
 

Discriminatively Constrained Semi-Supervised Multi-View
Nonnegative Matrix Factorization with Graph Regularization
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Abstract: Nonnegative Matrix  Factorization (NMF) is  one of  the most popular  feature learning technologies in

the  field  of  machine  learning  and  pattern  recognition.  It  has  been  widely  used  and  studied  in  the  multi-view

clustering  tasks  because  of  its  effectiveness.  This  study  proposes  a  general  semi-supervised  multi-view

nonnegative  matrix  factorization  algorithm.  This  algorithm  incorporates  discriminative  and  geometric

information on data to learn a better-fused representation,  and adopts a feature normalizing strategy to align

the different views. Two specific implementations of this algorithm are developed to validate the effectiveness

of  the proposed framework:  Graph regularization based Discriminatively  Constrained Multi-View Nonnegative

Matrix  Factorization  (GDCMVNMF)  and  Extended  Multi-View  Constrained  Nonnegative  Matrix  Factorization

(ExMVCNMF).  The  intrinsic  connection  between  these  two  specific  implementations  is  discussed,  and  the

optimization  based  on  multiply  update  rules  is  presented.  Experiments  on  six  datasets  show  that  the

effectiveness  of  GDCMVNMF  and  ExMVCNMF  outperforms  several  representative  unsupervised  and  semi-

supervised multi-view NMF approaches.

Key words:  multi-view; semi-supervised  clustering; discriminative  information; geometric  information; feature

normalizing strategy

1　Introduction

Clustering  is  a  very  important  unsupervised  model  in

machine  learning[1] and  pattern  recognition[2] because
of its ability to capture the latent structure of the data.
Generally, the data mostly used nowadays are not only
of  high  dimension[3] but  also  derived  from  multiple
sources[4] because  of  the  rapid  development  of
information  technology.  This  is  usually  referred  to  as
views  or  modalities  in  the  literature[5].  These  multiple
views generally contain complementary and interaction
information[6];  however,  the  primary  issue  is  how  to
effectively fuse the information obtained from different
views  in  the  learning  procedure[7].  In  recent  years,
many algorithms have  been proposed to  handle  multi-
view clustering tasks; however, due to the potential of
deep  neural  networks,  various  deep  learning  based
multi-view clustering approaches,  such as  deep matrix
factorization[8] and  auto-encoder-based  methods[9],
have been presented.

Traditional  machine  learning  based  multi-view
clustering  algorithms  can  be  grouped  into  three
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categories:  (1) -means-based methods[10];  (2) spectral
graph  based  methods[11];  and  (3)  Nonnegative  Matrix
Factorization  (NMF)  based  methods[12].  Multi-view
clustering  methods  based  on -means  clustering  are
usually  implemented  in  the  feature  space,  and  do  not
use  the  geometric  structure  and  discriminative
information  presented  in  the  multi-view  data[13].
Spectral  graph  based  multi-view  clustering  methods
have  been  extended  from  single-view  spectral
clustering  to  multi-view  configuration;  however,  such
methods  necessitate  building  a  similarity  matrix  for
each  class,  resulting  in  high  computational  costs[14].
NMF[15],  a  powerful  feature  extracting  technique,  has
been  widely  used  in  multi-view  clustering  tasks.  In  a
Multi-View  Nonnegative  Matrix  Factorization
(MVNMF)  framework,  each  point  can  be  represented
with an efficient low-dimensional feature vector.

The  common  objective  function  of  traditional
MVNMF can be expressed as follows:
  ∑

v

||Xv−Sv(Gv)T||2F (1)

Xv Sv Gv

v
∥·∥2F T

||Gv Pv−Gc|| Gc

Pv

Pv

∑
1⩽v, w⩽V, v,w

||Gv−Gw||2F _∑
1⩽v, w⩽V, v,w

||Gv (Gv)T−Gw (Gw)T||2F _

where , ,  and  are  the  data  matrix,  the  basis
matrix,  and  the  coefficient  matrix  of  the -th  view,
respectively,  and  is  the  Frobenius  norm. “ ”
denotes the transposition. The key problem is to design
an  efficient  fusing  strategy  to  integrate  multiple  view
information  into  one  compact  representation.
MultiNMF[16] is  the  first  to  attempt  to  learn  a
consensus  representation  by  minimizing  the  objective
function of MVNMF with a centroid co-regularization
term,  which  is  defined  as: .  Here,  is  a
common consensus matrix and  is a diagonal matrix.
By introducing , the feature scale of different views
is normalized to be similar; thus, multiple views can be
aligned  effectively.  In  conjunction  with  centroid  co-
regularization,  many  variants  methods  are  developed
consequently[17−19].  Wang  et  al.[20] developed  a  multi-
view  clustering  method  based  on  NMF  and  pairwise
measurements  (namely  MPMNMF).  In  this  model,  a
pair-wise co-regularization is introduced, which can be
defined  using  Euclidean  distance  or  kernel  as

 (MPMNMF 1)  or

 (MPMNMF 2).
The  features  from different  views  are  pushed  close  to
each  other  using  pairwise  co-regularization,  and
alignment  is  acquired.  In  Ref.  [21],  a  method  named
Uniform  Distribution  NMF  (UDNMF)  based  on

||Gv−Gc||

∑
v,w
||Gv⊙Gw||1

ℓ2, 1

∑
v,w

tr (Gv
m(Gw

m)T) m m

nonnegative  matrix  tri-factorization[22] was  proposed.
This  method  factorizes  each  view  into  three  matrices,
i.e.,  basis  matrix,  shared  embedding  matrix,  and
coefficient  matrix,  and  the  column  summation  of  the
product of basis matrix and shared embedding matrix is
constrained  to  be  1.  Centroid  co-regularization

 is  used  to  align  the  multiple  views.  The
above  mentioned  methods  all  attempt  to  align  the
multiple  views  to  fuse  information.  However,  Wang
et al.[23] attempted a different approach and presented a
Locality-Preserved  Diverse  NMF  (LP-DiNMF)
method.  In  this  study,  they  introduced  a  diverse  term

.  By  minimizing  it,  the  heterogeneity
of  the  different  views  is  encouraged,  and  more
comprehensive information is expected. In Ref. [24], a
multi-view  clustering  method  named  robust
Neighboring  constraint  NMF (rNNMF) was  proposed.
This  method handles the noise and outliers  among the
views  by  defining  a  reconstruction  term  and  a
neighbor-structure-preserving  term  using  the -
norm.  Recently,  some “deep” models  have  also  been
proposed  to  tackle  the  multi-view  clustering
problem[25].  Inspired by deep semi-nonnegative matrix
factorization[26],  Zhao  et  al.[27] proposed  a  multi-view
deep  semi-nonnegative  matrix  factorization.  This
method  uses  adaptive  weights  for  different  views.  In
Ref.  [28],  an  auto-weighted  deep  matrix  factorization
was  presented  to  tackle  multi-view  clustering  task.  A
shared coefficient matrix was introduced in their study
to  fuse  the  information  of  the  multiple  views,  and  an
auto-weighted  strategy  was  adopted  to  balance
different  views.  Also,  in  terms  of  diversity[23],  Luong
et  al.[29] developed  a  method  named  Orthogonal
Diverse  Deep  NMF  (ODD-NMF).  In  this  method,  a
diverse  term  (  denotes  the -th
layer) was designed to boost the diverse information of
data.

Recently,  some  semi-supervised  multi-view
clustering  methods  have  been  proposed.  In  Ref.  [30],
Jiang  et  al.  presented  a  unified  latent  factor  learning
method, in which a regression term is introduced to fit
the partially labeled data points. However, Liu et al.[31]

developed  a  partially  shared  NMF,  which  can
separately  model  common  and  private  information  of
data.  In  Refs.  [32],  Liang  et  al.  expanded  the  work  in
Ref. [31] by incorporating a graph regularization term.
In  Refs.  [31]  and  [32],  the  authors  tried  to  use  both
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ℓ2, 1

ℓ2, 1

distinct  and  shared  information  to  improve  the
clustering  performance.  However,  deciding  the
dimensions  of  the  distinct  and  shared  parts  of  the
coefficient  matrix  for  these  two  methods  is  difficult.
Many approaches based on constrained NMF, which is
a  semi-supervised  NMF  model  designed  for  single-
view  data,  have  also  been  developed.  Wang  et  al.[33]

proposed  an  Adaptive  Multi-View  semi-supervised
NMF  (AMVNMF)  based  on  Constrained  NMF
(CNMF), a semi-supervised NMF method designed for
single-view  data.  This  method  adopts -norm  to
measure the reconstruction loss to make it more robust
to  the  outliers.  A  centroid  co-regularization  is  used  to
align  the  multiple  views.  Cai  et  al.[34] developed  a
semi-supervised  MVNMF  approach  based  on  CNMF
with sparseness constraint (namely MVCNMF), which
factorizes  each  view  in  the  CNMF  framework  and
aligns  multiple  views  using  Euclidean  distance  based
pairwise  co-regularization,  similar  to  the  approach
presented in Ref. [20]. The -norm regularization is
imposed on the auxiliary matrix in each view to select
features.  In  Ref.  [35],  a  similar  method  named  Multi-
View  Orthonormality-CNMF  (namely  MVOCNMF)
was proposed. MVOCNMF differs from MVCNMF in
that  it  replaces  the -norm  regularization  with  an
orthonormality  constraint,  which  is  imposed  on  the
auxiliary  matrix  in  each view to  normalize  the  feature
scale.  Wang  et  al.[36] developed  a  semi-supervised
multi-view clustering model based on anchor graph, in
which  the  anchors  are  constructed  using  label
information. In Ref. [37], Nie et al. presented an auto-
weighted  multi-view  learning  method,  that  can
adaptively  model  the  intrinsic  structure  of  data.  Based
on the work of Nie et al.[37], Liang et al.[38] proposed a
label  propagation  based  NMF.  In  this  model  an
intrinsic  structure  of  data  was  constructed  as  in  Ref.
[37], which helps the label propagation use the limited
labeled  data  points.  Additionally,  this  method  adopts
the -norm  to  measure  the  reconstruction  loss.  In
Ref. [39], Zhao et al. developed a deep semi-supervised
NMF model. In this model, two graphs are constructed
to discover the discriminant information of data, where
the  affinity  graph  ensures  intra-class  compactness  and
the  penalty  graph  ensures  inter-class  distinctness.
Recently,  Chen  et  al.[40] presented  a  deep  semi-
supervised  multi-view clustering  method  based  on  the
autoencoder  framework  with  pairwise  constraint.  The
pairwise constraint was used to encode the partial label
information,  and  a  clustering  layer  was  constructed  to

produce clustering results.

