

IoTDQ: An Industrial IoT Data Analysis Library for Apache IoTDB

Pengyu Chen*, Wendi He, Wenxuan Ma, Xiangdong Huang*, and Chen Wang

Abstract: There is a growing demand for time series data analysis in industry areas. Apache IoTDB is a time

series database designed for the Internet of Things (IoT) with enhanced storage and I/O performance. With

User-Defined Functions (UDF) provided, computation for time series can be executed on Apache IoTDB

directly. To satisfy most of the common requirements in industrial time series analysis, we create a UDF library,

IoTDQ, on Apache IoTDB. This library integrates stream computation functions on data quality analysis, data

profiling, anomaly detection, data repairing, etc. IoTDQ enables users to conduct a wide range of analyses,

such as monitoring, error diagnosis, equipment reliability analysis. It provides a framework for users to examine

IoT time series with data quality problems. Experiments show that IoTDQ keeps the same level of performance

compared to mainstream alternatives, and shortens I/O consumption for Apache IoTDB users.

Key words: industrial big data; data quality; data mining and analytics

1　Introduction

Internet of Things (IoT) is dedicated to connection and
communication among machines. With the expansion
of IoT systems and advancement in Internet transport
technologies, there is a growing demand for industrial
data collection, storage and processing. In this paper,
we will introduce IoTDQ, a data processing library
based on Apache IoTDB, designed for comprehensive
data diagnosis in industrial areas.

1.1　Time series database and Apache IoTDB

For the time being, most of the time series databases,
among which InfluxDB, Kdb+, and OpenTSDB are
popular, are designed for scenarios of supervising

servers or financial computation. However, an IoT
system can create millions of data points per second,
which could become a bottleneck for traditional time
series databases. Apache IoTDB is an ideal time series
database for industrial scenarios. Apache IoTDB
supports flexible deployment and features low storage
cost and I/O efficiency[1, 2]. With its excellent
performance and semantic support, Apache IoTDB
provides highly efficient functions from storage to
queries.

Similar to InfluxDB and some other databases,
Apache IoTDB[3, 4] allows utilizing User-Defined
Function (UDF) when querying. Naturally, UDF for
time series consumes data either by row or window,
which usually corresponds to transformation functions
and aggregation functions. With the help of Apache
IoTDB UDF, we are able to construct a library for
industrial data analysis usage.

1.2　Computation problems in time series from IoT

Models on traditional time series have been widely
discussed in the past decades. These models cover
stationary tests, forecast, imputation, and segmentation.
These methods usually create a mathematical model
with hypotheses such as Box-Jenkins modeling[5].

 Pengyu Chen, Wendi He, Wenxuan Ma, and Xiangdong Huang

are with School of Software, Tsinghua University, Beijing
100084, China. E-mail: chenpy20@mails.tsinghua.edu.cn;
hewd21@mails.tsinghua.edu.cn; mwx22@mails.tsinghua.edu.
cn; huangxdong@tsinghua.edu.cn.

 Chen Wang is with National Engineering Research Center for
Big Data Software (NERCBDS), Tsinghua University, Beijing
100084, China. E-mail: huangxdong@tsinghua.edu.cn.

* To whom correspondence should be addressed.
 Manuscript received: 2022-08-30; revised: 2023-03-27;

accepted: 2023-05-15

BIG DATA MINING AND ANALYTICS
ISSN 2096-0654 03/15 pp29−41
DOI: 10.26599/BDMA.2023.9020010
Volume 7, Number 1, March 2024

© The author(s) 2024. The articles published in this open access journal are distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Recently, researches on time series analysis prefer to
utilize machine learning to deal with complicated
stochastic processes. For example, transformer[6],
RNN[7], GNN[8,9], etc., are applied for time series
forecast, anomaly detection, imputation, and other
purposes.

Despite vast progress in time series model
constructions, industrial IoT encounters rather
fundamental problems. Meanwhile, Apache IoTDB has
met the requirements of IoT data collection and
storage, but these requirements have not been met in
upstream data processing stage.

Different from classical time series data such as
stock price or monthly sales, IoT sensors collect data in
a somehow unstable way. Due to physical damage,
transport delay, or nonstandard operations, data points
do not necessarily line up with equal time intervals,
and noises often show up in commonly seen electric
signals. These are concluded as data quality problems.
In other words, only if we solve these problems, it will
be possible to apply time series models on downstream.

1.3　Designing requirements of IoTDQ

Based on these computation problems, we propose
IoTDQ, a UDF library for Apache IoTDB, designed for
IoT data processing. The primal requirement of
constructing an industrial UDF library, namely IoTDQ,
is to realize stream computing via Apache IoTDB UDF
API. An Apache IoTDB UDF may consume data
points either row by row or from a sliding window.
Although it is theoretically possible to adopt all data
points in a single window, streaming computing
satisfies the computation problems of industrial big
data[10]. Therefore, the main challenge of IoTDQ is to
select, optimize, and integrate algorithms, which
support an industrial analysis pipeline.

To construct such a pipeline, there are several types
of functions to be collected. Primordial Apache IoTDB
already offers a few fundamental aggression functions,
including minimum, maximum, 1st order difference,
and so on. IoTDQ thus should contain more statistic
functions, which can generate a quick data profile.
These functions do not aim to fix data quality problems
in one step. Rather, these functions are practical for
real-time system monitoring. They provide sketching
profiles for each IoT device, which are economical
ways to realize initial data diagnosis.

The second step is to satisfy the primary needs of IoT
data. A typical case is to monitor the stability of the

sensor and sketch out how often it goes wrong. Based
on cases of two industrial scenes, i.e., wind turbines
and vehicle engines, we draft a data quality paradigm
for general IoT scenarios, which has been included in
our library. Later we will show how data quality
paradigm can help to infer faults in industrial
production environments. Furthermore, we also take
repairing quality problems into consideration. IoTDQ
integrates novel restriction-based time series repairing
algorithms. Via our library, users may make remedy
for origin time series data of low data quality. The third
step in the pipeline is to integrate some typical time
series models into Apache IoTDB. It is usually the
final step to utilize these models when processing a
time series. By including these functions, we desire to
make Apache IoTDB cover the full stage of IoT data
analysis.

