
 

PURP: A Scalable System for Predicting Short-Term Urban Traffic
Flow Based on License Plate Recognition Data

Shan Zhang, Qinkai Jiang, Hao Li, Bin Cao, and Jing Fan*

Abstract: Accurate and efficient  urban traffic  flow prediction can help drivers identify  road traffic  conditions in

real-time, consequently helping them avoid congestion and accidents to a certain extent. However, the existing

methods  for  real-time  urban  traffic  flow  prediction  focus  on  improving  the  model  prediction  accuracy  or

efficiency while ignoring the training efficiency, which results in a prediction system that lacks the scalability to

integrate real-time traffic flow into the training procedure. To conduct accurate and real-time urban traffic flow

prediction while considering the latest historical data and avoiding time-consuming online retraining, herein, we

propose a  scalable  system  for  Predicting  short-term  URban  traffic  flow  in  real-time  based  on  license  Plate

recognition data (PURP). First, to ensure prediction accuracy, PURP constructs the spatio-temporal contexts of

traffic flow prediction from License Plate Recognition (LPR) data as effective characteristics. Subsequently, to

utilize  the  recent  data  without  retraining  the  model  online,  PURP  uses  the  nonparametric  method k-Nearest

Neighbor  (namely  KNN) as the prediction framework because the KNN can efficiently  identify  the top-k most

similar spatio-temporal contexts and make predictions based on these contexts without time-consuming model

retraining online. The experimental results show that PURP retains strong prediction efficiency as the prediction

period increases.

Key words:  traffic  flow  prediction; k-Nearest  Neighbor  (KNN); License  Plate  Recognition  (LPR)  data; spatio-

temporal context

1　Introduction

Traffic  flow  prediction  is  a  procedure  that  utilizes
traffic  measurement  data  from  monitoring  devices
installed  near  roads  to  predict  the  number  of  vehicles
passing  by  in  the  future[1].  The  information  on  short-
term traffic flow prediction can be provided to drivers
in real-time,  providing them with a reliable estimation
of  travel  state,  expected  delays,  and  alternative  routes

to  their  destinations[2, 3],  which  reduce  the  risk  of
accidents  to  a  certain  extent.  Therefore,  accurate  real-
time  traffic  flow  prediction  is  the  key  to  traffic
induction  and  control,  which  directly  affects  the
performance of the transportation system[4].

Real-time  urban  traffic  flow  prediction  aims  to
efficiently  predict  traffic  flow  through  urban
intersections  in  a  short  period.  Urban  traffic  flow
prediction  is  more  challenging  than  traffic  flow
prediction on a highway, because urban road networks
have complicated environments and signal interference
caused  by  dense  buildings.  In  recent  years,  License
Plate Recognition (LPR) data, which are collected from
surveillance  cameras  installed  at  intersections,  have
been widely used for urban traffic flow prediction[5, 6].
LPR  data  can  provide  wider  coverage  and  higher
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accuracy[7, 8] than  other  data  sources,  such  as  loop
detector  data[9, 10] and  global  positioning  system
data[11].  With a  large amount  of  LPR data,  mining the
characteristics  of  traffic  flows  and  efficiently
conducting real-time urban traffic flow prediction have
become considerable challenges.

The  existing  methods  based  on  LPR  data  focus  on
the  use  of  neural  networks  to  ensure  accurate  or
efficient prediction. For instance, the Long Short-Term
Memory  (LSTM)  network  is  used  to  capture  the
temporal  correlations  of  traffic  states[12],  and  the
Convolutional  Neural  Network  (CNN)  is  used  to
extract  spatial  relationships[13].  However,  for  the  real-
time  prediction  of  urban  traffic  flow,  the  existing
methods  are  faced  with  a  potential  disadvantage,  i.e.,
the  lack  of  training  scalability.  Specifically,  to  derive
accurate  real-time  prediction,  integrating  the  recent
traffic  flow  data  into  the  prediction  model  is  crucial.
However,  the  existing  methods  need  to  retrain  the
prediction  model  from  scratch  when  new  traffic  flow
data are involved, and the training cannot be conducted
in  real-time,  which  leads  to  the  dilemma  between
training  time  and  real-time  prediction.  Hence,  a
prediction  model  that  can  be  trained  in  a  scalable
manner is needed.

k

To this end, herein, we propose a scalable system for
real-time  Prediction  of  URban  traffic  flow  based  on
license  Plate  recognition  data  (PURP).  PURP  aims  to
mine  the  effective  characteristics  of  traffic  flow  from
LPR data for accurate real-time traffic flow prediction
while considering the latest historical data and avoiding
time-consuming  retraining  online.  First,  PURP
constructs  the  spatio-temporal  contexts  of  traffic  flow
prediction as the effective characteristics.  Specifically,
given a location to be predicted, the temporal aspect of
the  spatio-temporal  contexts  captures  the  traffic  flow
correlation  between  the  prediction  duration  and  the
historical  observations,  whereas  the  spatial  aspect  of
the  spatio-temporal  contexts  profiles  the  influence  of
nearby locations. Subsequently, in order to analyze the
latest  historical  data  without  retraining  the  model,
PURP  uses  the  idea  of  the  nonparametric  method -
Nearest  Neighbor  (namely  KNN)[14] as  the  prediction
framework  because  the  KNN  focuses  on  predicting
traffic  flow  by  rapidly  finding  and  utilizing  similar
historical  data.  Hence,  PURP uses  KNN to  efficiently
identify  the  spatio-temporal  contexts  of  traffic  flow
prediction  and  make  predictions  based  on  these

contexts  without  the  time-consuming  model  training
online.  Moreover,  to  rapidly  construct  spatio-temporal
contexts  to  ensure  the  prediction  efficiency  of  PURP,
we  propose  a  circular  array-based  data  structure  to
organize  LPR  data,  which  can  provide O (1)  running
time for data access.

k

Based  on  the  aforementioned  idea,  initially,  PURP
transforms the traffic flow data by counting the license
plates  from  LPR  data  and  maintains  the  traffic  flow
data  using  the  proposed  data  structure.  Then,  PURP
constructs  the  spatio-temporal  contexts  of  traffic  flow
prediction.  Afterward,  PURP  builds  traffic  flow
vectors[15] for  the  spatio-temporal  contexts  and
identifies the top-  similar spatio-temporal contexts by
calculating the similarity  between the vectors.  Finally,
the traffic flow values corresponding to these contexts
are used to make predictions.

In  general,  the  contributions  of  this  study  can  be
summarized as follows:

(1)  We  propose  PURP,  a  scalable  system  for
predicting  short-term  urban  traffic  flow  in  real-time.
PURP  utilizes  up-to-date  historical  data  for  real-time
traffic  flow  prediction  without  the  time-consuming
model  training  online.  Notably,  when  the  prediction
duration increases,  the  system response time of  PURP
remains stable, which ensures the prediction efficiency
of the real-time prediction system.

(2) We propose a data structure based on queues and
arrays  to  support  the  quick  query  for  LPR  data  and
efficient  online  construction  of  the  spatio-temporal
contexts for real-time traffic flow prediction.

