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Unsupervised Learning Algorithms

Jiang Chang*, Xianglong Gu, Jieyun Wu, and Debu Zhang

Abstract: Unsupervised  learning  algorithms  can  effectively  solve  sample  imbalance.  To  address  battery

consistency  anomalies  in  new  energy  vehicles,  we  adopt  a  variety  of  unsupervised  learning  algorithms  to

evaluate  and  predict  the  battery  consistency  of  three  vehicles  using  charging  fragment  data  from  actual

operating conditions. We extract battery-related features, such as the mean of maximum difference, standard

deviation,  and entropy of  batteries  and then apply  principal  component  analysis  to  reduce the dimensionality

and record  the  amount  of  preserved information.  We then build  models  through a  collection  of  unsupervised

learning  algorithms  for  the  anomaly  detection  of  cell  consistency  faults.  We  also  determine  whether

unsupervised and supervised learning algorithms can address the battery consistency problem and document

the parameter tuning process. In addition, we compare the prediction effectiveness of charging and discharging

features modeled individually and in combination, determine the choice of charging and discharging features to

be  modeled  in  combination,  and  visualize  the  multidimensional  data  for  fault  detection.  Experimental  results

show  that  the  unsupervised  learning  algorithm  is  effective  in  visualizing  and  predicting  vehicle  core

conformance faults, and can accurately predict faults in real time. The “distance+boxplot” algorithm shows the

best performance with a prediction accuracy of 80%,  a recall  rate of 100%,  and an F1 of 0.89. The proposed

approach  can  be  applied  to  monitor  battery  consistency  faults  in  real  time  and  reduce  the  possibility  of

disasters arising from consistency faults.
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1　Introduction

With  the  rapid  development  of  new  energy  vehicles
and  machine  learning  technologies,  the  integration  of
new energy batteries and machine learning technology
has become challenging. The inconsistency of a cell or
cells in the battery pack occurs due to the existence of
such  a “short  board” single  cell,  and  affects  the

charging and discharging of the battery pack with good
performance and full capacity from being fully charged
and discharged. This inconsistency leads to a decrease
in  the  overall  battery  system  and  a  remarkably
degraded  performance[1].  For  the “short  board” of  the
single cell, the potential failures of the battery pack and
system  can  only  be  effectively  avoided  by  timely
detecting the inconsistency fault[2] and timely replacing
and  renewing  the  single  faulty  cell  to  minimize  the
production losses brought by the failure.

The existing supervised learning algorithm has a high
overfitting  risk  in  inconsistent  battery  prediction  and
poor  performance  in  unbalanced  sample  prediction.
Compared  with  the  supervised  learning  algorithm,  the
unsupervised  learning  algorithm  has  achieved  good
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results  in  reducing  the  overfitting  risk  and  effectively
solving  sample  imbalance  to  overcome  these
shortcomings.

Detecting  the  inconsistency  fault  of  a  single  battery
in  a  battery  pack  in  real  time  can  help  effectively
improve the performance of the battery pack during the
effective  working  time[3] and  the  service  life  of  the
battery.  Some  scholars  and  researchers  proposed  the
equalization control strategy to effectively improve the
battery  pack  inconsistency  fault;  however,  only  a  few
methods  are  available  for  detecting  single-cell
consistency[4] and “short  boards”.  Given  that  the
charging  and  discharging  cycle  of  a  single  cell  under
actual  operating  conditions  is  not  continuous,  the
battery pack of a new energy vehicle can rarely reach a
full  charging  cycle  (i.e.,  a  complete  charging  cycle
from 0% to  100%).  As  a  result,  the  data  acquired  and
detected  from  actual  vehicles  are  mostly  charging
fragment  data,  including  voltage,  rather  than
completely  equispaced  time-series  data  so  that  the
initial dataset is spaced.

Researchers  often  adopt  a  variety  of  methods  when
screening  inconsistent  batteries,  such  as  the  battery
charging and discharging energy efficiency and voltage
difference,  the  distance  of  the  charging  voltage  curve,
and  the  impedance  variation  trend  during  discharge[4].
In  actual  battery  usage  and  inconsistency  fault
detection,  we  need  to  judge  the  fault  according  to  the
previous  occurrence  of  consistency  faults.  Different
battery  systems  have  different  fault  performances
between  battery  packs,  and  the  inconsistency  of
individual  battery  within  them varies  according  to  the
actual battery conditions. Therefore, the consistency of
the  battery  system  is  not  an  absolute  concept  but  a
relative concept to be compared. The evaluation of the
actual  inconsistency  fault  of  different  units  is  often
based  on  the  empirical  value[5],  but  changes  in  actual
working  conditions  or  parameters  often  lead  to
subjective  errors  in  the  results.  Therefore,  finding  a
method  that  can  accurately  and  effectively  predict
single-cell inconsistency fault is important[6].