IoTDQ has now become a sub-project in Apache
IoTDB[11], known as UDF-Library. As shown in Fig. 1,
composed of six modules, IoTDQ provides enhanced
computation functions based on Apache IoTDB UDF,
and user may operate IoTDQ with IoTDB JDBC to
accomplish data preprocess. The code is available at
Github[12], and the document can be viewed on the
official website of Apache IoTDB[13]. In this paper, we
present all categories of IoTDQ divided by functions.
We also summarize a few industry scenarios, with
some examples of IoTDQ, to elaborate universality of

Data
profiling

Data
quality

Data
repairing

Time series
forecast

Anomaly
detection

Frequency
domain analysis

IoTDQ

Apache IoTDB

Grafana Hadoop/
sparkIoTDB-CLI

IoTDB
JDBC

IoTDB
UDF

Fig. 1 IoTDQ in Apache IoTDB ecosystem.

 30 Big Data Mining and Analytics, March 2024, 7(1): 29−41

this library.

2　Overview of IoTDQ

A suvery[14] points out that time series data mining
involves three major questions, namely data
representation, similarity measurement, and indexing
method. A database system covers resolution for
indexing method, and IoTDQ attempts to make up for
the other two questions. In detail, concrete tasks to
solve these questions include clustering, classification,
segmentation, prediction, anomaly detection, motif
discovery, and so on. As for industrial time series,
these questions are tightly related. A full process of
computing includes data quality diagnosis, data
profiling, anomaly detection, repairing, and model
fitting and forecast. IoTDQ tries to focus on most
aspects mentioned above, and offers a pipeline for
conventional IoT time series.

Figure 2 is a flowchart which shows how a user can
use IoTDQ as a standard diagnosis tool. According to

the functions provided, six categories in IoTDQ
compose the pipeline, namely data profiling, data
quality, anomaly detection, data repairing, frequency
domain analysis, and time series forecast. In this
section, we will discuss the modification of algorithms
in each category that meets the designing requirements
mentioned in Section 1.3.

2.1　Data quality

Data quality problems were first summarized by Lee
et al.[15] These problems in relational data have been
clearly clarified[16], but IoT data quality problems
behave differently from them. Data quality problems in
IoT time series are caused by the instability of IoT
sensors. A thermocouple sensor translates an electric
signal to temperature, but jamming signals often
appear, leading to abnormal signal fluctuation.
Connections between sensor and receiver sometimes
get lost, causing discontinuous periods in time series.
Similar occasions occur repeatedly in industry
scenarios. These become troubles when dirty and
irregularly arranged raw data is undesired for
downstream analysis. Most time series analysis
methods, like decomposition and model regression,
treat data with equal time intervals. Consequently, we
need remedies for data quality problems.

Song and Zhang[17] proposed a framework for IoT
data quality analysis, which includes three dimensions,
namely validity, completeness, and consistency.
Validity considers about data constraints; completeness
measures the degree all data are observed; consistency
evaluates how data are consistent with each other.
However, this framework mainly focuses on relational
data, and utilizes corresponding examination methods.
Then the question lies on how to extend this framework
to describe quality problems on IoT time series. We
have brought a general data quality classification for
overall quality examination on time series (see Table 1).
We induct common data quality problems into four
indices and twelve error types. Each index signs for a
root cause of data quality problems, and ranges from 0
to 1.

Fang et al.[18] discussed on completeness,
consistency, and timeliness. Here we summarize the
definition and evaluations of these indices, and then
introduce their corresponding stream computing UDFs.

Completeness describes the proportion of correctly
collected data points, as shown in the following:

Iriginal
IoT time
series

G
et

 a
 p

ro
fil

e

C
he

ck
 fo

r r
es

ul
ts

Solve data quality problems

Diagnose data quality

Fu
rth

er
 a

na
ly

ze
 d

at
a

Fi
nd

 o
ut

lie
rs

From data source

Processed IoT
time series

To
downstream

Further analyze data

O
ut

pu
t r

es
ul

ts

O
ut

pu
t r

es
ul

ts

Data
profiling

Data
quality

Data
repairing

Time series
forecast

Frequency
domain analysis

Anomaly
detection

Have data quality problems?

Get a profile

Fig. 2 Pipeline of IoT time series in IoTDQ.

 Pengyu Chen et al.: IoTDQ: An Industrial IoT Data Analysis Library for Apache IoTDB 31

Completeness = 1−
Nnull+Nspecial+Nmiss

N +Nmiss
(1)

Nnull Nspecial Nmiss

N
where , , and are the numbers of null,
special, and missing values in a series length of .

Assuming that an IoT sensor creates a data point with
a fixed time interval, we can infer on which timestamp
there is a missing value. Thus completeness indicates
the stability of data transport. Also, when the sensor is
power-off, it leaves the series continuous blank points.
In addition to the raw definition, power-off periods are
excluded when using “Completeness”. This UDF
recognizes power-off by detecting missing of a long
duration.

Consistency describes the cleanness of data points in
refer to timestamps, as shown in the following:

Consistency = 1−
Nredundancy

N
(2)

Nredundancywhere is the number of redundant points.
This index is concluded from the phenomenon that

physical errors of IoT sensor or network cause the
creation of unwanted extra points. Sometimes a data
point is collected two times, or sometimes the sensor
sends multiple points in a very short period. Time
series databases always neglect overlapped points, so
the function focuses on finding out overcrowded
points.

Timeliness errors usually occur when there is a
transport latency. The computation is defined in the
following:

Timeliness = 1−
Nlatency

N
(3)

Nlatencywhere is the number of latent points.
Different from consistency errors, timeliness errors

display as data point with incorrect timestamp.
These mentioned indices are integrated into IoTDQ

as “Completeness”, “Consistency”, and “Timeliness”.
The fundamental methods consumes all data points to
infer the standard timestamp interval by estimating the
median of 1st order timestamp differences. IoTDQ also
provides the stream computation variations, namely
“StreamCompleteness”, “StreamConsistency”, and

“StreamTimeliness”. These UDFs infer standard time
interval from the first sliding window. When
consuming new data points, the self-adaptive functions
detect whether the standard interval has changed.