(3)  Extensive  experimental  evaluation  reveals  the
prediction  accuracy  and  efficiency  of  PURP.  The
experimental  analysis  also  shows  the  scalability  of
PURP.

The remainder of this paper is organized as follows:
Section  2  introduces  the  preliminaries  and  defines  the
problem. Section 3 presents an overview of the PURP
system.  Section  4  elaborates  on  the  details  of  the  first
module  in  the  PURP  system.  Section  5  describes  the
second  module  in  the  PURP  system.  Section  6
discusses the last module in the PURP system. Section
7  presents  the  experimental  results.  Section  8  reviews
the  related  work.  Finally,  Section  9  concludes  the
paper.

2　Preliminary

In this section, we present a set of preliminaries that are
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important to set  the stage for understanding the PURP
system. In particular, first, we introduce the concepts of
checkpoint,  traffic  flow,  target  checkpoint,  influential
checkpoint,  etc.  Then, we formalize the problem to be
addressed  in  this  study.  Finally,  we  introduce  the
underlying  data  structure. Table  1 summarizes  the
frequently used notations in this study.

2.1　Concept definitions

cCheckpoint.  Checkpoint  denotes the location where
a  surveillance  camera  is  installed.  The  surveillance
camera is  used for  real-time monitoring and recording
throughout  the  day.  The  monitoring  targets  are  the
vehicles  passing  through  this  checkpoint.  The  main
contents  of  monitoring  and  recording  include  various
information  regarding  the  vehicles,  such  as  vehicle
model,  color,  license  plate  number  obtained  by
automatic  identification,  driving  direction,  and  transit
time. In urban roads, surveillance cameras are installed
in every lane of intersections.

Traffic flow. We refer to the number of cars passing
through a checkpoint within a specific period as traffic
flow.  In  this  study,  the  historical  traffic  flow  is
transformed  by  counting  the  license  plates  monitored
by the surveillance cameras.

ctarget

c′i , i = 1, 2, . . . , n

Target  and  influential  checkpoints.  Based  on  the
definitions  of  checkpoint  and  traffic  flow,  we  regard
the  checkpoint  where  the  prediction  is  performed  as
target  checkpoint .  The  traffic  flows  of  nearby
checkpoints  are  expected  to  influence  each  other.  The
checkpoint  within  a  certain  area  of  the  target
checkpoint  is  regarded  as  the  influential  checkpoint

.

s
t

Influential  and  benchmark  periods.  We  assume
that the traffic flow in the past  minutes of a specific
time point  is  similar to that in the next period of the

t s

t

time point .  The past  minutes are referred to as  the
influential period. The request issuing time point is the
time when the user issues the prediction query. When 
is  the  request  issuing  time  point,  we  refer  to  the
influential period as the benchmark period. We use the
traffic  flow  in  the  benchmark  period  to  predict  the
traffic flow in the prediction period.

ctarget

s

Example. As shown in Fig. 1, a user issues a request
to “predict the traffic flow of the checkpoint  from
8:20 to  8:30” at  8:00,  and we set ,  i.e.,  the  length  of
the influential period, to 30 min. Thus, the benchmark
period is [7:30, 8:00].

2.2　Problem definition

Based  on  the  understanding  of  the  concepts  of  target
checkpoint and traffic flow, PURP defines traffic flow
prediction as follows:

C′ H
ctarget

ctarget tstart

tend

Definition 1　Given a set of influential checkpoints
 and  a  set  of  historical  periods  for  target

checkpoint , we predict the future traffic flow for
target  checkpoint  from the  start  time  to  the
end time .

2.3　Data structure

d

Traffic flow table T. PURP maintains a data structure,
i.e.,  a  traffic  flow  table,  which  is  used  to  store  the
traffic  flow  of  each  checkpoint  in  the  latest  historical
days . We utilize an array to rapidly locate the traffic
flow  storage  location  of  each  checkpoint,  because  the
 

8:007:507:407:30 8:10

Benchmark time period Prediction time period

Request issuing time

8:20 8:30

Influential period = 30 min 
Fig. 1    Illustration of different periods.

 

Table 1    Frequently used notations.
Notation Description

C = {ci | i = 1, 2, . . . , m} mSet of  checkpoints
ctarget Target checkpoint
r  (km) ctargetRadius of the circle centered on 

C′ = {c′i | i = 1, 2, . . . , n} nSet of  influential checkpoints
s (min) Influential period
b (min) Benchmark period
v (min) bTime offset to move the benchmark period  to get the historical time period
d  (day) Historical days to store traffic flow values

H = {hi | i = 1, 2, . . . , (2v+1)×d+ v} Set of historical time periods
T Trafic flow table
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d

d

time to access an element within an array is short. Each
element  stores  a  queue,  which  stores  the  traffic  flow
values  every  period  in  the  latest  day.  Herein,  the
length of the period is fixed at 1 min. We use a queue
to  store  the  historical  traffic  flow  of  each  checkpoint
because of its first in and first out characteristic, which
means that we can delete records stored earlier and add
new  records  according  to  time  series  to  update  the
latest  day  data.  Notably,  we  use  a  circular  array
instead  of  a  linked  list  to  implement  a  queue  to  store
historical  traffic  flow because  the  time complexity  for
accessing a linked list and a circular array is O (n) and
O (1), respectively, which means that a circular array is
faster than a linked list for querying traffic flow values
from the table.

Example. Figure  2 shows  an  example  of  the  traffic
flow  table.  The  left  of Fig.  2 is  an  array  where  each
entry  corresponds  to  the  historical  traffic  flow  of  a
unique checkpoint. The right part of Fig. 2 is the stored
content in each entry. The stored content in each entry

d
is a queue to store the traffic flow every minute in the
latest  day of each checkpoint.

3　PURP Overview

k

In  this  section,  we  present  an  overview  of  PURP.
PURP is a scalable system for the real-time prediction
of  short-term traffic  flow at  urban  checkpoints.  Based
on the  idea  of  KNN, PURP aims to  identify  the  top-
spatio-temporal  contexts  of  the  target  checkpoint  to
predict  traffic  flow.  In  order  to  achieve  this  goal,  the
PURP system comprises  three  main  modules,  namely,
the  traffic  flow  extraction  module,  the  spatial  and
temporal  context  construction  module,  and  the
prediction  module.  The  framework  of  the  PURP
system  is  shown  in Fig.  3.  The  three  modules  are
briefly described as follows:

In the traffic flow extraction module, PURP collects
monitoring  data  from  surveillance  cameras  at
checkpoints,  extracting  traffic  flow  values  from  the
data.  The  surveillance  cameras  record  vehicle
information  at  each  timestamp;  however,  PURP  aims
to  obtain  the  traffic  flow  values  at  checkpoints  in
continuous  periods.  In  this  module,  PURP  transforms
the traffic flow data by counting the license plates from
the recognition data  and stores  the  traffic  flow data  in
the  traffic  flow  table.  Because  the  traffic  flow  table
stores the latest traffic flow data, with the generation of
the  monitoring  data,  PURP needs  to  update  the  traffic

 

c1

c2

ci

cm 4 9 15 8 7 8 4

5 7 11 17 19 20 16

11 9 9 9 8 9 5

4 2 7 6 9 11 10
…

……
…

 
Fig. 2    Traffic flow table.

