benchmark  used

for this comparative analysis is described in Section 4,
along with the parameters chosen to achieve this goal.
The results and findings are covered in Sections 5 and
6, respectively. This work ends with the conclusions in
Section 7.

2　Related Work

In recent years, GNNs have gained significant attention
in  the  field  of  machine  learning  due  to  their  ability  to
model complex relationships and dependencies in data.
This  has  led  to  a  surge  of  research  efforts  focused  on
developing  new  architectures,  techniques,  and
applications for GNNs[19–22]. For instance, GNNs have
been  used  for  scene  graph  generation  in  computer
vision  tasks,  where  they  have  shown  significant
improvements  in  performance,  as  highlighted  in  a
recent survey by Chang et al.[23]

GNNs  have  also  been  proposed  for  hyperspectral
image  classification,  leveraging  both  spectral  and
spatial information in the data to improve accuracy. For
instance,  Hong  et  al.[24] proposed  a  GNN-based
approach  for  hyperspectral  image  classification  that
uses  a  graph  convolutional  neural  network  to  capture
the spectral-spatial dependencies in the data. Similarly,
in manifold alignment,  GNNs have been used to align
the manifolds of different modalities and learn a shared
representation  space,  which  is  a  promising  approach
for land cover and land use classification using GNNs,

 

LP

Labels

MLP

Isotropic-
GNNs

Anisotropic-
GNNs

GNNs

GNNs

Non-GNNs

Non-GNNs

Features

Labels
Features
Adjacency

Labels
Features
Adjacency
Neighbourhood
importance

 
Fig. 2    Highlights  of  the  differences  between  non-GNN  approaches  and  GNN  approaches,  specifically  isotropic- and
anisotropic-GNNs in  their  use  of  information for  learning tasks  on graph-structured data.  Non-GNN methods  rely  solely  on
features or labels associated with nodes, links, or the entire graph. In contrast, isotropic-GNNs, such as GCN and GraphSAGE
incorporate  adjacency  information  to  aggregate  messages  from  the  local  neighborhood  up  to  a  certain k-hop  distance.
Anisotropic-GNNs, on the other hand, utilize attention mechanisms to selectively filter and weight incoming messages based on
their relevance, allowing for a more fine-grained and targeted message-passing process.
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as demonstrated by Hong et al.[25].
In temporal activity detection, GNNs have been used

to model the temporal dependencies between activities
and  capture  common  semantics  across  both  seen  and
unseen  activities.  For  example,  Zhang  et  al.[26]

proposed  an  activity  graph  transformer  that  uses  label
embeddings and graph convolutions to predict  activity
instances.  In  spatial-temporal  graph  modeling,  GNNs
have  been  used  to  capture  the  interactions  among
objects  in  videos,  as  shown  by  Li  et  al.[27].  They
proposed  a  spatial-temporal  graph  that  models  object
relations  in  videos  and  incorporated  this  information
into  a  shared  multilingual  visual-semantic  embedding
space.  In  zero-shot  learning  tasks,  GNNs  have  shown
promise  in  learning  graph  representations  for  unseen
classes.  For  example,  Yan  et  al.[28] proposed  a
ZeroNAS  technique  that  uses  a  GNN  to  learn  a
compact  graph  representation  that  can  generalize  to
unseen classes in zero-shot learning tasks.

In  the  context  of  hyperspectral  data  analysis,  recent
studies  have  demonstrated  the  potential  of  GNNs  in
improving  the  performance  of  various  tasks.  For
instance,  GNN-based  approaches  have  been  proposed
to  address  spectral  variability  in  hyperspectral
unmixing[29],  and  iterative  multitask  regression
frameworks  have  been  presented  that  dynamically
propagate  labels  on  a  learnable  graph  for  improved
performance  in  semi-supervised  hyperspectral
dimensionality  reduction[30].  These  recent
developments  highlight  the  broad  potential  and
versatility  of  GNNs in hyperspectral  data  analysis  and
suggest  ongoing  efforts  to  advance  this  rapidly
evolving  field.  Overall,  the  growing  interest  in  GNNs
in  the  machine  learning  community  underscores  the
importance  of  developing  innovative  approaches  that
can leverage the power of graph-based representations
for a wide range of applications.

