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Abstract: There is a growing demand for time series data analysis in industry areas. Apache IoTDB is a time

series  database  designed  for  the  Internet  of  Things  (IoT)  with  enhanced  storage  and  I/O  performance.  With

User-Defined  Functions  (UDF)  provided,  computation  for  time  series  can  be  executed  on  Apache  IoTDB

directly. To satisfy most of the common requirements in industrial time series analysis, we create a UDF library,

IoTDQ, on Apache IoTDB. This library integrates stream computation functions on data quality analysis, data

profiling,  anomaly  detection,  data  repairing,  etc.  IoTDQ  enables  users  to  conduct  a  wide  range  of  analyses,

such as monitoring, error diagnosis, equipment reliability analysis. It provides a framework for users to examine

IoT time series with data quality problems. Experiments show that IoTDQ keeps the same level of performance

compared to mainstream alternatives, and shortens I/O consumption for Apache IoTDB users.
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1　Introduction

Internet of Things (IoT) is dedicated to connection and
communication  among  machines.  With  the  expansion
of  IoT  systems  and  advancement  in  Internet  transport
technologies,  there  is  a  growing demand for  industrial
data  collection,  storage  and  processing.  In  this  paper,
we  will  introduce  IoTDQ,  a  data  processing  library
based on Apache IoTDB,  designed for  comprehensive
data diagnosis in industrial areas.

1.1　Time series database and Apache IoTDB

For  the  time  being,  most  of  the  time  series  databases,
among  which  InfluxDB,  Kdb+,  and  OpenTSDB  are
popular,  are  designed  for  scenarios  of  supervising

servers  or  financial  computation.  However,  an  IoT
system  can  create  millions  of  data  points  per  second,
which  could  become  a  bottleneck  for  traditional  time
series databases. Apache IoTDB is an ideal time series
database  for  industrial  scenarios.  Apache  IoTDB
supports  flexible  deployment  and  features  low storage
cost  and  I/O  efficiency[1, 2].  With  its  excellent
performance  and  semantic  support,  Apache  IoTDB
provides  highly  efficient  functions  from  storage  to
queries.

Similar  to  InfluxDB  and  some  other  databases,
Apache  IoTDB[3, 4] allows  utilizing  User-Defined
Function  (UDF)  when  querying.  Naturally,  UDF  for
time  series  consumes  data  either  by  row  or  window,
which usually  corresponds  to  transformation functions
and  aggregation  functions.  With  the  help  of  Apache
IoTDB  UDF,  we  are  able  to  construct  a  library  for
industrial data analysis usage.

1.2　Computation problems in time series from IoT

Models  on  traditional  time  series  have  been  widely
discussed  in  the  past  decades.  These  models  cover
stationary tests, forecast, imputation, and segmentation.
These  methods  usually  create  a  mathematical  model
with  hypotheses  such  as  Box-Jenkins  modeling[5].
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Recently,  researches  on  time  series  analysis  prefer  to
utilize  machine  learning  to  deal  with  complicated
stochastic  processes.  For  example,  transformer[6],
RNN[7],  GNN[8,9],  etc.,  are  applied  for  time  series
forecast,  anomaly  detection,  imputation,  and  other
purposes.

Despite  vast  progress  in  time  series  model
constructions,  industrial  IoT  encounters  rather
fundamental problems. Meanwhile, Apache IoTDB has
met  the  requirements  of  IoT  data  collection  and
storage,  but  these  requirements  have  not  been  met  in
upstream data processing stage.

Different  from  classical  time  series  data  such  as
stock price or monthly sales, IoT sensors collect data in
a  somehow  unstable  way.  Due  to  physical  damage,
transport  delay,  or  nonstandard operations,  data  points
do  not  necessarily  line  up  with  equal  time  intervals,
and  noises  often  show  up  in  commonly  seen  electric
signals. These are concluded as data quality problems.
In other words, only if we solve these problems, it will
be possible to apply time series models on downstream.

1.3　Designing requirements of IoTDQ

Based  on  these  computation  problems,  we  propose
IoTDQ, a UDF library for Apache IoTDB, designed for
IoT  data  processing.  The  primal  requirement  of
constructing an industrial UDF library, namely IoTDQ,
is to realize stream computing via Apache IoTDB UDF
API.  An  Apache  IoTDB  UDF  may  consume  data
points  either  row  by  row  or  from  a  sliding  window.
Although  it  is  theoretically  possible  to  adopt  all  data
points  in  a  single  window,  streaming  computing
satisfies  the  computation  problems  of  industrial  big
data[10].  Therefore,  the  main challenge of  IoTDQ is  to
select,  optimize,  and  integrate  algorithms,  which
support an industrial analysis pipeline.

To construct  such a  pipeline,  there are  several  types
of functions to be collected. Primordial Apache IoTDB
already offers a few fundamental aggression functions,
including  minimum,  maximum,  1st  order  difference,
and  so  on.  IoTDQ  thus  should  contain  more  statistic
functions,  which  can  generate  a  quick  data  profile.
These functions do not aim to fix data quality problems
in  one  step.  Rather,  these  functions  are  practical  for
real-time  system  monitoring.  They  provide  sketching
profiles  for  each  IoT  device,  which  are  economical
ways to realize initial data diagnosis.