 

Input
Request issuing time
Target checkpoint
Prediction of time period

Output
Prediction of traffic flow

Checkpoints

Traffic flow
extraction module

Configuration
information

table

Monitoring
information

table

Traffic flow
table

Spatial context
construction

Temporal context
construction

Spatial and temporal
context construction

module

Prediction

Prediction
module

Spatial context impact weight calculation

Top-k spatio-temporal context selection

Spatio-temporal context fusion and similarity calculation

Top-k spatio-temporal context selection

 
Fig. 3    PURP system.

    174 Big Data Mining and Analytics, March 2024, 7(1): 171−187

 



flow table. As indicated by the dotted arrow in Fig. 3,
PURP  sends  an  update  request  to  the  monitoring
information  table.  Then,  PURP  uploads  the  next
period’s traffic flow values for all checkpoints from the
monitoring information table to the traffic flow table.

The  goal  of  the  spatial  and  temporal  context
construction  module  is  to  construct  the  spatial  and
temporal contexts of traffic flow prediction at the target
checkpoint  separately.  Based  on  the  checkpoint
information  obtained  from  the  traffic  flow  extraction
module,  PURP  uses  the  influential  checkpoints  of  the
target checkpoint to construct the spatial contexts. The
historical  periods of  the benchmark period are used to
construct the temporal contexts.

k

k

k

In  the  prediction  module,  PURP identifies  the  top-
spatio-temporal  contexts  and  makes  predictions  based
on  these  contexts.  First,  PURP  calculates  the  impact
weight of the spatial contexts of the target checkpoint.
Then,  PURP  calculates  the  similarity  of  the  spatio-
temporal  contexts  obtained  from  the  spatial  and
temporal  contexts  construction  module.  Afterward,
PURP identifies the top-  most similar spatio-temporal
contexts  based on their  similarity.  Finally,  PURP uses
the  top-  spatio-temporal  contexts  to  predict  traffic
flow.

4　Traffic Flow Extraction

In  the  traffic  flow  extraction  module,  PURP  collects
monitoring  data  from  the  surveillance  cameras  and
extracts  traffic  flow  values  from  the  data.  The  traffic
flow  table  is  used  to  store  the  traffic  flow  values.  In
this  section,  the  specific  operations  of  traffic  flow
extraction  processing  are  as  follows:  First,  we  use  the
surveillance  cameras  to  monitor  information  on  the
passing vehicles and obtain the following tables:

Configuration information table. This table has the
following three  attributes:  (1)  checkpoint  ID,  which is
the  unique  camera  identifier;  (2)  latitude,  and  (3)
longitude,  which  describe  the  location  information  of
the checkpoint.

Monitoring  information  table. Apart  from  the
checkpoint  ID,  the  table  contains  two  other  attributes:
(1) the license plate number of the vehicle that passed
by  the  checkpoint  and  was  monitored  by  the
surveillance  camera  and  (2)  the  timestamp,  i.e.,  the
moment  that  the  monitored  vehicle  passed  by  the
checkpoint. Table  2 illustrates  an  example  of  the
monitoring  information  table.  The  second  row  of  the

c1

table  implies  that  the  vehicle  with  the  license  plate
number XA00001 passed by checkpoint  at 8:00:00.0
on September 1.

d

× × d × n ×
m

PURP  aims  to  assess  the  correlation  between  the
traffic flows at the target and influential checkpoints in
different periods. Thus, PURP counts the license plates
to determine the traffic flow values every period of all
checkpoints  from  the  monitoring  information  table.
Herein,  the  time  granularity  of  a  period  is  1  min.  To
enable  quick  access  to  the  traffic  flow  values  in
different  periods,  PURP  stores  the  traffic  flow  values
per minute in the latest  day of all checkpoints in the
traffic flow table.  The traffic flow table needs to store
60  24     traffic flow values, where 60  24 are
the traffic flow values in 1 day, and  is the number of
all checkpoints.

d

The  traffic  flow  table  requires  online  updating  in
real-time to ensure that  the traffic flow stored is  up to
date because we assume that the traffic situation in the
latest  historical period is nearly identical to that in the
prediction period. PURP updates the traffic flow values
every  minute  because  the  traffic  flow  table  stores
traffic flow values every minute. If the table is not full,
PURP updates  the  table  by  adding  new records  to  the
end of the queues. If the table is full of  day’s traffic
flow  values,  PURP  updates  the  table  by  deleting  the
records  stored  earliest  and  adding  new  records  to  the
end  of  the  queues. Figure  4 illustrates  an  example  of
the update process of the table.

Because  PURP  requires  time  to  update  the  traffic
flow  table,  it  is  possible  that  when  a  user  sends  a
prediction  request,  the  traffic  flow  table  has  not  been

 

Table 2    Example of the monitoring information table.
Checkpoint ID License plate number Timestamp

c1 XA00001 9-01 8:00:00.0
c2 XA00002 9-01 8:00:01.0
c2 XC00001 9-01 8:00:05.0
c1 XB00004 9-01 8:01:09.2

 

c1 5
4

11

4

7
2

9

9

Delete Add

11
7

9

15

17
6

9

8

19
9

8

7

20
11

9

8

16
10

5

4

c2…
…

c69

cm

 
Fig. 4    Traffic flow table update.
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updated.  If  PURP  is  updating  the  table  when  the
prediction  request  is  issued,  PURP  waits  for  the  table
to  finish  updating.  Otherwise,  PURP does  not  need  to
wait.  We  use  the  example  shown  in Fig.  5 to  further
illustrate  the  process.  In  the  example,  we  assume  that
the time needed to update the traffic flow table is “3 s”.
PURP uploads  the  traffic  flow  value  in  [7:58-7:59]  at
7:59:00 and completes the update at 7:59:03.

If  the  prediction  request  issuing  time  is  between
7:59:00  and  7:59:03,  PURP  waits  for  the  traffic  flow
table  to  finish  updating.  If  the  prediction  request
issuing  time  is  between  7:59:03  and  8:00:00,  PURP
does  not  wait  because  the  traffic  flow  table  has  been
updated.

5　Spatial  and  Temporal  Context
Construction

PURP aims to construct the spatio-temporal contexts to
analyze  the  correlation  in  both  time  and  space  for  the
traffic flow at  the target  checkpoint.  In the spatial  and
temporal  context  construction  module,  PURP
separately constructs the temporal and spatial contexts.
When  a  user  issues  the  prediction  request,  PURP
obtains  the  prediction  information,  including  the
request  issuing  time,  target  checkpoint,  and  prediction
period.  Subsequently,  PURP  constructs  the  temporal
and  spatial  contexts  based  on  the  prediction  and
configuration  information  from  the  traffic  flow
extraction module.  For ease of  explanation,  we use an
example that is set as follows: the request issuing time
is “9-01,  8:00,” the  prediction  period  is  [9-01,
8:05–8:06], and the influential period is 3 min.

