

C The author(s) 2023. The articles published in this open access journal are distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Replication-Based Query Management for Resource Allocation

Using Hadoop and MapReduce over Big Data

Ankit Kumar, Neeraj Varshney, Surbhi Bhatiya, and Kamred Udham Singh�

Abstract: We live in an age where everything around us is being created. Data generation rates are so scary,

creating pressure to implement costly and straightforward data storage and recovery processes. MapReduce model

functionality is used for creating a cluster parallel, distributed algorithm, and large datasets. The MapReduce

strategy from Hadoop helps develop a community of non-commercial use to offer a new algorithm for resolving

such problems for commercial applications as expected from this working algorithm with insights as a result of

disproportionate or discriminatory Hadoop cluster results. Expected results are obtained in the work and the exam

conducted under this job; many of them are scheduled to set schedules, match matrices’ data positions, clustering

before determining to click, and accurate mapping and internal reliability to be closed together to avoid running and

execution times. Mapper output and proponents have been implemented, and the map has been used to reduce

the function. The execution input key/value pair and output key/value pair have been set. This paper focuses on

evaluating this technique for the efficient retrieval of large volumes of data. The technique allows for capabilities

to inform a massive database of information, from storage and indexing techniques to the distribution of queries,

scalability, and performance in heterogeneous environments. The results show that the proposed work reduces the

data processing time by 30%.

Key words: big data; hadoop; mapreduce; resource allocation; query management

1 Introduction

The global population exceeds 7.2 billion, and 2

billion people have Internet connectivity. According

to McKinsey, 5 billion people use different mobile

devices. With the revolution of this technology, millions

�

�

�

* To whom correspondence should be addressed.

Manuscript received: 2022-04-26; revised: 2022-07-07;

accepted: 2022-07-14

of people are generating huge amounts of information

through the increased use of such devices. In particular,

remote sensors consistently provide a huge volume of

information that is neither constituted nor unmatched.

Such information is known as big data[1].

Three aspects that characterize big data:

(1) The data cannot be categorized into regular

relational databases.

(2) The data are numerous.

(3) The data are generated, captured, and processed

very quickly.

Big data is a growing sector of the IT industry

that focuses on business applications. It has sparked

widespread interest in a number of fields.

Machine construction can be used in medical

treatment, financial transactions, social media, and

satellite imagery[2]. Traditionally, the largest amount

of data is possibly used to store structural information.

Ankit Kumar and Neeraj Varshney are with the Department

of Computer Engineering and Application, GLA University,

Mathura 281406, India. E-mail: iiita.ankit@gmail.com;

neeraj.varshney@gla.ac.in.
3

Surbhi Bhatiya is with the College of Computer Sciences and

Information Technology, King Faisal University, Hofuf 31982,

Saudi Arabia. E-mail: sbhatia@kfu.edu.sa.

Kamred Udham Singh is with the School of Computing,
Graphic Era Hill University, Dehradun 248002, India. E-mail:
kamredudhamsingh@gmail.com.

BIG DATA MINING AND ANALYTICS
ISSN 2096-0654 06/10 pp465–477
Volume 6, Number 4, December 2023
DOI: 10.26599/BDMA.2022.9020026

However, unstructured and semi-structured data are now

driving data quantities. Because relational systems are

used to manage databases for analyses, the translation

of data stored in an unorganized and undesirable format

may have an impact on intermediate processing.

Rapid growth of data rate:

YouTube:

(1) Users upload 100 h of fresh videos each minute.

(2) Monthly, over 1 billion particular users access

YouTube.

(3) Six million hours of video have been observed

each calendar month, equating to nearly an hour.

Facebook:

(1) Every moment, 34 722 likes are enrolled.

(2) One hundred terabytes (TB) of information are

uploaded every day.

(3) The website has 1.4 billion consumers. Moreover,

the site has been translated into 70 languages.

Twitter:

(1) The site has more than 645 million consumers.

(2) The website creates 175 million tweets daily.

Google:

The website gets more than 2 million search queries

per second daily, and 25 petabytes (PB) are refined.

Four-square:

(1) This website is used by 4–5 million individuals

globally.

(2) This website gets more than 5 billion check-ins

daily.

(3) Every moment, 571 new sites are found.

Apple:

Approximately 47 000 programs are downloaded each

second.

Tumblr:

Weblog owners release 27 000 new articles per second.

Brands:

More than 34 000 likes are enrolled per second.

Flickr:

Users upload 3125 brand-new photographs per

moment.

Instagram:

Users discuss 40 million photographs daily.

WordPress:

Close to 350 sites are published each second.

LinkedIn:

2.1 million collections have been made.

In 2020, 73.5 zettabytes were created, it was 2.52

zettabytes in 2010, data on worldwide output have

increased by 4300% by 2022. Data exploding over

the Internet today & developers and Internet users can

easily discuss the importance of data for their project

and applications. The Internet has become an enormous

place where one can easily find everything from a needle

to human genome reports. The Internet is a complex

mesh of tools, frameworks, applications, algorithms,

and hardware commodities for storing, processing, and

managing data worldwide. A single data server or

application is adequate for handling data generated by a

single user. Choosing which applications to use or how

to manage data is an ongoing research project. Today,

the Internet is inextricably linked to data, but the more

general term for this type of massive data would be big

data. In this scenario, another question is how such data

are generated[3, 4]. Big data frameworks, applications,

algorithms, and hardware commodities allow people all

over the world to store, process, and manage data.

1.1 Hadoop ecosystem

Hadoop was built to scale up computers that perform

processing from single to thousands of nodes, where

each node or machine can work as a local computation

or storage drive. The framework of Hadoop has four

significant modules, as depicted below, which divide

the functionality-based working of Hadoop into distinct

units. The four modules that are most important in

Hadoop[5] are as follows:

� Hadoop system (standard)

� Hadoop MapReduce

� Hadoop Distributed File System (HDFS)

� Hadoop YARN

Other common softwares, such as Hive, Pig, Scala,

Scoop, and CDH, facilitate data input/output (I/O) or

querying into Hadoop. MapReduce is used to process

data on Hadoop or HDFS, but most of the functioning

is related to coding in Java, Ruby, Perl, or Python.

Most developers prefer querying languages like SQL

to talk to a system. Hive or Pig, both open-source

implementations, is used to facilitate the interaction

between Hadoop and developers knowing querying

languages shown in Fig. 1[6].