The second step is to satisfy the primary needs of IoT
data.  A  typical  case  is  to  monitor  the  stability  of  the

sensor and sketch out how often it  goes wrong. Based
on  cases  of  two  industrial  scenes,  i.e.,  wind  turbines
and  vehicle  engines,  we  draft  a  data  quality  paradigm
for  general  IoT  scenarios,  which  has  been  included  in
our  library.  Later  we  will  show  how  data  quality
paradigm  can  help  to  infer  faults  in  industrial
production  environments.  Furthermore,  we  also  take
repairing  quality  problems  into  consideration.  IoTDQ
integrates  novel  restriction-based  time  series  repairing
algorithms.  Via  our  library,  users  may  make  remedy
for origin time series data of low data quality. The third
step  in  the  pipeline  is  to  integrate  some  typical  time
series  models  into  Apache  IoTDB.  It  is  usually  the
final  step  to  utilize  these  models  when  processing  a
time series.  By including these functions,  we desire to
make  Apache  IoTDB  cover  the  full  stage  of  IoT  data
analysis.

IoTDQ  has  now  become  a  sub-project  in  Apache
IoTDB[11], known as UDF-Library. As shown in Fig. 1,
composed  of  six  modules,  IoTDQ  provides  enhanced
computation  functions  based  on  Apache  IoTDB UDF,
and  user  may  operate  IoTDQ  with  IoTDB  JDBC  to
accomplish  data  preprocess.  The  code  is  available  at
Github[12],  and  the  document  can  be  viewed  on  the
official website of Apache IoTDB[13]. In this paper, we
present  all  categories  of  IoTDQ  divided  by  functions.
We  also  summarize  a  few  industry  scenarios,  with
some examples  of  IoTDQ, to  elaborate  universality  of
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Fig. 1    IoTDQ in Apache IoTDB ecosystem.
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this library.

2　Overview of IoTDQ

A  suvery[14] points  out  that  time  series  data  mining
involves  three  major  questions,  namely  data
representation,  similarity  measurement,  and  indexing
method.  A  database  system  covers  resolution  for
indexing method,  and IoTDQ attempts to make up for
the  other  two  questions.  In  detail,  concrete  tasks  to
solve these questions include clustering,  classification,
segmentation,  prediction,  anomaly  detection,  motif
discovery,  and  so  on.  As  for  industrial  time  series,
these  questions  are  tightly  related.  A  full  process  of
computing  includes  data  quality  diagnosis,  data
profiling,  anomaly  detection,  repairing,  and  model
fitting  and  forecast.  IoTDQ  tries  to  focus  on  most
aspects  mentioned  above,  and  offers  a  pipeline  for
conventional IoT time series.

Figure 2 is a flowchart which shows how a user can
use  IoTDQ as  a  standard  diagnosis  tool.  According to

the  functions  provided,  six  categories  in  IoTDQ
compose  the  pipeline,  namely  data  profiling,  data
quality,  anomaly  detection,  data  repairing,  frequency
domain  analysis,  and  time  series  forecast.  In  this
section, we will discuss the modification of algorithms
in each category that meets the designing requirements
mentioned in Section 1.3.

2.1　Data quality

Data  quality  problems  were  first  summarized  by  Lee
et  al.[15] These  problems  in  relational  data  have  been
clearly  clarified[16],  but  IoT  data  quality  problems
behave differently from them. Data quality problems in
IoT  time  series  are  caused  by  the  instability  of  IoT
sensors.  A  thermocouple  sensor  translates  an  electric
signal  to  temperature,  but  jamming  signals  often
appear,  leading  to  abnormal  signal  fluctuation.
Connections  between  sensor  and  receiver  sometimes
get  lost,  causing  discontinuous  periods  in  time  series.
Similar  occasions  occur  repeatedly  in  industry
scenarios.  These  become  troubles  when  dirty  and
irregularly  arranged  raw  data  is  undesired  for
downstream  analysis.  Most  time  series  analysis
methods,  like  decomposition  and  model  regression,
treat  data  with  equal  time  intervals.  Consequently,  we
need remedies for data quality problems.

Song  and  Zhang[17] proposed  a  framework  for  IoT
data quality analysis, which includes three dimensions,
namely  validity,  completeness,  and  consistency.
Validity considers about data constraints; completeness
measures the degree all data are observed; consistency
evaluates  how  data  are  consistent  with  each  other.
However,  this framework mainly focuses on relational
data,  and utilizes  corresponding examination methods.
Then the question lies on how to extend this framework
to  describe  quality  problems  on  IoT  time  series.  We
have  brought  a  general  data  quality  classification  for
overall quality examination on time series (see Table 1).
We  induct  common  data  quality  problems  into  four
indices  and twelve  error  types.  Each index signs  for  a
root cause of data quality problems, and ranges from 0
to 1.

Fang  et  al.[18] discussed  on  completeness,
consistency,  and  timeliness.  Here  we  summarize  the
definition  and  evaluations  of  these  indices,  and  then
introduce their corresponding stream computing UDFs.