Validity errors may come from either IoT devices or
the measured system itself, as shown in the following:

Validity = 1−

∑
i

Nanomalyi

N
(4)

Nanomalyiwhere is the number of points exceeding
threshold on i-th order difference. This index does not
take timestamps into account.

In the general, validity measures the proportion of
outliers according to system restrictions. In a usual
case, a thermal sensor records temperature in a desired
value range. By setting a threshold to the series, it is
possible to calculate the number of illegal points.
Sometimes the thresholds are set to seed, acceleration
or even higher order of difference. And by default,
through input series, we may infer a threshold by
executing anomaly detection methods when the
threshold is not given.

Among these four indices, completeness,
consistency, and timeliness are calculated by finding
out theoretically correct timestamps to decide the
number of missing, redundant, and latent points.
Suppose we have got a standard timestamp interval, the
remaining question lies in matching each point from
the original series to a reference point acquired by the
interval. To construct a streaming algorithm, we
calculate the difference of neighboring timestamps, and
convert it to a type of error,

error =


power-off, 10δ < ∆t;
missing, 1.5δ < ∆t ⩽ 10δ;
latency, 0.5δ < ∆t ⩽ 1.5δ;
redundancy, 0 < ∆t ⩽ 0.5δ

(5)

δ

∆t
which defines the recognition of error types. is the
standard timestamp interval, and is the 1st order
difference of original timestamps. Note that power-off
is not considered as an error, since no points are

Table 1 Data quality issues.
Completeness error Consistency error Validity error Timeliness error

Missing point Overcrowded point Value exceeding threshold Latency
NaN value Repeated point Speed exceeding threshold —

Error code representing NaN — Acceleration exceeding threshold —
Power-off — Jerk exceeding threshold —

Note: NaN means “not a number”.

 32 Big Data Mining and Analytics, March 2024, 7(1): 29−41

expected when equipment is offline. And the
judgement of power-off here is comparatively rough.
There is a case in Section 3.1, where a delicate method
is introduced.

δ

ti i
t
′
i i

Now consider the situation where the user does not
provide a standard time interval, which is often the
case. If the function consumes all data points at once,
then we may choose the mode or median of the 1st
order timestamp interval as the standard interval.
However, as mentioned in Section 1.3, we desire a
streaming algorithm to deal with the original series. We
focus on a sliding window to determine the standard
interval. Take as undecided standard timestamp
interval, as timestamp of the -th point from the
original series, as theoretical timestamp of the -th
data point, then the standard interval is decided in the
following:

argmin
δ

∑
i

(
ti, t
′
i

)2
+nδ2

 (6)

n

δ

where is the number of theoretical points which do
not correspond to a point from original series. Figure 3
illustrates an example. To solve Formula (6), the
functions search near the median of 1st order
timestamp difference of the sliding window, and
always suppose that the first point in the sliding
window is on the correct timestamp. For each window,
the function calculates three indices, and the overall
indices are the arithmetic mean of all windows.

The calculation of validity is related to anomaly
detection problems. Here we take a snap on how this
function profiles a time series. This function uses
Median Absolute Deviation (MAD) as a standard to
assess validity errors from a series. in Section 2.2, we
will further introduce this profiling function. In a word,
MAD profiles the ranges in which values are
distributed depart from the median, and provides a
reference for a reasonable range of value, speed, and
acceleration changes. In each sliding window, the
function calculates MAD and then checks the value
correctness of each point.

Based on the standards of error classification, we
develop these four data quality functions to compute
the indices. The results should be considered as an
overall assessment on data cleanness. Users may
conduct retrospective analysis of generated data, where
data profiling functions usually help, and try to fix root
problems intensively. In Section 3.2, we present an
example of computing data quality indices.

2.2　Data profiling

Data profiling functions may be treated as beneficial
supplements for primordial Apache IoTDB, which
lacks statistics computation functions. In
correspondence to data mining tasks, this class covers
data representation, which aims to show fundamental
properties or statistics of time series. This is the second
step that IoT data enters. Whether there are data quality
problems or not, a time series digest helps user infer
basic problems alongside data quality indices. Table 2
lists these fundamental functions.

The question remains the same as other functions.
Considering the large scale of data points in time series
in industry scenarios, statistics functions require stream
computing algorithms to satisfy execution efficiency.
For example, the convenience of implementation takes
precedence in Apache DataFu for Spark[19], a UDF
library extended from Apache DataFu for Pig[20]. In
reality, these statistics which support stream
computation algorithms, such as variance, skewness,
and integral average, can only make a rough sketch of
time series, and somehow neglect special properties of
time series. For statisticians and economists, complex
models which fully consider self-correlation are
frequently utilized. Therefore IoTDQ chooses to keep
the comprehensive practicability of functions despite
the possible high resource occupation.

As mentioned in Section 2.1, MAD is an effective
index to describe data departure from median[21].
Shrivastava et al.[22] proposed Q-Digest method as a
stream computing algorithm to calculate approximate
quantiles. Similarly, Chen et al.[21] proposed TP-MAD,

Overcrowded

Original time series

Correct time series

Latency Missing

Fig. 3 Example of deciding standard interval.

 Pengyu Chen et al.: IoTDQ: An Industrial IoT Data Analysis Library for Apache IoTDB 33

an stream computing method to calculate MAD with
provided bounded error with bucket skipping
improvement. IoTDQ adopts this algorithm, and in
Section 4 there is a comparison between the accurate
method and TP-MAD.

2.3　Anomaly detection

Anomaly detection in times series, according to
targeted outlier types, can be classified as point
detection, subsequence detection and series
detection[23]. For series detection, functions in data
matching (see Section 2.6) and in data profiling reduce
the dimension of the original series, and make it
possible to execute clustering, by which the problem
turns into a point detection problem. This section
mainly discusses the other two situations.