ℓ2, 1

ℓ2, 1

ℓ2, 2

ℓ2, p

ℓ2, p p

From the above review, it  can be said that for semi-
supervised  multi-view  clustering  methods,  the  key
point  is  to  discover  the  discriminant  information  of
data.  To  guarantee  the  learned  feature  more
discriminative, the essential idea is to ensure the intra-
class  compactness  and  inter-class  distinctiveness.
Many semi-supervised MVNMFs have adopted CNMF
to  use  the  partial  label  information  of  data.  However,
they can only guarantee the intra-class compactness of
data because of the intrinsic property of CNMF. From
the above references, many methods have also adopted

-norm to measure the reconstruction loss, claiming
that  it  is  more  robust  to  outliers.  However,  the -
norm  and  Frobenius-norm  (i.e., -norm)  have  not
been compared under the same model configuration. In
addressing the above issues, this study presents a novel
discriminatively constrained semi-supervised MVNMF
with  a  feature  alignment  strategy.  Two  specific
implementations  of  this  model  are  introduced,  i.e.,
Graph  regularization  based  Discriminatively
Constrained  Multi-View  Nonnegative  Matrix
Factorization  (GDCMVNMF)  and  Extended  Multi-
View  CNMF  (ExMVCNMF).  In  GDCMVNMF,  a
more  general -norm  is  used  to  measure  the
reconstruction loss of data, which helps us compare the
influence  of -norm  when  is  set  to  different
values,  such  as  0.5,  1,  and  2.  Additionally,  the  innner
connection  of  GDCMVNMF  and  ExMVCNMF  is
revealed.  ExMVCNMF retains  the  CNMF property  of
mapping the data points within the same class into the
same  feature  vector  to  ensure  the  intra-class
compactness  of  data.  The  influence  of  intra-class
compactness  on  the  model  can  also  be  revealed  by
comparing  GDCMVNMF  and  ExMVCNMF.  The
contributions of this study are summarized as follows:

●  A  general  discriminatively  constrained  semi-
supervised MVNMF with a  feature  alignment  strategy
is  proposed  in  this  study.  Two  specific
implementations of this model, i.e., GDCMVNMF and
ExMVCNMF, are  introduced,  and their  corresponding
optimizing strategies are also presented.

●  The  inner  connection  of  GDCMVNMF  and
ExMVCNMF  is  revealed,  so  the  influence  of  the
intrinsic  property  of  CNMF,  i.e.,  the  intra-class
compactness  of  data,  on  the  mining  of  the
discriminative information of data, can be discussed.

ℓ2,p●  A  more  general -norm  is  used  in
GDCMVNMF  to  measure  data  reconstruction  loss.
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pThis  can  help  to  explore  the  effect  of  value  on  the
model under the same configuration.

●  The  effectiveness  of  the  proposed  methods  is
verified  by  comparing  with  several  recently  proposed
representative  unsupervised  and  semi-supervised
methods on six datasets.

The rest of the paper is organized as follows: Section
2  briefly  reviews  some  related  works  to  the  proposed
methods.  Section  3  presents  the  proposed  Semi-
Supervised Multi-View Nonnegative Matrix Factoriza-
tion  (S2MVNMF)  along  with  its  first  implementation
and  detailed  optimization  algorithm.  Section  4
describes another implementation of S2MVNMF along
with  its  corresponding  optimization  procedure  and
computation  complex  analysis.  Section  5  presents
extensive  experiments  conducted  to  verify  the
effectiveness of the proposed methods. Finally, Section
6 concludes the study.

In Table 1, some relative notations used in the study
are summarized for clarity.

2　Related Work

2.1　CNMF

CNMF[41] is a semi-supervised NMF method that uses
label  information  as  additional  constraints  to  improve
the  discriminating  power  of  the  resulting  matrix
decomposition.  The  specific  formulation  of  CNMF  is
as follows:
 

OCNMF = ||X−S(AlcZ)T||2F (2)

X = [x1, x2, . . . , xi, . . . , xn] S
Z Alc

where  is a data matrix,  is
a  basis  matrix,  is  an  auxiliary  matrix,  and  is  a
label constraint matrix, which is as follows:
 

Alc =

(
Hl×C

0
0

In−l

)
(3)

H
In−l n− l l

n
C

l = 5 x1 x2 I x3 x4

II x5 III Alc

where  is label matrix of the labeled data points and
 is an identity matrix of dimension . Here,  is

the  number  of  labeled  data  points,  is  the  number  of
total data points, and  is the number of classes. When

,  and  belong to Class ,  and  belong to
Class , and  belongs to Class . Matrix  can be
represented as follows:
 

Alc =



1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 0

0
0
0
0
0

In−5


(4)

G
AlcZ

Alc xi

x j gi = g j gi g j

The  coefficient  matrix  in  the  original  NMF  is
represented  as  in  CNMF.  Considering  the
definition  of  the  label  constraint  matrix ,  if  and

 are in the same class,  then ,  where  and 
are low dimensional representations of the i-th and j-th
data  points,  respectively.  In  sum,  for  the  labeled  data
points, the data points with the same label are mapped
to the same low-dimensional vector.

2.2　Robust  structured  nonnegative  matrix
factorization

Robust  Structured  Nonnegative  Matrix  Factorization
(RSNMF)[42] is  another  semi-supervised NMF method
that  attempts  to  learn  representation  using  a  block-
diagonal  structure.  The  objective  function  of  RSNMF
is as follows:
 

ORSNMF = ||X−SGT||p2, p+µ||Iblock ⊙G||2F,

s.t., S,G ⩾ 0,
d∑

i=1

Ghi = 1,∀h (5)

 

Table 1    Important notations in the paper.
Notation Description

n Number of samples
C Number of classes
l Number of labeled samples
V Number of views
mv vDimension of features for original view 
dv vDimension of low-dimensional feature for view 
e All-one column vector

xv
i ∈ Rmv

+
vSample of original view 

gv
i ∈ Rdv

+ i Gv-th column vector of 
I Identity matrix

Xv vData matrix for view 
Sv Basis matrix for view v
Gv vCoefficient matrix for view 
Gc Consistent coefficient matrix to align the coefficient

matrices learned from different views
Lv vGraph laplacian matrix for view 
Wv vSimilarity matrix for view 
Dv vDegree matrix for view 
Alc Label constraint matrix defined in Ref. [41]
Z Auxiliary matrix defined in Ref. [41]
Zv vAuxiliary matrix for view 
Zc Consistent auxiliary matrix to align the auxiliary

matrices of different views
|| · ||F Frobenius norm of a matrix
|| · ||2,1 ℓ2, 1  norm of a matrix
tr (·) Trace operator of a matrix
⊙ Element-wise product operator
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⊙
|| · ||2, p ℓ2, p

A ||A||2, p =

(∑
j

(∑
i
A2

i j

)p/2
)1/p

0 < p < 1 ℓ2, p

ℓ2, 1

p = 1 ℓ2, p ℓ2, 1 p = 2
ℓ2, p

Iblock = [Ī; 0̂] ∈ Rn×m

0̂ ∈ R(n−l)×d

Ī ∈ Rl×d

where μ is a balancing parameter, d is the dimension of
latent  feature,  and  is  an  element-wise  product
operator.  Here,  denotes  the -norm  of  a

matrix,  for  a  matrix , .
When ,  the -norm  can  produce  more
robust  solutions  compared  to  the -norm;  when

, the -norm reduces to -norm; when ,
the -norm  is  equivalent  to  the  Frobenius  norm.

 is  an  indicator  matrix,  and
 is  the  zero  matrix  corresponding  to  the

unlabeled samples. Here,  is defined as labeled
samples and is expressed as follows:
 

Ī =


0̄1 1 . . . 1
1 0̄2 . . . 1
...

...
. . .

...
1 1 . . . 0̄C

 (6)

0̄c ∈ Rnc×ms (c = 1,2, . . . ,C)
c nc

c ms

where  is a zero matrix for the
-th class. Here,  is the number of labeled samples in

the -th  class,  and  is  the  dimension  of  each
subspace.  By  minimizing  the  second  term  in  Eq.  (5),
the  coefficient  matrix  learned  by  this  method,
especially for the labeled samples, is restricted to block
diagonal  structure,  and  intra-class  distinction  is
enlarged.