Completeness  describes  the  proportion  of  correctly
collected data points, as shown in the following:
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Fig. 2    Pipeline of IoT time series in IoTDQ.
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Completeness = 1−
Nnull+Nspecial+Nmiss

N +Nmiss
(1)

Nnull Nspecial Nmiss

N
where , , and  are the numbers of null,
special, and missing values in a series length of .

Assuming that an IoT sensor creates a data point with
a fixed time interval, we can infer on which timestamp
there  is  a  missing  value.  Thus  completeness  indicates
the stability of data transport. Also, when the sensor is
power-off, it leaves the series continuous blank points.
In addition to the raw definition, power-off periods are
excluded  when  using “Completeness”.  This  UDF
recognizes  power-off  by  detecting  missing  of  a  long
duration.

Consistency describes the cleanness of data points in
refer to timestamps, as shown in the following:
 

Consistency = 1−
Nredundancy

N
(2)

Nredundancywhere  is the number of redundant points.
This  index  is  concluded  from  the  phenomenon  that

physical  errors  of  IoT  sensor  or  network  cause  the
creation  of  unwanted  extra  points.  Sometimes  a  data
point  is  collected  two  times,  or  sometimes  the  sensor
sends  multiple  points  in  a  very  short  period.  Time
series  databases  always  neglect  overlapped  points,  so
the  function  focuses  on  finding  out  overcrowded
points.

Timeliness  errors  usually  occur  when  there  is  a
transport  latency.  The  computation  is  defined  in  the
following:
 

Timeliness = 1−
Nlatency

N
(3)

Nlatencywhere  is the number of latent points.
Different  from  consistency  errors,  timeliness  errors

display as data point with incorrect timestamp.
These  mentioned  indices  are  integrated  into  IoTDQ

as “Completeness”, “Consistency”,  and “Timeliness”.
The  fundamental  methods  consumes  all  data  points  to
infer the standard timestamp interval by estimating the
median of 1st order timestamp differences. IoTDQ also
provides  the  stream  computation  variations,  namely
“StreamCompleteness”, “StreamConsistency”,  and

“StreamTimeliness”.  These  UDFs  infer  standard  time
interval  from  the  first  sliding  window.  When
consuming new data points, the self-adaptive functions
detect whether the standard interval has changed.

Validity errors may come from either IoT devices or
the measured system itself, as shown in the following:
 

Validity = 1−

∑
i

Nanomalyi

N
(4)

Nanomalyiwhere  is  the  number  of  points  exceeding
threshold on i-th order difference. This index does not
take timestamps into account.

In  the  general,  validity  measures  the  proportion  of
outliers  according  to  system  restrictions.  In  a  usual
case, a thermal sensor records temperature in a desired
value  range.  By  setting  a  threshold  to  the  series,  it  is
possible  to  calculate  the  number  of  illegal  points.
Sometimes  the  thresholds  are  set  to  seed,  acceleration
or  even  higher  order  of  difference.  And  by  default,
through  input  series,  we  may  infer  a  threshold  by
executing  anomaly  detection  methods  when  the
threshold is not given.

Among  these  four  indices,  completeness,
consistency,  and  timeliness  are  calculated  by  finding
out  theoretically  correct  timestamps  to  decide  the
number  of  missing,  redundant,  and  latent  points.
Suppose we have got a standard timestamp interval, the
remaining  question  lies  in  matching  each  point  from
the original series to a reference point acquired by the
interval.  To  construct  a  streaming  algorithm,  we
calculate the difference of neighboring timestamps, and
convert it to a type of error,
 

error =


power-off, 10δ < ∆t;
missing, 1.5δ < ∆t ⩽ 10δ;
latency, 0.5δ < ∆t ⩽ 1.5δ;
redundancy, 0 < ∆t ⩽ 0.5δ

(5)

δ

∆t
which  defines  the  recognition  of  error  types.  is  the
standard  timestamp  interval,  and  is  the  1st  order
difference of  original  timestamps.  Note that  power-off
is  not  considered  as  an  error,  since  no  points  are

 

Table 1    Data quality issues.
Completeness error Consistency error Validity error Timeliness error

Missing point Overcrowded point Value exceeding threshold Latency
NaN value Repeated point Speed exceeding threshold —

Error code representing NaN — Acceleration exceeding threshold —
Power-off — Jerk exceeding threshold —

Note: NaN means “not a number”.
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expected  when  equipment  is  offline.  And  the
judgement  of  power-off  here  is  comparatively  rough.
There is a case in Section 3.1, where a delicate method
is introduced.

δ

ti i
t
′
i i

Now  consider  the  situation  where  the  user  does  not
provide  a  standard  time  interval,  which  is  often  the
case.  If  the  function  consumes  all  data  points  at  once,
then  we  may  choose  the  mode  or  median  of  the  1st
order  timestamp  interval  as  the  standard  interval.
However,  as  mentioned  in  Section  1.3,  we  desire  a
streaming algorithm to deal with the original series. We
focus  on  a  sliding  window  to  determine  the  standard
interval.  Take  as  undecided  standard  timestamp
interval,  as  timestamp  of  the -th  point  from  the
original  series,  as  theoretical  timestamp  of  the -th
data  point,  then the  standard interval  is  decided in  the
following:
 

argmin
δ

∑
i

(
ti, t
′
i

)2
+nδ2

 (6)

n

δ

where  is  the  number  of  theoretical  points  which  do
not correspond to a point from original series. Figure 3
illustrates  an  example.  To  solve  Formula  (6),  the
functions  search  near  the  median  of  1st  order
timestamp  difference  of  the  sliding  window,  and
always  suppose  that  the  first  point  in  the  sliding
window is on the correct timestamp. For each window,
the  function  calculates  three  indices,  and  the  overall
indices are the arithmetic mean of all windows.