The Hive interpreter converts a query into a

MapReduce code and interacts with the HDFS. The Pig

interpreter turns it into a simple scripting language that

again communicates with MapReduce and then to the

HDFS. Pig and Hive can work very well, but the overall

gist of this system is that it takes a lot of time to convert

queries into MapReduce forms and then interact with

Hadoop. It could incur substantial cost losses when

466 Big Data Mining and Analytics, December 2023, 6(4): 465–477

Fig. 1 Hadoop framework architecture.

performed for significant amounts of data. Another

creation was Impala, designed to interact directly with

HDFS by converting SQL queries into HDFS format.

Impala is optimized for low-latency queries, a crucial

requirement in Hadoop and big data scenarios. Typically,

an Impala query runs way faster than a Hive or Pig query

because of its low-latency structure and direct interaction

with the HDFS[7].

1.2 Homogeneous data clusters in Hadoop

The clustering in Hadoop systems is essential for

planned research works. Similar clusters in a group

make a collection of the same type of machine for order

processing and warehouse data collection in the HDFS.

The hardware similarity in homogeneous clusters makes

the job processing and data storage mechanisms easy

to implement and deploy. Hadoop and big data[8] work

well in a similar cluster environment.

1.3 Working in Hadoop

Hadoop has been trying to get users’ and developers’

praise. Its framework allows users to rapidly write

and test a distributed system. Hadoop’s MapReduce

framework is capable of the reliable and fault-tolerant

mode of the application, which can handle a significant

amount of data in large parallel clusters of commodity

hardware writing. Hadoop MapReduce is a program that

can perform two basic tasks: map task and reduce task.

1.4 MapReduce

Serially processing a job takes longer than necessary,

which can cause delays in other system functions, such as

I/O, querying, or data retrieval. As a result, MapReduce

is designed to process data in parallel. The MapReduce

framework is in charge of task scheduling, monitoring,

and re-running failed tasks[9]. It has a master-slave

hierarchy. Each node is labeled “JobTracker” master and

“TaskTracker” slave. Each node is comprised of a single

JobTracker and TaskTracker, with JobTracker being

primarily responsible for resource management, job task

slave planning, and resource availability/consumption

tracking. JobTracker also tracks job components, tasks,

monitors, and re-executes failed tasks. Because they

regularly task status information, JobTrackers also

perform the task assigned to them, following the

TaskTracker design. Mappers and Reducers work on

the processing, as explained below. A mapper node

receives a large chunk of data assigned to a reducer.

2 Literature Review

In this section, we review the state-of-the-art big data

analysis methods.

2.1 Big data processing

Malik et al.[10] revealed the crucial importance of

big data in today’s world. As far as applications

are concerned, big data have a lot of usages but

pose challenges. They have used the concept of 4 Vs

to describe big data, including veracity. They have

addressed some fundamental problems that need to

be catered to so that problems can be converted into

opportunities. They have reported advances, research

on big data, and six significant challenges encountered

during the processing of unstructured data. They have

also proposed the research problems still open in the big

data community.

In addition to the scientific issues discussed in detail,

the authors have mentioned open problems that arise in

the big data scenario. The high dimensionality of big

data, subsampling of data in Hadoop using MapReduce,

computational complexity of a dataset, distribution

issues in real computing, problem of processing non-

structured data, and visualization of datasets to improve

efficiency are some of the open challenges that the

scientific and development community is grappling with.

Cloud computing applications used today involve

processing a significant amount of data. Such data could

be in different formats, which require considerable

processing. As mentioned by Yao et al.[11], the data

processing rate is exponentially growing, but the same

is not right for computing power. The need for new

strategies is much awaited, either an improvement of

reliable storage methods that remain inexpensive or the

development of new tools for analyzing structured and

unstructured data. The focus is that different file systems

have issues in data migration. On a heterogeneous cluster

in Hadoop, the load-sharing task is executed to improve

processing. The jobs are processed with a fast execution

time on a high-speed end node, but the data are processed

Ankit Kumar et al.: Replication-Based Query Management for Resource Allocation Using Hadoop and : : : 467

much more slowly on a low-speed end node. The load-

sharing mechanism enables the high-speed end node to

relieve the low-speed end node, but when the volume of

data to be processed is high, the load-sharing mechanism

is bound to fail. The overhead of the data movements of

unprocessed data between the slow-speed end node and

high-speed end node affects the performance of Hadoop

in different clusters.

Alshammari et al.[12] presented another critical

issue of heterogeneous Hadoop clusters, which is the

namespace limitations offered by the systems. The

namespace storage is located at the RAM, and as the

data are stored in file system metadata formats, the

namespace assumes names similar to the data nodes. The

problem arises with sharing name nodes and maintaining

metadata over the name nodes in a Hadoop environment

for a vast number of files. An individual namespace

server has its limitations in handling and storing data.

The surveys conducted reveal that only 200 bytes are

needed for a name node server to a single object file.

The fact taken into consideration shows that when this

is multiplied with other data blocks residing on the

same server, we obtain a vast number of metadata to

store. This is one of the critical attributing factors to the

performance of name node servers in Hadoop clusters.

The name node needs RAM to process requested queries

and fetch I/O files, among others. When the space

is entirely consumed by the name node’s metadata

only, one can easily understand the overheads of the

processing namespace in name nodes. The whole cluster

becomes unresponsive when the name node is busy

processing internal job requests. Data-intensive job

applications must compromise and compete for resource

distribution on name nodes. The data transfer requested

by client nodes will have to suffer because each request

is first processed on the name node, where internal

metadata are managed and asked by the client node.

These issues are brought to light by the authors, who

convey a great insight into how a simple name node

and cluster configuration can affect the proceedings of

Hadoop in cloud computing.

2.2 Hadoop and MapReduce

Ullah et al.[13] raised concerns about the challenges

that are posed by supercomputing communities. They

brought forward issues that arise when data are

encountered in petabytes or zettabytes. The vast amount

of data created because of numerical simulations as

the resultant of supercomputing operations is the key

area to focus on. The parallelism in big datasets could

be viewed from three different aspects, namely, data

applications that involve a high rate of inbound and

outbound movements, server applications that involve

a network with high bandwidth to process all queries,

and scientific computing applications that need high

speed of processing and memory performances to decode

complex phenomena. Data parallelism, if appropriately

achieved, could benefit any organization at a significant

level. The current trends in the IT industry have proven

its high profitability because of the data industry.