2.3　Representative  semi-supervised  MVNMF
based on CNMF

2.3.1　AMVNMF
AMVNMF[33] extends  CNMF  to  handle  multi-view
clustering task for the first time. The objective function
of AMVNMF is as follows:
 

OAMVNMF =

V∑
v=1

(||Xv−Sv(AlcZv)T||2,1+

(αv)κ || Zv Pv− Zc||2F),

s.t.,
V∑

v=1

αv = 1,αv ⩾ 0 (7)

|| · ||2, 1 ℓ2, 1

A ||A||2, 1 =
∑

j

√∑
i
A2

i j (αv)κ

κ

Pv Sv Sv(Pv)−1

Zv

Zc

Pv = Diag
(∑mv

i=1
Sv

i, 1,
∑mv

i=1
Sv

i, 2, . . . ,
∑mv

i=1
Sv

i, dv

)

where  denotes -norm of a matrix. For matrix

, .  Here,  is  a weighting

parameter,  with  as  a  hyper-parameter,  which  can  be
adaptively  changed  during  optimization.  The  diagonal
matrix  is introduced to normalize  using .
In  this  manner,  the  scale  of  is  constrained  to  be
within  the  same  range[16].  Here,  is  a  consistent
auxiliary  matrix  shared  across  multiple  views,  and

.

ℓ2, 1

The  reconstruction  term  of  AMVNMF  is  measured
using  the -norm  to  enhance  the  robustness  of  this
method against noises and outliers.
2.3.2　MVCNMF
MVCNMF[34] is  a  recently  proposed  semi-supervised
NMF method whose objective function is as follows:
 

OMVCNMF =

V∑
v=1

{
θv ||Xv−Sv(AlcZv)T||2F+

V∑
s=1

θvs ||Zv− Z s||2F+λ||Zv||2, 1

}
,

s.t., Sv,Zv ⩾ 0 (8)

θv θvs λ

θv

θvs

θ1 = θ2 = . . . = θV θ11 = θ12 = . . . = θVV

Zc

ℓ2, 1 Zv

where , ,  and  are  the  balancing  parameters  for
the corresponding terms. Although the subscripts of 
and  vary  with  different  views,  they  are  shared
across  multiple  views  according  to  Ref.  [34],  i.e.,

,  and .  In  contrast
to  AMVNMF,  which  introduces  a  consistent  auxiliary
matrix  to align different views, MVCNMF attempts
to align different views by enforcing them to be similar
to  each other,  as  can  be  seen from the  second term in
Eq (8).  The -norm is also imposed on  to select
efficient and robust features.
2.3.3　MVOCNMF
MVOCNMF[35] is  another  recently  proposed  semi-
supervised  NMF  method.  The  objective  function  of
MVOCNMF is as follows:
 

OMVOCNMF =

V∑
v=1

{
θv ||Xv−Sv(AlcZv)T||2F+

V∑
s=1

1
2
θvs ||Zv−Z s||2F+λ ||B⊙ (Zv(Zv)T)−I||2F

}
,

s.t., Sv,Zv ⩾ 0 (9)

I Bwhere  is  an  identity  matrix  and  is  a  selected
constraint matrix which is defined as
 

Bi j =

1, i = j or 1 ⩽ i, j ⩽C;
0, others

(10)

zv
i

zv
i (zv

i )T = 1 1 ⩽ i ⩽ n− l+C

The  last  term  in  Eq  (9)  is  applied  to  impose  the
normalization constraint on  (the i-th row of zv), i.e.,

, .  This  constraint  aims  to
restrict  the  features  of  different  views  to  the  same
scale.

The  abovementioned  recently  proposed  semi-
supervised  multi-view  NMF  methods  have  the
following  drawbacks.  First,  they  all  focus  on  how  to
scale the features of different views and combine them.
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However,  no  attempt  is  made  to  extract  the  intrinsic
geometric  structure  information  from  the  data,
including  labeled  samples  and  unlabeled  samples.
Second,  because  they  are  all  based  on  the  original
CNMF method due to the definition of label constraint
matrix ,  the  samples  from  the  same  class  are
mapped into the same vector (see Fig. 1). However, the
distinction  between these  different  class  vectors  is  not
ensured, which harms the identifiability of the features
learned  by  the  model.  To  address  these  issues,  the
following sections propose that the geometric structure
and  discriminative  information  on  the  data  should  be
simultaneously considered to improve the quality of the
features.  Additionally,  a  feature  normalizing  strategy
different  from  the  abovementioned  methods  is
introduced in this study to effectively align the features
of multiple views.

3　Proposed S2MVNMF

3.1　GDCMVNMF

For  a  semi-supervised  algorithm,  it  is  important  to
simultaneously  consider  the  label  information  and
geometrical  structure  information  on  the  data.  This
way,  information  from  labeled  and  unlabeled  samples
is  explored  to  enhance  the  learning  algorithm’s
performance.  Based  on  this  idea,  a  unified  framework
for S2MVNMF can be expressed as follows:
 

OS2MVNMF =

V∑
v=1

{
D (Xv ||Sv (Gv)T)+Ωl (Gv

l )+

Ωg (Gv)+Ωa (Gv)
}
,

s.t., Sv,Gv ⩾ 0 (11)

D (Xv ||Sv (Gv)T)where  is the measurement to quantify

Xv Sv (Gv)T Ωl (Gv
l )

Gv
l
Ωg (·)

Ωa (·)

the  distance  between  and .  is  the
term defined to explore the label information provided
by  the  data,  is  the  feature  corresponding  to  the
labeled  samples,  is  the  regularizer  to  use  the
geometric information on the data, and  is a term
to align the features from multiple views.

ℓ2, pIn  the  above  framework,  the -norm  based
reconstruction  cost  is  adopted  for  each  view  to
enhancing  the  robustness  of  the  model  to  noises  or
outliers. Thus, the first term in Eq. (1) is as follows:
 

D (Xv||Sv (Gv)T) = ||Xv−Sv (Gv)T||p2, p (12)

Ωl (Gv
l )

The  block-diagonal  structure  constraint  is  imposed
on  the  coefficient  matrix,  such  as  RSNMF,  to  use  the
discriminative  information  provided  by  the  labeled
samples. Specific definition of  is as follows:
 

Ωl (Gv
l ) = ||Iblock ⊙Gv||2F (13)

Ωg(Gv)For  the  third  term ,  a  graph  regularizer  is
constructed  for  convenience  to  encode  the  geometric
information  on  the  entire  data,  including  labeled  and
unlabeled samples, and is defined as follows:
 

Ωg(Gv) =
n∑

i=1

n∑
j=1

||gv
i −gv

j ||22 Wv
i j = tr ((Gv)TLvGv) (14)

Lv = Dv−Wv Dv
ii =

∑
j
Wv

i j Dv
ii =

∑
j
Wv

ji

Wv

where ,  (or ).

 is defined as follows:
 

Wv
i j=

e−||g
v
i −gv

j ||
2
2/2δ

2
, if gv

i ∈Nk (gv
j) or gv

j ∈ Nk(gv
i );

0, otherwise
(15)

δ δ

Nk (gv
i ) k

gv
i

Ωa (Gv) Gc

Ωa (Gv)

where  is  a  predefined  parameter.  In  this  study,  is
fixed  as  1  for  simplicity,  and  consists  of 
Nearest  Neighbors  (k-NN)  of .  For  the  final  term

,  a  shared  common  consensus  matrix  is
introduced to align the multiple views. Then,  is
given as follows:
 

Ωa (Gv) = ||Gv−Gc||2F (16)

Thus,  summarizing  the  terms  mentioned  above,  the
final objective function of the proposed method can be
described as follows:
 

OGDCMVNMF =

V∑
v=1

{
||Xv−SvGvT||p2,p+α ||Iblock ⊙Gv||2F+

β · tr ((Gv)TLvGv)+γ ||Gv−Gc||2F
}
,

s.t., Sv,Gv,Gc ⩾ 0 (17)

 

C

Class I

Class II
Class III

xv
1

xv
2

xv
3 zv

1
zv

2
zv

3

xv
4

xv
5

gv
1

gv
2

gv
3

gv
4

gv
5

n−l n−l

l

X vT Z v G v=AlcZ v

 
Xv Zv AlcZv

xv
1 xv

2
gv

1 = gv
2 = zv

1 xv
3 xv

4 gv
3 = gv

4 = zv
2 xv

5
gv

5 = zv
3

Fig. 1    Correspondence of ,  and  for the labeled
samples in Refs. [33−35]. Samples with the same labels, such
as  and ,  are  mapped  into  the  same  vectors,  i.e.,

.  Similarly,  for  and , ;  for ,
.  Additionally,  the  distinction  of  these  vectors  is  not

ensured  in  the  learning  procedure  (take  the  example  in
Section 2.1).
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where α, β,  and γ are  the  balancing  parameters  for
corresponding terms.

In contrast  to  the recently proposed semi-supervised
multi-view NMF methods mentioned above, inter-class
discriminative information among labeled samples and
geometric  structure  information  are  simultaneously
considered.  Therefore,  the  proposed  algorithm  in  this
study is termed GDCMVNMF.