The  calculation  of  validity  is  related  to  anomaly
detection  problems.  Here  we  take  a  snap  on  how  this
function  profiles  a  time  series.  This  function  uses
Median  Absolute  Deviation  (MAD)  as  a  standard  to
assess  validity  errors  from a series.  in  Section 2.2,  we
will further introduce this profiling function. In a word,
MAD  profiles  the  ranges  in  which  values  are
distributed  depart  from  the  median,  and  provides  a
reference  for  a  reasonable  range  of  value,  speed,  and
acceleration  changes.  In  each  sliding  window,  the
function  calculates  MAD  and  then  checks  the  value
correctness of each point.

Based  on  the  standards  of  error  classification,  we
develop  these  four  data  quality  functions  to  compute
the  indices.  The  results  should  be  considered  as  an
overall  assessment  on  data  cleanness.  Users  may
conduct retrospective analysis of generated data, where
data profiling functions usually help, and try to fix root
problems  intensively.  In  Section  3.2,  we  present  an
example of computing data quality indices.

2.2　Data profiling

Data  profiling  functions  may  be  treated  as  beneficial
supplements  for  primordial  Apache  IoTDB,  which
lacks  statistics  computation  functions.  In
correspondence  to  data  mining  tasks,  this  class  covers
data  representation,  which  aims  to  show  fundamental
properties or statistics of time series. This is the second
step that IoT data enters. Whether there are data quality
problems  or  not,  a  time  series  digest  helps  user  infer
basic problems alongside data quality indices. Table 2
lists these fundamental functions.

The  question  remains  the  same  as  other  functions.
Considering the large scale of data points in time series
in industry scenarios, statistics functions require stream
computing  algorithms  to  satisfy  execution  efficiency.
For example, the convenience of implementation takes
precedence  in  Apache  DataFu  for  Spark[19],  a  UDF
library  extended  from  Apache  DataFu  for  Pig[20].  In
reality,  these  statistics  which  support  stream
computation  algorithms,  such  as  variance,  skewness,
and integral average, can only make a rough sketch of
time series, and somehow neglect special properties of
time  series.  For  statisticians  and  economists,  complex
models  which  fully  consider  self-correlation  are
frequently  utilized.  Therefore  IoTDQ  chooses  to  keep
the  comprehensive  practicability  of  functions  despite
the possible high resource occupation.

As  mentioned  in  Section  2.1,  MAD  is  an  effective
index  to  describe  data  departure  from  median[21].
Shrivastava  et  al.[22] proposed  Q-Digest  method  as  a
stream  computing  algorithm  to  calculate  approximate
quantiles. Similarly, Chen et al.[21] proposed TP-MAD,
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an  stream  computing  method  to  calculate  MAD  with
provided  bounded  error  with  bucket  skipping
improvement.  IoTDQ  adopts  this  algorithm,  and  in
Section  4  there  is  a  comparison  between  the  accurate
method and TP-MAD.

2.3　Anomaly detection

Anomaly  detection  in  times  series,  according  to
targeted  outlier  types,  can  be  classified  as  point
detection,  subsequence  detection  and  series
detection[23].  For  series  detection,  functions  in  data
matching (see Section 2.6) and in data profiling reduce
the  dimension  of  the  original  series,  and  make  it
possible  to  execute  clustering,  by  which  the  problem
turns  into  a  point  detection  problem.  This  section
mainly discusses the other two situations.

As  for  point  detection,  fundamental  algorithms  rely
on  basic  statistics  like  standard  deviation  and
InterQuartile  Range  (IQR).  These  models  detect
outliers by regression and judging by the distribution of
error.  For  example, k-sigma  method  hypothesizes
normal  distribution,  and  utilizes  standard  deviation  to
assist  detection.  Chen  et  al.[21] studied  on  the  stability
of standard deviation of data points in a sliding window
on  IoT  time  series,  and  it  turned  out  that  standard
deviation  fluctuates  when  the  data  window  slides,
because  very  few  outliers  contribute  greatly  to  it.
Except for some extreme cases, MAD fluctuates much
milder than standard deviation in a sliding window. At
the price of a higher degree of calculation complexity,
detection  criteria  replaced  with  MAD  provides  higher
accuracy  especially  when  there  are  extreme  outliers.
The  same  criteria  can  be  applied  on  higher  orders  of
difference  of  data,  according  to  physics  principles  of
the series.