(1) Temporal context construction

v

The  traffic  flow  of  a  checkpoint  is  also  correlated
with its historical observation. PURP aims to construct
the  temporal  contexts  of  the  target  checkpoint  in  the
benchmark  period  online  in  this  part.  First,  according
to  the  request  issuing  time  and  influential  period,
PURP  determines  that  the  benchmark  period  is
[7:57−8:00].  We  assume  that  the  traffic  conditions
within  minutes before and after the benchmark period
are  similar  to  the  traffic  condition  in  the  benchmark

v

× v

d × v × d
× v × d v

period.  Based  on  this  assumption,  PURP  uses  the
benchmark period as a window and offsets the window
forward and backward by  minutes (the moving unit is
1  min).  Given  that  PURP  offsets  the  window  by  one
unit  and  obtains  one  period,  we  derive  2   +  1
periods as the historical periods of a historical day. For
historical days , we derive (2   + 1)   historical
periods.  Finally,  we  use  the  ((2   +  1)   + )
historical  periods  that  consider  the  day  the  request  is
issued as the temporal contexts.

v
d ×

×

Example.　As depicted in Fig. 6, we set  to “1 min”
and historical days  to “3 day”. PURP derives 2  1 +
1 = 3 historical periods in the previous day, August 31,
which are [8-31, 7:56−7:59], [8-31, 7:57−8:00], and [8-
31, 7:58−8:01]. In the same manner, PURP derives the
historical  periods  of  August  29  and  30.  However,  for
September  1,  PURP  can  only  shift  the  benchmark
period  back  by  1  min  and  derive  the  historical  period
[9-01, 7:56−7:59]. Finally, PURP obtained 3  3 + 1 =
10 historical periods as the temporal contexts.

(2) Spatial context construction

r

r

In  terms  of  space,  we  assume  that  the  traffic
conditions of the target and influential checkpoints are
occasionally  connected.  This  intuition  originates  from
the observation of real scenarios, i.e., the congestion of
one  checkpoint  will  be  transferred  to  a  nearby
checkpoint.  Based  on  this  idea,  we  analyze  the  region
with radius  that  assumes the target  checkpoint  as  its
center  and define all  checkpoints  within this  region as
influential  checkpoints.  Notably,  we  use  the  R-tree[16]

to  efficiently  identify  the  checkpoints  within  km  of
the target checkpoint. We use the latitude and longitude
information  of  the  checkpoints  to  distribute  all
checkpoints  in  a  two-dimensional  coordinate  system

 

Update the traffic flow value in [7:58–7:59]

7:59:00

Wait No need to wait

7:59:03 8:00:00

 
Fig. 5    Update time of traffic flow table.
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d = 3 day
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Fig. 6    Illustration of temporal context of [7:57−8:00].
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and  construct  the  R-tree  with  minimum  bounding
rectangles  that  contain  two  checkpoints  with  the
smallest  distance.  Given that  the radius parameter  is
determined in advance, we can complete the influential
checkpoints query of each checkpoint using the R-tree
offline.

6　Predictions  Based  on  Spatio-temporal
Contexts

k

k

k

k

We  aim  to  predict  the  traffic  flow  at  the  target
checkpoint  by  considering  the  temporal  and  spatial
effects.  From  the  spatial  and  temporal  context
construction  module,  PURP  obtains  the  temporal  and
spatial  contexts,  which  are  collectively  referred  to  as
spatio-temporal  contexts.  In  the  prediction  module,  in
accordance  with  the  idea  of  KNN,  PURP  aims  to
identify the top-  most similar spatio-temporal contexts
at the target checkpoint. Subsequently, the traffic flow
of  these  contexts  is  used  to  predict  the  traffic  flow  in
the  request  issuing  time.  Therefore,  traffic  flow
prediction is divided into two phases: (1) Top-  spatio-
temporal  context  selection.  In  this  phase,  PURP
calculates the similarity of the spatio-temporal contexts
and  identifies  the  top-  most  similar  spatio-temporal
contexts  based on the similarity.  (2)  Prediction.  Based
on  the  top-  spatio-temporal  contexts,  PURP  predicts
the traffic flow in the prediction request in this phase.

6.1　Top-k spatio-temporal context selection

k

k

k

In  this  phase,  PURP  aims  to  identify  the  top-  most
similar  spatio-temporal  contexts.  The  four  steps  in
identifying  the  top-  spatio-temporal  contexts  are  as
follows:  traffic  flow  vector  construction,  influential
checkpoint  weight  value  calculation,  spatio-temporal
context similarity calculation, and top-  similar spatio-
temporal context selection.

(1) Traffic flow vector construction
PURP  calculates  the  similarity  of  the  traffic  flow

k

s
c1

c1 < 6,5,4 >

vectors of the spatio-temporal contexts, identifying the
top-  similar  contexts.  Herein,  the  traffic  flow  vector
comprises  the  traffic  flow  value  per  minute  in  the
historical  period,  and  its  dimension a depends  on  the
length  of  the  influential  period .  For  instance,  we
assume  that  the  traffic  flow  values  of  in  [9-01,
7:55−7:56],  [9-01,  7:56−7:57],  and  [9-01,  7:57−7:58]
are  6,  5,  and  4,  respectively.  Thus,  the  vector  of
checkpoint  in [9-01, 7:55−7:58] is . In this
step, PURP builds the traffic flow vectors for the traffic
flow  at  the  target  and  influential  checkpoints  in  the
historical periods.

To generate  the traffic  flow vectors,  PURP needs to
query the traffic flow value in each time segment (i.e.,
1  min)  of  the  historical  period  from  the  traffic  flow
table.  Because  the  traffic  flow  table  uses  circular
queues  to  store  the  traffic  flow  values  per  minute  in
chronological order, PURP aims to offset the tail node
backward to locate the query time segment,  where the
offset distance is the difference between the latest time
segment  (stored  in  the  tail  node)  and  the  query  time
segment.  However,  the  two  cases  for  the  storage
location of  the query time segment and the latest  time
segment  using  a  circular  array  are  as  follows:  (1)  the
query  time  segment  is  before  the  latest  time  segment,
and (2)  the query time segment  is  after  the latest  time
segment. These cases imply that the index of the query
time  segment  cannot  be  obtained  by  offsetting  the
difference  between  the  latest  time  segment  and  the
query time segment.

Example. Figure  7a  depicts  an  example  that
illustrates  the  storage  location  of  the  latest  time
segment  and  the  query  time  segment.  The  queue
records  the  traffic  flow value per  minute  from 8:00 to
8:06.  The tail  node stores  the  traffic  flow value in  the
latest  time  segment,  i.e.,  [8:05,  8:06].  The  query  time
segment  is  [8:01,  8:02].  In Fig.  7b,  the  query  time
segment  is  after  the  latest  time  segment.  Therefore,
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Fig. 7    Locations of the query time segment and the latest time segment.
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PURP  cannot  use  the  tail  node  to  shift  the  difference
between  the  latest  time  segment  and  the  query  time
segment  backward  to  determine  the  position  of  the
query time segment.

Based  on  the  two  situations,  the  index  of  the  query
time  segment  can  be  obtained  using  the  following
formula:
 

index =
{

len+ tail − (l − q), if tail − (l − q) < 0;
tail − (l − q), else (1)

len tail
l q

where  is  the  queue  length,  is  the  index  of  the
tail  node,  is  the  latest  time  segment,  and  is  the
query time segment.