As for point detection, fundamental algorithms rely
on basic statistics like standard deviation and
InterQuartile Range (IQR). These models detect
outliers by regression and judging by the distribution of
error. For example, k-sigma method hypothesizes
normal distribution, and utilizes standard deviation to
assist detection. Chen et al.[21] studied on the stability
of standard deviation of data points in a sliding window
on IoT time series, and it turned out that standard
deviation fluctuates when the data window slides,
because very few outliers contribute greatly to it.
Except for some extreme cases, MAD fluctuates much
milder than standard deviation in a sliding window. At
the price of a higher degree of calculation complexity,
detection criteria replaced with MAD provides higher
accuracy especially when there are extreme outliers.
The same criteria can be applied on higher orders of
difference of data, according to physics principles of
the series.

Despite those based on distribution, there are also

means of detection based on distance and density.
However, these methods, among which DBSCAN[24] is
one of the most commonly used, usually require to
iterate over all historical data points in stream data.
Again, this is intolerable in large scale of data stream.
Yang et al.[25] first proposed neighbor-based detection,
which means the degree outlier is mainly based on
neighbors in a sliding window, and thus feasible for
large scale of data. There are already much practice on
real-time outlier detection of time series, such as
Abstract-C[25], MCOD[26], LEAP[27], and NETS[28].
Most of these implementations focus on the change of
outlier status when there is a shift on the overall data,
or in other words, a concept drift. Another key
common character of these methods is that they still
keep most of information of past sliding windows to
make it more precise for calculating distance or
density. This idea is mainly inherited from DBSCAN
or other classical algorithms.

The challenge in questions of this type still lies in the
balance of the precision of calculation and cost of time.
A typical improvement is to use grids to conduct rough
and faster evaluation. Methods like CPOD[29] or
DORC[30] follow this idea. In IoTDQ, we provide
“GridDetect” and “SphereDetect”, which drop more
information and ignore the degree of outlier that
changes because of concept drift. We recommend to fit
a new model when a concept drift occurs, instead of
one function to solve all anomaly problems. The core
concept of our method is migration of collision
detection to anomaly detection on multivariate time
series. When initializing, we convert points of high
density or low distance into a solid object in space, and
then partition the space by grid, spherical bounding
volume hierarchy tree, or k-dimensional tree. In
“GridDetect”, nearby points are converted to an object
composed by a series of neighboring hyper-cubes, and

Table 2 Data profiling functions.
Function Introduction Function Introduction

ACF Compute auto-correlation factor PACF Compute partial auto-correlation factor
Distinct Show distinct values Percentile Find value on appointed percentile

Histogram Construct a histogram with appointed buckets Period Calculate length of period in periodic data
Integral Compute trapezoidal integral QLB Compute p-value of Ljung-Box Q statistics

IntegralAvg Compute integral mean Sample Do data sampling
Median Compute median Skew Compute skewness
MAD Compute mean absolute deviation Spread Compute spread

MinMax Do min-max uniformization Stddev Compute standard deviation
Mode Compute mode ZScore Do z-score normalization

MvAvg Compute moving average

 34 Big Data Mining and Analytics, March 2024, 7(1): 29−41

in “SphereDetect”, a series of hyper-spheres. On arrival
of new points from a sliding window, the function
checks if they “collide” with existing objects. If they
do, update the border of each object; if they do not,
mark them as outlier candidates and decide whether to
treat these points as outlier and discard them all after
data in next window are all processed. Objects
originated from few points are also marked as
candidates to discard. When using grid, the algorithm
hashes every grid to improve storage efficiency, which
is also widely used. A spherical bounding volume
hierarchy tree used by “SphereDetect” also supports
merging spheres based on the principle of the tree.
Actually, the two functions are based on clustering, but
with higher space partition efficiency. Precise
information on space coordinates of past points are
discarded, thus calculation efficiency and memory
consumption are improved.

Based on concept of neighbor-based detection,
IoTDQ also provides “TwoSidedFilter”, which filters
concept drifts by calculating degree of outlier in a
sliding window. There is a usage exhibited in Section 3.1.

Another special type of point anomaly in IoT time
series is timestamp error. Section 2.1 has discussed
about these errors, but it is unnecessary to consider all
kind of timestamp errors. In some cases, where missing
points are most frequently occurred errors, detection
could be much easier. IoTDQ provides “MissDetect”, a
stream algorithm for this situation. “MissDetect”
conducts linear regression on timestamps, and pops out
anomaly if regression coefficient goes below a
threshold when receiving a new point. This method
avoids calculating a standard timestamp interval, which
means it reduces time complexity comparing to
“Completeness”. Remember that overlap or latency
may still occur in this situation, so calculating a
standard interval still costs.

Subsequence anomaly detection can be treated as
detection on multivariate data. Based on this
transformation, IoTDQ adopts LOF, a classical
algorithm for multivariate data. We may input a
multivariate time series to conduct anomaly detection
based on density, or either treat continuous data in a
sliding window as a multivariate point in a univariate
time series.

2.4　Data repairing

To make time series suitable for downstream analysis,
for example, machine learning, we develop data

repairing functions. These functions try to minimize
data quality problems while reserving original
information as much as possible. For example, we
utilize SCREEN[31] to deal with validity errors on
speed. SCREEN is a repair algorithm based on
dynamic programming with value restrictions to obtain
minimum value change designed for univariate data.
We modified it to repair data window by window for
less time cost. To further improve performance on
large scale of data, Zhang et al.[32] proposed LsGreedy,
which migrates to greedy algorithm. UDF ValueRepair
provides both algorithms.

Another type of IoT error occurs in timestamps, as
mentioned in Section 2.1. Since most downstream
processing algorithms assume all data are collected
with equal time intervals, it is necessary to deal with
them in advance. If the errors can be inducted into data
quality problems mentioned before, user may choose
“TimestampRepair” to generate ideal series. Otherwise,
sampling, interpolation, or regression UDFs, such as
“Sample”, “Spline”, and “Seasonal AutoRegressive
Integrated Moving Average” (SARIMA) are available.