In the research by Parmar et al.[14], virtualization

is an excellent way to harness the capabilities of

Hadoop and MapReduce on data clusters[8]. Data-

intensive jobs on nodes could be significantly improved

by incorporating virtualization as a green IT factor.

Resource consumption could be reduced and save

a lot of energy. The work describes the challenges

met in the virtualization environment for Hadoop

and MapReduce tasks. It also describes schemes to

overcome and manage it, so virtualization is proven as

a practical solution for the big data crisis. The authors

also proposed a comprehensive rating scheme that will

check the performance of clusters in their respective

environments. This scheme aims to extend YARN for

configuring Hadoop and MapReduce. The experiments

conducted under this niche reveal that performance

improves through an integrated performance model. The

research has a wide scope, which includes automating

adjustments needed in Hadoop configurations. The

experimental setup consists of multiple nodes, and

different datasets were deployed on them to test the

analysis. The nodes were divided into different cluster

sizes, and TestDFSIO was used. The tasks depict a high

rate of performance and parallelism. They have mapped

the task on different process to test the reduction in

similarity.

Kumar and Singh[15] mentioned that the distinguished,

profiled critical execution of queries has equitability

issues. For the existing MapReduce-based information

warehousing framework, prediction-based systems are

suggested, and an inquiry planning framework was built,

which scaffolds that a semantic hole exists between

MapReduce runtimes. Furthermore, the inquiry compiler

empowers productive inquiry planning for quick and

reasonable enormous information analytics. The author

performed experiments to overcome the drawbacks of

design and improve the performance of large-scale

clusters. A cross-layer scheduling framework was used

468 Big Data Mining and Analytics, December 2023, 6(4): 465–477

so that Hive queries can be percolated and semantically

extracted, and a multivariate execution time prediction

and two-level query scheduling were performed[1].

2.3 Query performance

Huang et al.[16] mentioned that a good query

performance prediction is nearly impossible with

old query performance models. For effective query

optimization, resource management, and user experience

management, the execution latency used by common

analytical cost models is a poor predictor of comparing

candidate plans’ costs. QPP seems a practical approach

for the high success of predictive tasks that can generate

good results within new performance models. The

work supports the idea that prediction can be studied

from different perspectives, such as analyzing the

granularity at operator levels. The proposed predictive

modeling technique manifests the differences in the

query execution behavior at varying granularity levels

to understand the need and usage of coarse-grained or

fine-grained operations.

The research performed by Soualhia et al.[17] specifies

the use of similar I/O techniques to manage scientific

applications[10]. They incorporated a data sieving and

two-phase I/O technique to optimize the I/O throughput.

The proposed work emphasizes offering parallel access

to shared datasets for heavy workloads. They also

used cross-layer optimizations to improve the I/O

throughput for scientific applications, such as GEOS-5.

Although the proposed work is implemented for

scientific applications, it presents a broad idea of how

datasets of dynamic nature behave. It also points out

the significance of real-times change in queries, which

is a significant issue in Hadoop, MapReduce, and big

data scenarios. The I/O performance of computing can

be easily categorized into different levels based on file

systems and various needs.

Analyzing data that rapidly grows and changes has

driven many new technologies and frameworks to

involve predictions and new learning methods. The

rootworker of these technologies is algorithms that

help categorize, assess, and analyze essential data from

meaningless information. For example, in an online

store’s log, the time spent on a product is useful

information, whereas surfing random products is not that

useful. To understand this vital key of details from PB

of data, algorithms need to be smart and efficient. Here,

clustering algorithms have become a powerful resource

to manifest essential data from clutters. Tao et al.[18]

proposed comparative studies of existing algorithms

used for big data classification of datasets. The survey

conducted in this work classifies the functionality of

candidate algorithms primarily used in big data regarding

theoretical and empirical analyses. The parameters taken

for considering the gross efficiency of an algorithm

involve many internal and external factors. They are

performance metrics, runtime, scalability tests, and

stability. They also described the best possible clustering

algorithm used in big data.

Tao et al.[18] supported the fact that manifesting

digitized data can be a key to solving many problems

posed by the Internet. Network traffic patterns and

social media data, among others, could be beneficial

for corporations and people. However, the processing

of such large-sized data also comes with deficiencies.

It also requires a significant amount of hardware and

processing power. Going through all these data can be

time-consuming and challenging to analyze. Clustering

techniques are used to manage all these problems

and provide solutions to efficiently store and analyze

information. Clustering algorithms for big data have

to consider the volume, velocity, and variety for a

well-thought analysis. Therefore, the 3 Vs are the core

of big data characteristics and the key to designing

a clustering algorithm. The problem that arises in

algorithm clustering is deciding what type of algorithm

to use. The choice of algorithm for different datasets

differs as every dataset has its ups and downs.

Qin et al.[19] outrightly discussed their ideas on

parallel data processing in heterogeneous clusters. They

recommended that Hadoop is in dire need of mechanisms

to support scalability and improvement in performance.

They evaluated methods to consider the view of

storage and techniques for indexing and other processes

related to queries, such as distribution, performance,

parallelization, and scalability, in a heterogeneous

environment. The authors proposed designing Hadoop’s

architecture so that various data nodes can be scaled up

to optimize Hadoop clusters. The test results reveal that

the replication factor of data nodes can experience node

failures in adverse scenarios. They claim that although

small data jobs can be handled by other methods,

MapReduce is superior when dealing with large datasets.

To address the challenges posed by data-intensive jobs,

the cost of hardware computing and mixing software

was set. The authors clearly stated that the data size

has increased in recent years from a few gigabytes to

petabytes. This increase in data generation is due to the

Ankit Kumar et al.: Replication-Based Query Management for Resource Allocation Using Hadoop and : : : 469

increased use of content management systems, social

media, logs, and other similar tools. This volume of data

necessitates the use of more than a couple of machines

to manage it for all Internet users. As a result, handling

these generated data across heterogeneous clusters is

critical for harnessing the power of Hadoop and the big

data platform. The HDFS is an excellent environment for

storing and maintaining data for a large number of users.

The main issue is saving such data and keeping them

secure. They must also be processed in acceptable time

frames with efficiency and speed. The authors proposed

a new design model to meet future system requirements

and help organizations find the right partner for large

data storage and processing.

2.4 Distributed processing and MapReduce

Wang et al.[20] stated that MapReduce is essential for

the distributed processing of large-scale applications.