Among the existing methods for  lithium battery cell
or  pack  consistency  evaluation,  the  technique  in  Ref.
[7] considers charging data from the cloud in analyzing
the  consistency  of  voltage,  temperature,  internal
resistance,  capacity,  and  power,  and  adopts  fuzzy
hierarchical  analysis  to  develop  a  resume  weighted
scoring  system,  which  helps  in  evaluating  and
detecting  consistency  problems.  Sun[8] proposed  a

segmented  SOC  consistency  evaluation  model
considering the influence of voltage. Ji et al.[9] studied
the dynamic consistency of power batteries in use and
adopted  an  estimated  SOC  combined  with  the  battery
voltage to describe battery consistency.

In  addition  to  the  combination  of  data-driven  and
statistical  correlation  algorithms,  we  employ  single-
battery charge-discharge characteristic data to construct
a  fault  prediction  model.  Using  the  unsupervised
clustering  algorithm  as  a  basis[10],  we  explore  outliers
for  anomaly  detection.  We  also  apply  the  statistical
method  of  distance+boxplot  to  rank  the  urgency  of
problems according to the optimization coefficient. The
above methods can effectively[11] and accurately detect
outliers  in  the  data  in  real  time,  and  assess  the
consistency of the battery cells.

Our research adopt  fragment data on lithium battery
charging from actual running new energy vehicles, and
apply  various  unsupervised  algorithms  to  explore  the
core  consistency  evaluation  approach.  The  specific
steps include data preparation, i.e., exploration, feature
engineering, and model construction.

2　Data Preparation and Exploration

2.1　Data preparation

A total of 1210 cell data are recorded for three battery
types: A: PHEV, B: PHEV, and C: BEV. The analysis
of  cell  consistency  focuses  on  these  three  types  of
batteries.  Each  battery  has  different  cell  parameters,
temperature measurement points, and nominal capacity
and  energy  at  the  numerical  level.  The  specific
parameter values are shown in Table 1.

2.2　Data exploration

Data  exploration  involves  considering  the  single-cell
inconsistency  fault,  exploring  and  analyzing  the  data
distribution of the maximum pressure difference in the
single  cell,  and  practicing  the  subsequent  data-driven
algorithm  according  to  the  actual  data  distribution  of
the three types of batteries.
 

Table 1    Information of battery parameter.
Battery

type
Cell voltage

quantity
Cell temperature

quantity
Nominal Power

(kW·h)
A: PHEV 96 50 13.20
B: PHEV 88 50 11.80
C: BEV 108 54 45.24
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3　Feature Engineering

Feature  engineering  mainly  includes  three  parts:  data
preprocessing,  feature  extraction,  and  Principal
Component  Analysis  (PCA)  for  dimensionality
reduction.

3.1　Data preprocessing

Data  preprocessing  includes  screening  and  rejecting
outliers and extracting and deleting duplicate values for
the charge and discharge data  of  a  single  cell.  Feature
extraction  requires  predetermining  the  data  range  for
feature  extraction,  and  the  selected  data  range  is  the
last  1000  km  of  data  for  each  battery.  Thus,  feature
extraction  is  performed  on  this  part  of  the  data  range,
and  the  nearest  data  are  selected.  Abnormal  value
screening  and  rejection  are  performed  specifically  for
the  feature  data  related  to  the  subsequent  feature
extraction, such as voltage, SOC, range, and other data.
The normal range of SOC is 0–100, and that of voltage
is  0–4.4  V.  The  range  must  not  show  a  sudden  and
substantial  increase.  With  the  above  normal  value
range  used  as  a  basis,  the  abnormal  values  of  the
features are screened and eliminated.

