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Towards Privacy-Aware and Trustworthy Data Sharing Using
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Abstract: The popularization of intelligent healthcare devices and big data analytics significantly boosts the

development of Smart Healthcare Networks (SHNs). To enhance the precision of diagnosis, different participants in

SHNs share health data that contain sensitive information. Therefore, the data exchange process raises privacy

concerns, especially when the integration of health data from multiple sources (linkage attack) results in further

leakage. Linkage attack is a type of dominant attack in the privacy domain, which can leverage various data sources

for private data mining. Furthermore, adversaries launch poisoning attacks to falsify the health data, which leads

to misdiagnosing or even physical damage. To protect private health data, we propose a personalized differential

privacy model based on the trust levels among users. The trust is evaluated by a defined community density, while the

corresponding privacy protection level is mapped to controllable randomized noise constrained by differential privacy.

To avoid linkage attacks in personalized differential privacy, we design a noise correlation decoupling mechanism

using a Markov stochastic process. In addition, we build the community model on a blockchain, which can mitigate

the risk of poisoning attacks during differentially private data transmission over SHNs. Extensive experiments and

analysis on real-world datasets have testified the proposed model, and achieved better performance compared with

existing research from perspectives of privacy protection and effectiveness.

Key words: edge intelligence; blockchain; personalized privacy preservation; differential privacy; Smart Healthcare

Networks (SHNs)

1 Introduction

With recent advances like machine learning and
intelligent edge devices, the wide proliferation of smart
healthcare systems has been enabled. Consequently, a
wide range of applications has emerged and serviced our

daily life. Among all of them, Smart Health Networks
(SHNs) is one of the most widespread services that has
been adaopted in real-world scenarios[1]. Healthcare
has been a long-lasting concern of the society, and the
development of advanced technologies takes it to a new
stage. In this case, people rely more and more on smart

�Youyang Qu and David Smith are with Data61, Commonwealth Scientific and Industrial Research Organization (CSIRO), Sydney
2015, Australia. E-mail: fyouyang.qu, david.smithg@data61.csiro.au.
� Lichuan Ma is with School of Cyber Engineering, Xidian University, Xi’an 710126, China. E-mail: lcma@xidian.edu.cn.
�Wenjie Ye is with the College of Engineering and Science, Victoria University, Melbourne 3000, Australia. E-mail: wenjie.ye@

vu.edu.au.
�Xuemeng Zhai is with School of Information and Communication Engineering, University of Electronic Science and Technology of

China, Chengdu 610054, China. E-mail: zxm@uestc.edu.cn.
� Shui Yu is with School of Computer Science, University of Technology Sydney, Sydney 2007, Australia. E-mail: shui.yu@uts.edu.au.
�Yunfeng Li is with CNPIEC KEXIN LTD., Beijing 100020, China. E-mail: liyunfeng@cnpiec.com.cn.
�To whom correspondence should be addressed.

Manuscript received: 2022-12-06; revised: 2023-05-30; accepted: 2023-06-04



444 Big Data Mining and Analytics, December 2023, 6(4): 443–464

healthcare services to enhance their living quality. To
make this happen, doctors or patients are willing to
establish communities in SHNs with regards to a certain
decease, for example, Doximity and Curofy[2, 3]. It is
worth mentioning that SHN users are likely to form the
almost same communities in various smart healthcare
networks[4, 5]. On one hand, more services may be
delieved. On the other hand, multiple data resources
of uses are natually disclosed.

Intuitively, the key target of SHNs is to share useful
information among community uses. The shared health
data usually contain texts, medias, as well as spatial
and temporal data[6, 7]. The combination of these data
can be used to re-identify a specific person and leads to
further privacy disclosure. Thus, great risks are raised
when sensitive health data of individuals are published
without proper pre-processing. This can be even worse
when different parties can access the data without proper
access control[8, 9].

It has been agreed on that sensitive information,
especially sensitive health information raises the
financial interest of diverse adversaries or attackers.
New attacks are reported every several months, or even
weeks. Adversaries are usually patient and smart enough
to collect individual’s data from various data sources,
which can be used for re-identification[10]. This also
causes a worse situation that linkage attacks targeting
on further private data are possible[11, 12]. Therefore,
it is necessary to establish effective privacy protection
mechanisms for SHNs.