Based on anomaly detection functions “GridDetect”
and “SphereDetect”, there are also corresponding
methods “GridRepair” and “SphereRepair”, which
repair data to the nearest border of grid or hyper-
sphere. By the time when this paper is written, Apache
IoTDB has not provided UDF for multivariate output.
Thus the corresponding methods are temporarily not
implemented in IoTDQ. This leaves an aim in the
future roadmap.

In IoTDQ, repairing function also includes missing
value imputation. Imputation methods which rely on
restrictions from multiple series and consume larger
computing resources are not widely used in industrial
scenarios. At present, IoTDQ provides imputation and
repair based on regression models. in Section 3.2, there
is an example on how to use data quality analysis in
reality.

2.5　Frequency domain analysis and time series
forecast

These two classes integrate renowned functional
supplement for Apache IoTDB. Frequency domain
analysis is a common demand of those who use Apache
IoTDB to store electric signals. It also refers to the
question of data representation. Since most IoT sensors
detect electric signals directly or indirectly, approaches
on electric signals should also be applied on IoT time

 Pengyu Chen et al.: IoTDQ: An Industrial IoT Data Analysis Library for Apache IoTDB 35

series. There are multiple frequently-used frequency
domain analysis functions, including discrete Fast
Fourier Transformation (FFT), Discrete Wavelet
Transformation (DWT), filters, convolutions, and
Short-Time Fourier Transformation (STFT). Frequency
domain analysis is also helpful for periodic analysis.
DWT and many other transformations are also widely
used in denoising.

You may find out that there are also functions
prepared for classic time series fitting and prediction
models. These functions are also concluded into data
profiling class, because parameters or coefficients of
regression and fitting models can also be treated as
characteristic of given time series. For example,
SARIMA model contains four coefficients to describe
seasonal changes, auto-regression level, moving
average level, and stationary order.

In order to make it convenient for users who are used
to use Matlab or R functions to fit a time series model,
as well as to modify Apache IoTDB in order to make it
qualified for multi-sourced data besides sole IoT data,
IoTDQ provides these classical models available for
forecast. These renowned functions are time-tested and
not resource-consuming. They would satisfy most
elementary analysis demands. The most significant
advantage of utilizing Apache IoTDB UDFs is that
fitting queries can be executed on the device where the
data are stored with less necessary software. The
minimal configurations make it easier to finish data
modeling on production environments, where operators
do not expect to install professional data analysis kits.
This also avoids extra data Extraction, Transformation,
and Loading (ETL).

2.6　Data matching

Functions in this class focus on similarity measurement
of time series. As we all know, time series data
requires special metrics to measure similarity. Our
approach on common measuring functions, which
construct the data matching module, makes it
convenient to query similar series on an IoTDB user
client. In industry scenarios, subsequences matching is
used for both fault detection and forecast. Comparing
recent data to a set of data composed of historical error
to alarm is a typical method on system monitoring.

3　Case Study

In this section, we present some realistic applications

of IoTDQ. These examples come from Apache IoTDB
users. We may have a glimpse of users’demands in
these cases, where some unimpressive functions play a
role.

3.1　Equipment sustainability analysis

In this example, a vehicle torque sensor records data
when the equipment is on. The equipment is available
24 hours a day, but only runs when there is staff
working on it. We may want to evaluate the total
running time of the equipment with sensor records, in
order to get informed when the lifespan of the
equipment comes to an end.

A simple way is to compute the total sustaining time
of all periods with continuous data points. However,
IoT sensors are not as stable as we expect. In this case,
the sensor creates noise signals very soon after the
equipment shuts down, when the power is already off.
Figure 4 shows a typical series collected within one
day.

To make a precise evaluation, we may first use

1500

1000

500To
rq

ue
 (N

·m
)

0
33 200 33 300 33 400 33 500

Time (s)
(a) Original series

33 600 33 700

(c) Cleaned series with two-sided window filter

1500

1000

500To
rq

ue
 (N

·m
)

0
33 200 33 300 33 400 33 500

Time (s)
33 600 33 700

(b) Power-off noise excluded series

Fig. 4 Equipment sustainability analysis on torque.

 36 Big Data Mining and Analytics, March 2024, 7(1): 29−41

“ConsequtiveSequences” to filter noise points during
the power-off period, as shown in Fig. 4b. The next
step is to locate the accurate shutting-down moment at
the end of consecutive sequences. We select 1st order
difference of timestamp, and then apply “KSigma” to
locate the shutting-down periods, which lead to a long
timestamp interval recognized by k-sigma anomaly
detection rule. “KSigma” can be replaced with MAD
along with “Range”, corresponding to detection rules
of k times of MAD deviation from median. IQR is also
a choice by detecting outliers lying over 1.5 times IQR
deviation from upper and lower quartiles.

During the shutting-down period, data collected from
the sensor jump to zero, and then bounce back shortly.
We may use “TwoSidedFilter” to implement a two-
sided window detection, which creates two windows
before and after a specific point, and judge if it could
be removed to smoothen the original series. If the
answer is positive, it indicates that the specific point is
an anomaly during the shutting-down period, and thus
should not be counted into equipment running time.
(see Fig. 4c)

3.2　Sensor stability analysis

In Section 2.1, we introduce 4 indices of data quality
and the classification of data quality problems. In this
industrial occasion, a few time series are generated
from a wind power plant. We apply “Completeness”,
“Consistency”, Validity”, and “Timeliness” to every
device, and group them by month or day, then we can
have an overall view of the sensor stability.
Furthermore, we can examine questionable series to
locate concrete sensor errors. Figure 5 shows an
example of data quality indices computing and
visualization of data quality across the year. Advanced
analysis shows that a few sensors are not connected
correctly to IoT. “TimestampRepair” and
“ValueRepair” will help if we want to fix the problems.