While GNNs have shown great potential in modeling
complex data  structures,  the  limits  of  their  depth have
not  yet  been  thoroughly  explored.  Addressing  these
limits  remains  an  important  research  challenge,  as
deeper  architectures  can  potentially  capture  more
complex relationships in data, but may also suffer from
over-smoothing and over-squashing, which can lead to
decreased  performance.  To  address  this  issue,  this
paper  presents  a  comprehensive  investigation  of  the
impact of depth on GNNs, studying the phenomena of
over-smoothing  and  over-squashing  both  theoretically
and experimentally. The paper also explores the impact
of  node  degrees  on  classification  accuracy  and
investigates  the  scalability  of  different  GNN
architectures.

3　Theoretical Background

This  section describes the different  techniques used in
the  paper  and  throws  light  on  the  qualitative
comparison of the same (as shown in Table 1).

3.1　Non-GNNS

Non-GNNs  include  a  class  of  models  that  use  either
labels  associated  with  nodes  (or  links  or  an  entire
graph) or  individual  node features but  do not  consider
neighborhood connectivity for a downstream task.

(1) LP
Label propagation is the simplest algorithm for node-

level prediction problems that does not involve the use
of  neural  networks.  LP  is  a  technique  where,  given
certain  unlabeled  nodes  in  the  graph,  we  utilize  an
iterative  method  to  assign  labels  to  these  unlabeled
nodes  by  propagating  labels  over  the  dataset  using  a
probabilistic relational classifier[10].

(2) MLP
One of the most fundamental types of neural network

model  designs  is  the  MLP,  in  which  the  unprocessed
 

Table 1    Embedding equation of GNNs and Non-GNNs.
Category Model Embedding equation Reference

Non-GNN

LP
P (Yv = c) =

1∑
(v, u) ∈E

Av, u

∑
(v, u) ∈E

Av, u ·P (Yv = c)
[10]

MLP H = a (b+W ·X) [31]

Random forests+ ĈB
rf(x) =majority vote

{
Ĉb(x)

}B
1

[32]

GNN
GCN* H = D̃−1/2 · ÃT · D̃−1/2 ·X ·WT [7]

GraphSAGE* H =W1 ·X+W2 · mean (ÃT ·X) [8]
GAT** H = ÃT ·Walpha ·X ·WT [9]

Note: * denotes isotropic-GNNs and ** denotes anisotropic-GNN.
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node  input  characteristics  are “fed-forward” through a
number of layers of computation to generate an output
that corresponds to a probability distribution across the
predicted  classes.  Because  of  the  non-linearity
introduced by the activation functions in the layers, our
neural  network  can  learn  more  complicated  functions.
These activation functions are helpful for deeper GNNs
as  well  as  MLPs[31].  ReLU  activation  functions  are
often used in each hidden layer of MLP models, while
a  Softmax  activation  function  is  present  in  the  output
layer. An MLP analyses nodes in this manner, but it is
less accurate since it  cannot take the adjacency matrix
into account.

Ã

Table 1 shows that for a given node v in a graph, the
associated  label  is  represented  by  the  symbol c.  The
adjacency matrix, represented by the symbol , and the
feature  matrix,  represented  by X,  are  also  associated
with the graph nodes. The weight matrix is represented
by W,  while  the  final  embedding  matrix  generated  is
represented  by H.  In  addition  to  this,  the  bias  is
represented  by  the  symbol b,  and  the  activation
function is represented by a[32].

3.2　GNNs

In  the  context  of  GNNs,  a  GNN  layer  can  be
conceptualized  as  a  step  in  the  message-passing
process, where each node adjusts its state by gathering
messages  from  its  immediate  neighbors.  The  key
distinguishing factor between various GNN types is the
manner  in  which  each  node  blends  its  own
representation  with  that  of  its  neighbors. Figure  1
illustrates  the  fundamental  message-passing  process.
However,  in  most  applications,  it  is  also  necessary  to
enable  interactions  among  nodes  that  are  not  directly
linked,  and  this  is  accomplished  by  incorporating
multiple layers of GNNs.

(1) Isotropic aggregation and derived models.

Ã X

W

In  isotropic-GNNs,  every  neighbor  has  the  same
importance  while  passing  messages  to  the  central
node[7, 8].  No  weighting  factor  is  assigned  to  nodes
instead  an  adjacency  matrix  is  applied  to  the  feature
matrix  to  generate  the  resulting  embedding  matrix
without  taking  into  account  the  attention  matrix.  The
general  embedding  equation  for  isotropic-GNNs
simply has  an  adjacency matrix ,  a  feature  matrix 
associated  with  a  node/link  or  an  entire  graph,  and  a
weight matrix ,
 

H = ÃT ·X ·WT (1)

(2) Anisotropic aggregation and derived models.