Hadoop is used in data-intensive jobs, such as web

indexing and data mining because it completes tasks

with slow response times. It makes them very widely

available, but a problem with data placement is often

encountered. Data placement on data nodes becomes a

disarray job in heterogeneous Hadoop clusters. Hence,

there must be a good way to assign data to nodes so that

high-end nodes get jobs that require fast processing and

slow-end nodes get appropriate time and jobs to process

based on their capabilities. The authors devised methods

for implementing data placement in heterogeneous

clusters so that nodes are viable enough based on

their capacity. Virtualized data centers face challenges

because data locality is not taken into account for

speculative map tasks. Because most maps are assumed

to be stored locally, they are insufficient for virtualized

centers. By specifying a design constraint on data nodes

for data placement in Hadoop’s heterogeneous clusters,

the performance is greatly improved. The performance

of data-intensive jobs could be greatly improved using

various data placement techniques. Rebalancing data

nodes as needed to perform the functions of a data-

intensive job can improve performance, reduce latency,

and provide a stable system. Heterogeneous Hadoop

clusters can be used for data-intensive jobs by managing

data placement locally and smartly adapting to the

environment so that MapReduce jobs can be executed

quickly and efficiently.

MapReduce algorithms have a wide range of

applications, as mentioned repeatedly. They have

emerged and continued to do so for the open-source

implementations of Hadoop for millions of users handled

at once[21]. The performance of Hadoop clusters is

closely related to the short response times as processed

by MapReduce[11]. In homogeneous clusters of Hadoop,

tasks take a linear progression model, but this case is

not the same for heterogeneous clusters. The authors

proposed a new algorithm, i.e., Longest Approximate

Time to End, to improve the performance degradation

of heterogeneous clusters due to impromptu task

scheduling. The algorithm in the work has improved

the performance twice on a large cluster. The response

times of heterogeneous clusters can be enhanced in

such a manner by proposing a scheduler algorithm to

identify tasks and manage them accordingly on data

nodes. The benefits of Hadoop and MapReduce are

that programmers need not worry about faults occurring

at the backend. MapReduce works all right if a node

crashes but does not let the task run in disarray. The

proposed scheduler works to maximize performance and

improve robustness.

2.5 Classification approaches

In the research by Li et al.[22], the classification of

electronic documents was used to analyze applications.

The type of classification used here is naı̈ve Bayes

because it is simple, efficient, and effective for

significant data documents. Compared to some statistical

methods, it has certain limitations, but it can help

categorize long documents into more straight sets. The

authors proposed a parallelized semi-lazy naı̈ve Bayes

approach to speed up the processing to a very high

rate. Automatic Document Classification (ADC) is the

key component used by the authors to experimentally

conduct real case scenarios that help understand the

nature and demeanor of datasets.

The ADC methods incorporate artificial intelligence

in their initial stages, where the set of documents is

used to learn and train. Once a sufficient data learning

size is reached, they are used to design techniques to

categorize related neighbors. They presented a good

insight into how data should be classified by first learning

from datasets and then applying the same to those. They

somewhat resemble nearest-neighbor procedures and, in

a sense, Bayesian models. The method decomposes the

clustering problem into a hierarchical model where the

hierarchy is divided into parent and child. However,

there is a super parent and favorite child who are

dependent on each other. A validation set is used to

decide the heuristics and find the correct prediction for

470 Big Data Mining and Analytics, December 2023, 6(4): 465–477

measuring the details. The metric selection depends

on the validation set, which enables the building of the

network and deciding on the super parent and favorite

child set. This method, commonly called “SP-TAN”,

was popular in small datasets. The datasets used in ADC

are not relevant when used in combination with SP-TAN.

The dependencies in a large dataset are cumbersome to
manage, and the identification process becomes tedious.

When calculated, the computational costs determine that

the performance cannot be overloaded and contented in
the case of TAN or SP-TAN functioning, leading to a
significant increase in the computation time and thus

losing performance in the category of large datasets.

Wang and Cao[23] also supported the use of naı̈ve

Bayes in their clinical experiments to understand the

neuroimaging framework of humans. The research

involves different stimulus phases, but the data collection

and classification presented a highly intelligent insight

into how data classification can be managed if performed

correctly. Every response gathered as a stimulus provides

a relatable experimental platform to determine the

right heuristic technique for the data classification of

straightforward tasks with complex environments.

2.6 Text clustering

Qureshi et al.[24] followed the model framework of

Hadoop’s MapReduce and calculations based on the

Term Frequency-Inverse Document Frequency (TF-IDF)

and its cosine similarity. The text clustering on which

the method is applied is usable in many applications that

are data-intensive. They are first collected and TF-IDF

is applied. Then, a cosine similarity matrix is used to
cluster them into available components. The method

delivers efficient and faster results compared to other

Hadoop’s MapReduce framework algorithms.

Clustering done pairwise has many benefits, as

pointed out by the authors. It can be used to

cluster documents/text quickly and arrange subsequent

processing into easy takeover turns. The phases in the

Cosine Similarity with MapReduce algorithm include

building a vector model of data, then calculating the TF–

IDF, and producing the angle of cosine for similarity in
matrices of pairwise texts.

3 Proposed Algorithm

This section contains the proposed work and model and

discusses the parameters used to compare the results.

3.1 MapReduce programming model

To reduce the programming model during mapping, the

accounting method is divided into two main stages,

namely, the duration of the mapping process and the

level of rearrangement. After the size expires, the level

of rearrangement begins. Map efficiency is reduced

using a reducer action and mapper activities. However, a
mapper task will be split into an input signal, and the map

pointers will be executed in parallel with pointers and

carry the map’s properties. Measurement activities will

create several effects. Before the reducer can perform

work, the machine automatically populates the sequence

of the population and intercepts it with the concealed

reducers[25]. Then, a reducer task will generate output

files that create an output signal, perform a decreasing

function, and be merged for results by reducing the event.

Programmers need to compile the purpose of a mapper

and reducer:

Map: (input text)! f(key i; value i/ji D 1; : : : ; ng;
Reduce: (key, [value 1,: : : , value n])!(key, final

value).
The task failure and node are likely to occur within a

MapReduce job implementation procedure. All mapper

activities will proceed on available nodes whenever a
node fails. This type of system, i.e., rescheduling, is easy

but introduces a good deal of time price for customers

with responsiveness prerequisites, and its effect is not

acceptable.