Despite  those  based  on  distribution,  there  are  also

means  of  detection  based  on  distance  and  density.
However, these methods, among which DBSCAN[24] is
one  of  the  most  commonly  used,  usually  require  to
iterate  over  all  historical  data  points  in  stream  data.
Again,  this is  intolerable in large scale of data stream.
Yang et al.[25] first proposed neighbor-based detection,
which  means  the  degree  outlier  is  mainly  based  on
neighbors  in  a  sliding  window,  and  thus  feasible  for
large scale of data. There are already much practice on
real-time  outlier  detection  of  time  series,  such  as
Abstract-C[25],  MCOD[26],  LEAP[27],  and  NETS[28].
Most of these implementations focus on the change of
outlier  status when there is  a  shift  on the overall  data,
or  in  other  words,  a  concept  drift.  Another  key
common  character  of  these  methods  is  that  they  still
keep  most  of  information  of  past  sliding  windows  to
make  it  more  precise  for  calculating  distance  or
density.  This  idea  is  mainly  inherited  from  DBSCAN
or other classical algorithms.

The challenge in questions of this type still lies in the
balance of the precision of calculation and cost of time.
A typical improvement is to use grids to conduct rough
and  faster  evaluation.  Methods  like  CPOD[29] or
DORC[30] follow  this  idea.  In  IoTDQ,  we  provide
“GridDetect” and “SphereDetect”,  which  drop  more
information  and  ignore  the  degree  of  outlier  that
changes because of concept drift. We recommend to fit
a  new  model  when  a  concept  drift  occurs,  instead  of
one  function  to  solve  all  anomaly  problems.  The  core
concept  of  our  method  is  migration  of  collision
detection  to  anomaly  detection  on  multivariate  time
series.  When  initializing,  we  convert  points  of  high
density or low distance into a solid object in space, and
then  partition  the  space  by  grid,  spherical  bounding
volume  hierarchy  tree,  or k-dimensional  tree.  In
“GridDetect”, nearby points are converted to an object
composed by a series of neighboring hyper-cubes, and

 

Table 2    Data profiling functions.
Function Introduction Function Introduction

ACF Compute auto-correlation factor PACF Compute partial auto-correlation factor
Distinct Show distinct values Percentile Find value on appointed percentile

Histogram Construct a histogram with appointed buckets Period Calculate length of period in periodic data
Integral Compute trapezoidal integral QLB Compute p-value of Ljung-Box Q statistics

IntegralAvg Compute integral mean Sample Do data sampling
Median Compute median Skew Compute skewness
MAD Compute mean absolute deviation Spread Compute spread

MinMax Do min-max uniformization Stddev Compute standard deviation
Mode Compute mode ZScore Do z-score normalization

MvAvg Compute moving average
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in “SphereDetect”, a series of hyper-spheres. On arrival
of  new  points  from  a  sliding  window,  the  function
checks  if  they “collide” with  existing  objects.  If  they
do,  update  the  border  of  each  object;  if  they  do  not,
mark them as outlier candidates and decide whether to
treat  these  points  as  outlier  and  discard  them  all  after
data  in  next  window  are  all  processed.  Objects
originated  from  few  points  are  also  marked  as
candidates  to  discard.  When  using  grid,  the  algorithm
hashes every grid to improve storage efficiency, which
is  also  widely  used.  A  spherical  bounding  volume
hierarchy  tree  used  by “SphereDetect” also  supports
merging  spheres  based  on  the  principle  of  the  tree.
Actually, the two functions are based on clustering, but
with  higher  space  partition  efficiency.  Precise
information  on  space  coordinates  of  past  points  are
discarded,  thus  calculation  efficiency  and  memory
consumption are improved.

Based  on  concept  of  neighbor-based  detection,
IoTDQ  also  provides “TwoSidedFilter”,  which  filters
concept  drifts  by  calculating  degree  of  outlier  in  a
sliding window. There is a usage exhibited in Section 3.1.

Another  special  type  of  point  anomaly  in  IoT  time
series  is  timestamp  error.  Section  2.1  has  discussed
about these errors, but it is unnecessary to consider all
kind of timestamp errors. In some cases, where missing
points  are  most  frequently  occurred  errors,  detection
could be much easier. IoTDQ provides “MissDetect”, a
stream  algorithm  for  this  situation. “MissDetect”
conducts linear regression on timestamps, and pops out
anomaly  if  regression  coefficient  goes  below  a
threshold  when  receiving  a  new  point.  This  method
avoids calculating a standard timestamp interval, which
means  it  reduces  time  complexity  comparing  to
“Completeness”.  Remember  that  overlap  or  latency
may  still  occur  in  this  situation,  so  calculating  a
standard interval still costs.

Subsequence  anomaly  detection  can  be  treated  as
detection  on  multivariate  data.  Based  on  this
transformation,  IoTDQ  adopts  LOF,  a  classical
algorithm  for  multivariate  data.  We  may  input  a
multivariate  time  series  to  conduct  anomaly  detection
based  on  density,  or  either  treat  continuous  data  in  a
sliding  window as  a  multivariate  point  in  a  univariate
time series.

2.4　Data repairing

To make time series suitable for downstream analysis,
for  example,  machine  learning,  we  develop  data

repairing  functions.  These  functions  try  to  minimize
data  quality  problems  while  reserving  original
information  as  much  as  possible.  For  example,  we
utilize  SCREEN[31] to  deal  with  validity  errors  on
speed.  SCREEN  is  a  repair  algorithm  based  on
dynamic programming with value restrictions to obtain
minimum  value  change  designed  for  univariate  data.
We  modified  it  to  repair  data  window  by  window  for
less  time  cost.  To  further  improve  performance  on
large scale of data, Zhang et al.[32] proposed LsGreedy,
which migrates to greedy algorithm. UDF ValueRepair
provides both algorithms.