Sv ||Sv
· j||2 = 1

One critical challenge in handling multi-view tasks is
to  align  multiple  features  to  effectively  fuse
information on different views. Therefore, to make this
possible,  the  scales  of  multiple  features  must  be
restricted to be comparable. Based on this, the column
vectors  of  are  constrained  as ;  however,
directly  optimizing  the  above  objective  function
extremely  complicates  the  optimization  problem
significantly.  An  alternative  scheme  to  the  direct
strategy is to compensate the norms of the basis matrix
into  the  coefficient  matrix.  The  objective  function  of
GDCMVNMF  in  Eq.  (17)  can  then  be  rewritten  as
follows:
 

OGDCMVNMF=

V∑
v=1

{
||Xv−Sv(Gv)T||p2,p+α ||Iblock ⊙Gv Pv||2F+

β · tr ((Pv)T(Gv)TLvGv Pv)+γ ||Gv Pv−Gc||2F
}

s.t., Sv,Gv,Gc ⩾ 0
(18)

Pvwhere  is defined as
 

Pv = Diag


√√√ mv∑

i=1

(
Sv

i, 1

)2
,

√√√ mv∑
i=1

(
Sv

i, 2

)2
, . . . ,

√√√ mv∑
i=1

(
Sv

i, dv

)2


(19)

v
Sv Gv

Sv Gv

In the following sections, the optimization algorithms
of  GDCMVNMF  are  introduced  in  detail.  For  a
specific  view ,  the  objective  function  defined  in  Eq.
(18)  is  non-convex for  both  and ;  however,  it  is
convex  for  or  when  either  is  fixed.  Section  3.2
presents  an  iterative  multiplicative  updating procedure
to solve the above problem.

3.2　Optimization algorithm of GDCMVNMF

To  minimize  Eq.  (18),  the  minimizing  problem  is
divided into several manageable subproblems.

v
Sv Gv

Qv = Xv−Sv(Gv)T

For the -th view, the other views are not involved in
the  optimization  of  and .  Letting

, the minimizing problem in Eq. (18)
can be written as follows:

 

min
Sv, Gv, Gc⩾0

||Qv||p2,p+α ||Iblock ⊙Gv Pv||2F+

β · tr ((Pv)T(Gv)TLvGv Pv)+γ ||Gv Pv−Gc||2F (20)

Gc Gv Sv3.2.1　Fixing  and , updating 
Gc GvWhen  and  are fixed, Eq. (20) can be rewritten as

follows:
 

min
Sv⩾0
||Qv||p2, p+

α · tr ((Pv)T(Iblock ⊙Gv)T(Iblock ⊙Gv)Pv)+

β · tr ((Pv)T(Gv)TLvGv Pv)+

γ · tr ((Pv)T(Gv)TGv Pv−2GT
c Gv Pv) (21)

Let
 

Uv
1 =

[
(Iblock ⊙Gv)T(Iblock ⊙Gv)

]
⊙ I,

Uv
2 =

[
(Gv)TLvGv

]
⊙ I = Uv+

2 −Uv−
2 ,

Uv
3 =

[
(Gv)TGv

]
⊙ I (22)

Uv+
2 = [(Gv)T DvGv]⊙ I Uv−

2 = [(Gv)TWvGv]⊙ Iwhere  and .
PvThen, Formula (21) with  defined in Eq. (19) can

be deformed as follows:
 

min
Sv⩾0
||Qv||p2, p+α · tr (SvUv

1(Sv)T)+β · tr (SvUv
2(Sv)T)+

γ · tr (SvUv
3(Sv)T−2GT

c Gv Pv)
(23)

Sv = [Sv
ih] ⩾ 0

Ξ = [ξih]
L

For  the  constraint ,  the  Lagrangian
multiplier  is introduced. Then, the Lagrangian
function  of Formula (23) is obtained as follows:
 

L = ||Qv||p2, p+α · tr (SvUv
1(Sv)T)+β · tr (SvUv

2(Sv)T)+

γ · tr (SvUv
3(Sv)T−2GT

c Gv Pv)+ tr (Ξ(Sv)T) (24)

24
Sv
Then,  the  partial  derivative  of  Eq.  ( )  with  respect

to  can be expressed as follows:
 

∂L
∂Sv =−2QvEvGv+2αSvUv

1+2βSvUv
2+

2γSvUv
3−2γSv(Pv)−1Uv

4+Ξ (25)

Ev Ev
ii = p/[2 ||Qv

·i||
2−p
2 ]

Uv
4 = [GT

c Gv]⊙ I
where  is a diagonal matrix with 
and .

ξihSv
ih = 0

Setting  the  above  expression  to  zero  and  using  the
Karush-Kuhn-Tucker (KKT) condition[43] of ,
then the following update rule is obtained:
 

Sv
ih = Sv

ih

(XvEvGv+βSvUv−
2 +γSv(Pv)−1Uv

4)ih

(Sv(Gv)TEvGv+αSvUv
1+βSvUv+

2 +γSvUv
3)ih
(26)

Gc Sv Gv3.2.2　Fixing  and , updating 
Sv Pv

Sv

Gv

After  updating ,  (defined  in  Eq.  (19))  is  used  to
normalize  the  columns  of ,  and  the  norm  is
compensated to , that is,
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Sv⇐ Sv(Pv)−1,Gv⇐ Gv Pv (27)

Gc SvWhen  and  are  fixed,  the  minimizing problem
in Formula (20) is reduced to
 

min
Gv⩾0
||Qv||p2, p+α · tr ((Iblock ⊙Gv)T(Iblock ⊙Gv))+

β · tr ((Gv)TLvGv)+γ · tr ((Gv)TGv−2GT
c Gv) (28)

Gv = [Gv
jh] ⩾ 0

Ψ = [ψ jh]
L

For  the  constraint ,  the  Lagrangian
multiplier  is  introduced.  Then,  the
Lagrangian function  of  Formula (28)  is  obtained as
follows:
 

L = ||Qv||p2, p+α · tr ((Iblock ⊙Gv)T(Iblock ⊙Gv))+

β · tr ((Gv)TLvGv)+γ · tr ((Gv)TGv−2GT
c Gv)+ tr (Ψ (Gv)T)

(29)

Gv
Then,  the  partial  derivative  of  Eq.  (29)  with  respect

to  is expressed as follows:
 

∂L
∂Gv = −2Ev(Qv)TSv+2αIblock ⊙Gv+2βDvGv−

2βWvGv+2γGv−2γGc+Ψ (30)
∂L
∂Gv = 0

ψ jhGv
jh = 0

Similarly, letting  and using KKT condition
of ,  the  following  update  rule  can  be
obtained:
 

Gv
jh =

Gv
jh

((Ev)T(Xv)TSv+βWvGv+γGc) jh

((Ev)TGv(Sv)TSv+αIblock ⊙Gv+βDvGv+γGv) jh
(31)

Sv Gv Gc3.2.3　Fixing  and , updating 
Gc

Sv
The partial derivative of Eq. (18) with respect to  is
as follows (in each iteration,  is normalized):
 

∂OGDCMVNMF

∂Gc
=

∂

V∑
v=1

γ ||Gv−Gc||2F

∂Gc
=

V∑
v=1

[−2γGv+2γGc] = 0 (32)

GcThen, the exact solution for  is
 

Gc =

V∑
v=1

Gv

V
⩾ 0

(33)

Algorithm  1 summarizes  the  optimizing  scheme  of
GDCMVNMF.

3.3　Computational  complexity  analysis  of
GDCMVNMF

In  this  section,  the  computational  complexity  of

O
v

Sv Sv(Gv)TEvGv

XvEvGv SvUv
1 SvUv

2 SvUv
3 Sv(Pv)−1Uv

4
Sv(Gv)TEvGv XvEvGv

O ((dv)2(n+mv)) O (dvn+mvndv)
SvUv

1 SvUv
2 SvUv

3 Sv(Pv)−1Uv
4

O (mvdv+Kdvn+ (dv)2n) K k
Sv

O (mvndv) Sv Gv

O (ndv+mvdv)
Gv

(Ev)T(Xv)TSv (Ev)TGv(Sv)TSv WvGv

DvGv (Ev)T(Xv)TSv

(Ev)TGv(Sv)TSv O (dvn+mvndv) O (dvn+
(dv)2(mv+n)) WvGv DvGv

O (Kdvn) O (dvn)
Gv

O (mvndv) Sv

Gv Gc

Ev

O (tVmvndv) t

GDCMVNMF  is  analyzed  and  expressed  in  big 
notation[2].  For  a  specific  view  in  one  iteration,
updating  requires  the  calculation  of ,

, , , ,  and ;
furthermore,  the  cost  of  and  is

 and ,  respectively.
Total  cost  of , , ,  and  is

,  where  is  the  number  of -
NNs  in  the  graph;  thus,  the  cost  for  updating  is

. Normalization of  and  in Formula (27)
requires  the  computation  of .  Therefore,
the  main  cost  of  updating  is  based  on  the
calculation  of , , ,
and .  The  cost  of  and

 are  and 
, respectively. Here, both  and 

require  the  computation  of  and ,
respectively.  The  cost  for  updating  is  also

.  When compared to  the  cost  of  updating 
and ,  the  computational  cost  of  updating  and
calculating  is  negligible;  thus,  the  final  cost  for
GDCMVNMF  is ,  where  is  the  number
of iterations.