Walpha

Anisotropic-GNNs are based on the simple idea that
some nodes  are  more  important  than  others  regardless
of  their  node  degrees.  In  order  to  account  for  the
significance of each neighbor,  an attention mechanism
has  been  introduced  (originally  proposed  in  Ref.  [9])
which  assigns  weightage  to  each  connection  in  the
network. So instead of calculating static weights based
on  node  degrees  like  isotropic-GNNS,  they  assign
dynamic  weights  to  node  features  through  a  process
called  self-attention.  Attention-based  GNN  models
typically  use  non-negative  attention  weights  to
discount  the  contribution  from  dissimilar  neighbors.
The  mechanism  assigns  a  weighting  factor  (attention
score)  to  each  connection  involving  weight  matrix

 that contains the final attention coefficient of all
the nodes,
 

H = ÃT ·Walpha ·X ·WT (2)

3.3　Over-smoothing

The  problem  of  over-smoothing  in  GNNs  was  first
identified  in  Ref.  [11],  where  it  was  shown that  when
Laplacian  smoothing  is  repeatedly  applied,  the
attributes  of  nodes  within  each  connected  component
of  the  network  tend  to  converge  to  a  uniform  value.
This is because deep GNN models go through a lot of
message-passing steps and lose the local knowledge of
the  node,  which  is  crucial  for  excellent  model
performance.  As  a  result,  GNN  performance  suffers
when there are several  layers stacked.  The problem of
over-smoothing  in  GNNs  restricts  the  ability  of  these
models to become deep, that is, to have a large number
of  message-passing  steps,  which  is  crucial  for
capturing  the  overall  structural  characteristics  of  the
graph. This issue is clearly illustrated in Fig. 3[33].

3.4　Over-squashing

k K
In  order  for  a  GNN  to  incorporate  information  from
nodes  that  are -hops  away,  it  should  have  at  least 
layers;  otherwise,  there  is  a  risk  of  under-reaching,
where distant nodes remain unaware of one another. It
is  important  to  note  that  tasks  that  require  long-range
interaction  would  require  as  many  GNN  layers  as  the
interaction  range  to  avoid  under-reaching.  With  each
additional  layer,  the  receptive  area  of  a  node  expands
exponentially.  Nevertheless,  this  growth  causes  the
information  from  the  enlarged  receptive  field  to  be
squeezed  into  fixed-length  node  vectors,  resulting  in
over-squashing,  as  discussed  in  Refs.  [14, 34].
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Consequently,  the  network is  capable  of  learning only
short-range signals from the training data and is unable
to transmit information originating from distant nodes,
as clearly depicted in Fig. 4[33].

4　Experimental Case-Study

4.1　Unified view

This paper focuses on experimentation and analysis to
gain  a  statistical  understanding  of  the  inherent
limitations  of  deep  graph  neural  networks.  The  aim is
to  establish  a  firm  foundation  for  future  research
advancements in the field.  The primary objective is  to
explore  and  address  fundamental  research  questions
related to this topic.

RQ1: Can  the  accuracy  of  classification  be  affected

RQ2:

RQ3:

RQ4:

RQ5:

by the quality of neighborhood information?  Are
deep  anisotropic  and  isotropic  GNNs  susceptible  to
over-smoothing? Can anisotropic-GNNs serve as
a  solution  to  the  problem  of  over-squashing  in  deep
GNNs and alleviate bottlenecks? Can the degree
of  a  node  affect  the  accuracy  of  classification?

Can anisotropic and isotropic GNN be scaled up
to handle large-scale datasets?

To  this  end,  we  conduct  experiments  using  a
different range of node classification datasets.