To preserve privacy, three classic methods have been
well studied, which are cryptography, anonymization
and clustering, and differential privacy. Cryptography
preserves privacy during the data packet transmission
process but can hardly preserve privacy against data
recipients[13]. Anonymization and clustering have been
developing for several decades. Several benchmark
methods include K-anonymity[14], L-diversity[15], and
T -closeness[16]. Existing clustering methods consider
record number, record type, record distribution, or a
combination of them. However, they are not suitable
for streaming data sharing. Differential privacy[17, 18]

is a powerful privacy protection tool constrained by
mathematical theories. But for classic differential
privacy and its variants, the privacy protection level is
usually constant.

There are some pioneering works in personalized
privacy protection. For instance, using virtual online
distance as the penalization index is a representative

work[19]. However, virtual online distance has some
issues during deployment. First, the distance is not
easy to define. Second, friends in the network may
have the exactly same distance as attackers in some
cases. Besides, some blockchain-based solutions are
devised to potentially add extra protection for privacy.
For example, Wang et al.[20] developed a blockchain-
powered healthcare system. Blockchain-based solutions
can ensure authentication and integrity, but the public
accessibility of health data puts privacy at great risk.

Motivated by this, we develop a personalized
differential privacy protection model, which can derive
an optimized trade-off between privacy protection and
health data utility. Personalization is achieved by a
trust level measured by community density. By defining
community density, it can be used as the measurement
of the intimacy of a group of people. To avoid utility
loss, we devise a novel community partition method
based on the work done by Ahn et at.[21] Besides, we
use a semi-sigmoid function as a mapping function,
which maps the community-enabled trust to a protection
level. Then, a Markov stochastic process is built to
uncouple the randomized noise relationship, mitigating
the linkage attacks. Moreover, we design a tailor-made
blockchain structure to accommodate the community-
based personalized privacy protection model while
avoiding any data falsification attacks and ensuring data
integrity during transmission over SHNs.

The main contributions of this work are summarized
as follows.
� Personalized and trustworthy privacy

Protection. We define community density to measure
the trust within communities. Then, the trust is mapped
to a privacy protection level constrained by differential
privacy. In this way, we develop a novel personalized
and trustworthy privacy protection model.
� Data falsification proof. We devise a tailor-made

blockchain structure that can support the personalized
and trustworthy privacy protection model. The
differentially private health data are guaranteed to be
authenticated provided by the features of this blockchain
structure.
� Attack-proofing and optimization trade-off. We

properly decouple the data correlation with Markov
stochastic process. Therefore, the linkage attack can be
eliminated. Furthermore, the proposed model achieves
an optimized trade-off between personalized privacy
protection and improved data utility.
� Better performance. Extensive results obtained
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from experiments show that the proposed system can
achieve a good balance between personalized privacy
protection and health data utility. Besides, the system can
defeat leading attacks, like linkage attacks and poisoning
attacks.

2 Related Work

Research related to privacy preservation in SHNs has
gained significant attention due to the sensitive and
personal nature of healthcare data. Privacy preservation
techniques aim to protect individuals’ privacy while
enabling the sharing and analysis of healthcare data.
These approaches offer several advantages, but also face
certain shortcomings.

One major advantage of privacy preservation
techniques in SHNs is the protection of individuals’
sensitive medical information. By applying privacy-
preserving mechanisms, such as data anonymization,
encryption, or differential privacy, personally identifiable
information can be safeguarded. This ensures that
unauthorized entities cannot directly link healthcare
data to specific individuals, reducing the risk of privacy
breaches.

Another advantage is the potential to enable secure
data sharing and collaboration among healthcare
stakeholders. Privacy-preserving techniques allow
healthcare providers, researchers, and organizations to
share data while maintaining privacy. This promotes
collaborative efforts in research, clinical decision-
making, and public health without compromising
sensitive information.

Furthermore, privacy preservation techniques
contribute to building trust and compliance with privacy
regulations. Patients and individuals are more likely
to participate in data sharing initiatives if they have
confidence in the privacy protections implemented.
Compliance with regulations, such as the Health
Insurance Portability and Accountability Act (HIPAA)
in the United States or the General Data Protection
Regulation (GDPR) in the European Union, is crucial in
maintaining ethical and legal standards.