4　ExMVCNMF

As  pointed  out  in  the  preceding  section,  the  major
problem  of  the  previously  proposed  semi-supervised
MVNMFs based on CNMF is that they fail to consider
the discriminative information provided by the labeled
samples.  Although  label  information  has  been  used  to

 

Algorithm 1　Optimizing scheme for GDCMVNMF

DX = {X1,X2, . . . ,XV } Xv ∈ Rmv×n
+

Iblock ∈ Rn×dv
α, β, and γ

k

Input: Multi-view data  and ,
indicator matrix , Parameters , and
number of -NNs K

Gv GcOutput: and 
for v ∈ V do1:　  each 

Svand Gv2:　　Initialize ;
k3:　　Construct -NN graph with heat kernel weight;

end4:　
Repeat5:　

for v ∈ V do6:　　  each 
Gv, Sv7:　　　S1: Fix  update  with Eq. (26);

Sv Gv8:　　　S2: Normalize  and  with Formula (27);
Sv Gv9:　　　S3: Fix , update  with Eq. (31);

Ev

Ev
kk = p/[2 ||Q·k ||2−p

2 ]
10:　　  S4: Calculate diagonal matrix  as
　　　　　 ;

end11:　　

Sv Gv, Gc12:　　Fix  and  update  with Eq. (33);
13:　Until convergence
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map samples  with  the  same  label  to  one  same  feature
vector (see Fig. 1), the distinction of different classes is
not  ensured.  Additionally,  geometric  information  on
data  is  not  considered.  To  address  these  issues,
ExMVCNMF with  a  semiMVNMF framework  can  be
developed.  Refer  to Fig.  2 for  the connection between
ExMVCNMF and GDCMVNMF.

4.1　Objective function of ExMVCNMF

Zv
In  each  view,  the  following  constraint  should  be
imposed  on  the  auxiliary  matrix  to  guarantee  the
discriminative ability of ExMVCNMF:
 

||Idisc⊙ Zv||2F (34)

Idisc = [Î; 0̂] ∈ R(n−l+c)×dv

0̂ ∈ R(n−l)×dv

Î ∈ Rc×dv

where  is  a  discriminative
matrix  to  ensure  the  distinction  of  the  features  from
different  classes.  Here,  is  a  zero  matrix
corresponding  to  the  unlabeled  samples.  Specifically,

 is defined as follows:
 

Î =


0 1 . . . 1
1 0 . . . 1
...

...
. . .

...
1 1 . . . 0

 (35)

The  objective  function  of  ExMVCNMF  can  be
expressed as follows:
 

OExMVCNMF =

V∑
v=1

(||Xv−Sv(AlcZv)T||2F+α · ||Idisc⊙ Zv||2F+

β · tr ((AlcZv)TLv AlcZv)+γ ||Zv− Zc||2F),
s.t., Sv,Zv,Zc ⩾ 0 (36)

The  same  strategy,  similar  to  GDCMVNMF,  is
adopted  to  align  the  feature  scales  of  multiple  views.
Then, Eq. (36) can be further rewritten as follows:
 

OExMVCNMF =

V∑
v=1

(||Xv−Sv(AlcZv)T||2F+α · ||Idisc⊙ Zv Pv||2F+

β · tr ((Pv)T(AlcZv)TLv AlcZv Pv)+

γ · ||Zv Pv− Zc||2F),
s.t., Sv,Zv,Zc ⩾ 0 (37)

4.2　Optimization algorithm of ExMVCNMF

v
Sv Zv

v

For the -th  view,  the other  views are  not  involved in
the optimization of  and . Minimizing Eq. (37) for
the -th view is as follows:
 

min
Sv, Zv, Zc⩾0

||Xv−Sv(AlcZv)T||2F+α ||Idisc⊙ Zv Pv||2F+

β · tr ((Pv)T(AlcZv)TLv AlcZv Pv)+γ ||Zv Pv− Zc||2F (38)

Zc Zv Sv4.2.1　Fixing  and , updating 
Zc ZvWhen  and  are  fixed,  Formula  (38)  can  be

expressed as follows:
 

min
Sv⩾0
||Xv−Sv(AlcZv)T||2F+

α · tr ((Pv)T(Idisc⊙ Zv)T (Idisc⊙ Zv )Pv )+

β · tr ((Pv)T(AlcZv)TLv AlcZv Pv)+

γ · tr ((Pv)T(Zv)TZv Pv−2ZT
c Zv Pv) (39)

Uv
1 Uv

2 Uv
3Here, , , and  are redefined as follows:

 

Uv
1 =

[
(Idisc⊙ Zv)T(Idisc⊙ Zv)

]
⊙ I,

Uv
2 =

[
(AlcZv)TLv AlcZv

]
⊙ I = Uv+

2 −Uv−
2 ,

Uv
3 =

[
(Zv)TZv

]
⊙ I (40)

 

zv
1

zv
2 c

n−l

l

n−l

zv
3

Z v G v=AlcZ v

gv
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gv
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gv
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gv
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Z v G v=AlcZ v
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gv
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(a) (b) (c) 
Zv AlcZv (a) (b) (c)

(a) (b)
(c)

(c) Alc Gv = AlcZv = Zv

p=2

Fig. 2      and  of  AMVNMF[33],  MVCNMF[34],  and  MVOCNMF[35],  ExMVCNMF,  and  GDCMVNMF.  In
,  the  distinction  of  feature  vectors  from  different  classes  is  not  guaranteed;  in ,  the  distinction  of  different  classes  is

considered  in  ExMVCNMF,  and  the  samples  with  the  same  label  are  represented  by  the  same  feature  vectors;  In ,  the
distinction of different classes is also considered in GDCMVNMF; however, the samples with the same label are represented by
different  feature  vectors.  For ,  the  label  constraint  matrix  is  expanded  as  an  identity  matrix,  hence .
When , GDCMVNMF can be seen as an extended variant of ExMVCNMF.
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where
 

Uv+
2 =

[
(AlcZv)T Dv AlcZv

]
⊙ I,

Uv−
2 =

[
(AlcZv)TWv AlcZv

]
⊙ I.

PvThen, Formula (39) with  defined in Eq. (19) can
be deformed as follows:
 

min
Sv⩾0
||Xv−Sv(AlcZv)T||2F+α · tr (SvUv

1(Sv)T)+

β · tr (SvUv
2(Sv)T)+γ · tr (SvUv

3(Sv)T−2ZT
c Zv Pv) (41)

Sv = [Sv
ih] ⩾ 0

Ξ = [ξih]
L

For  the  constraint ,  the  Lagrangian
multiplier  is introduced. Then, the Lagrangian
function  of Formula (41) is obtained as follows:
 

L =||Xv−Sv(AlcZv)T||2F+α · tr (SvUv
1(Sv)T)+

β · tr (SvUv
2(Sv)T)+γ · tr (SvUv

3(Sv)T−
2ZT

c Zv Pv)+ tr (Ξ(Sv)T) (42)

42
Sv
Then,  the  partial  derivative  of  Eq.  ( )  with  respect

to  can be expressed as follows:
 

∂L
∂Sv =−2Xv AlcZv+2Sv Alc(Zv)T AlcZv+2αSvUv

1+

2βSvUv
2+2γSvUv

3−2γSv(Pv)−1Uv
4+Ξ

(43)
Uv

4 Uv
4 = [ZT

c Zv]⊙ Iwhere  is redefined as .

ξihSv
ih = 0

Setting the above expression to zero and using KKT
condition of , then the following update rule is
obtained as follows:
 

Sv
ih = Sv

ih

(Xv AlcZv+βSvUv−
2 +γSv(Pv)−1Uv

4)ih

(Sv(AlcZv)T AlcZv+αSvUv
1+βSvUv+

2 +γSvUv
3)ih
(44)

Zc Sv Zv4.2.2　Fixing  and , updating 
Sv Sv

Pv

Zv

After  updating ,  the  columns  of  are  normalized
with  in  Eq.  (19),  and  the  norm  is  compensated  to

, that is,
 

Sv⇐ Sv(Pv)−1, Zv⇐ Zv Pv (45)

Zc SvWhen  and  are  fixed,  Formula  (38)  is
equivalent to the following problem:
 

min
Zv⩾0
||Xv−Sv(AlcZv)T||2F+

α. tr ((Idisc⊙ Zv)T(Idisc⊙ Zv))+

β · tr ((AlcZv)TLv AlcZv)+

γ · tr (ZvTZv−2ZT
c Zv) (46)

Zv = [Zv
jh] ⩾ 0

Ψ = [ψ jh]
L

For  the  constraint ,  the  Lagrangian
multiplier  is  introduced.  Then,  the
Lagrangian function  of  Formula (46)  is  obtained as
follows:

 

L =||Xv−Sv(AlcZv)T||2F+
α · tr ((Idisc⊙ Zv)T(Idisc⊙ Zv))+

β · tr ((AlcZv)TLv AlcZv)+

γ · tr ((Zv)TZv−2ZT
c Zv)+ tr (Ψ (Zv)T) (47)

ZvThe partial derivative of Eq. (47) with respect to 
is expressed as follows:
 

∂L
∂Zv =−2Alc

T(Xv)TSv+2Alc
T AlcZv(Sv)TSv+

2αIdisc⊙ Zv+2βAlc
T Dv AlcZv−

2βAlc
TWv AlcZv+2γZv−2γZc+Ψ (48)

∂L
∂Zv = 0

ψ jhZv
jh = 0

Similarly, letting  and using KKT condition of
,  then  the  following  update  rule  is  obtained

as follows:
 

Zv
jh =

Zv
jh

(Alc
T(Xv)TSv+βAlc

TWv AlcZv+γZc) jh

(Alc
T AlcZv(Sv)TSv+αIdisc⊙ Zv+βAlc

T Dv AlcZv+γZv) jh

(49)

Sv Zv Zc4.2.3　Fixing  and , updating 
Sv

Zc

Since  is  normalized  in  each  iteration,  the  partial
derivative of Eq. (37) with respect to  is expressed as
follows:
 

∂ OExMVCNMF

∂Zc
=

∂

V∑
v=1

γ ||Zv− Zc||2F

∂Zc
=

V∑
v=1

[−2γZv+2γZc] = 0 (50)

ZcThen, the exact solution to  is
 

Zc =

V∑
v=1

Zv

V
⩾ 0

(51)

Algorithm  2 summarizes  the  optimizing  scheme  of
ExMVCNMF.