3.2 Improved rescheduling algorithm

In order to make changes to the frame, a different

rescheduling technique is used, which helps to re-

establish the system so that it has a high level of

performance. The activity and node failure is taken

into account, and delays are reduced. Two types of

documents, i.e., checkpoint files and index files, are

introduced, which are international documents created

prior to implementing a single-sized task[26]. The

sanctuary is in charge of preventing the execution of

the current work of checkpoint documents. Whether or

not the job failed, it can be continued through the service

1 node using the information in the checkpoint file. In
addition to index documents, the sanctuary is in charge

of publishing jobs that help reduce current results. In

the event of a failure, the index file can be used as a file.

The algorithm is divided into two parts: the controller

node’s worker node and other functions[27]. Furthermore,

because the controller node is critical, it is necessary to
maintain a completely consistent “hip copy” of the two

elements of the algorithm.

As soon as an activity failure does occur, the node

reads the checkpoint file stored in the disk, re-establishes

Ankit Kumar et al.: Replication-Based Query Management for Resource Allocation Using Hadoop and : : : 471

the task status into the checkpoint, and then reloads the

results generated until collapse. Therefore, re-execution

is avoided.

After a failure occurs, the scheduler must schedule the

job with the master node and disrupt mapper activities

to replicate nodes, as discussed in Algorithm 1. It may

create the consequences of activities using the global

indicator document to reduce the period. When nodes

and tasks collapse until the checkpoint, the advancement

will continue from the checkpoint. Of course, if the act

of rescuing the checkpoint is neglected, the advancement

will soon begin with the checkpoint. The simple

failover plan is cost-effective in a distributed computing

environment. The frequency of the rescuing checkpoint

must be chosen: while there will be a frequency at the

case, a high frequency will most likely offer the cost for

great cost savings and failover for running, as discussed

in Algorithm 2. In our experiment, the frequency value

is assigned to a single checkpoint for every 105 pairs

after fixing[29].

The actions onto the node are rescheduled to replicate

habitats in case a collapse occurs in the reducer point. If

mapper activities are finished and the consequences have

been duplicated to the replicate node, there is not any

requirement to replicate the mapper activities over the

node upon which the completion time of the MapReduce

Algorithm 1 Controller node to improve the performance of

the Hadoop framework

Input: Number of Job 1, 2, . . . , n
Output: Master node job schedule

Step 1: The controller node predicts that the measurement is
performed with reducer actions in different worker documents.

Step 2: Choose the replicas for each job node.

Step 3: Check out the results of all staff documents.

When all the results are available, these results combine the results

and indicate that the project is completed.

Otherwise, stay in Step 3 and wait.

Step 4: Slowly, all activation nodes send search packs.

1. If most staff respond NO, explore from Step 4 to Step 1 and

then stay still.

2. If a node does not react in a given time interval, subsequently

inform the node as indicated.

3. Employee ID and node will get almost incomplete tasks.

4. Establish all the perfect map operations on the global line and

reschedule their renewal nodes.

5. You can determine the neglected activities of the failed node.

After rectifying it, the group asks for re-established nodes that

have intermediate facilities without renewing the monitor’s

functions.

6. Once all nodes are completed, insert additional unexpected

activities into the node.

Algorithm 2 Slave node to process the data

Input: Different sizes of Job 1, 2, . . . , n
Output: Job execution time

Step 1: Assess the kind of specified failed task.

(1) If it is indeed a sizable work, it assesses a new attempt or all

the failed work to evaluate what is evaluated.

(a) If it is a new initiative, launch it, and implement it.

(b) If the area fails to rehabilitate, buy and implement its

progress from the nearby checkpoint document.

(c) Suppose that it can actually be redistributed from the dirty

failures and nicks other than the failed works. In this case, the

global index document will examine the failure of the work

and immediately rearrange the intermediate impact using the

information inside the global index document.

(2) If it is indeed a reducer task, it is a new commitment, i.e.,

whether this neglect removes the failure of the work or

determines the incredible work from various nodes.

(a) If it is a new initiative, it is initially implemented and

implemented.

(b) If this only reinstates the neglected works from different

noses, browse the intermediate information from the local

disk and then implement it.

(c) If it is performed unexpectedly from different nodes in

a brand-new number, it will browse through the information

provided in the document and implement it.

Step 2: Produce a localized checkpoint file and worldwide index

document for any mapper task.

Step 3: Begin the mapper task.

(1) After the node’s memory processing of the map, the

intermediate information among the locals is empty. After

the sink ends, place the input and map’s location (position,

then Map 1, where Map 1 is the key pair value) area checkpoint

file[28].

(2) Add a key-value pair corresponding to the positioning supply,

which produces a key-quality pair, and two different strategies

are distributed among the global index documents.

(a) Enter the key-quality pair output and list it permanently

(T1, offset) in the global index document. Hence, only the

offsets will need to be processed during re-establishment. T1

usually means that it is an inch album type.

(b) To insert a pair that indicates a result, list the opportunity

as (Offset 1, Offset 2), so that input signals associated with

Offset 1 and Offset 2 do not have an output signal and will

be run again. T2 means that the fact is among the two sorted

facts, where T2 represents the Task 2.

Step 4: After a mapper action ends, repeat and deliver the

intermediate leads on the reducer nodes. Copy the information

needed from the reducer’s completed job to replicate nodes,

inform the conclusion of the mapper endeavor to the perfect

node, and then delete the indicator document and checkpoint file.

task is significantly diminished.

3.3 Algorithm for query optimization

This algorithm stores the query in a query buffer and

472 Big Data Mining and Analytics, December 2023, 6(4): 465–477

breaks the query issue by the job scheduler in the Hadoop

process. First, we sort all queries in the query buffer

based on keywords. The user enters the keyword-based

query condition in the keywords field. In addition, the

user has the following options:

(1) Choice of “AND” or “OR” Boolean stringing of

keywords;

(2) Specification of the number of resulting objects to
be shown on each page;

(3) Selection of partial matching or exact matching of

keywords;

(4) Choice of how much information is desired to be

presented in the result.

The access path for a simple query is generated by

utilizing information brokers who support keyword-

based searching.

Query processing is currently composed of a five-

step process:

Step 1: Source selection;

Step 2: For each source, the translation of the simple

query forms data into a valid URL address to the source;

Step 3: Parallel execution of each subquery against

an individual source, translation of each subquery result

into the consumer’s preferred result representation, and

merging of subquery results from different sources into

the final result format;

Step 4: The query management results are produced

by combining the search results from all the available

data sources selected to answer the query issue by the

job scheduler process.

4 Result and Discussion

The following results have been established by

directing the proposed methodology in the system. The

heterogeneous Hadoop clusters were used to test the

working of big datasets, which emulated the I/O

throughput, the average rate of execution, standard

deviations, and test execution time[30].