However, privacy preservation in SHNs also has some
shortcomings. One significant challenge is balancing
privacy protection with data utility. Applying rigorous
privacy measures may introduce noise or limitations to
the data, which can potentially impact its usefulness for
analysis and decision-making. Striking the right balance
between privacy and utility remains an ongoing research
challenge.

Another issue is the potential for re-identification
attacks. Despite privacy-preserving techniques, there is
still a risk of re-identification when data is combined
or linked with other external information sources.
Techniques and safeguards need to be continuously
developed and updated to address this vulnerability.

Additionally, the complexity and diversity of
healthcare data pose challenges for privacy preservation.
Healthcare data encompasses a wide range of data types,
including structured medical records, genomics data, and
wearable sensor data. Developing privacy mechanisms
that are effective across diverse data types and modalities
requires ongoing research and adaptation.

Overall, research in privacy preservation for SHNs is
crucial for protecting sensitive healthcare information,
facilitating secure data sharing, and ensuring compliance
with privacy regulations. While these techniques offer
notable advantages, addressing the challenges of
maintaining data utility, preventing re-identification
attacks, and accommodating diverse healthcare data
types will be vital for advancing privacy preservation in
SHNs.

Four successful branches of privacy protection
solutions include clustering, cryptography, game
theory, and differential privacy[22]. The clustering-
based solutions focus on how to group the datasets
considering the consistency of magnitude, diversity,
and distribution between each cluster and the whole
datasets[14–16]. However, such a clustering approach
fails to function well for large-scale and heterogeneous
datasets. Cryptography-based solutions protect privacy
in a point-to-point manner. However, an unknown
adversary always has the potential to decrypt the data
while the computational complexity is quite high[13].
Game theory is another potential optimization approach,
so as to balance privacy with data utility. However,
such an approach also suffers from the modelling
accuracy of actions and payoffs in different contexts. It
is worth noting here that the increasing complexity of the
number of participants makes it hard to generalize[23].
For classic differential privacy and its variants, there
are mathematical constraints to explain the privacy
protection performance, but the privacy protection level
is usually constant[17, 18, 24, 25].

In the privacy protection domain, linkage attacks have
always been big problems, especially when we consider
multiple SHNs. A lot of features have been used for
accurate re-identification in this scenario, such as content
matching, profile matching, unique structure matching,
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etc.[26, 27]

By using binary classifiers, Perito et al.[28] compared
the similarity of pseudo identities and achieved re-
identification of users. While in Ref. [29], Zafarani
and Liu defined behaviors based on pseudo identities
to establish a user mapping model. With media data,
Xu et al.[30] devised a high-efficiency identification
model as well as a countermeasure. In addition, both
static location data and trajectory data are utilized
to re-identify a specific individual in Refs. [31, 32],
respectively. Based on existing research, Li et al.[33]

surveyed the issues and solutions of de-anonymization
and aggregation of heterogeneous social networks.

To preserve the data privacy of SHNs, existing
research has made great efforts, especially from the
aspect of health data. Yang et al.[34] leveraged access
control to preserve the privacy of health data sharing
over the Internet of Things (IoTs). Another similar
research was performed by Zhang et al.[35], who further
introduced attribute-based access control to preserve
health data privacy while considering the efficiency.
In the smart wearable healthcare devices case, Liu et
al.[36] designed a cooperative privacy-preserving model.
The above three are cryptography methods. Despite
their effectiveness, the low efficiency and granularity of
privacy protection prevent their further application in
SHNs.

In SHNs, an emerging technology, blockchain, is also
considered by researchers[37]. To preserve big health data
privacy, Xu et al.[38] designed a blockchain-based privacy
protection model. Decentralized privacy protection of
SHNs data is considered by Dwivedi et al.[39] using a
tailor-made healthcare blockchain. Besides, Peterson et
al.[40] also proposed blockchain-based private SHN data-
sharing schemes. However, for most blockchain-based
systems, the feature of publicly accessible private data
is still a big issue and not well-addressed[41].