4.2　Numerical datasets

The  effectiveness  of  the  proposed  models  is  assessed
using  three  well-known  citation  network  datasets,
namely  Cora[35],  Citeseer[36],  and PubMed[37]，  which
are  benchmark  citation  network  datasets  used  for
evaluating  graph-based  machine  learning  models.
These datasets consist of scientific publications that are
categorized  into  multiple  topics  and  represented  as
citation networks, where each publication is connected
to  others  through  citation  links.  Each  publication  is
represented  as  a  sparse  bag-of-words  vector,  with
binary  values  indicating  the  presence  or  absence  of
each word in  the  publication.  In  addition,  we evaluate
the effectiveness of our models using the OGBN-Arxiv
dataset[17],  which  is  a  large-scale  citation  network
dataset  containing  over  1.4  million  scientific
publications,  along  with  their  citation  links,  abstracts,
and authors and can be used to determine a technique’s
scalability due to its large number of nodes and edges.
We  carefully  design  the  prediction  task  and  data  split
for  each  dataset  to  ensure  that  achieving  strong
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Fig. 3    Visual representation highlighting the challenge of performing downstream tasks when the feature vectors of all nodes
become indistinguishable due to over-smoothing, which occurs when the number of layers in a GNN increases to the extent that
all  the feature vectors become identical.  As depicted,  the feature vectors are initially distinguishable prior to undergoing the
GNN  layer,  but  after  a  certain  number  of  layers,  they  lose  their  distinctiveness.  An  inherent  issue  with  GNNs  is  over-
smoothing,  which  is  caused  by  the  progressive  loss  of  node-specific  information  over  multiple  cycles  of  GNN  message
forwarding. This results in the information gathered from nearby nodes after each GNN layer becoming more prominent in the
new node representations, leading to the loss of unique node information.
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k

Fig. 4    Visual  representation  depicting  the  phenomenon  of
information  overflow  that  occurs  when  a  GNN  becomes
deeper and begins to incorporate information from the -hop
neighborhoods surrounding a target node. As the amount of
data being processed grows exponentially,  it  gets condensed
into  fixed-size  vectors  due  to  a  bottleneck.  This  can  lead  to
the compression of critical information, resulting in the loss
of  important  details.  This  bottleneck  phenomenon  can  be
observed  in  various  GNN  architectures  and  can  severely
impact the network’s performance, as depicted in this figure.
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prediction  performance  would  have  a  significant
impact on the associated application. Table 2 provides
an overview of these datasets. This approach combines
academic  rigor  with  creative  thinking  to  evaluate  the
models’ effectiveness in various contexts.

4.3　Experimental setup

The present  study aims to  identify  suitable  datasets  of
varying  sizes  (small,  medium,  and  large)  that  possess
the  ability  to  distinguish  the  performance  of  GNNs
through statistical analysis.  PyTorch Geometric[18] is  a
widely-used  Python  package  for  developing  graph-
based  deep  learning  models.  It  offers  preprocessed
versions  of  benchmark  datasets,  including  the  Cora,
Citeseer,  PubMed,  and  OGBN-Arxiv  citation  network
datasets,  that  can  be  easily  used  with  popular  deep
learning  frameworks  like  PyTorch.  This  makes  it  a
convenient  tool  for  researchers  and  practitioners
working  on  graph-based  machine-learning  problems.
All  the  experiments  are  run  on  Quadro  P4000  with
64  GB  GPU  memory  architecture  with  predefined
optimizer  and  learning  rates  while  keeping  all  other
parameters  fixed  using  the  PyTorch  and  PyTorch
geometric  frameworks.  For  each  setting,  we  run  10
times and report the average results.

5　Result

RQ1: Impact  of  quality  neighborhood  information
on classification accuracy (see Table 4 and Fig. 5).

RQ2: Isotropic- and  anisotropic-GNNs  for  node
classification  task  under  different  depths  (see Table  3
and Figs. 6 and 7).

(h)

RQ3: Over-squashing  effect  in  GNNs.  No  such
techniques have yet been presented in the literature that
would  quantify  over-squashing,  despite  the  fact  that  it
has  lately  been  documented  in  the  literature.  We  will
quantify the problem with the help of a graph showing
performance drop as we increase the number of hops 
during the training phase on a large dataset (see Fig. 8).

RQ4: Average degree per node versus classification
accuracy (see Fig. 9).

RQ5: Training time computation (see Fig. 10).

6　Finding

Here  is  the  list  of  observations  and  findings  from  the
given experiments.

F1: Our  experimental  analysis  suggests  that  the
accuracy  of  classification  is  influenced  by  the  quality
of  information  gathered  from  neighboring  nodes,  as
illustrated  in Fig.  5 and Table  3.  Isotropic  models
aggregate  information  indiscriminately  from  all
neighboring  nodes,  while  anisotropic  models  leverage
attention  scores  to  minimize  the  impact  of  irrelevant
neighbor information. Non-GNN models, which do not
consider neighbor information, perform poorly on node
classification tasks.