4.1 Comparison of productivity among Hadoop

schedulers

A comparison among the most efficient schedulers used

in Hadoop, i.e., FIFO, HFS, and HCS, was performed.

The following graphs establish that schedulers can

overtake other schedulers used in the HDFS and internal

mechanisms to share a file or job over several default

systems to execute and store them reliably.

Figure 2 shows a trade-off among various schedules,

which may lead to the optimized performance of systems

in the HDFS for clustering big data shown in Table 1,

and the complete process is disscussed in Algorithm 3.

The response time was affected by data loads, which

were the logs of an e-commerce website and response

time taken by schedulers in mapping and reducing them

to store them on the DFS and manually extracting and

managing them. It also establishes that the amount of

data is general in big datasets. Hadoop can optimize

the processing instead of frequent data loading and

unloading to obtain better insights about data, as shown

in Fig. 3. This process also proves that once data

are accepted by a node, the average time to consume

and process them may vary depending on the type of

scheduler being used[31].

Fig. 2 Comparison of different Hadoop schedulers.

Table 1 Comparative study of exiting vs. proposed work.

Scheduling

algorithm

Data

size

Previous

methodology

execution time

(ms)

Proposed

methodology

execution time

(ms)

FIFO

500 MB 4000 3950

1 GB 7800 7333

2 GB 9900 9165

5 GB 14 500 11 130

10 GB – 12 780

HFS

500 MB 3950 3925

1 GB 7200 7065

2 GB 9200 9085

5 GB 13 500 10 980

10 GB – 12 400

HCS

500 MB 3900 3875

1 GB 7000 6998

2 GB 9000 8912

5 GB 12 000 10 260

10 GB – 12 610

Ankit Kumar et al.: Replication-Based Query Management for Resource Allocation Using Hadoop and : : : 473

Algorithm 3 Query optimization

Input: Keyword query Q D fk1; k2; : : : ; kmg, list of related

keywords ki
1
; ki

2
; ; : : : ; ki

n; 1 6 i 6 m

Output: Q1;Q2; : : : ;Qk ; where Qi D .q
i
1
; qi

2
; : : : ; qi

m/

Step 1: Delete redundant related keywords

fk0
1
; k0

2
; : : : ; k0gg fk11; k12; : : : ; k1ng[

fk21; k22; : : : ; k2ng[; � � � ;[fkm1; km2; : : : ; kmng.g6m�n/:

Step 2: Build a Viterbi model � D .A;B; �/

Ag;g D faij k1 6 i; j 6 gg; aij D simi.k
0
i
; k0

j
/,

Bg;m D fbij k1 6 i 6 g; 1 6 j 6 mg; bij D simi.k
0
i
; k0

j
/,

�i D .k
0
i
/ D simi.k0

i
; k1/:

Step 3: Initialize

//Variable ıt .i/ as the maximum probability in all paths whose

state is i at time t .

//Variable t .i/ is the (i ! 1)-th node of the path with the

maximum probability in state i at time t .

ı1.i/ D �ibi .k1/; i D 1; 2; : : : ; g

ı.i/ D maxf1 6 j 6 ggŒıt ! 1.j /aji �bi .kt /; i D 1; 2; : : : ; g

 t .i/ D arg max 1 6 j 6 gŒıt 1.j /aji �; i D 1; 2; : : : ; g

Return .i/ \ t .i/

End of loop

End of query buffer

Fig. 3 Comparative performance analysis of previous

methodology vs. proposed methodology.

4.2 Comparative analysis of the Hadoop

framework with different schedulers

In this section, we have compared the performance of

FIFO, HCS, and HFC in Tables 2, 3, and 4, respectively.

Figure 4 represents the comparative study of response

time computation vs. data size using FIFO algorithm.

Figure 5 represents the comparative study of response

time computation vs. different data sizes using HCS
algorithm for query processing. Figure 6 depicts the

Table 2 Comparative study of FIFO job scheduler in

Hadoop without query improvisation.

Data size (MB) Completion time (ms)

100 190

200 410

300 380

400 410

500 610

1500 2000

Note: Average performance ratio D 0:75.

Table 3 Comparative study of HCS in hadoop without

query.

Data size (MB) Completion time (ms)

100 93

200 123

300 210

400 368

500 387

1500 1181

Note: Average performance ratio D 0:78.

Table 4 Comparative study of HCF in Hadoop without

query.

Data size (MB) Completion time (ms)

100 88

200 188

300 218

400 320

500 410

1500 1301

Note: Average performance ratio D 0:86.

Fig. 4 Comparative study of FIFO job scheduler in Hadoop

without queries.

Query processing time analysis of different data sizes
using the HFC job scheduling algorithm.

4.3 Performance evaluation

Only performance test results were evaluated with

clustered nodes and are shown in Table 5. The default

 1.i/ D 0; i D 1; 2; : : :, g
Loop

For t D 2; 3; : : : ; m

474 Big Data Mining and Analytics, December 2023, 6(4): 465–477

Fig. 5 Comparative study of HCS job scheduler in Hadoop

without queries.

Fig. 6 Comparative study of HCF job scheduler in Hadoop

without queries.

Table 5 Comparative analysis of Hadoop framework for

different files’ sizes with their execution time.

File size (MB)
Execution time of

default Hadoop

Execution time of

proposed method

12.2 00:00:41 00:00:40

36.5 00:00:53 00:00:53

146.0 00:01:51 00:01:52

300.0 00:02:09 00:01:53

500.0 00:02:30 00:02:07

938.0 00:04:42 00:04:07

1500.0 00:06:07 00:05:03

2000.0 00:08:51 00:07:17

option Hadoop and Hadoop contexts performed by the

system were always implemented through the collection

of information. The size of the data collection is 12 MB,

36 MB, 300 MB, 500 MB, 1 GB, 1.5 GB, 2 GB, and

10 GB[32, 33].

The default Hadoop defines the system’s default

settings, whereas the proposed strategy defines the

processes we have created. Table 5 reveals the

proposed method of Hadoop and the response timing

of process the data in the default Hadoop. The

strategy[33, 34] implementation is far better than Hadoop’s

settings. Table 5 shows the contrast between the

implementation times of Hadoop and Hadoop’s system.

When these data’s magnitude remains small, there is

not any difference between the implementation time.

However, the execution times of the proposed procedure

are reduced.