4.3　Computational  complexity  analysis  of
ExMVCNMF

v Sv

Xv AlcZv Sv(AlcZv)T AlcZv SvUv
1 SvUv

2 SvUv
3

Sv(Pv)−1Uv
4

Xv AlcZv Sv(AlcZv)T AlcZv O (dvn+mvn (n−
l+C)) O ((dv)2(mv+n))

SvUv
1 SvUv

2 SvUv
3 Sv(Pv)−1Uv

4 O (mvdv+

Kdvn+ (dv)2n+ (dv)2(n− l+C))
Sv O (mvn (n− l+C)) Sv

For  the -th  view,  updating  requires  calculating
, , , , ,  and

 in one iteration. The computational cost of
 and  are 

 and , respectively. The total cost
of , , ,  and  is 

,  thus,  the  cost  for
updating  is .  Normalization  of 
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Zv

O ((n− l+C)dv+mvdv)
Zv Alc

T(Xv)TSv

Alc
T AlcZv(Sv)TSv Alc

TWv AlcZv Alc
T Dv AZv

Alc
T(Xv)TSv Alc

T AlcZv(Sv)TSv O (mv(n−
l+C)n+mv(n−1+C)dv) O (dvn+mv(n− l+C)n+
mv(n− l+C)dv)
Alc

TWv AlcZv Alc
T Dv AlcZv

O (Kdvn) O (dvn)
Zv O (mvn(n− l+C))

Zc

O (tVmvn(n− l+C))

and  in  Formula  (45)  requires  the  computation  of
.  Therefore,  the  main  cost  of

updating  is based on the calculation of ,
, ,  and .  The

cost  of  and  is 
 and 

,  respectively.  Additionally,  both
 and  require  the

computation of  and , respectively, and
the cost for updating  is  also .  The
computational cost of updating  is trivial; hence, the
final cost for ExMVCNMF is .

5　Experimental Result

5.1　Datasets

In  this  section,  six  real-world  multi-view  datasets  are
used  to  validate  the  superiority  of  the  proposed
methods. Table  2 presents  the  statistics  of  these
datasets.

×

(1) Yale  dataset※ : This  dataset  includes  165
grayscale  images  captured  from  15  individuals.  Each
individual  has  11  images  with  different  facial
expressions or configurations, which are normalized to
a 32 pixel  32 pixel array.

(2) ORL  dataset† : This  dataset  has  400  gray  scale
face  images  collected  from  40  individuals,  with  10
images for each individual. These images are captured
under  different  light  conditions,  with  different  facial
expressions, and with/without glasses.

640 pixel × 480 pixel ×

(3) FEI part 1 dataset‡: The FEI part 1 dataset is a
subset  of  the  original  FEI  data  base.  This  dataset  has
700  color  images  collected  from  50  individuals.  For
each individual, 14 images are captured under different
views.  All  images  are  downsampled  from the  original
resolution  of  to  32  pixel  24
pixel, and the color images are converted into grayscale
images.

(4) YaleB dataset§: This dataset includes 2414 gray
scale  face  images  collected  from 38  individuals.  Each
one  has  approximately  64  images  which  are  captured
under  different  lighting  conditions.  The  experiments
use a subset of this dataset with 12 classes.

(5) ECG dataset¶: In this dataset, 162 original ECG
records  are  collected  from  three  classes:  arrhythmia
(namely  ARR),  Normal  Sinus  Rhythm  (NSR),  and
Congestive Heart Failure (CHF), and each of them has
96,  36,  and  30  records,  respectively.  Each  record  is
sampled at  512 s  with  a  rate  of  128 Hz.  For  the  ARR
record,  one segmentation had 20 s,  while for  the NSR
and  CHF  records,  the  first  60  s  are  uniformly
segmented to get three 20 s segmentations. Two views
are  used  in  this  study:  the  time-doman  view  and
Fourier  coefficient  view.  Finally,  a  dataset  with  294
instances are constructed. Fourier coefficient view and
time-domain  feature  view  are  adopted  as  two  feature
views. In total, 294 records are used for evaluation.

(6) WebKB  dataset☆: This  dataset  is  a  subset  of
web documents from four universities. It includes 1051
pages with two classes: 230 course pages and 821 non-
course pages. Each page has two views: full-text view
with  2949  features  for  the  textual  content  of  the  web
page, and in-link view with 334 features for the anchor
text  on  the  hyperlinks  pointing  to  the  pages.  This

 

Algorithm 2     Optimizing scheme for ExMVCNMF

DX = {X1,X2, . . . ,XV } Xv ∈ Rmv×n
+

Idisc ∈ R(n−l+c)×dv
α, β, and γ

k

Input: Multi-view data  and ,
indicator matrix , parameters , and
number of -NNs K

Zv ZcOutput:  and 
v ∈ V1:   for each  do

Sv Zv2:      Initialize  and ;
k3:      Construct -NN graph with heat kernel weight;

4:   end
5:   Repeat

v ∈ V6:      for each  do
Zv Sv7:         S1: Fix , update  with Eq. (44);

Sv Zv8:         S2: Normalize  and  with Formula (45);
Sv Zv9:         S3: Fix , update  with Eq. (49);

10:      end

Sv Zv Zc11:      Fix  and , update  with Eq. (51);
12:   Until convergence

 

Table 2    Database description.

Dataset Number of
samples

Number of
views

Feature
dimensionality

Number of
classes

Yale 165 3 / /2048 256 1024 15
ORL 400 3 / /2048 256 1024 40

FEI part 1 700 3 / /2048 256 1024 50
YaleB 765 3 / /2048 256 1024 12
ECG 294 2 /2560 1281 3

WebKB 1051 2 /2949 334 2

 
 

※ http://vision.ucsd.edu/leekc/ExtYaleDatabase/ExtYaleB.html 
 

† http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html 
 

‡ http://fei.edu.br/cet/facedatabase.html 
 

§ http://vision.ucsd.edu/content/yale-face-database 
 

¶ https: //github.com/mathworks/physionet_ECG_data/ 
 

☆ http://www.cs.cmu.edu/webkb/
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dataset  is  balanced  by  selecting  241  data  points  from
the second view.

The three views of Yale, ORL, FEI part 1, and YaleB
datasets  are  composed  of  the  2048D  image  pixel
feature, 256D Gabor feature, and 1024D LBP feature.

5.2　Comparative methods

_ _

Various  representative  NMF-based  multi-view
clustering  methods  are  compared  with  the  proposed
methods  to  validate  their  superiority.  The  compared
methods  include  LP-DiNMF[23],  rNNMF[24],
MPMNMF 1[20],  MPMNMF 2[20],  UDNMF[21],
AMVNMF[33],  MVCNMF[34],  MVOCNMF[35],  and the
following two methods:

VAGNMF: This  method  conducts  GNMF[44] on
each  view  individually,  and  the  average  feature  of
multiple views is treated as the final representation.

VCGNMF: This  method  conducts  GNMF  on  each
view  individually  and  concatenates  the  features  of
multiple views as the final representation.

In  this  study,  the  clustering  performances  are
evaluated  using  two  metrics:  Normalized  Mutual
Information  (NMI)[45] and  accuracy  (abbreviated  as
AC)[46].  The  optimal  parameter  settings  of  the  above
methods  are  obtained  using  grid  search.  The  average
results  of  10  runs  are  also  reported  for  all  methods  to
improve the influence of randomness.

5.3　Convergence analysis

p = 2

x

Figure      3 shows  the  convergence  curves  of
ExMVCNMF  and  GDCMVNMF  on  six  datasets  to
verify  the  convergence  of  these  methods.  For
GDCMVNMF,  the  curves  with  are  presented.
The  proposed  methods  converge  on  all  datasets  in
Fig.  3,  where  the -coordinate  represents  the  times  of

yiteration  and  the -coordinate  represents  the  log  value
of the objective function.

5.4　Experimental results and analysis

%
%

p

%

p

p

_ _

%

In  this  section,  the  performances  of  ExMVCNMF and
GDCMVNMF  are  evaluated  and  compared  with
several  representative  recently  proposed  unsupervised
and  semi-supervised  multi-view  NMF  approaches  on
six datasets. In Tables 3 and 4, GDCMVNMF with 0
and 10  labeled data points are compared with several
representative unsupervised multi-view NMF methods,
and results of GDCMVNMF with  = 0.5, 1, and 2 are
reported.  From Tables  3 and 4,  we  can  see  that
GDCMVNMF  with  10  labeled  data  points
significantly  outperforms  the  other  unsupervised
methods,  regardless  of  whether  =  0.5,  1,  or  2.  This
indicates  that  the  discriminative  information  learned
from the label information helps learn a better compact
representation  for  multi-view  datasets.  However,  it
cannot be directly inferred whether supervised methods
always  behave  better  than  the  unsupervised  methods.
In Table 5 and 6, ExMVCNMF and GDCMVNMF are
compared  with  several  recently  proposed  semi-
supervised  multi-view  methods.  Similarly,  the  results
of  GDCMVNMF with  =  0.5,  1,  and  2  are  reported.
Comparing  the  results  in Tables  3−6,  it  is  observed
that,  on  the  Yale  dataset,  the  performances  of  semi-
supervised  methods  AMVNMF,  MVCNMF,  and
MVOCNMF are comparable with the results of several
unsupervised  methods,  such  as  LP-DiNMF,  rNNMF,
MPMNMF 1, and MPMNMF 2. However, VCGNMF
outperforms  these  supervised  methods.  When  labeling
ratios are less than 20  on the ORL and ECG datasets,
AMVNMF,  MVCNMF,  and  MVOCNMF  have  no
advantage over several unsupervised methods in many

 

100 200 300
Number of iterations

0

10

20

30

lo
g(

ob
je

ct
iv

e 
va

lu
e)

Yale
ORL
FEI part I
YaleB
ECG
WebKB

(a) GDCMVNMF

lo
g(

ob
je

ct
iv

e 
va

lu
e)

FEI part I
ORL
Yale

YaleB
ECG
WebKB

0

5

10

15

20

25

100 200 300
Number of iterations

(b) ExMVCNMF 
p=2Fig. 3    Convergence curves of GDCMVNMF ( ) and ExMVCNMF on six datasets.