×

Example. As shown in Fig. 7b, the queue length is 6.
The difference between the latest time segment and the
query time segment is 4, and the tail index is 2, which
is  smaller  than  the  difference.  Thus,  the  index  of  the
query  time  slice  is  4  (6  +  2 − 4),  which  can  be
calculated using Eq. (1).

(2) Influential checkpoint weight value calculation
Different  influential  checkpoints  exert  a  varying

degree  of  impact  on  the  target  checkpoint.  We
determine  the  weight  values  between  the  influential
checkpoint and the target checkpoint in the benchmark
period  by  calculating  the  similarity  of  the  vectors.
Equation (2) is used to calculate the similarity between
the vectors in the following:
 

sim (ctarget (b), c′i (b)) =

∣∣∣∣∣∣ α∑d=1
(αd) (βd)

∣∣∣∣∣∣√
m∑

d=1
(αd)

2
√

m∑
d=1

(βd)
2
,

where
 

αd = Vd
ctarget(b)− V̄ctarget(b),

βd = Vd
c′i (b)− V̄c′i (b) (2)

ctarget (b) c′i (b)
ctarget

c′i b Vd
ctarget(b)

d
ctarget(b) V̄ctarget(b)

ctarget (b)
ctarget (b) c′i (b)

ctarget (b) c′i (b)
c′i ctarget

where sim ( , ) is the degree of correlation
between the target  checkpoint  and its  influential
checkpoint  in  the  benchmark  period ,  is
the  value  of  dimension  in  the  traffic  flow  vector  of

, and  is the average of each dimension’
s value in the traffic flow vector of . The value
of sim ( , ) ranges from 0 to 1. The higher
the  value  of  sim  ( , ),  the  greater  the
impact  of  on .  The  influence  weight  of  an
influential  checkpoint  on  the  target  checkpoint  can  be
obtained by 

wc′i
=

sim (ctarget (b), c′i (b))
n∑

i=1
sim (ctarget (b), c′i (b))

(3)

∑n
i=1 sim (ctarget (b), c′i (b))

wc′i
c′i

where  is  the  sum  of  the
similarity  between  all  influential  checkpoints  and  the
target  checkpoint,  and  is  the  influence  weight  of
the  influential  checkpoint  that  contributes  to  the
target checkpoint.

ctarget

c′2
c′3

ctarget c′2
ctarget c′3 c′2

c′3

Example.  We  assume  that,  for  in  the
benchmark  period  [9-01,  7:55−7:58],  the  traffic  flow
vector is (6, 5, 4). The influential checkpoint’s (i.e., 
and )  traffic  flow vectors  are  (6,  7,  5)  and (5,  7,  6),
respectively.  In  this  manner,  we  can  assess  the
similarity  between  each  influential  checkpoint  and  the
target  checkpoint,  i.e.,  sim  ( , )  =  0.5  and
sim ( , ) = 0.5 (Eq. (2)); thus, the weights of 
and  are 0.5 and 0.5 (Eq. (3)), respectively.

(3) Spatio-temporal context similarity calculation
In this step, PURP fuses the spatio-temporal contexts

and  calculates  the  similarity  of  the  spatio-temporal
contexts  by  considering  (1)  the  similarity  between  the
historical  periods  and  the  benchmark  period  of  the
target  checkpoint  and  (2)  the  effect  of  different
influential checkpoints,
 

F (h j, b) = µ+ψ,
µ = sim (ctarget (b), ctarget (h j))×P,

ψ =

 n∑
i=1

sim (c′i (b), c′i (h j))×wc′i

× (1−P) (4)

F (h j, b)
µ

ψ. µ

h j,

ψ

C′ h j

C′ ctarget sim (ctarget (b),
ctarget (h j))

ctarget∑n
i=1 sim (ci

′(b), c′i (h j))

C′ wc′i

P

F (h j, b)
(2× v+1)×

d+ v h j (2× v+

where  refers  to  the  similarity  between  the
spatio-temporal  contexts  which  includes  two  parts 
and  is the similarity of the target checkpoint ctarget
between  a  historical  period  and  the  benchmark
period b,  is  the  similarity  of  influential  checkpoints

 between  and b,  which  is  used  to  consider  the
influence  weight  of  to . 

 indicates that PURP uses Eq. (2) to calculate
the  similarity  between  the  traffic  flow  vector  in  the
historical  period  and  the  benchmark  period  of .

 is  the  sum  of  the  similarity
between the traffic flow vector in the historical  period
and  the  benchmark  period  of .  is  the  influence
weight  of  the  influential  checkpoint  to  the  target
checkpoint in the benchmark period.  is an artificially
regulated parameter that means the weight of the target
checkpoint’s  traffic  flow  to .  Based  on  the
aforementioned  operations,  PURP  obtains 

 values  because  the  number  of  is 
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1)×d+ v F (2× v+1)×
d+ v

.  For  convenience,  we  denote 
 as N.

NF
k

F
k F k

k F

k F

F
F

k F

(4) Top-k similar spatio-temporal context selection
We  aim  to  sort  the  values  obtained  using  the
previous steps in descending order and select the top-

.  The  spatio-temporal  contexts  corresponding  to  the
top-   values  are  the  top-  similar  spatio-temporal
contexts. The method used to select the top-   values
is as follows: First, PURP initializes the min heap with
size .  Subsequently,  PURP  calculates  the  values
and  compares  them  with  the  root  of  the  heap  one  by
one. If  the  value is larger than the root of the heap,
PURP  deletes  the  root  and  adds  the  value  to  the
heap.  Finally,  the  values  in  the  heap  are  the  top-  
values.

O (N × 2 ×
log k

log k
NF k

O (N)
O (N log N) F

The  running  time  of  the  method  is 
),  where  the  complexity  of  pushing  or  popping  a

value  in  the  min  heap  is ,  and  PURP  calculates
 values.  Because  the  value  of  the  parameter  is

small (such as 20), the performance can be regarded as
.  The  running  time  of  the  general  sorting

algorithm is at least . Because  values are
sorted  online,  efficiency  needs  to  be  improved  by
sorting rapidly.

k

F (h j, b)
F (h j, b)

F (h j, b)
F (h j, b)

k
k F

Algorithm  1  shows  the  pseudocode  for  the  top-
spatio-temporal  context  selection.  We  generate  the
traffic  flow  vectors  for  the  target  and  influential
checkpoints  in  the  benchmark  period  (Lines  3−5).
Initially,  we calculate the similarities of the influential
checkpoints  to  the  target  checkpoint  (Line  6).
Subsequently,  we  generate  the  traffic  flow vectors  for
the  target  checkpoint  in  the  historical  periods  and
calculate  the  similarity  between  the  historical  periods
and  the  benchmark  period  of  the  target  checkpoint
(Lines  8−9).  Afterward,  we  generate  the  traffic  flow
vectors  for  the influential  checkpoints  in  the historical
periods  and  calculate  the  similarity  between  the
historical periods and the benchmark period. Then, we
calculate  the  weight  values  of  the  influential
checkpoints  and  (Lines  11−13).  For  each

, we compare it with the root of the min heap.
If  is  larger  than  the  root,  we  then  delete  the
root and add  to the heap.  Finally,  we identify
the top-  spatio-temporal contexts corresponding to the
top-   values that are in the min heap (Lines 14−17).