The  nearest  data  are  selected  in  feature  extraction
because, in the continuous charging and discharging of
a battery, the consistency problem of its single cell may
occur gradually but may also change abruptly in a short
period of time. In general, fault rebound is impossible.
When a single cell  already has a consistency problem,
it  generally  does  not  return  to  normal  on  its  own  but
only  gets  worse.  Therefore,  the  selection  of  the  most
recent data can ensure that the battery data in the near
future will  not  have consistency problems.  The reason
for  choosing  data  within  1000  km  in  the  previous
section is  that  the battery undergoes 3–5 charging and
discharging  cycles  within  1000  km,  and  the  produced
charging  fragment  data  are  also  the  charging  over
discharging fragment data within nearly 1000 km. The
recent  3–5  charges  are  enough  to  show  whether  the
battery cell consistency problem exists.

3.2　Feature extraction

Feature  extraction  requires  feature  identification  and
extraction  of  all  experimental  core  data.  The  specific
features include the mean values of

(1)  the  maximum  difference  between  the  cores
during the charging process;

(2)  the  standard  deviation  of  the  cores  during  the

charging process;
(3) the entropy of the cores in the charging process;
(4)  the  maximum  difference  between  the  cores

during the discharging process;
(5)  the  standard  deviation  of  the  cores  during  the

discharging process; and
(6)  the  entropy  of  the  cores  during  the  discharging

process.
The entropy value represents the chaos of a series of

data.

3.3　PCA for dimensionality reduction

PCA  downscaling  in  feature  extraction  aims  to  filter
the extracted features. Given that the extracted features
are  multidimensional,  processing them will  reduce  the
training  speed  in  the  subsequent  model  building,  and
the  results  cannot  be  conveniently  visualized.  In
addition,  not  all  features  are  valid  features,  so  PCA
dimensionality  reduction  must  be  performed  for
multidimensional  features  to  reduce  the  overall
dimensionality  of  the  feature  attribute  set.  As a  result,
the  model  training  speed  can  be  substantially
improved,  and  the  modeling  results  can  be  effectively
visualized each time.

After the PCA algorithm reduces the dimensionality,
the  new  dimension  represents  the  main  direction  of
change  in  the  dataset  and  is  called  the  principal
component.  PCA_feature1,  PCA_feature2,  and
PCA_feature3 are the first,  second, and third principal
components,  respectively,  after  dimensionality
reduction  .  Each  principal  component  contains  partial
information from the dataset and is orthogonal to other
principal  components.  The  first  few  principal
components  contain  the  main  information  of  the
dataset.  The  coordinates  of  the  sample  on  these  new
dimensions  represent  the  information  content  of  the
sample  in  the  main  change  patterns.  Dimension
reduction  represents  the  main  trend  and  pattern
information  of  the  original  data  by  retaining  the  main
principal components.

A  current  effective  PCA  method  is  chosen  for  data
dimension reduction, and its core logic is as follows:

Suppose the algorithm input dataset is xm×n,
xmean

xnew = x− xmean

(1) Calculate the average value  of dataset x by
column, decentralize the data, and set ;

xnew

Cov =
1
m

xnewxT
new

(2)  Solve  for  the  covariance  matrix  and  call  it

;

Cov
(3)  Compute  the  eigenvalues  and  the  corresponding

eigenvectors of the covariance matrix ;
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(4)  Sort  the  eigenvalues  from  largest  to  smallest,
select  the  largest k among  them,  and  form  the
eigenvector  matrix wn×k with  the  corresponding
k eigenvectors as column vectors;

xw
new

xw
new

(5)  Calculate ,  that  is,  project  dataset xnew onto
the  selected  feature  vector  to  obtain  the  desired
k-dimensional  dataset  that  has  been  reduced  in
dimension.

For  the  dataset  used  in  this  paper,  the  largest
advantages of PCA dimension reduction are as follows:

(1) We can use PCA to reduce the dimension of the
data and classify the importance of the newly obtained
“principal element” vector. The most important part in
the  previous  selection  is  determined  by  the  need,  and
the  following  dimension  is  omitted  to  achieve
dimensionality  reduction  and  simplify  the  model  or
data compression. The original data are retained.

(2)  The  orthogonality  among  the  principal
components can eliminate the mutual influence among
the original data components.

Finally,  the  features  collected  for  the  three  battery
types  of  new  energy  vehicles  are  processed  by  PCA
dimensionality  reduction,  and  the  corresponding
information  for  each  type  of  vehicle  can  be  found  in
Table  2.  The  information  loss  after  dimensionality
reduction  is  extremely  small,  and  the  effect  is  also
small compared with the model speed and visualization
perspective.