Another  type  of  IoT  error  occurs  in  timestamps,  as
mentioned  in  Section  2.1.  Since  most  downstream
processing  algorithms  assume  all  data  are  collected
with  equal  time  intervals,  it  is  necessary  to  deal  with
them in advance. If the errors can be inducted into data
quality  problems  mentioned  before,  user  may  choose
“TimestampRepair” to generate ideal series. Otherwise,
sampling,  interpolation,  or  regression  UDFs,  such  as
“Sample”, “Spline”,  and “Seasonal  AutoRegressive
Integrated Moving Average” (SARIMA) are available.

Based  on  anomaly  detection  functions “GridDetect”
and “SphereDetect”,  there  are  also  corresponding
methods “GridRepair” and “SphereRepair”,  which
repair  data  to  the  nearest  border  of  grid  or  hyper-
sphere. By the time when this paper is written, Apache
IoTDB has  not  provided  UDF for  multivariate  output.
Thus  the  corresponding  methods  are  temporarily  not
implemented  in  IoTDQ.  This  leaves  an  aim  in  the
future roadmap.

In  IoTDQ,  repairing  function  also  includes  missing
value  imputation.  Imputation  methods  which  rely  on
restrictions  from  multiple  series  and  consume  larger
computing  resources  are  not  widely  used  in  industrial
scenarios.  At  present,  IoTDQ provides  imputation and
repair based on regression models. in Section 3.2, there
is  an  example  on  how  to  use  data  quality  analysis  in
reality.

2.5　Frequency  domain  analysis  and  time  series
forecast

These  two  classes  integrate  renowned  functional
supplement  for  Apache  IoTDB.  Frequency  domain
analysis is a common demand of those who use Apache
IoTDB  to  store  electric  signals.  It  also  refers  to  the
question of data representation. Since most IoT sensors
detect electric signals directly or indirectly, approaches
on electric  signals  should  also  be  applied  on  IoT time
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series.  There  are  multiple  frequently-used  frequency
domain  analysis  functions,  including  discrete  Fast
Fourier  Transformation  (FFT),  Discrete  Wavelet
Transformation  (DWT),  filters,  convolutions,  and
Short-Time Fourier Transformation (STFT). Frequency
domain  analysis  is  also  helpful  for  periodic  analysis.
DWT and many other  transformations  are  also  widely
used in denoising.

You  may  find  out  that  there  are  also  functions
prepared  for  classic  time  series  fitting  and  prediction
models.  These  functions  are  also  concluded  into  data
profiling  class,  because  parameters  or  coefficients  of
regression  and  fitting  models  can  also  be  treated  as
characteristic  of  given  time  series.  For  example,
SARIMA model  contains  four  coefficients  to  describe
seasonal  changes,  auto-regression  level,  moving
average level, and stationary order.

In order to make it convenient for users who are used
to use Matlab or R functions to fit a time series model,
as well as to modify Apache IoTDB in order to make it
qualified for  multi-sourced data  besides  sole  IoT data,
IoTDQ  provides  these  classical  models  available  for
forecast. These renowned functions are time-tested and
not  resource-consuming.  They  would  satisfy  most
elementary  analysis  demands.  The  most  significant
advantage  of  utilizing  Apache  IoTDB  UDFs  is  that
fitting queries can be executed on the device where the
data  are  stored  with  less  necessary  software.  The
minimal  configurations  make  it  easier  to  finish  data
modeling on production environments, where operators
do not expect  to install  professional  data analysis  kits.
This also avoids extra data Extraction, Transformation,
and Loading (ETL).

2.6　Data matching

Functions in this class focus on similarity measurement
of  time  series.  As  we  all  know,  time  series  data
requires  special  metrics  to  measure  similarity.  Our
approach  on  common  measuring  functions,  which
construct  the  data  matching  module,  makes  it
convenient  to  query  similar  series  on  an  IoTDB  user
client. In industry scenarios, subsequences matching is
used  for  both  fault  detection  and  forecast.  Comparing
recent data to a set of data composed of historical error
to alarm is a typical method on system monitoring.

3　Case Study

In  this  section,  we  present  some  realistic  applications

of IoTDQ. These examples come from Apache IoTDB
users.  We  may  have  a  glimpse  of  users’demands  in
these cases, where some unimpressive functions play a
role.

3.1　Equipment sustainability analysis

In  this  example,  a  vehicle  torque  sensor  records  data
when the equipment is  on.  The equipment is  available
24  hours  a  day,  but  only  runs  when  there  is  staff
working  on  it.  We  may  want  to  evaluate  the  total
running time of  the  equipment  with  sensor  records,  in
order  to  get  informed  when  the  lifespan  of  the
equipment comes to an end.

A simple way is to compute the total sustaining time
of  all  periods  with  continuous  data  points.  However,
IoT sensors are not as stable as we expect. In this case,
the  sensor  creates  noise  signals  very  soon  after  the
equipment shuts down, when the power is already off.
Figure  4 shows  a  typical  series  collected  within  one
day.