3.3　Fault monitoring

In most cases, fault detection is the primal demand in
time series analysis of industry. A simple way to
monitor the correctness of a system is to preset a
threshold. When the sensor record exceeds the
threshold, the system triggers the alarm. “Range” is a
simple implementation for this situation.

For some situations, like working temperature or
voltage monitoring, it is easy to preset a threshold. But
sometimes technicians do not really grasp priori

knowledge on threshold. Under strict Gaussian
distribution, anomalies are distributed over k times of
standard deviation departure from mean, and this leads
to k-sigma anomaly detection rule (usually k is 3 or
above). Website maintainers, however, may expect
Zipf distribution[33]. In general cases, it is hard to
conclude a standard distribution for anomaly detection.
Hence we recommend MAD to solve the problem. It
has been found that median absolute deviation
fluctuates in a narrower range in comparison to
standard deviation, thus performs better in outlier
detection. Figure 6a shows an example.

In some special cases, like stock price, or in other
scenarios where data appear to be autoregressive, users
can apply classical time series models like ARMA
(Box-Jenkins)[5]. Method based on model regression is
also a feasible way to detect sudden changes. Figure 6b
is an example on weather data, which shows periodic
changes across the year.

4　Experiment

In this section, we compare computations on massive
industrial time series data with IoTDQ UDFs with that
use other libraries. As mentioned in Section 1, Apache

12
14

10
8

Sp
ee

d
(r·

m
in

−1
)

0
2
4
6

2020-01 2020-07 2021-01
Time

(a) Example of data quality computation in sliding windows

(b) Visualization of data quality by sensor by month

Eq
ui

pm
en

t

Month (from Feb. 2016 to Sep. 2020)

Completeness
0.95 1.00

Fig. 5 Sensor stability analysis from a wind power plant.

 Pengyu Chen et al.: IoTDQ: An Industrial IoT Data Analysis Library for Apache IoTDB 37

IoTDB UDF boasts close connection to data storage
engine, I/O consumption is greatly decreased. Based on
different usages, we divide our experiment into two
parts. The first part focuses on most widely-used data
profiling functions with possible python substitutions.
In Section 4.1, we compare the process efficiency
between common data profiling tasks on IoTDQ and
Apache IoTDB Python interface. Further in Section
4.2, we carefully choose some originally designed UDF
functions in IoTDQ and provide same independent
versions in Java which connect Apache IoTDB Java
interface. It will be more persuasive to reveal the
advantage of utilizing Apache IoTDB UDF.

4.1　Common data profiling functions with IoTDQ
and python interface

Without using a platform offered by database, users
may prefer to adopt Python libraries for data profiling.
IoTDQ data profiling section provides calculating
standard deviation, counting distinct values, generating
histogram, calculating median, calculating percentile
number, calculating quantile number, and calculating
mean absolute deviation. Most UDFs provided here use
a stream calculation algorithm, making it fairer for
comparison.

The experiments are run on a machine with Intel
Core 8 CPU (2.3 GHz) and 16 GB of memory, with
Apache IoTDB v1.0.1 installed. Time consumption
results are listed in Table 3.

In our test, we generate 10 time series with 1 million
data points each. The time costs listed in Table 3 are
the values of algorithmic mean on time costs of each
series. According to convention, “np” is abbreviation
for library Numpy, and “ df ” is for library
Pandas.DataFrame.

As seen Table 3, comparing to using Python
interface, IoTDQ greatly saves read time.

(a) Anomaly detection based on k-MAD rule

800

600

400

200

Q
PM

0
01 Jan. 15 Jan. 01 Feb.

Time
15 Feb.

(b) Fault monitoring with forecast methods

400

420

380

360

C
on

ce
nt

ra
tio

n
(p

pm
)

340
0 50 100 150

Period
200 250 300

Original
Fitted

Fig. 6 Fault detection in time series. ppm represents parts
per million.

Table 3 Time cost comparison between IoTDQ and Python.
IoTDQ Python

IoTDQ UDF Total time cost (s) Python function Total time cost (s) Reading time (s) Function time (s) Writing time (s)
Stddev 0.1877 np.std 1.0410 1.0148 0.0016 0.0245
Distinct 0.4402 np.unique 0.8818 0.8128 0.0496 0.0194

Histogram 0.1899 np.histogram 0.8715 0.8494 0.0107 0.0114
Median 0.2302 np.median 0.7584 0.7406 0.0076 0.0101

Percentile 0.3386 np.percentile 0.7484 0.7241 0.0126 0.0117
Quantile 0.0064 np.quantile 0.7447 0.7236 0.0125 0.0086

MAD 0.2091 df.mad 1.0541 1.0382 0.0074 0.0084

 38 Big Data Mining and Analytics, March 2024, 7(1): 29−41

Theoretically, read time with Python interface keeps
same for different functions, since all experiments read
same data from same database. Fluctuation in reality
may be caused by memory allocation or response from
database server. All functions included in the
experiment are aggregation functions, which means
theoretically they should also share same write time. If
we take similar causes of fluctuation into
consideration, this is reflected in the result.

The comparison reasonably reveals the advantage of
IoTDQ on time cost. By consuming and discarding
time series data directly and immediately, IoTDQ is
more competent for real-time computation tasks in IoT.

4.2　Original IoTDQ functions with IoTDQ and
Java interface

In other sections, however, original designed
algorithms are provided, which means it is impossible
to find a control functions group. Thus we modified
IoTDQ UDFs to independent Java versions to test the
difference with Java platform.

The experiments are run on a machine with Intel
Core 8 CPU (2.3 GHz) and 16 GB of memory, with
Apache IoTDB v1.0.1 installed. Time consumption
results are listed in Table 4. We generate another 10
time series with 1 million data points each, with data
quality problems such as missing data and outliers. The
time costs listed in Table 4 are the values of
algorithmic mean on time cost of each series.