6.2　Prediction

Because  the  traffic  flow  in  the  benchmark  period  and
the  latest  historical  data  are  available,  PURP  obtains

k

k

the  top-  spatio-temporal  contexts  based  on  the
benchmark period from the previous phases. However,
PURP  aims  to  make  predictions  based  on  the  top-
spatio-temporal  contexts  in  the  prediction  period.  In
this  phase,  PURP obtains  the  spatio-temporal  contexts
in  the  prediction  period  based  on  the  contexts  in  the
benchmark period and makes predictions.

k

k

k
k

First, PURP determines the historical periods of the 
spatio-temporal  contexts  in  the  benchmark  period.
PURP  offsets  the  end  time  of  these  historical  periods
forward  by  the  offset  distance  to  obtain  new  start
time.  The  offset  distance  is  the  prediction  interval
between  the  prediction  period  and  the  request  issuing
time.  Based on the start  time,  PURP uses the duration
of  the  prediction  period  as  the  period  length  and
obtains  new  periods.  The  spatio-temporal  contexts
corresponding to the new periods are the top-  spatio-
temporal  contexts  in  the  prediction  period.  Afterward,

 

Similar historical time periods hi, j = 1, 2, …, (2v + 1) × d + v;
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kPURP  obtains  the  traffic  flow  values  in  these 
contexts  by  counting  the  traffic  flow  per  minute  from
the traffic flow table. Finally, the average of the traffic
flow values is taken as the traffic flow prediction value.

k

k

k

Algorithm 2 displays  the  pseudocode for  prediction.
Initially, we determine the prediction interval (between
the request issuing time and the prediction period) and
the duration of the prediction period. Subsequently, we
offset  the  end  time  of  the  historical  periods  backward
based  on  the  prediction  interval  to  determine  the  start
time  of  the  new  periods.  We  use  the  duration  as  the
length  of  the  new  periods  and  obtain  new  periods
(Lines  1−7).  Afterward,  we  determine  the  traffic  flow
values in the  new periods by counting the traffic flow
per  minute  from  the  traffic  flow  table  (Lines  9−10).
Finally, the average of the  traffic flow values is taken
as the traffic flow prediction value (Lines 11−12).

Example. We  suppose  that  the  prediction  period  is
[9-01,  8:05−8:06],  the  request  issuing  time  is  9-01,
8:00,  and  the  benchmark  period  is  [9-01,  7:57−8:00].
We  assume  that  PURP  identifies  the  top-3  spatio-
temporal  contexts  corresponding  to  the  benchmark
period.  The  three  historical  periods  corresponding  to
the  top-3  spatio-temporal  contexts  are  [8-31,  7:56−
7:59],  [8-31,  7:57−8:00],  and  [8-31,  7:58−8:01].  First,
PURP offsets  the  end  times  (i.e., “8-31,  7:59”, “8-31,
8:00”, and “8-31, 8:01”) of the three historical periods
forward  by  5  min,  which  is  the  interval  between  the
prediction  period  and  the  request  issuing  time.  PURP
uses  three  start  times,  i.e., “8-31,  8:04”, “8-31,  8:05”,

and “8-31, 8:06”. The duration of the prediction period
is  1  min;  thus,  PURP uses “1  min” as  the  duration  of
the new period. Subsequently, PURP obtains three new
periods, i.e.,  [8-31, 8:04−8:05], [8-31, 8:05−8:06], and
[8-31,  8:06−8:07],  which  correspond  to  the  spatio-
temporal  contexts  of  the  target  checkpoint  in  the
prediction  period.  We  assume  that  the  corresponding
traffic flow values of the three spatio-temporal contexts
are 7,  8,  and 9.  The prediction value of traffic flow in
[9-01, 8:05−8:06] for the target checkpoint is 8, which
is the average of 7 + 8 + 9.

7　Experiment

This section experimentally evaluates the performance
of  PURP  on  LPR  data.  First,  we  introduce  the
experimental settings. Second, we tune each parameter
in  PURP.  Then,  we  compare  the  prediction  efficiency
and  accuracy  of  PURP  with  those  of  the  existing
methods to demonstrate the effectiveness of PURP.

7.1　Experimental setup

Data preparation. All  experiments  in  this  section are
based on a real data set. The data set is the real traffic
flow data on the urban road network of Hangzhou City
in  China.  In  our  experiments,  the  data  were  collected
using  800  traffic  surveillance  cameras  that  were
distributed at different checkpoints within the city road
network.  Each  surveillance  camera  records  the
monitoring  information  of  each  passing  vehicle.  In
total,  170  million  records  in  terms  of  monitoring
information over 34 consecutive day were obtained.

Two observations can be made from the data set: (1)
The  traffic  flow  for  each  checkpoint  is  regular  every
day.  i.e.,  the  period  of  maximum  traffic  flow  is  from
7:00  am  to  9:00  am  and  from  4:30  pm  to  6:30  pm
because people go to work and get off work in the two
periods.  (2)  The  traffic  flow  on  workdays  and
weekends is different, where the traffic peak during the
workdays  is  more  evident  than  that  during  the
weekends.  Therefore,  our  experiments  separately
consider  the  traffic  flow  in  the  peak  periods  on
workdays and weekends. To avoid exceptional accident
situations, we randomly select 10 checkpoints that have
heavy  traffic  flow  (i.e.,  the  average  traffic  flow  in
5 min is 200) during peak hours and predict the traffic
flow at  each checkpoint  in the prediction periods.  The
prediction  periods  are  selected  from  7:00  am  to
8:00 am and from 4:30 pm to 5:30 pm of 1 day in the
historical data.

 

H = {hi|i = 1, 2, …, k}
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Based  on  the  raw  LPR  data  shown  in Table  2,  we
count the traffic flow per minute at each checkpoint in
the past 34 consecutive day. Furthermore, according to
the  longitude  and  latitude  information  of  the
checkpoint,  we  use  the  R-tree  to  obtain  all  adjacent
checkpoints within a certain range of the checkpoint.

® ®

Comparison. We  compare  PURP  with  the
AutoRegressive  Integrated  Moving  Average
(ARIMA)[17] and  LSTM[18] models.  ARIMA  involves
time series analysis for traffic flow prediction, and the
LSTM  network  is  used  to  capture  the  nonlinear
dynamics  in  time  series  traffic  data.  We  evaluate  the
performance of PURP and the other methods based on
prediction  accuracy and prediction  response  time.  The
response  time  refers  to  the  time  from  when  the  user
sends  out  the  prediction  demand  to  when  the  system
returns  the  prediction  result.  All  experiments  are
evaluated on a computer with Intel  Xeon  CPU E5-
2637  3.50  GHz  processor  and  8  GB  RAM  with
Windows 7. The programming language is Python 3.6,
and the database is SQL Server 2014.