To  make  a  precise  evaluation,  we  may  first  use
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Fig. 4    Equipment sustainability analysis on torque.
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“ConsequtiveSequences” to  filter  noise  points  during
the  power-off  period,  as  shown  in Fig.  4b.  The  next
step is to locate the accurate shutting-down moment at
the  end of  consecutive  sequences.  We select  1st  order
difference  of  timestamp,  and  then  apply “KSigma” to
locate the shutting-down periods, which lead to a long
timestamp  interval  recognized  by k-sigma  anomaly
detection  rule. “KSigma” can  be  replaced  with  MAD
along  with “Range”,  corresponding  to  detection  rules
of k times of MAD deviation from median. IQR is also
a choice by detecting outliers lying over 1.5 times IQR
deviation from upper and lower quartiles.

During the shutting-down period, data collected from
the sensor jump to zero, and then bounce back shortly.
We  may  use “TwoSidedFilter” to  implement  a  two-
sided  window  detection,  which  creates  two  windows
before  and after  a  specific  point,  and  judge  if  it  could
be  removed  to  smoothen  the  original  series.  If  the
answer is positive, it indicates that the specific point is
an anomaly during the shutting-down period,  and thus
should  not  be  counted  into  equipment  running  time.
(see Fig. 4c)

3.2　Sensor stability analysis

In  Section  2.1,  we  introduce  4  indices  of  data  quality
and the  classification  of  data  quality  problems.  In  this
industrial  occasion,  a  few  time  series  are  generated
from  a  wind  power  plant.  We  apply “Completeness”,
“Consistency”,  Validity”,  and “Timeliness” to  every
device, and group them by month or day, then we can
have  an  overall  view  of  the  sensor  stability.
Furthermore,  we  can  examine  questionable  series  to
locate  concrete  sensor  errors. Figure  5 shows  an
example  of  data  quality  indices  computing  and
visualization of data quality across the year. Advanced
analysis  shows  that  a  few  sensors  are  not  connected
correctly  to  IoT. “TimestampRepair” and
“ValueRepair” will help if we want to fix the problems.

3.3　Fault monitoring

In  most  cases,  fault  detection  is  the  primal  demand in
time  series  analysis  of  industry.  A  simple  way  to
monitor  the  correctness  of  a  system  is  to  preset  a
threshold.  When  the  sensor  record  exceeds  the
threshold,  the  system triggers  the  alarm. “Range” is  a
simple implementation for this situation.

For  some  situations,  like  working  temperature  or
voltage monitoring, it is easy to preset a threshold. But
sometimes  technicians  do  not  really  grasp  priori

knowledge  on  threshold.  Under  strict  Gaussian
distribution,  anomalies  are  distributed  over k times  of
standard deviation departure from mean, and this leads
to k-sigma  anomaly  detection  rule  (usually k is  3  or
above).  Website  maintainers,  however,  may  expect
Zipf  distribution[33].  In  general  cases,  it  is  hard  to
conclude a standard distribution for anomaly detection.
Hence  we  recommend  MAD  to  solve  the  problem.  It
has  been  found  that  median  absolute  deviation
fluctuates  in  a  narrower  range  in  comparison  to
standard  deviation,  thus  performs  better  in  outlier
detection. Figure 6a shows an example.

In  some  special  cases,  like  stock  price,  or  in  other
scenarios where data appear to be autoregressive, users
can  apply  classical  time  series  models  like  ARMA
(Box-Jenkins)[5]. Method based on model regression is
also a feasible way to detect sudden changes. Figure 6b
is  an  example  on  weather  data,  which  shows  periodic
changes across the year.

4　Experiment

In  this  section,  we  compare  computations  on  massive
industrial time series data with IoTDQ UDFs with that
use other libraries. As mentioned in Section 1, Apache
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Fig. 5    Sensor stability analysis from a wind power plant.
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IoTDB  UDF  boasts  close  connection  to  data  storage
engine, I/O consumption is greatly decreased. Based on
different  usages,  we  divide  our  experiment  into  two
parts.  The  first  part  focuses  on  most  widely-used  data
profiling  functions  with  possible  python  substitutions.
In  Section  4.1,  we  compare  the  process  efficiency
between  common  data  profiling  tasks  on  IoTDQ  and
Apache  IoTDB  Python  interface.  Further  in  Section
4.2, we carefully choose some originally designed UDF
functions  in  IoTDQ  and  provide  same  independent
versions  in  Java  which  connect  Apache  IoTDB  Java
interface.  It  will  be  more  persuasive  to  reveal  the
advantage of utilizing Apache IoTDB UDF.

4.1　Common data profiling functions with IoTDQ
and python interface

Without  using  a  platform  offered  by  database,  users
may prefer to adopt Python libraries for data profiling.
IoTDQ  data  profiling  section  provides  calculating
standard deviation, counting distinct values, generating
histogram,  calculating  median,  calculating  percentile
number,  calculating  quantile  number,  and  calculating
mean absolute deviation. Most UDFs provided here use
a  stream  calculation  algorithm,  making  it  fairer  for
comparison.

The  experiments  are  run  on  a  machine  with  Intel
Core  8  CPU  (2.3  GHz)  and  16  GB  of  memory,  with
Apache  IoTDB  v1.0.1  installed.  Time  consumption
results are listed in Table 3.