    66 Big Data Mining and Analytics, March 2024, 7(1): 55−74

 



l=0%

cases. These cases are even worse on the FEI part 1 and
YaleB  datasets.  Note  that  all  unsupervised  methods
have used geometric  information on the  data,  whereas
AMVNMF, MVCNMF, and MVOCNMF do not. This
indicates that geometric information is crucial when the
labeling ratio is low. Additionally, from Table 3 and 4,
it  can  be  observed  that  the  performance  of
GDCMVNMF  (with  0% labeled  samples)  is
comparable  to  the  most  of  the  recently  proposed
unsupervised methods. This proves the effectiveness of
the  adopted  feature  normalizing  strategy.  In Tables  5 p

and 6,  it  can  be  seen  that,  when  compared  with  other
semi-supervised  methods,  ExMVCNMF  and
GDCMVNMF  have  obvious  advantages  under
different  labeling  ratios.  These  cases  indicate  that  the
proposed methods effectively use the label information
to  obtain  more  discriminative  representations.  The
proposed  methods  perform  better  than  AMVNMF,
MVCNMF,  and  MVOCNMF.  This  is  because  the
former methods use both geometric and discriminative
information.  Additionally,  ExMVCNMF  outperforms
GDCMVNMF (especially  when  = 2)  in  most  cases,

 

% %
p

Table 3    AC  on  four  datasets  compared  with  state-of-the-art  unsupervised  methods.  The  best  results  are  in bold,  while  the
second  best  results  are  in  bold  italic.  GDCMVNMFƖ=10% and  GDCMVNMFƖ=10% denote  GDCMVNMF  with  0  and  10
labeled samples, respectively, when  is set to 0.5, 1, and 2.

(%)
Method Yale ORL FEI part 1 YaleB ECG WebKB

VAGNMF 48.55±2.95 68.78±3.17 69.41±2.67 44.29±4.00 55.41±4.58 77.02±1.24
VCGNMF 53.52±3.14 70.28±2.26 71.44±2.25 43.91±4.59 56.43±2.93 79.57±0.70
LP-DiNMF 51.82±3.03 68.48±3.33 68.24±3.25 44.77±4.16 54.90±5.69 76.49±0.79

rNNMF 51.15±5.49 64.35±2.74 55.26±2.70 21.07±1.00 57.38±0.45 78.30±1.17
_MPMNMF 1 50.00±3.05 70.25±2.87 69.19±3.17 45.48±4.70 57.86±3.60 81.11±1.77
_MPMNMF 2 49.52±3.67 69.48±2.89 70.39±2.80 47.87±3.89 58.20±3.71 78.98±2.10

UDNMF 47.76±2.83 61.73±1.56 70.24±2.10 33.36±9.59 56.84±3.11 79.34±4.80
l=0%, p=0.5GDCMVNMF 51.27±3.04 66.70±1.69 72.49±2.10 45.46±2.39 57.04±6.52 75.51±0.70
l=10%, p=0.5GDCMVNMF 61.89±2.46 74.24±1.20 80.00±0.68 85.98±2.78 66.88±6.92 93.22±0.32

l=0%, p=1GDCMVNMF 50.61±2.64 67.20±1.94 72.60±1.31 45.35±3.27 59.18±6.88 82.57±1.90
l=10%, p=1GDCMVNMF 61.28±1.26 76.12±1.29 80.15±0.87 85.99±2.81 67.00±6.90 93.33±1.33
l=0%, p=2GDCMVNMF 51.88±2.87 69.85±2.12 72.40±1.57 45.78±3.46 55.44±4.46 84.13±6.11

l=10%, p=2GDCMVNMF 62.27±2.35 75.67±1.90 81.92±0.66 85.98±2.64 67.16±6.89 91.94±0.64

 

% %
p

Table 4    NMI on four datasets compared with state-of-the-art unsupervised methods. The best results are in bold, while the
second best results are in bold italic. GDCMVNMƖ=0% and GDCMVNMFƖ=10% denote GDCMVNMF with 0  and 10  labeled
samples, respectively, when  is set to 0.5, 1, and 2.

(%)
Method Yale ORL FEI part 1 YaleB ECG WebKB

VAGNMF 52.38±2.70 82.88±1.68 84.95±1.07 46.60±3.25 22.82±4.34 26.84±2.28
VCGNMF 56.79±2.27 83.67±1.01 85.99±0.81 48.61±4.62 26.36±4.43 29.42±1.42
LP-DiNMF 53.73±2.67 82.78±1.80 84.76±1.17 46.93±3.16 22.52±7.80 26.14±1.56

rNNMF 53.00±4.40 79.79±1.31 74.13±1.23 17.22±1.74 23.80±1.24 24.63±5.85
MPMNMF_1 52.89±2.78 83.65±0.99 85.06±1.64 47.10±3.66 19.72±4.60 34.22±2.46
MPMNMF_2 54.00±2.57 83.64±1.31 85.78±1.02 49.28±3.95 20.41±4.42 30.99±5.15

UDNMF 49.88±2.73 78.54±1.03 86.18±0.74 37.21±7.87 22.28±3.25 29.98±9.00
l=0%, p=0.5GDCMVNMF 55.03±2.00 83.34±0.88 87.42±0.92 44.71±3.23 24.31±7.42 21.06±1.14
l=10%, p=0.5GDCMVNMF 61.94±2.81 86.20±0.37 89.17±0.27 78.36±1.93 35.15±7.66 64.64±1.24

l=0%, p=1GDCMVNMF 55.13±1.76 82.93±0.73 87.53±0.64 44.32±3.33 22.85±6.40 33.93±4.60
l=10%, p=1GDCMVNMF 63.04±1.48 86.70±0.46 89.24±0.25 78.49±1.88 35.33±7.57 65.60±4.41
l=0%, p=2GDCMVNMF 55.61±1.59 84.15±1.00 87.25±0.83 45.55±3.38 19.42±5.53 44.20±14.89

l=10%, p=2GDCMVNMF 63.32±2.14 86.69±0.64 89.62±0.22 78.44±1.68 35.57±7.67 62.34±1.93
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indicating that the intra-class compactness is necessary
for  discovering  discriminant  information.  Although,
both  ExMVCNMF and  GDCMVNMF have  attempted

to  use  the  discriminative  information  of  data,  the
property  of  CNMF  adopted  in  ExMVCNMF  requires
tighter  intra-class  compactness  than  that  in

 

Table 5    AC on six datasets compared with state-of-the-art semi-supervised methods.  The best  results  are in bold,  while the
second best results are in bold italic.

(%)
Dataset Ratio AMVNMF MVCNMF MVOCNMF ExMVCNMF p=0.5GDCMVNMF p=1GDCMVNMF p=2GDCMVNMF

Yale
10 50.40±0.89 50.99±1.53 51.33±1.62 62.05±3.67 61.89±2.46 61.28±1.26 62.27±2.35
20 55.38±1.97 57.68±1.12 57.84±1.44 72.07±2.49 70.80±2.31 70.86±2.57 71.03±1.91
30 61.56±1.70 62.63±1.56 63.70±2.63 77.56±1.74 77.53±1.51 76.18±1.71 75.75±1.63

ORL
10 63.15±0.65 66.48±0.80 66.77±1.29 76.86±1.46 74.24±1.20 76.12±1.29 75.67±1.94
20 68.41±0.54 70.18±0.85 70.27±0.55 85.69±3.02 83.37±1.60 85.18±1.96 85.01±2.94
30 71.99±1.20 74.02±1.41 75.27±0.54 89.13±1.47 88.45±1.41 86.87±2.38 89.00±1.17

FEI part 1
10 56.55±0.79 59.36±0.89 55.61±1.15 82.45±1.02 80.00±0.68 80.15±0.87 81.92±0.66
20 60.76±0.74 64.07±0.89 57.86±1.24 86.98±1.29 84.13±0.57 84.18±0.68 86.11±0.61
30 65.91±0.61 69.59±1.36 64.97±0.94 91.76±0.33 88.76±0.58 90.15±0.28 90.27±0.33

YaleB
10 25.34±0.85 24.12±1.09 23.71±1.02 80.00±2.39 85.98±2.78 85.99±2.81 85.98±2.64
20 31.16±0.92 29.30±1.49 29.53±0.79 90.30±1.01 91.20±1.07 91.54±0.89 91.61±0.89
30 39.24±1.29 36.64±0.90 34.26±0.51 88.26±4.09 93.23±0.68 93.29±0.41 93.39±0.57

ECG
10 50.90±0.96 53.78±0.56 58.69±1.15 70.63±6.19 66.88±6.92 67.00±6.90 67.16±6.89
20 54.81±2.34 57.50±1.57 63.74±1.84 82.26±3.25 79.39±4.58 78.22±4.21 77.31±4.50
30 55.67±3.63 66.22±1.49 70.29±2.65 84.97±1.24 83.86±2.24 84.00±2.43 83.81±2.40

WebKB
10 82.44±1.54 82.73±2.39 83.29±1.96 92.09±1.46 93.22±0.32 93.33±1.33 91.94±0.64
20 85.90±1.94 84.44±2.05 81.87±2.61 92.35±2.58 91.46±4.11 92.21±4.24 90.11±4.49
30 90.17±1.00 91.06±0.73 90.45±0.68 95.03±1.68 95.87±0.71 96.21±1.17 94.55±1.18

 

Table 6    NMI on six datasets compared with state-of-the-art semi-supervised methods. The best results are in bold, while the
second best results are in bold italic.