Accuracy  measure. In  the  traffic  system,  the
prediction  accuracy  of  each  checkpoint  is  equally
important.  Therefore,  we  employ  the  Mean  Absolute
Percentage  Error  (MAPE)  as  the  accuracy  measure.
MAPE  is  a  measurement  of  prediction  accuracy  for  a
prediction  method  in  statistics  that  can  eliminate  the
difference between checkpoints caused by the scale of
traffic flow to evaluate the accuracy of each checkpoint
equally.  MAPE  usually  expresses  the  accuracy  as  a
percentage and is defined by the following formula:
 

MAPE =
1

m×n

m∑
c=1

n∑
t=1

∣∣∣∣∣Act−Fct

Act

∣∣∣∣∣ (5)

Act t
c Fct

where  is  the  actual  value  in  prediction  period  at
checkpoint , and  is the forecast value. Herein, we
use  the  MAPE  value  to  represent  the  accuracy  of  the
experimental results. For different experimental results,
the  smaller  the  MAPE  value,  the  better  the
experimental result.

Hyperparameters. For the ARIMA model, the results
of the optimal solution are that the parameter “autoreg-
ressive” is  5,  the  parameter “integrated” is  1,  and  the
parameter “moving average” is 2. In the LSTM model,
the  network  has  a  visible  layer  with  one  input,  one
output,  and  a  hidden  layer  with  four  LSTM  neurons.
We  set  epochs  to  1500  and  batch  size  to  1,
respectively.

7.2　Inside PURP

s r d
v

P

k k

×

In this  section,  we adjust  six parameters that  appeared
in  the  study  in  terms  of  prediction  accuracy  and
prediction  efficiency.  The  six  parameters  include
influential  period ,  radius ,  historical  days  of  the
traffic flow stored in the traffic flow table, time offset 
of  the  benchmark  period,  parameter  (which  is  the
artificially  regulated  parameter  in  Eq.  (4)),  and
parameter  of  the  top-  similar  historical  periods.
When  we  tune  one  of  the  parameters,  the  other
parameters  are  fixed.  In  every  parameter  tuning
experiment,  PURP  predicts  the  traffic  flow  at  the  10
checkpoints  per  minute  from 7:00  am to  8:00  am and
from  4:30  pm  to  5:30  pm  of  the  last  day  of  the
historical data and obtains (60 + 60)  10 values. In the
accuracy  evaluation,  a  total  of  1200  prediction  values
of traffic flow are used to calculate the MAPE value. In
the  efficiency  evaluation,  the  average  of  the  1200
system  response  times  is  considered  the  average
response  time.  Finally,  we  choose  the  optimal
parameters  based  on  the  results  of  the  evaluation  of
both accuracy and efficiency.

s d v
r

k
k P

k
k k

Accuracy evaluation. In this set of experiments, we
evaluate  the  effect  of  different  parameters  on  the
prediction  accuracy  of  PURP.  We  divide  the  six
parameters  into  two  categories  and  conduct
experimental  analysis  as  follows:  (1)  Parameters  for
spatio-temporal  context  construction.  The  parameters
influential  period ,  historical  days ,  time  offset ,
and  radius  are  used  to  construct  the  spatio-temporal
contexts. As shown in Figs. 8a−8d, as the values of the
four  parameters  increase,  the  MAPE  values  first
decrease  sharply  and  then  tend  to  become  stable.  The
reason  is  that  if  one  of  the  four  parameters  increases,
the  spatio-temporal  contexts  increase.  The  more  the
spatio-temporal  contexts  are,  the  more  spatial  and
temporal  connections  that  we  can  find  for  traffic  flow
prediction  at  the  target  checkpoint,  and  the  more
accurate the prediction we can obtain. Moreover, as the
spatio-temporal  context  increases  further,  it  may
contain  meaningless  context;  thus,  improving  the
prediction accuracy does not help. The results illustrate
the  effectiveness  of  considering  the  spatial  and
temporal  contexts  for  traffic  flow  prediction.  (2)
Parameters  for  identifying  the  top-  spatio-temporal
contexts.  Parameters  and  are  used  to  identify  the
top-  most similar spatio-temporal contexts. Figure 8e
displays the results of parameter .  When parameter 
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P

increases,  the  MAPE  values  initially  decrease
dramatically and then tend to be stable. This is similar
to the results of the parameters for the spatio-temporal
context  construction.  Parameter  is  the weight  of  the
temporal  contexts  of  the  target  checkpoint  for  the
spatio-temporal  contexts.  As  shown  in Fig.  8f,  the
optimal value for P is 0.8.

s d v

r
r

Efficiency evaluation. In this set of experiments, we
count  the  system  response  time  to  evaluate  the
prediction  efficiency  effect  of  the  six  parameters.
Based  on  the  architecture  of  PURP,  the  system
response  time  includes  two  parts,  namely,  the  spatio-
temporal  context  construction  module  and  the
prediction module. The update time of the traffic flow
table  constructed  in  the  traffic  flow  information
extraction module is included in the prediction module.
In Fig. 9, the following observations are illustrated: (1)
As  shown  in Figs.  9a, 9c,  and 9d,  we  notice  that  the
average  response  time  increases  for  both  modules  as
one of the three parameters (i.e., , , and ) increases.
The  reason  is  that  the  three  parameters  affect  the
construction of the temporal contexts in the traffic flow
information  extraction  module.  As  one  of  the
parameters  increases,  the  temporal  contexts  increase,
which  further  increases  the  cost  of  identifying  similar
spatio-temporal  contexts  in  the  prediction  module.  (2)
The  impact  of  tuning  radius  is  provided  in Fig.  9b.
The  increment  of  radius  does  not  affect  the  spatio-
temporal  context  construction  module  because  PURP

r

k
k

P

P

constructs the spatial contexts offline. The increment of
radius  only  increases  the  cost  of  the  prediction
module.  (3)  From Fig.  9e,  we can conclude that  when
parameter  increases,  only  the  response  time  of  the
prediction  module  increases  because  parameter  only
affects  the  number  of  similar  spatio-temporal  contexts
in  the  prediction  module.  As  the  proportional
parameter  in  Formula  (4),  the  parameter  does  not
affect  the  response  time.  In Fig.  9f,  the  fluctuation  of
the  average  response  time  caused  by  the  increment  of
parameter  could be attributed to the inclusion of the
update  time  of  the  traffic  flow  table  in  the  prediction
module.

P
P

P

s

s

Optimal parameters. Based on accuracy evaluation
and  efficiency  evaluation,  we  choose  the  optimal
solution  for  the  six  parameters.  Because  parameter 
does  not  affect  the  response  time,  we  choose  the 
value  corresponding  to  the  minimum  MAPE  value  as
the  optimal  solution.  In Fig.  8e,  when  parameter  is
0.80,  the  MAPE  value  is  the  smallest,  and  the
prediction  accuracy  is  the  best.  The  five  other
parameters  can  impact  the  prediction  efficiency.  To
ensure  the  accuracy  and  efficiency  of  the  prediction,
we select the smallest value in which the MAPE value
tends  to  be  stable.  For  instance,  when  the  influential
period  is 11 min, the MAPE value tends to be stable
at 18, and the average response time is the smallest (in
terms of the value of  when the MAPE value tends to
be  stable  at  18);  thus,  11  is  the  optimal  solution  of
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P

s r d
v k P

influential  period .  For  PURP,  based  on  the
aforementioned  evaluation,  we  use  the  following
parameter settings:  = 11 min,  = 4 km,  = 11 day,

 =  9  min,  =  7,  and  =  0.8.  Based  on  the  optimal
solution  of  the  six  parameters,  PURP  predicts  10
checkpoints  per  minute  from 7:00  am to  8:00  am and
from 4:30 pm to 5:30 pm, and records the update time
of  the  traffic  flow  table.  The  average  of  1200  values
shows  that  the  update  time  of  the  traffic  flow  table  is
0.63 s.