In our test, we generate 10 time series with 1 million
data  points  each.  The  time  costs  listed  in Table  3 are
the  values  of  algorithmic  mean  on  time  costs  of  each
series.  According  to  convention, “np” is  abbreviation
for  library  Numpy,  and “ df ” is  for  library
Pandas.DataFrame.

As  seen Table  3,  comparing  to  using  Python
interface,  IoTDQ  greatly  saves  read  time.
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Fig. 6    Fault  detection  in  time series.  ppm represents  parts
per million.

 

Table 3    Time cost comparison between IoTDQ and Python.
IoTDQ Python

IoTDQ UDF Total time cost (s) Python function Total time cost (s) Reading time (s) Function time (s) Writing time (s)
Stddev 0.1877 np.std 1.0410 1.0148 0.0016 0.0245
Distinct 0.4402 np.unique 0.8818 0.8128 0.0496 0.0194

Histogram 0.1899 np.histogram 0.8715 0.8494 0.0107 0.0114
Median 0.2302 np.median 0.7584 0.7406 0.0076 0.0101

Percentile 0.3386 np.percentile 0.7484 0.7241 0.0126 0.0117
Quantile 0.0064 np.quantile 0.7447 0.7236 0.0125 0.0086

MAD 0.2091 df.mad 1.0541 1.0382 0.0074 0.0084
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Theoretically,  read  time  with  Python  interface  keeps
same for different functions, since all experiments read
same  data  from  same  database.  Fluctuation  in  reality
may be caused by memory allocation or response from
database  server.  All  functions  included  in  the
experiment  are  aggregation  functions,  which  means
theoretically they should also share same write time. If
we  take  similar  causes  of  fluctuation  into
consideration, this is reflected in the result.

The comparison reasonably reveals the advantage of
IoTDQ  on  time  cost.  By  consuming  and  discarding
time  series  data  directly  and  immediately,  IoTDQ  is
more competent for real-time computation tasks in IoT.

4.2　Original  IoTDQ  functions  with  IoTDQ  and
Java interface

In  other  sections,  however,  original  designed
algorithms are  provided,  which means it  is  impossible
to  find  a  control  functions  group.  Thus  we  modified
IoTDQ UDFs to  independent  Java  versions  to  test  the
difference with Java platform.

The  experiments  are  run  on  a  machine  with  Intel
Core  8  CPU  (2.3  GHz)  and  16  GB  of  memory,  with
Apache  IoTDB  v1.0.1  installed.  Time  consumption
results  are  listed  in Table  4.  We  generate  another  10
time  series  with  1  million  data  points  each,  with  data
quality problems such as missing data and outliers. The
time  costs  listed  in Table  4 are  the  values  of
algorithmic mean on time cost of each series.

Apache IoTDB is fully developed on Java, so reading
data  transports  faster  with  Java  interface  than  with
Python.  Algorithms  and  environments  are  almost
completely  same  in  the  comparison.  One  difference
here  is  that  UDFs  run  on  a  Java  Virtual  Machine

(JVM) created by Apache IoTDB, while Java functions
run  on  another  one.  When  testing  ordinary  anomaly
detection  functions,  both  methods  show  similar
behaviors.  While  for  some  functions,  too  many  errors
are detected and a vast number of writing requests are
made, causing a rapid increase on time cost. The results
show  that  UDF  provides  better  stability  for  IoT
computation.

5　Related Work

Our work is related to almost all aspects of problems in
time  series  analysis,  and  there  are  lots  of  novel
progress  each  year.  The  major  idea  of  this  paper
inherits  from  IoT  time  series  diagnosis,  so  in  this
section we will cover most relevant works in this field.
Without  Apache IoTDB,  researchers  tried  to  construct
a diagnosis system with full pipeline, from data storage
backend  to  Graphical  User  Interface  (GUI).  Huang
et  al.[34] designed  TsOutlier  to  implement  outlier
detection  in  sliding  windows  of  IoT  time  series.
TsOutlier  realizes  detection  based  on  distribution  and
model regression. Computation is realized with Apache
Spark  and  Apache  Flink.  The  GUI  could  exhibit  a
digest  of  series  and data  quality  distribution across  all
windows. Liu et al.[35] upgraded TsOutlier to TsClean,
adding Apache IoTDB into the data source engine and
adopting  novel  anomaly  detection  and  repair
algorithms  into  the  system.  The  GUI  provided  by
TsClean was also enhanced with detailed figures based
on  vue.js,  a  Javascript-based  framework  for  front  end
design.

The  overall  data  quality  diagnosis  methods  in  IoT
time series are introduced in Section 2.1.

6　Conclusion
In  this  paper,  we  introduce  IoTDQ,  a  UDF  library
designed  for  Apache  IoTDB.  This  library  not  only
provides  fundamental  statistical  computation,  but  also
focuses  on  realistic  industrial  requirements.  IoTDQ
covers  functions  from anomaly  detection  to  frequency
domain  analysis.  Characteristic  data  quality  functions
make  a  standard  for  time  series  quality  evaluation.
IoTDQ  could  successfully  solve  primal  industrial
issues,  and  also  builds  a  bridge  for  downstream  data
analysis.
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