F2: Anisotropic models offer a degree of relief from
the over-smoothing problem since they can selectively
focus  on  specific  nodes  during  message  passing,
utilizing  non-negative  attention  weights  to  reduce  the
impact  of  dissimilar  neighbors.  As  demonstrated  in
Fig.  6,  the  rate  at  which  performance  deteriorates  in
anisotropic  models  is  lower  than  that  in  isotropic
models,  as  confirmed  by  our  experimental  results  in
Table 3.

F3: Our findings illustrate that GNNs that distribute
incoming  edges  evenly,  such  as  isotropic-GNNs,  are
considerably  more  vulnerable  to  the  problem  of  over-
squashing  than  anisotropic-GNNs.  This  is  clearly
demonstrated  in Fig.  7,  where  the  GCN  exhibits
underfitting  of  the  training  data  after  four  hops,
whereas  the  GAT  shows  this  phenomenon  after  six
hops.

F4: We  argue  that  poorly  connected  nodes  might
negatively  impact  performance.  The  classification
accuracy of Citeseer is mostly low on all GNN models
as shown in Table 3. Here, we determine the correctness
of  the  GCN  model  for  each  degree  on  Citeseer  and

 

Table 2    Statistical characteristics of the node classification datasets.

Dataset Number of
nodes

Number of
features

Number of
edges

Number of
classes

Number of average
node degrees

Number of nodes for
training/validation/testing

Cora{*}{+} 2708 1433 5429 7 3.90 140/500/1000
Citeseer{*}{+} 3327 33 703 4732 6 2.77 120/500/1000
Pubmed{**}{+} 19 717 500 44 338 3 4.50 60/500/1000

OGBN-Arxiv{***}{+} 169 343 128 1 166 243 40 13.70 91/30 000/47 000
OGBN-Products{***}{+} 2 449 029 100 61 859 140 47 50.50 196 000/49 000/2 204 000

Note: + denotes citation network datasets; * denotes small-scale datasets; ** denotes medium-scale datasets; and *** denotes large-
scale datasets.
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Pubmed  datasets  as  shown  in Fig.  8.  These  findings
support  our  hypothesis  that  nodes  with  few  neighbors
are  actually  more  difficult  to  categorize.  This  is
because GNNs are designed in such a way that you can
aggregate  more  information  the  more  relevant
connections you have.

F5: Attention-based  models,  due  to  the  complexity
of  computing  attention  scores,  are  not  scalable  to
handle large datasets within a reasonable time frame. In
contrast,  isotropic  models  are  faster  than  anisotropic
models,  as  demonstrated  in Fig.  9,  across  all  datasets.
GraphSAGE[8],  on the other hand, is a highly efficient
architecture that can handle large graphs. While it may
not  be  as  accurate  as  GCN  or  GAT,  it  is  a  crucial
model  for  managing  massive  amounts  of  data.  This
impressive speed is achieved through a smart blend of
neighbor sampling and quick aggregation techniques.

Based on the above findings a qualitative comparison
of the underlying techniques is done in Table 5.

7　Conclusion

In  conclusion,  our  study  highlights  the  tradeoff
between  depth  and  expressiveness  in  GNN
architectures  and  the  need  for  more  effective  models
that  can  propagate  relevant  information  while
incorporating  both  local  and  global  neighborhoods
without  over-smoothing  or  over-squashing  the  data.
The  use  of  attention  models  and  taking  node  degrees
into  account  can  improve  classification  accuracy,  but
they also introduce computational challenges.

Our  findings  provide  valuable  insights  into  the
impact  of  depth  on  GNNs  and  shed  light  on  the
phenomena  of  over-smoothing  and  over-squashing.
These  findings  can  inform  the  development  of  more
effective  GNN  architectures  for  hyperspectral  data
analysis and other applications. The ongoing efforts to
develop  such  architectures  can  help  address  the
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Fig. 5    Heatmap  showing  the  accuracy  of  models  under
consideration  in Table  3.  The  heatmap colors  represent  the
accuracy of each model on each dataset, with warmer colors
indicating  higher  accuracy.  The  annotations  within  the
heatmap  show  the  accuracy  scores  of  MLP,  GCN,
GraphSAGE, and GAT on the Cora, Citeseer, PubMed, and
OGBN-Arxiv  datasets.  MLP  achieves  the  lowest  accuracy
overall  as  no  information  is  aggregated  from  neighbors.
GCN achieves  higher accuracy than MLP as  information is
aggregated  from k-hop  neighborhood  around  a  node.  GAT
achieves  the  highest  overall  accuracy,  with  the  highest
accuracy  on  all  three  datasets.  These  results  indicate  that
GAT makes each node more connected to similar nodes than
dissimilar nodes by applying attention scores during message
passing.