5 Conclusion

Works done under this research have produced amazing

results, including the ability to schedule schedules,

data placement inequality matrix, clustering before

timing scrutiny, and reducing the frequency of repeat,

mapping, and domestic dependency to prevent and

stop responses. This experience demonstrates that by

defining the process to deal with different usage cases,

one can reduce the overall cost of computing and

benefit from the use of distributed systems for fast

splitting. When archiving or processing large amounts

of data, developing solutions to compress data and

search for relevant files in a compressed form could

be beneficial. The methodology employed here is based

on the practical process of sorting, iterating, managing

queries, and finally producing the output. Assume that

the data have been clustered by some powerful clustering

algorithms. In this case, significant time and effort could

be saved by improving the performance of Hadoop’s

heterogeneous clusters for MapReduce job processing.

The major challenges encountered during this project

were the incompatibility of systems, different nodes,

and security features provided by Linux and Hadoop.

Working on dedicated servers and clusters could help

achieve smoother experiences rather than dealing with

compatibility issues at critical times. The underlying

architecture and usage could be improved by working

on higher versions of Hadoop to incorporate the best

offerings and avoid being bogged down by minor issues,

such as compatibility.

References

[1] M. S. Mahmud, J. Z. Huang, S. Salloum, T. Z. Emara, and

K. Sadatdiynov, A survey of data partitioning and sampling

methods to support big data analysis, Big Data Mining and

Analytics, vol. 3, no. 2, pp. 85–101, 2020.
[2] M. D. Li, H. Z. Wang, and J. Z. Li, Mining conditional

functional dependency rules on big data, Big Data Mining

and Analytics, vol. 3, no. 1, pp. 68–84, 2020.
[3] S. Salloum, J. Z. Huang, and Y. L. He, Random sample

partition: A distributed data model for big data analysis,

IEEE Trans. Industr. Inform., vol. 15, no. 11, pp. 5846–

5854, 2019.

Ankit Kumar et al.: Replication-Based Query Management for Resource Allocation Using Hadoop and : : : 475

[4] R. H. Lin, Z. Z. Ye, H. Wang, and B. D. Wu, Chronic

diseases and health monitoring big data: A survey, IEEE

Rev. Biomed. Eng., vol. 11, pp. 275–288, 2018.

[5] Y. N. Tang, H. X. Guo, T. T. Yuan, Q. Wu, X. Li, C.

Wang, X. Gao, and J. Wu, OEHadoop: Accelerate Hadoop

applications by co-designing Hadoop with data center

network, IEEE Access, vol. 6, pp. 25849–25860, 2018.

[6] X. C. Hua, M. C. Huang, and P. Liu, Hadoop configuration

tuning with ensemble modeling and metaheuristic

optimization, IEEE Access, vol. 6, pp. 44161–44174, 2018.

[7] D. Z. Cheng, X. B. Zhou, P. Lama, M. K. Ji, and C. J.

Jiang, Energy efficiency aware task assignment with DVFS

in heterogeneous Hadoop clusters, IEEE Trans. Parallel

Distrib. Syst., vol. 29, no. 1, pp. 70–82, 2018.

[8] A. Kumar, A. Kumar, A. K. Bashir, M. Rashid, V. D. A.

Kumar, and R. Kharel, Distance based pattern driven mining

for outlier detection in high dimensional big dataset, ACM

Trans. Manag. Inf. Syst., vol. 13, no. 1, pp. 1–17, 2022.

[9] A. Khaleel and H. Al-Raweshidy, Optimization of

computing and networking resources of a Hadoop cluster

based on software defined network, IEEE Access, vol. 6, pp.

61351–61365, 2018.

[10] M. Malik, K. Neshatpour, S. Rafatirad, and H. Homayoun,

Hadoop workloads characterization for performance and

energy efficiency optimizations on microservers, IEEE

Trans. Multi-Scale Comput. Syst., vol. 4, no. 3, pp. 355–

368, 2018.

[11] Y. Yao, J. Y. Wang, B. Sheng, C. C. Tan, and N. F.

Mi, Self-adjusting slot configurations for homogeneous

and heterogeneous Hadoop clusters, IEEE Trans. Cloud

Comput., vol. 5, no. 2, pp. 344–357, 2017.

[12] H. Alshammari, J. Lee, and H. Bajwa, H2Hadoop:

Improving Hadoop performance using the metadata of

related jobs, IEEE Trans. Cloud Comput., vol. 6, no. 4,

pp. 1031–1040, 2018.

[13] I. Ullah, M. S. Khan, M. Amir, J. Kim, and S. M.

Kim, LSTPD: Least slack time-based preemptive deadline

constraint scheduler for Hadoop clusters, IEEE Access, vol.

8, pp. 111751–111762, 2020.

[14] R. R. Parmar, S. Roy, D. Bhattacharyya, S. K.

Bandyopadhyay, and T. H. Kim, Large-scale encryption in

the Hadoop environment: Challenges and solutions, IEEE

Access, vol. 5, pp. 7156–7163, 2017.

[15] S. Kumar and M. Singh, A novel clustering technique for

efficient clustering of big data in Hadoop ecosystem, Big

Data Mining and Analytics, vol. 2, no. 4, pp. 240–247,

2019.

[16] W. Huang, L. K. Meng, D. Y. Zhang, and W. Zhang, In-

memory parallel processing of massive remotely sensed

data using an Apache spark on Hadoop YARN model,

IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 10,

no. 1, pp. 3–19, 2017.

[17] M. Soualhia, F. Khomh, and S. Tahar, A dynamic and

failure-aware task scheduling framework for Hadoop, IEEE

Trans. Cloud Comput., vol. 8, no. 2, pp. 553–569, 2020.

[18] D. Tao, Z. W. Lin, and B. X. Wang, Load feedback-based

resource scheduling and dynamic migration-based data

locality for virtual Hadoop clusters in OpenStack-based

clouds, Tsinghua Science and Technology, vol. 22, no. 2,

pp. 149–159, 2017.

[19] P. Qin, B. Dai, B. X. Huang, and G. Xu, Bandwidth-aware

scheduling with SDN in Hadoop: A new trend for big data,

IEEE Syst. J., vol. 11, no. 4, pp. 2337–2344, 2017.

[20] X. Y. Wang, M. Veeraraghavan, and H. Y. Shen, Evaluation

study of a proposed Hadoop for data center networks

incorporating optical circuit switches, J. Opt. Commun.

Netw., vol. 10, no. 8, pp. C50–C63, 2018.