In healthcare application scenarios, differential
privacy has been widely deployed. Nevertheless, the
constant privacy protection level limits its further
development. Therefore, a more flexible protection
mechanism, like personalized differential privacy, is
necessary. But personalized privacy suffers from security
and privacy vulnerabilities as well. This is even worse
in the smart healthcare context since the data are
highly confidential and related to physical security.
Based on our literature review, this part has not yet
been well-discussed. The idea we propose in this
paper is a preliminary exploration in this field that

integrates personalized differential privacy protection,
trust, blockchain, etc., to provide several advantageous
features.

3 Personalized and Trustworthy Privacy
Protection in SHNs

In this section, we present the devised personalized and
trustworthy privacy-preserving model for data sharing
in SHNs. We first describe our community detection
algorithm and discuss the structure-based parameters. In
this paper, we use a modified link community algorithm
to achieve personalized privacy protection. The major
modification is that we require users to belong to a
single community at the final stage. The existing link
community algorithm allows the user to be a part
of several communities, which is not feasible in this
scenario. That is because a user may access a piece of
data but under different protection levels if he/she is part
of several communities. As will be analyzed further,
linkage attacks can be launched by a single user without
collusion, which often provides incentives to malicious
users. To overcome this problem, each user is only
allocated to one single community with the highest trust
level (highest community density and lowest protection
level).

Then, to map the trust level to the privacy protection
level, we introduce a semi-sigmoid function. The
function value barely increases in the low range and
high range but increases almost linearly in the middle
range. After that, personalized and trustworthy privacy
protection based on trust level is discussed and explained
in detail.

3.1 Modeling of SHN’s graph structure

In recent years, SHNs have been evolving at a faster pace.
They are of several different forms. For example, some
of them are tailor-made SHNs for doctors or patients only
to share the disease information like diabetes or cancers,
such as Doximity and Curofy[2]. Besides, some other
social networks provide smart healthcare services, which
is a sub-network functioning within the whole social
network, such as Facebook. No matter the form of the
SHNs, they are essentially networks with nodes as the
users and edges denoting users’ relationships. Therefore,
it is reasonable to use the undirected graph of graph
theory to model an SHN.

In this context, we use a single SHN as an example.
Multiple SHN privacy issues is a simple extension of the
single SHN. As mentioned above, the undirected graph
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is used to model the SHN, which is the foundation of the
whole system. A single SHN is denoted by G, where
G D fvi ; ei ; ci j v 2 V; e 2 E; c 2 C g. In this graph,
v 2 V is the node (user in SHN), e 2 E is the edge
(relationship between two users of SHN), and c 2 C is
the community (formed by multiple users in SHN).

If there exists one edge (e.g., ei;j ) between two nodes
.ui ; uj /, then there is relationship between these two
nodes. In this context, different from traditional methods,
the community is defined over a set of edges instead of
nodes, which is C D fei;j je 2 Eg.

In order to better clarify, we assume the modeled G to
be an undirected graph. The proposed model functions
well even if this assumption is removed. In addition,
we assume there is no trusted central authority. The
decentralized blockchain system processes the data with
�-differential privacy and delivers data with privacy-
preserving communication. The total privacy budget
of an SHN is set to be B . To allocate the budget to each
user, it depends on the personzalized sensitivity value
modeled in the following sections.

Privacy losses accumulate with an increasing number
of data sharing. When two answers are responded to
an individual, the total privacy loss increases while the
privacy protection weakens. To guarantee significant
privacy protection, the data curator should set a
maximum privacy loss, in particular, �, which is also
known as the privacy budget. For instance, a privacy
“cost” incurs when data are shared under a defined
privacy protection level. The continuous data-sharing
process results in accumulating privacy loss. It can be
told that � is the power of the natural logarithm. Thus,
the protection level is promoted with the decrease of �,
data utility decreases in the meantime.

3.2 Community structure detection

To personalize the privacy protection level, we use
community density to evaluate the trust within the
community. The community density method is more
suitable in this scenario compared with the traditional
method like virtual online distance. The virtual distance
only considers the relationship between two users,
and may not be practical when attackers are within a
relatively short distance. However, for communities,
we evaluate the interaction among all members, which
makes the trust more reliable.