Apache IoTDB is fully developed on Java, so reading
data transports faster with Java interface than with
Python. Algorithms and environments are almost
completely same in the comparison. One difference
here is that UDFs run on a Java Virtual Machine

(JVM) created by Apache IoTDB, while Java functions
run on another one. When testing ordinary anomaly
detection functions, both methods show similar
behaviors. While for some functions, too many errors
are detected and a vast number of writing requests are
made, causing a rapid increase on time cost. The results
show that UDF provides better stability for IoT
computation.

5　Related Work

Our work is related to almost all aspects of problems in
time series analysis, and there are lots of novel
progress each year. The major idea of this paper
inherits from IoT time series diagnosis, so in this
section we will cover most relevant works in this field.
Without Apache IoTDB, researchers tried to construct
a diagnosis system with full pipeline, from data storage
backend to Graphical User Interface (GUI). Huang
et al.[34] designed TsOutlier to implement outlier
detection in sliding windows of IoT time series.
TsOutlier realizes detection based on distribution and
model regression. Computation is realized with Apache
Spark and Apache Flink. The GUI could exhibit a
digest of series and data quality distribution across all
windows. Liu et al.[35] upgraded TsOutlier to TsClean,
adding Apache IoTDB into the data source engine and
adopting novel anomaly detection and repair
algorithms into the system. The GUI provided by
TsClean was also enhanced with detailed figures based
on vue.js, a Javascript-based framework for front end
design.

The overall data quality diagnosis methods in IoT
time series are introduced in Section 2.1.

6　Conclusion
In this paper, we introduce IoTDQ, a UDF library
designed for Apache IoTDB. This library not only
provides fundamental statistical computation, but also
focuses on realistic industrial requirements. IoTDQ
covers functions from anomaly detection to frequency
domain analysis. Characteristic data quality functions
make a standard for time series quality evaluation.
IoTDQ could successfully solve primal industrial
issues, and also builds a bridge for downstream data
analysis.

References

 X. Huang, J. Wang, R. K. Wong, J. Zhang, and C. Wang,
PISA: An index for aggregating big time series data, in

[1]

Table 4 Time cost comparison between IoTDQ and Java.
Function UDF time cost (s) Java time cost (s)

Completeness 0.5203 1.0222
Consistency 0.5178 1.0285
Timeliness 0.5522 1.0802

Validity 0.6804 1.0157
KSigma 0.4794 0.5574

IQR 0.2551 0.1854
LOF 0.2343 0.1673

Range 0.3640 0.2505
TwoSidedFilter 1.0289 30.6036

MissDetect 1.0350 78.2877
TimestampRepair 2.1743 93.5875

ValueRepair 1.8023 97.0783

 Pengyu Chen et al.: IoTDQ: An Industrial IoT Data Analysis Library for Apache IoTDB 39

Proc. 25th ACM Int. Conf. Information and Knowledge
Management, Indianapolis, IN, USA, 2016, pp. 979–988.
 J. Qiao, X. Huang, J. Wang, and R. K. Wong, Dual-PISA:
An index for aggregation operations on time series data,
Inf. Syst., vol. 87, p. 101427, 2020.

[2]

 Apache Software Foundation, Apache IoTDB,
http://iotdb.apache.org/, 2022.

[3]

 C. Wang, J. Qiao, X. Huang, S. Song, H. Hou, T. Jiang, L.
Rui, J. Wang, and J. Sun, Apache IoTDB: A time series
database for IoT applications, Proc. ACM Manag. Data,
vol. 1, no. 2, p. 195, 2023.

[4]

 G. Box and G. M. Jenkins, Time series analysis
forecasting and control, Journal of Time Series Analysis,
doi: 10.2307/1912100, 1970.

[5]

 T. Zhou, Z. Ma, Q. Wen, X. Wang, L. Sun, and R. Jin,
FEDformer: Frequency enhanced decomposed transformer
for long-term series forecasting, in Proc. 39th Int. Conf.
Machine Learning, Baltimore, MD, USA, 2022, pp.
27268–27286.

[6]

 W. Chen, W. Wang, B. Peng, Q. Wen, T. Zhou, and L.
Sun, Learning to rotate: Quaternion transformer for
complicated periodical time series forecasting, in Proc.
28th ACM SIGKDD Conf. Knowledge Discovery and Data
Mining, Washington, DC, USA, 2022, pp. 146–156.

[7]

 M. Schirmer, M. Eltayeb, S. Lessmann, and M. Rudolph,
Modeling irregular time series with continuous recurrent
units, in Proc. 39th Int. Conf. Machine Learning,
Baltimore, MD, USA, 2022, pp. 19388–19405.

[8]

 Z. Shao, Z. Zhang, F. Wang, and Y. Xu, Pre-training
enhanced spatial-temporal graph neural network for
multivariate time series forecasting, in Proc. 28th ACM
SIGKDD Conf. Knowledge Discovery and Data Mining,
Washington, DC, USA, 2022, pp. 1567–1577.

[9]

 T. Kolajo, O. Daramola, and A. Adebiyi, Big data stream
analysis: A systematic literature review, J. Big Data, vol.
6, no. 1, p. 47, 2019.

[10]

 Apache software foundation, IoTDQ, https://incubator.
apache.org/ip-clearance/iotdb-udf-library.html, 2022.

[11]

 Apache software foundation, IoTDQ code, https://
github.com/apache/iotdb/tree/master/library-udf, 2022

[12]

 Apache software foundation, IoTDQ document, https://
iotdb.apache.org/UserGuide/Master/UDF-Library/Quick-
Start.html, 2022.

[13]

 P. Esling and C. Agón, Time-series data mining, ACM
Comput. Surv., vol. 45, no. 1, p. 12, 2012.

[14]

 Y. W. Lee, L. L. Pipino, J. D. Funk, and R. Y. Wang,
Journey to Data Quality. Cambridge, MA, USA: MIT
Press, 2006.

[15]

 ISO 8000-1:2022 data quality - part 1: Overview. https://
www.iso.org/standard/81745.html, 2022.