Data preprocessing and feature selection involve the
data  from  charging  and  discharging.  The  charging
segment data with SOC > 70 are selected for charging,
and  the  discharging  segment  data  with  SOC < 30  are
selected  for  discharging.  The  reason  for  choosing  the
range  of  SOC  segments  above  is  that  battery
inconsistency  occurs  within  these  ranges.  The  cell
consistency  problem  is  most  evident  at  the  end  of
charging and discharging; that is, it becomes evident as
the SOC increases during charging.

4　Model Construction

The  following  are  the  two  main  reasons  for  choosing
unsupervised learning to build the model:

(1)  We take into account  that  the number of  normal
and  abnormal  samples  is  extremely  unbalanced  in  the
study  of  the  consistency  problem  of  batteries.  The
number  of  abnormal  batteries  is  small.  Applying  a
supervised  learning  algorithm  for  model  construction
will  lead to a large machine-learning error and a large
risk  of  overfittings.  Unsupervised  learning  can
overcome  this  problems.  In  particular,  unsupervised
learning  algorithms  include  anomaly  detection  and
novelty  detection  algorithms,  both  of  which  are
suitable  for  finding  a  few  problematic  samples  in  a
large dataset.

(2) The sample dataset trained in this work is small.
If  we  use  supervised  learning,  problems  will  arise  in
the  proportion  division  of  training  samples  and  test
samples.  When  the  data  training  is  complete,  the  test
samples will not be enough. Unsupervised learning can
overcome  this  problem  by  treating  all  samples  as  test
samples.

The  model  construction  comprises  four  parts:
Density-Based Spatial  Clustering of  Applications  with
Noise  (DBSCAN)  algorithm  based  on  density
clustering,  Isolation  Forest  and  Local  Outlier  Factor
(LOF)  algorithm  based  on  anomaly  detection,  One-
Class  SVM  algorithm  based  on  classification,  and  K-
Nearest Neighbors (KNN) algorithm based on distance
and statistics.

4.1　DBSCAN  algorithm  based  on  density
clustering

The  model-building  step  of  the  DBSCAN  identifies
isolated  points  that  cannot  form  clusters  as  anomalies
or noise points.  EPS represents the radius threshold of
the  density  clustering  in  the  DBSCAN  algorithm,
which  defines  the  maximum  distance  to  determine
whether  two  samples  belong  to  the  same  cluster.  EPS
defines  the  neighborhood  radius  of  a  sample  (if  the
distance  between  a  sample  and  another  sample  in  the
dataset  is  less  than  or  equal  to  EPS,  then  these  two
samples  are  considered  to  be  samples  within  the
neighborhood).  For  any  sample,  if  the  number  of
samples in its neighborhood (i.e., within a circular area
with  the  sample  as  the  center  and  EPS  as  the  radius)
reaches  a  certain  minimum  sample  number  MinPts,
then the sample is a core sample. The core sample and
samples within its  neighborhood will  be clustered into
the same class, forming a cluster. If a sample is neither
a core sample nor a neighborhood of any core sample,
it  will  be  labeled  as  a  noise  point.  In  summary,  EPS

 

Table 2    Information  retention  of  different  models  after
dimensionality reduction.

Battery type Amount of information saved
after dimensionality reduction (%)

A: PHEV 99.33
B: PHEV 98.42
C: BEV 99.91
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defines  the  maximum  sample  distance  to  determine
whether it belongs to the same cluster. It, together with
MinPts,  determines  the  rules  for  clustering  formation.
Reasonably setting EPS and MinPts is the most critical
step in  the  DBSCAN algorithm.  Generally,  EPS has  a
good  effect  in  obtaining  the  moderate  value  of  the
distance  distribution  between  samples  in  the  dataset.
The flow of the algorithm is as follows.

Step  1: Select  an  arbitrary  data  object  point p from
the dataset.

Step 2: If the selected data object point p is the core
point for parameters Eps and MinPts, then find all data
object points that are reachable from p density to form
a cluster.

Step 3: If the selected data object point p is an edge
point, then select another data object point.

Step  4: Repeat  Steps  2  and  3  until  all  points  are
processed.