(%)
Dataset Ratio AMVNMF MVCNMF MVOCNMF ExMVCNMF p=0.5GDCMVNMF p=1GDCMVNMF p=2GDCMVNMF

Yale
10 53.51±0.75 54.54±1.59 54.61±1.10 63.74 2.72 61.94±2.81 63.04±1.48 63.32±2.14
20 59.08±2.04 61.28±1.24 61.34±0.90 70.14 2.33 68.06±2.43 68.82±1.92 68.24±2.08
30 65.45±1.68 67.00±1.02 67.57±1.40 74.95 2.08 74.47±2.12 72.88±2.47 72.40±2.32

ORL
10 79.16±0.51 81.41±0.40 81.22±0.56 87.09±0.58 86.20±0.37 86.70±0.46 86.69±0.64
20 82.37±0.29 83.76±0.28 83.81±0.40 91.58±1.38 89.96±0.79 90.91±0.63 91.09±1.15
30 84.51±0.42 85.98±0.50 86.55±0.13 92.68±1.03 92.08±0.64 91.23±1.38 92.30±0.82

FEI part 1
10 75.96±0.40 77.38±0.34 73.93±0.33 89.97±0.68 89.17±0.27 89.24±0.25 89.62±0.22
20 78.39±0.44 80.37±0.43 75.50±0.96 92.09±0.59 89.93±0.30 90.05±0.55 91.47±0.31
30 82.29±0.24 84.37±0.58 80.59±0.77 94.66±0.26 92.68±0.52 93.49±0.25 93.65±0.21

YaleB
10 20.03±1.06 16.73±1.20 16.44±1.26 74.47±2.00 78.36±1.93 78.49±1.88 78.44±1.68
20 26.51±2.25 22.05±1.19 22.28±1.04 83.56±1.71 84.40±1.57 84.93±1.42 85.05±1.42
30 36.10±1.25 29.93±1.34 28.40±0.64 84.90±2.86 87.97±1.00 87.98±0.86 88.17±1.05

ECG
10 13.90±1.19 26.23±0.87 26.31±1.39 40.52±6.79 35.15±7.66 35.33±7.57 35.57±7.67
20 18.93±1.51 28.86±0.89 25.51±1.58 56.08±6.23 51.17±6.51 50.23±7.24 48.91±7.22
30 19.20±3.54 31.46±1.24 36.43±2.16 58.45±2.62 58.20±3.46 58.60±3.68 57.94±4.10

WebKB
10 33.26±3.55 38.54±4.39 39.89±3.84 63.64±5.18 64.64±1.24 65.60±4.41 62.34±1.93
20 41.58±5.12 43.13±3.01 39.35±3.54 62.12±8.44 61.57±8.66 64.75±9.18 58.75±8.87
30 53.84±3.19 59.09±1.66 57.14±1.58 71.92±7.23 75.48±3.23 77.02±5.47 70.90±4.99
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p
p

GDCMVNMF.  From Tables  3−6,  it  can  be  observed
that  in  most  cases,  GDCMVNMF  with =1  and  2
outperform that with  = 0.5.

5.5　Parameter sensitivity analysis

α β γ

Ωl (·)
Ωg (·)

Ωa (·)
k

p ℓ2, p

There  are  several  parameters  in  the  proposed
GDCMVNMF  and  ExMVCNMF.  Here, , ,  and 
are  the  parameters  to  balance  the  influence  of  the
discriminative  regularizing  term ,  the  geometric
information  regularizing  term ,  and  the  multiple
views aligning term , respectively (see Eq. (11)).
Furthermore, K is  the  number  of -NNs  in  the
Laplacian  graph  of  each  view.  For  GDCMVNMF,
there is an additional parameter, that is  in -norm.
In this  section,  the  performances  of  ExMVCNMF and
GDCMVNMF  are  evaluated  against  these  parameters
on  some  selected  datasets  to  test  the  influence  of  the
abovementioned parameters in the proposed methods.

The  performances  of  GDCMVNMF  and
ExMVCNMF on ORL, FEI part  1,  ECG, and WebKB

% %
% α β γ

α

α β

α

β

α

β

β

β

datasets,  with  the  labeling  ratios  of  10 ,  20 ,  and
30 ,  versus  parameters , ,  and  are  illustrated  in
Figs.  4−7,  respectively:  controls  the  discriminative
abilities of the proposed methods, thus the AC reduces
with the decreasing ;  balances the influence of the
geometric  information  regularizing  term.  When  is
small,  should be neatly selected to retain a relatively
good performance.  However,  when  is  large enough,
the  influence  of  is  relatively  minimized.  Therefore,
this results in a “ridge” when  is small and a “plateau”
when  is  large.  This  implies  that  the  geometric
information  becomes  important  with  rarer
discriminative  information;  moreover,  when  the
discriminative  information  is  adequately  explored,  the
influence  of  the  geometric  information  becomes
insignificant.

The  above  facts  can  also  be  determined  from  a
different  viewpoint.  From Fig.  6,  it  can  be  observed
that  as  the  area  of  the “plateau” enlarges  with  the
increasing  labeling  ratioes  in  GDCMVNMF  and
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α β γFig. 4    GDCMVNMF and ExMVCNMF vs. parameters , , and  on ORL dataset (for GDCMVNMF, p = 2).
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α β γFig. 5    GDCMVNMF and ExMVCNMF vs. parameters , , and  on FEI part 1 dataset (for GDCMVNMF, p = 2).
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ExMVCNMF.  This  indicates  that  the  influence  of  the
geometric  information  ( )  minimizes  with  the
increasing “power” of  the  discriminative  information
( ).  Similarly,  from Figure  8,  it  can  be  observed  that
when  the  labeling  ratio  is  low,  the  number  of -NNs
should  be  carefully  selected  to  obtain  a  better
performance. Figure  8 presents  a  special  case  of
GDCMVNMF  with  no  label  information,  i.e.,  ratio  =
0 . When the labeling ratio increases, the performance
of the proposed methods become relatively stable; that
is, the fluctuation of the curves becomes smaller. From
the  last  columns  of Figs.  4−7,  it  can  be  observed  that
the performances of  these methods degrade when  is
set  very  large.  This  is  because  if  the  value  of  is  set
too  high,  the  effect  of  this  term  will  overwhelm  the
other  terms,  which  may  cause  the  proposed  methods
not  to  effectively  use  the  label  information  (block-
diagonal structure term) and the geometric information
(graph regularization term) of the data.

pThe  influence  of  the -norm  on  GDCMVNMF  is

p

p

p

tested on ORL and ECG datasets. Here,  varies in the
range of {0.5, 1, 1.5, 2, 2.1, 2.2}. Although, the authors
of  RSNMF[42] claimed  that  when  =  0.5,  RSNMF is
more robust to noises. From Fig. 9, it can be observed
that  the  performance  of  GDCMVNMF  is  relatively
stable in the entire range of . This maybe because, in
multi-view  settings,  the  different  views  can  provide
complementary  information  for  each  other,  which
enhances the robustness of the method to some extent.

6　Conclusion

p

This  study  proposes  a  general  discriminatively
constrained S2MVNMF with a novel feature alignment
strategy.  In  this  algorithm,  the  discriminative
information  on  the  multi-view  data  is  effectively
explored.  Two  specific  implementations  of  this
algorithm  are  presented  along  with  their  detailed
optimizing  procedure,  i.e.,  GDCMVNMF  and
ExMVCNMF.  GDCMVNMF  with  =  2  reduces  to
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α β γFig. 6    GDCMVNMF and ExMVCNMF vs. parameters , , and  on ECG dataset (for GDCMVNMF, p = 2).
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α β γFig. 7    GDCMVNMF and ExMVCNMF vs. parameters , , and  on WebKB dataset (for GDCMVNMF, p = 2).
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ExMVCNMF by extending the label  constraint  matrix
in  GDCMVNMF  as  an  identity  matrix.  The
experimental  results  show  that  in  most  cases,
ExMVCNMF  outperforms  GDCMVNMF  (especially
when  =  2).  This  indicates  that  intra-class
compactness  plays  a  crucial  role  in  discovering  the
discriminative  information  of  data.  ExMVCNMF  has
retained  the  CNMF property;  hence  it  imposes  tighter
intra-class  compactness  constraints  than
GDCMVNMF.  The  influence  of -norm  to  the
model  in  the  experiments  is  also  explored  under  the
same configuration.  In most cases,  the performance of

pGDCMVNMF  is  better  when  is  set  to  1  or  2.  The
superiority of the presented methods has been validated
by  comparing  them  with  several  representative  works
on six real-world multi-view datasets.
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