7.3　Overall prediction accuracy and efficiency

This  section  investigates  the  overall  prediction
accuracy and efficiency of PURP by comparing PURP
with  the  ARIMA  and  LSTM  models.  In  terms  of

prediction  efficiency  and  accuracy,  we  compare  the
three  models  by  increasing  the  number  of  parameters,
i.e.,  prediction  interval  between  the  prediction  period
and the request issuing time, duration of the prediction
period,  and  peak  period  in  different  days,  including
workdays and weekends.

Two observations made in this study are as follows:
(1)  In  terms  of  prediction  accuracy,  LSTM  exhibits
superior  performance  compared  to  the  two  other
methods;  however,  the  difference  between  PURP  and
LSTM  is  not  obvious.  Specifically,  as  depicted  in
Figs.  10a  and 10b,  as  the  prediction  interval  and
duration increase, the results of PURP and LSTM tend
to  be  stable,  and  the  prediction  effect  of  ARIMA
becomes worse.  The reason is  that  ARIMA iteratively
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Fig. 9    Efficiency evaluation of the main modules of PURP.
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predicts traffic flow, which suggests that the predicted
value will be used as the training data for the prediction
result  of  the  next  period.  Inaccurate  prediction  results
will  lead  to  worse  prediction  results  in  the  next  stage.
These  results  indicate  that  PURP  can  compete  with
LSTM.  (2)  In  terms  of  prediction  efficiency,  PURP
achieves  optimal  performance  compared  with  the
baselines. Figs.  11a  and 11b  depict  the  impact  of
increasing  the  prediction  interval  and  duration.  When
the  two  parameters  increase,  the  prediction  efficiency
of  PURP  remains  stable  and  improves  by  at  least  3  s
compared with LSTM and ARIMA. The reason is that
PURP  can  analyze  the  latest  historical  data  without
retraining  the  model  online,  whereas  the  two  other
methods  need  to  retrain  the  models  from scratch.  The
results  indicate  the  powerful  scalability  of  PURP.  As
shown  in Fig.  11c,  we  predict  the  traffic  flow  in  the
peak periods on three workdays and one weekend. The
results  shown in Fig.  11 also  illustrate  that  PURP has
the best performance.

In this set of experiments, as a deep learning method,
LSTM  has  exhibited  strong  prediction  capability;
meanwhile,  the prediction capability of  PURP is  close
to that of LSTM. The experiment results also reveal the
powerful  scalability  of  PURP,  where  the  system
maintains strong prediction efficiency regardless of the
increase in prediction duration or prediction interval.

8　Related Work

Short-term  traffic  flow  prediction  has  emerged  as  one
of  the  major  research  fields  in  academia  and industry,
generating  a  large  amount  of  work.  Short-term  traffic
flow  prediction  can  be  classified  according  to  the
following aspects:

Time  series-based  prediction. Univariate  time
series forecasting of traffic flow is most common in the

literature.  Since  the  early  1980s,  time  series-based
models,  such  as  the  Holt-Winters  exponential
smoothing  model[19],  have  been  widely  used  in  traffic
flow prediction. Several scholars focused on analyzing
the impact of time series on traffic flow[20]. Liu et al.[21]

investigated  the  effect  of  prediction  interval  on  the
prediction  models  for  short-term  traffic  flow
prediction.  Zhang  et  al.[22] used  a  rescaled  range
method  to  estimate  the  long-range  dependence  of
traffic time series and their conditional time series. The
typical  statistical  methods  used  to  predict  traffic  flow
include the historical average approach[23], the ARIMA
model[24, 25],  and  seasonal  ARIMA[26].  In  the  past  few
years, deep learning methods have been widely used in
prediction  problems[27–29].  The  LSTM-based
architectures  focus  mainly  on  capturing  the  temporal
dependencies  of  traffic  states  and  exhibit  powerful
prediction capability[30–33].  However, as typical spatio-
temporal  data,  the  urban  traffic  flow  at  the  prediction
location  is  not  only  correlated  with  its  historical
observation but also influenced by its nearby locations.
In  this  study,  PURP  constructs  spatio-temporal
contents  to  capture  the  spatio-temporal  correlation  of
traffic states in the prediction location.

Spatio-temporal  prediction. As  typical  spatio-
temporal  data[34, 35],  traffic  flow  is  characterized  by
randomness,  time-varying,  and  spatial  correlation.  In
the  short-term  traffic  flow  forecasting  system,  road
occupancy, driving speed,  and weather conditions will
affect the traffic flow at the next moment[36]. The CNN
and  LSTM  methods  are  used  to  capture  the  spatio-
temporal features of traffic states[37–39].  To capture the
spatio-temporal  and  temporal  features  of  traffic  and
weather  data,  Sun  et  al.[40] proposed  a  hybrid  CNN-
LSTM  model.  However,  deep  learning  methods  that
require  a  large amount  of  data  for  training models  are
unsuitable  for  real-time  prediction  systems.  Training
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Fig. 11    Efficiency evaluation for prediction in three models.
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models  online is  time-consuming and weakens system
performance;  meanwhile,  using  offline-trained  models
means  that  the  latest  historical  data  cannot  be  utilized
in  real-time,  which  will  affect  the  accuracy  of
predictions. In this study, to analyze the latest historical
data without  the time-consuming retraining online,  we
use  the  idea  of  KNN  as  the  prediction  framework  to
design  PURP  for  rapidly  capturing  and  utilizing  the
spatio-temporal information of the target checkpoint to
make predictions in real-time.

9　Conclusion

k

This study proposes PURP, a scalable short-term urban
traffic  flow  prediction  system.  When  a  user  sends  a
traffic flow prediction request to PURP, PURP predicts
the  traffic  flow  in  the  request  based  on  LPR  data.
PURP uses the historical observation of traffic flow at
the prediction location as the temporal context and the
influential checkpoints as the spatial contexts to assess
the correlation of the traffic flow prediction in terms of
time and space. Then, PURP rapidly identifies the top-

 spatio-temporal contexts to predict the traffic flow in
the  request  online.  We  conduct  extensive  experiments
based  on  real  data.  The  behavior  of  PURP is  adjusted
using  six  tuning  parameters  based  on  accuracy  and
efficiency.  The  results  demonstrate  the  strong
performance of  PURP for  predicting short-term traffic
flow.  Although  the  LSTM  model  exhibits  higher
prediction  accuracy  than  PURP,  PURP  has  a  higher
prediction  efficiency  under  the  condition  that  the
prediction  accuracy  is  good,  which  is  crucial  for  real-
time  prediction  systems.  Simultaneously,  when  the
prediction  demand  (such  as  prediction  duration)
increases, the prediction efficiency of PURP remains.
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