In  the  model  construction,  the  training  features  and
corresponding  samples  of  the  model  must  be
established  in  advance.  Although  the  extraction
features  must  be  extracted  from  the  data  during
charging  and  discharging,  past  experiments  showed
that  individual  modeling  based  on  charging  features
and  discharging  features  is  not  effective.  Hence,
charging  and  discharging  features  are  combined  for
modeling,  as  shown  in Fig.  1,  in  the  distance-based
clustering algorithm using DBSCAN.
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Fig. 1    Test results of charging and discharging characteristics. (a) Test result of charging characteristic for Type A battery,
(b)  test  result  of  discharge  characteristic  for  Type  A  battery;  (c)  test  result  of  charging  characteristic  for  Type  B  battery,
(d) test result of discharge characteristic for Type B battery, (e) test result of charging characteristic for Type C battery, and
(f) test result of discharge characteristic for Type C battery.
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4.2　Isolation Forest and LOF algorithms based on
anomaly detection

The  Isolation  Forest  algorithm  is  an  algorithm  for
anomaly  detection.  Outliers  are  detected  to  separate
those which are easy to be isolated, and the points with
sparse  distribution  and  far  away  from  the  population
with high density are considered abnormal data. In the
known  feature  space,  the  sparsely  distributed  region
represents  the  probability  of  events  occurring  in  this
region,  so  it  can  be  considered  as  the  outlier  of
abnormal  data.  The  Isolation  Forest  algorithm  adopts
an  efficient  random  segmentation  strategy  to
recursively  randomly  segment  the  dataset  until  all  the
sample  points  become  isolated.  As  a  population  of
isolated  trees,  Isolation  Forest  algorithm  identifies
points  with  short  path  lengths  as  outliers.  Different
numbers  act  as  experts  for  different  outliers,  among
which abnormal outliers often have short paths.

The details  within the Isolation Forest  algorithm are
as follows:

(1)  Two  subspaces  can  be  generated  at  a  time  by
using  a  random  hyperplane  to  cut  a  data  space.  Next,
we continue to randomly select  hyperplanes to cut  the
two  subspaces  obtained  in  the  first  step  and  continue
the  cycle  until  each  subspace  contains  only  one  data
point.  During  the  above  process,  those  clusters  with
high  density  need  to  be  cut  many  times  before  they
stop being cut;  that  is,  each point  exists  in  a  subspace
alone. However, sparsely distributed points often enter
early  subspaces.  Therefore,  the  whole  idea  of  the

Isolation Forest algorithm is that the abnormal samples
are  likely  to  fall  into  the  leaves  quickly,  or  the
abnormal samples become close to the root node on the
decision tree.

(2) M features  are  randomly  selected,  and  the  data
points are split by randomly selecting a value between
the  maximum  and  minimum  values  of  the  selected
features.  The  partitioning  of  observations  is  repeated
recursively until all observations are isolated.

The  schematic  of  the  Isolated  Forest  algorithm  is
shown in Fig. 2.

The  LOF  algorithm  in  the  model  building  step,
namely,  the  local  anomaly  factor  algorithm,  is  a
classical algorithm based on density. LOF algorithm is
an  unsupervised  anomaly  detection  algorithm  that
realizes  anomaly  detection  by  calculating  the  local
density deviation of a given data point which is relative
to  its  neighborhood.  An outlier  factor  that  depends  on
neighborhood density is assigned to each data point to
determine  whether  the  data  point  is  an  outlier.  Its
advantage is that it can quantify the abnormal degree of
each data point.

The overall algorithm is as follows:
(1) For each data point, calculate its distance from all

other points and sort it from near to far;
(2)  For  each  data  point,  find  its  KNN  and  calculate

the LOF score.

4.3　One-Class  SVM  algorithm  based  on
classification

The  One-Class  SVM  algorithm  in  the  model-building
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Fig. 2    Illustration  of  the  Isolated  Forest  algorithm.  (a)  Partitioning  graph  illustrates  how  the  feature  space  is  recursively
divided by the Isolation Forest algorithm to isolate anomalies and (b) Isolated Forest recursively splits the data space from the
root  node  to  leaf  nodes,  so  that  anomalies  are  further  isolated  into  smaller  partitions  (green  boxes  represent  all  possible
judgment results, and the red box represents the actual judgment result. x represents the feature value used for judgment).
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step  is  a  single  classification  algorithm.  By  finding  a
hyperplane, the positive example circle in the sample is
drawn. The modified hyperplane is used for prediction,
and  the  samples  in  the  circle  are  positive  samples.
When  the  data  dimension  is  not  high,  and  no
assumption  on  the  distribution  of  relevant  data  has
been  established,  we  can  regard  the  single
classification algorithm as a  simple and fast  algorithm
for unsupervised classification and anomaly detection.