[16]

 S. Song and A. Zhang, IoT data quality, in Proc. 29th ACM
Int. Conf. Information and Knowledge Management,
Virtual Event, 2020, pp. 3517–3518.

[17]

 C. Fang, S. Song, and Y. Mei, On repairing timestamps for
regular interval time series, Proc. VLDB Endow., vol. 15,
no. 9, pp. 1848–1860, 2022.

[18]

 Apache software foundation, Apache DataFu spark,[19]

https://datafu.apache.org/docs/spark/getting-started.html,
2022.
 Apache software foundation, Apache DataFu pig,
https://datafu.apache.org/docs/datafu/getting-started.html,
2022.

[20]

 Z. Chen, S. Song, Z. Wei, J. Fang, and J. Long,
Approximating median absolute deviation with bounded
error, Proc. VLDB Endow., vol. 14, no. 11, pp. 2114–
2126, 2021.

[21]

 N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri,
Medians and beyond: New aggregation techniques for
sensor networks, in Proc. 2nd Int. Conf. Embedded
Networked Sensor Systems, Baltimore, MD, USA, 2004,
pp. 239–249.

[22]

 C. Leys, C. Ley, O. Klein, P. Bernard, and L. Licata,
Detecting outliers: Do not use standard deviation around
the mean, use absolute deviation around the median, J.
Experim. Soc. Psychol., vol. 49, no. 4, pp. 764–766, 2013.

[23]

 M. Ester, H. P. Kriegel, J. Sander, and X. Xu, A density-
based algorithm for discovering clusters in large spatial
databases with noise, in Proc. 2nd Int. Conf. Knowledge
Discovery and Data Mining, Portland, OR, USA, 1996,
pp. 226–231.

[24]

 D. Yang, E. A. Rundensteiner, and M. O. Ward, Neighbor-
based pattern detection for windows over streaming data,
in Proc. 12th Int. Conf. Extending Database Technology:
Advances in Database Technology, Saint Petersburg,
Russia, 2009, pp. 529–540.

[25]

 M. Kontaki, A. Gounaris, A. N. Papadopoulos, K.
Tsichlas, and Y. Manolopoulos, Continuous monitoring of
distance-based outliers over data streams, in Proc. 27th Int.
Conf. Data Engineering, Hannover, Germany, 2011, pp.
135–146.

[26]

 L. Cao, D. Yang, Q. Wang, Y. Yu, J. Wang, and E. A.
Rundensteiner, Scalable distance-based outlier detection
over high-volume data streams, in Proc. 2014 IEEE 30th
Int. Conf. on Data Engineering, Chicago, IL, USA, 2014,
pp. 76–87.

[27]

 S. Yoon, J. G. Lee, and B. S. Lee, NETS: Extremely fast
outlier detection from a data stream via set-based
processing, Proc. VLDB Endow., vol. 12, no. 11, pp.
1303–1315, 2019.

[28]

 L. Tran, M. Y. Mun, and C. Shahabi, Real-time distance-
based outlier detection in data streams, Proc. VLDB
Endow., vol. 14, no. 2, pp. 141–153, 2020.

[29]

 S. Song, C. Li, and X. Zhang, Turn waste into wealth: On
simultaneous clustering and cleaning over dirty data, in
Proc. 21st ACM SIGKDD Int. Conf. Knowledge Discovery
and Data Mining, Sydney, Australia, 2015, pp.
1115–1124.

[30]

 S. Song, A. Zhang, J. Wang, and P. S. Yu, SCREEN:
Stream data cleaning under speed constraints, in Proc.
2015 ACM SIGMOD Int. Conf. Management of Data,
Melbourne, Australia, 2015, pp. 827–841.

[31]

 A. Zhang, S. Song, and J. Wang, Sequential data cleaning:
A statistical approach, in Proc. 2016 Int. Conf.

[32]

 40 Big Data Mining and Analytics, March 2024, 7(1): 29−41

Management of Data, San Francisco, CA, USA, 2016, pp.
909–924.
 L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker,
Web caching and Zipf-like distributions: Evidence and
implications, in Proc. IEEE INFOCOM ’99. Conf.
Computer Communications. Eighteenth Annu. Joint Conf.
IEEE Computer and Communications Societies, New
York, NY, USA, 1999, pp. 126–134.

[33]

 R. Huang, Z. Chen, Z. Liu, S. Song, and J. Wang,
TsOutlier: Explaining outliers with uniform profiles over
IoT data, in Proc. 2019 IEEE Int. Conf. Big Data, Los
Angeles, CA, USA, 2019, pp. 2024–2027.

[34]

 Z. Liu, Y. Zhang, R. Huang, Z. Chen, S. Song, and J.
Wang, EXPERIENCE: Algorithms and case study for
explaining repairs with uniform profiles over IoT data, J.
Data Inf. Qual., vol. 13, no. 3, p. 18, 2021.

[35]

Pengyu Chen recieved the BEng degree
from Tsinghua University, China in 2020.
He is a master student at School of
Software, Tsinghua University, China. His
main research interest is industrial big data
management.

Wendi He received the BEng degree from
Shanghai Jiao Tong University, China in
2021. He is currently a master student at
School of Software, Tsinghua University,
China. His main research interest is IIoT
data management.

Wenxuan Ma recieved the BEng degree
from Tsinghua University, China in 2022.
He is currently a master student at School
of Software, Tsinghua University, China.
His main research interest is IoT data
management.

Xiangdong Huang received the BEng
degree from Chongqing University, China
in 2012, and the PhD degree from
Tsinghua University, China in 2017. He is
currently an associate professor at School
of Software, Tsinghua University, China.
His research interests include big data
storage system and time series data

management.
Chen Wang received the BEng and MEng
degrees from Fudan University, China in
2003 and 2006, respectively. He is
currently the chief engineer at National
Engineering Research Center for Big Data
Software (NERCBDS), Tsinghua
University, China. His research interests
include database technology, stream

computing, and big data systems.

 Pengyu Chen et al.: IoTDQ: An Industrial IoT Data Analysis Library for Apache IoTDB 41