 

±
Table 3    Results in terms of classification accuracy for various datasets under various depth (or layers, 1, 2, 4, 8, 16, and 32)
with  mean  accuracy  across  various  data  splits.  We  also  provide  the  layer  at  which  the  particular  model  performs  best
(highlighted in bold), broken down by dataset and GNN model.

(%)
Model Dataset 1 layer 2 layer 4 layer 8 layer 16 layer 32 layer

GCN

Cora 55.0±0.40 81.30±0.40 77.48±0.40 64.78±0.20 48.55±0.45 32.76±0.14
Citeseer 48.4±1.60 71.10±0.70 63.57±1.40 34.20±1.50 33.32±0.45 28.25±2.32
PubMed 53.7±0.40 77.80±0.40 72.88±0.44 62.25±7.32 55.50±2.45 42.76±3.14

OGBN-Arxiv 56.0±5.40 70.06±0.19 70.48±0.62 66.78±0.20 56.55±0.45 52.76±6.60

GraphSAGE

Cora 52.05±0.45 ±1.4079.08 77.52±1.75 70.32±1.20 61.55±0.45 42.76±1.14
Citeseer 54.66±2.40 ±1.4071.22 65.48±2.30 49.78±0.25 30.72±5.45 28.76±2.30
PubMed 56.25±1.60 ±1.6678.22 72.40±2.40 69.78±1.20 56.45±2.45 42.16±2.26

OGBN-Arxiv 52.06±6.40 ±2.4071.22 69.48±2.00 58.72±2.25 52.70±1.45 43.26±3.14

GAT

Cora 58.00±0.20 ±0.5083.50 77.48±2.40 70.78±2.20 62.65±2.45 59.76±2.14
Citeseer 50.00±3.40 ±0.4071.80 67.52±1.40 61.78±1.20 55.55±3.45 52.76±0.14
PubMed 58.02±1.40 ±0.5079.42 75.48±2.40 70.78±1.20 62.55±2.45 57.26±3.75

OGBN-Arxiv 59.00±0.40 ±0.4471.88 68.48±0.05 60.78±2.20 52.55±1.45 48.26±0.06
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tradeoff  of  depth  and  improve  the  performance  of
GNNs in a variety of tasks.

Future  research  can  investigate  the  impact  of
different  types  of  variability  on  the  performance  of
GNN  architectures  to  improve  their  robustness  and
generalization  in  real-world  applications.  In  addition,
the combination of GNNs with other machine learning
techniques,  such  as  zero-shot  learning  and  transfer
learning,  can  improve  the  accuracy  and  generalization
of graph-based models.

Overall,  the  growing  interest  in  GNNs  and  their
potential  for  modeling  complex  data  structures
underscores  the  importance  of  advancing  this  rapidly
evolving  field.  By  developing  innovative  approaches

that  can  leverage  the  power  of  graph-based
representations  while  addressing  the  limitations  of
current approaches, we can continue to make significant
progress in machine learning and improve the accuracy
and interpretability of data analysis across domains.
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Table 5    Qualitative comparison among isotropic-GNNs, anisotropic-GNNs, and Non-GNNs.
Method WattAttention matrix ( ) Training time Accuracy Over-smoothing Over-squashing

Isotropic-GNNs Not applied Low Low More prone More prone
Anisotropic-GNNs Applied Very high High Less prone Less prone

Non-GNNs Not applied Medium Very low − −
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Fig. 10    Assessment of training time requirements of three GNN model, GCN, GraphSAGE, and GAT, on various datasets. It
is observed that GAT has a significantly higher training time compared to GCN, which can be attributed to the complex nature
of  calculating  attention  scores  for  each  edge.  Additionally,  we  noted  that  the  training  time  for  anisotropic  models  increases
exponentially as the number of layers increases, in contrast to isotropic models.
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