This  alogrithm  is  to  find  a  hyperplane  to  circle  the
positive  examples  in  the  sample,  and  prediction  is  to
use this  hyperplane to make decisions.  Samples inside
the  circle  are  considered  positive  samples,  while
samples  outside  the  circle  are  considered  negative
samples.  The  division  of  the  single  classification
algorithm  to  predict  the  sample  signal  is  shown  in
Fig. 3.

4.4　KNN  algorithm  based  on  distance  and
statistics

The KNN algorithm in the model establishment step is
the  nearest  neighbor  algorithm.  Its  basic  idea  is  as
follows:  a  sample  is  most  similar  to K samples  in  the
dataset.  If  most  of  the K samples  belong  to  the  same
category, then the sample also belongs to this category.
The algorithm flow is as follows: calculate the average
distance  between  each  sample  point  and  its  nearest K
samples,  and compare the calculated distance with the
threshold.  If  the  distance is  greater  than the  threshold,
then the sample is considered an outlier. The advantage
of this algorithm is that it does not need to assume the
distribution  of  data.  The  disadvantage  is  that  only
global  outliers  can  be  found,  not  local  outliers.  The
abnormal  prediction  result  is  shown  in Fig.  4,  where
each point represents a battery, the red point represents
the  normal  point,  and  the  green  point  represents  the
abnormal detection point.

In  the  distance+boxplot  algorithm,  the  distance
algorithm  uses  Euclidean  distance  to  calculate  the

distance  between  each  point  and  other  points.  The
boxplot  algorithm  is  based  on  the  interquartile  range,
which is much less for the abnormal point of retrieval,
and  the  anomalous  point  probe  signal  is  shown  in
Fig. 4.

4.5　Model parameter settings

The  specific  parameter  adjustment  of  the  model  is
carried  out  by  grid  cross-validation,  as  shown  in
Table 3.

In Fig.  1,  PCA-feature1  and  PCA-feature2  are  the
remaining  two  dimensional  features  after  PCA
dimensionality  reduction  on  the  basis  of  the  original
features,  and the features of  these two dimensions can
represent  all  the  feature  information  before  PCA
dimensionality  reduction,  and the  specific  values  have
no  practical  meaning,  but  only  as  numerical  outlines.
The same is true later in the article.

5　Experimental Result and Analysis

The  abnormal  prediction  result  of  the  DBSCAN
algorithm  is  shown  in Fig.  5,  where  each  point
represents a battery, the red point represents the normal
point,  and  the  green  point  represents  the  abnormal
detection point.

In  this  work,  we  combine  the  charging  and
discharging  characteristics  of  the  three  types  of
batteries  to  train  the  Isolated  Forest  algorithm.  The
training results are shown in Fig. 6.

In  the  distribution  of  the  outliers  of  three  types  of
batteries, each point represents a battery, the red points
represent normal points, and the green points represent
abnormal  outliers.  The  Isolated  Forest  algorithm  can
effectively  separate  the  cells  corresponding  to
abnormal  charge  and  discharge  data  and  identify  the
single cells with consistent faults.

We  combine  the  charging  and  discharging
characteristics of the three types of batteries to train the
LOF  algorithm,  and  the  training  results  are  shown  in
Fig.  7.  In  the  distribution  of  outliers  of  three  types  of

 

 
Fig. 3    Schematic of the One-Class SVM algorithm.
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Fig. 4    Representation  of  the  distance+box  line  graph
algorithm.
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batteries,  each point represents a battery,  the red point
represents normal point, and the green point represents
abnormal outlier. The abnormal prediction result of the
One-Class  SVM  algorithm  is  shown  in Fig.  8,  where
each point represents a battery, the red point represents
the  normal  point,  and  the  green  point  represents  the

abnormal  detection  point.  The  abnormal  prediction
result of the KNN algorithm is shown in Fig. 9, where
each point represents a battery, the red point represents
the  normal  point,  and  the  green  point  represents  the
abnormal detection point. We use the distance+boxplot
algorithm  to  predict  abnormal  outliers,  as  shown  in