[21] Y. Q. Chen, Y. Zhou, S. Taneja, X. Qin, and J. Z. Huang,

aHDFS: An erasure-coded data archival system for Hadoop

clusters, IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 11,

pp. 3060–3073, 2017.

[22] Z. Z. Li, H. Y. Shen, W. Ligon, and J. Denton, An

exploration of designing a hybrid scale-up/out Hadoop

architecture based on performance measurements, IEEE

Trans. Parallel Distrib. Syst., vol. 28, no. 2, pp. 386–400,

2017.

[23] H. F. Wang and Y. P. Cao, An energy efficiency optimization

and control model for Hadoop clusters, IEEE Access, vol.

7, pp. 40534–40549, 2019.

[24] N. M. F. Qureshi, D. R. Shin, I. F. Siddiqui, and B. S.

Chowdhry, Storage-tag-aware scheduler for Hadoop cluster,

IEEE Access, vol. 5, pp. 13742–13755, 2017.

[25] Z. Z. Li and H. Y. Shen, Measuring scale-up and scale-out

Hadoop with remote and local file systems and selecting

the best platform, IEEE Trans. Parallel Distrib. Syst., vol.

28, no. 11, pp. 3201–3214, 2017.

[26] Y. P. Zheng and G. Y. Chen, Energy analysis and application

of data mining algorithms for internet of things based on

Hadoop cloud platform, IEEE Access, vol. 7, pp. 183195–

183206, 2019.

[27] C. T. Chen, L. J. Hung, S. Y. Hsieh, R. Buyya, and A.

Y. Zomaya, Heterogeneous job allocation scheduler for

Hadoop mapreduce using dynamic grouping integrated

neighboring search, IEEE Trans. Cloud Comput., vol. 8,

no. 1, pp. 193–206, 2020.

[28] P. Q. Jin, X. J. Hao, X. L. Wang, and L. H. Yue, Energy-

efficient task scheduling for CPU-intensive streaming jobs

on Hadoop, IEEE Trans. Parallel Distrib. Syst., vol. 30, no.

6, pp. 1298–1311, 2019.

[29] K. Sridharan, G. Komarasamy, and S. Daniel Madan Raja,

Hadoop framework for efficient sentiment classification

using trees, IET Netw., vol. 9, no. 5, pp. 223–228, 2020.

[30] Z. C. Dou, I. Khalil, A. Khreishah, and A. Al-Fuqaha,

Robust insider attacks countermeasure for Hadoop: Design

and implementation, IEEE Syst. J., vol. 12, no. 2, pp. 1874–

1885, 2018.

[31] R. Agarwal, A. S. Jalal, and K. V. Arya, Local binary

hexagonal extrema pattern (LBH XEP): A new feature

descriptor for fake iris detection, Vis. Comput., vol. 37, no.

6, pp. 1357–1368, 2021.

476 Big Data Mining and Analytics, December 2023, 6(4): 465–477

[32] R. Agarwal, A. S. Jalal, and K. V. Arya, Enhanced binary

hexagonal extrema pattern (EBH XEP) descriptor for iris

liveness detection, Wirel. Pers. Commun., vol. 115, no. 3,

pp. 2627–2643, 2020.

[33] R. Agarwal, A. S. Jalal, and K. V. Arya, A multimodal

liveness detection using statistical texture features and

spatial analysis, Multimed. Tools Appl., vol. 79, no. 19,

pp. 13621–13645, 2020.

[34] R. Agrawal, A. S. Jalal, and K. V. Arya, Fake fingerprint

liveness detection based on micro and macro features, Int.

J. Biom., vol. 11, no. 2, pp. 177–206, 2019.

Ankit Kumar received the BEng degree

in computer science & engineering from

West Bengal Technical University, Kolkata,

India in 2010, the MEng degree in computer

science engineering from Indian Institute of

Information Technology, Allahabad (IIIT

Allahabad), India in 2012, and the PhD

degree in computer science from Sri Satya

Sai University of Technology & Medical Sciences, Sehore, India

in 2022. Currently he is working as an assistant professor at

Department of Computer Engineering and Application, GLA

University, Mathura. He has developed optimization algorithms in

machine learning and data science. His current research interests

include machine learning, deep learning, big data, evolutionary

computation and its application in real-world, and optimization

problems especially in optimization medical applications. He

has published more than 65 research papers in reputed journals

and conferences in high indexing databases and has 9 patents

granted from Australia and India. He has authored 2 edited books

published by Apple Publisher and CRC press. He has completed

1 funded research project from the TEQIP-3. He is an associate

editor for reputed journals and publishers.

Surbhi Bhatiya has ten years of rich

teaching and academic experience. She

has earned professional management

certification from PMI, USA. She is

currently working as an assistant professor

at the Department of Information Systems,

College of Computer Sciences and

Information Technology, King Faisal

University, Saudi Arabia. She is also an adjunct professor at

Shoolini University, Himachal Pradesh, India. She is an associate

editor for reputed journals and publishers. She has published

more than 70 research papers in reputed journals and conferences

in high indexing databases, and has 9 patents granted from

USA, Australia, and India. She has authored 3 solo books and

9 edited books published by Springer, Wiley, and Elsevier. She

has completed 5 funded research projects from the Deanship of

Scientific Research, King Faisal University, and the Ministry

of Education, Saudi Arabia. Her research interests include

information systems, and data analytics and sentiment analysis.

Neeraj Varshney is presently working as

an assistant professor at the Department

of Computer Engineering and Application,

GLA University, Mathura. He has done

MEng and MCA degrees and is pursuing

the PhD degree. He has vast experience

in the teaching and research of computer

science. He has published more than 20

research papers in reputed international and Indian journals.

His research areas include vehicular networks, digital image

processing, machine learning, and time series data analysis.

Kamred Udham Singh received the PhD

degree from Banaras Hindu University,

India in 2019. From 2015 to 2016, he was

a junior research fellow, and from 2017 to

2019, he was a senior research fellow with

UGC (University Grant Commission), India.

In 2019, he became an assistant professor at

the School of Computing, Graphic Era Hill

Ankit Kumar et al.: Replication-Based Query Management for Resource Allocation Using Hadoop and : : : 477

University, India. He is with the School of Computing, Graphic
Era Hill University, India. His research interests include image
security and authentication, deep learning, medical image
watermarking, and information security. He has published several
research papers in international peer-reviewed journals. He
contributes his expertise as a reviewer and editor in many reputed
journals.