 

Table 3    Model parameter setting.
Algorithm Parameter Meaning Setting Best choose

Isolation Forest
n_estimators How many iTrees to build [50, 100, 150, 200] 150
max_feature Maximum characteristic number [1, 2] 2

bootstrap Whether to replace sampling when building iTrees [True, False] True
LOF m_neighbors Number of neighbors [20, 40, 60, 80, 100] 40

One-Class SVM gamma — Default value Default value
KNN k_neighbors Number of neighbors [20, 40, 60, 80, 100] 20

DBSCAN eps Distance threshold of the neighborhood threshold of
sample number in the neighborhood required for the

sample point to become the core object

Get it by the elbow
method 7

min_samples [2, 3, 4, 5, 6] 4

Logistics — No parameter adjustment is made; default parameters
are used — —

Decision Tree max_depth Maximum depth of the tree maximum characteristic
index used to divide features

[6, 7, 8, 9] 7
max_features [1, 2] 2
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Fig. 5    DBSCAN  results  for  three  types  of  batteries.  (a)  Test  results  of  charge  and  discharge  characteristics  for  Type  A
battery, (b) test results of charge and discharge characteristics for Type B battery, and (c) test results of charge and discharge
characteristic for Type C battery.
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Fig. 6    Isolation Forest results for three types of batteries. (a) Test results of charge and discharge characteristics for Type A
battery, (b) test results of charge and discharge characteristics for Type B battery, and (c) test results of charge and discharge
characteristic for Type C battery.
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Fig.  10,  where  each  point  represents  a  single  cell,  the
red  point  represents  the  abnormal  point,  the  yellow
point  represents  the  potential  abnormal  point,  and  the
green point represents the normal point.

Analysis of experimental and modeling results shows
that  the DBSCAN algorithm and the distance+boxplot

algorithm  have  the  best  anomaly  detection  and
classification  effect  in  terms  of  the  detection  and
classification  effect  of  outliers.  In  the  actual  training
process,  the  modeling  and  DBSCAN  algorithm  trains
the  artificial  parameter  whose  value  is  slightly
influenced  by  the  disturbance  to  the  classification
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Fig. 7    LOF results  for  three  types  of  batteries.  (a)  Test  results  of  charge  and discharge  characteristics  for  Type  A battery,
(b)  test  results  of  charge  and  discharge  characteristics  for  Type  B  battery,  and  (c)  test  results  of  charge  and  discharge
characteristic for Type C battery .
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Fig. 8    One-Class SVM results for three types of batteries. (a) Test results of charge and discharge characteristics for Type A
battery, (b) test results of charge and discharge characteristics for Type B battery, and (c) test results of charge and discharge
characteristic for Type C battery.
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Fig. 9    KNN results  for three types of  batteries.  (a)  Test  results  of  charge and discharge characteristics  for Type A battery,
(b)  test  results  of  charge  and  discharge  characteristics  for  Type  B  battery,  and  (c)  test  results  of  charge  and  discharge
characteristic for Type C battery.
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result.  Meanwhile,  the  distance+boxplot  algorithm has
a simple and efficient implementation, can realize fully
automated  and  output  multilevel  anomalies  (i.e.,
potential and actual anomaly), and can classify various
points.

Given  their  similar  classification  effect,  this  work
choose  the  distance+boxplot  algorithm  over  the
DBSCAN algorithm to detect the consistency fault of a
single cell.

The  distance+boxplot  modeling  algorithm  reveals
abnormal  data  distribution  shown  in  the  form  of  3D
figures; they are shown in Fig.  11 for Type A battery,
Fig.  12 for  Type  B  battery,  and Fig.  13 for  Type  C
battery.

For  the  detection  of  abnormal  cell  consistency,  this
work  selects  one  sample  for  each  battery  type  to
display the data. Figure 14 shows the data for Type A
battery, Fig. 15 shows the data for Type B battery, and
Fig.  16 shows  the  data  for  Type  C  battery.  The
different  colored  lines  in Figs.  14−16 represent

different  cell  voltages.  In  particular,  Type  A  has  88
cells,  Type  B  has  96  cells,  and  Type  C  has  108  cells.
Given  that  many  cell  voltages  are  close  to  each  other

 

0.05

0.04

0.03

0.02

PC
A-

fe
at

ur
e2

PCA-feature1
(a)

0.01

Normal
Potential outlier
Outlier

Normal
Potential outlier
Outlier

Normal
Potential outlier
Outlier

0

−0.01

−0.02

−0
.02

−0
.01 0

0.0
1

0.0
2

0.0
3

0.0
4

0.05

0.04

0.03

0.02

PC
A-

fe
at

ur
e2

PCA-feature1
(b)

0.01

0

−0.01

−0.02

−0
.02

−0
.01 0

0.0
1

0.0
2

0.0
3

0.0
5

0.0
4

0.010
0.008

0.004
0.006

0.002

PC
A-

fe
at

ur
e2

PCA-feature1
(c)

0

−0.006
−0.004
−0.002

−0.008

−0
.05 0

0.0
5

0.1
0

0.1
5

0.2
0

0.2
5

0.3
0

 
Fig. 10    Distance+boxplot results for three types of batteries. (a) Test results of charge and discharge characteristics for Type
A  battery,  (b)  test  results  of  charge  and  discharge  characteristics  for  Type  B  battery,  and  (c)  test  results  of  charge  and
discharge characteristic for Type C battery .
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Fig. 11    3D characteristics of Type A battery.
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Fig. 12    3D characteristics of Type B battery.
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Fig. 13    3D characteristics of Type C battery.
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and the curve is repeated, not all  the cells can be seen
from Figs.  14−16.  Instead,  only  the  cells  with
consistency problems are visualized.

As  shown  in Figs.  14–16,  the  cells  with  abnormal
consistency  all  have  battery  charging  and  discharging
problems,  and  the  cell  consistency  problems  of  each
type are  different.  The algorithm adopted in  this  work
can effectively detect these abnormalities.

To increase the reliability of the experimental results,
we  select  some  algorithms  that  are  not  unsupervised
learning,  and  compare  them  with  the  unsupervised
learning algorithms. We select eight abnormal samples
and  80  normal  samples  as  the  test  set.  Recall  rate,
accuracy  rate,  and  F1  index  are  measured  for
evaluation, and the test results are shown in Table 4.

We  visualize  the  algorithm  evaluation  index,  as
shown in Fig. 17.

Figure  17 shows  that  the  recall  rate  of  supervised
learning  algorithms  is  generally  not  as  high  as  that  of
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Fig. 14    Visualization of the single-cell consistency anomaly data detected in Type A battery.
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Fig. 15    Visualization of the single cell consistency anomaly data detected in Type B battery.
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Fig. 16    Visualization of the single cell consistency anomaly data detected in Type C battery.

 

Table 4    Index for evaluation of different algorithms.
Algorithm Recall rate Accuracy rate F1 index
Logistic 0.75 0.60 0.67

Decision tree 0.88 0.64 0.74
Isolation Forest 1.00 0.29 0.45

LOF 1.00 0.31 0.47
One-Class SVM 1.00 0.17 0.29

KNN 1.00 0.21 0.35
DBSCAN 0.88 0.73 0.80

Distance+boxplot 1.00 0.80 0.89
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unsupervised learning algorithms. In terms of accuracy
performance,  most  unsupervised  learning  methods
have  a  low  accuracy  rate.  Meanwhile,  supervised
learning  algorithms  have  a  relatively  high  accuracy
rate.  In  summary,  only  two  algorithms  exhibit  high
recall  and  accuracy  rates:  distance+boxplot  and
DBSCAN.  Compared  with  DBSCAN,  the
distance+boxplot algorithm has a better recall rate and
accuracy  rate.  Therefore,  the  most  effective  algorithm
is the distance+boxplot.

6　Conclusion

This work investigates the battery consistency problem
in  new  energy  vehicles  with  lithium  batteries  by
adopting an unsupervised learning approach. Targeting
the charging fragment data with uneven distribution of
positive  and  negative  samples  in  the  actual  working
conditions,  we  select  the  charging  and  discharging
features  for  PCA  dimensionality  reduction  and
compare  the  results  with  those  from  the  supervised
learning  algorithm.  We  also  compare  the  prediction
effects  of  the  charging  and  discharging  features
modeled  individually  and  in  combination.
Experimental  results  show  that  the  combination  of
charging  and  discharging  features  modeled  by  the
unsupervised  learning  method  can  effectively
overcome the overfitting problem and exhibit  superior
performance in terms of accuracy and recall rate.
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