The trust among users is evaluated by community
density. If the users have dense interaction with each
other, the trust in the community is high and thereby

privacy protection will be released correspondingly. This
is because users may share more information with people
they trust, even in online scenarios like SHNs. Based
on the density value, we map it to customizable privacy
protection levels. To calculate community density, we
first partition the whole graph into communities using
Algorithm 1.

Algorithm 1 presents an algorithm for detecting
communities in a smart healthcare network. Initially,
each edge in the network is treated as an individual
community. By examining the connectivity patterns,
the algorithm calculates the similarity between pairs
of edges, considering the number of neighbors of the
connected nodes. These similarities are then sorted
in descending order. Starting from the pair with the
highest similarity, then, it progressively merges the
corresponding communities, representing the merging
process using a tree structure. The iteration continues
until the partitioning density, which measures the density
of connections within communities, reaches or exceeds
a predefined threshold, then it transforms the edge
pair-based tree graph into a node-based graph, where
each node represents a community. Finally, it identifies
the communities and any overlapped nodes within the
transformed graph, which are then outputted as the
detected communities in the smart healthcare network.

Algorithm 1 Edge pairs based community detection
Input: Smart healthcare network graph represented by G
Output: Set of detected communities C D fC1; C2; : : : ; Ccg

1: Initialize each edge ei 2 E as a community;
2: Initialize amount of neighbours to each end node VC.i/;
3: Calculate edge pair similarity S.eij ; eik/ with VC.j / and
VC.k/ ;

4: Sort all similarities S.eij ; eik/ in descending order;
5: Merge the communities based on the ordered edge pairs;
6: Represent the merging process with a tree structure;
7: Define a threshold for partitioning density Pt ;
8: while P < Pt do
9: Calculate edge pairs number M and communities number
jC j;

10: Calculate mc and nc as edge pairs number and nodes
number in a community Cc , respectively;

11: Derive partitioning density of Cc with mc and nc ;
12: Update partitioning density of the whole smart healthcare

network as P D 1
M

P
c mcPc ;

13: end while
14: Transform edge pair based tree graph into node-based graph;
15: Identify communities C D fC1; C2; : : : ; Ccg and overlapped

nodes ui 2 U ;
16: Output the communities C D fC1; C2; : : : ; Ccg.
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Algorithm 1 begins by initializing each edge in
the smart healthcare network graph G as a separate
community. This initialization step has a time complexity
of O.jEj), where jEj represents the number of edges in
the graph. Similarly, the initialization of the number of
neighbors to each end node also takes O(jEj) time as it
requires iterating over all the edges in the network.

The next steps involve calculating the similarity
between pairs of edges and sorting them in descending
order based on these similarities. The time complexity
of calculating the edge pair similarity depends
on the specific method used and can range from
O.1/ to O.jEj2). Sorting all the similarities takes
O(jEj2 log jEj) time in the worst case, assuming a
comparison-based sorting algorithm like quicksort or
mergesort.

Algorithm 1 then proceeds to merge the communities
based on the ordered edge pairs. The time complexity
of this step depends on the specific merging method
used and can range from O.1/ to O.jEj) depending on
the merging strategy and any additional computations
involved. Representing the merging process with a tree
structure also takes O.jEj) time.

Next, Algorithm 1 enters a while loop that continues
until a partitioning density threshold is reached. The
number of iterations in the loop can vary depending on
the network’s characteristics and convergence behavior.
In the worst case, the loop can have a time complexity
of O(jEj) if each iteration involves computations that
scale linearly with the number of edges.

The transformation of the edge pair-based tree graph
into a node-based graph requires traversing the tree
structure and constructing the new graph representation.
The time complexity of this step can range from O(jEj)
to O(jV j), where jV j represents the number of nodes in
the resulting node-based graph. Identifying communities
and overlapped nodes depends on the specific method
used and can range from O(jV j) to O(jEj) in time
complexity.

In summary, the overall time complexity of the
algorithm ranges from O(jEj2 log jEj) to O(jEj)
in the worst case, depending on the specific
methods used for similarity calculation, merging, and
community identification. The input size and the specific
characteristics of the smart healthcare network graph
heavily influence the computational complexity of
Algorithm 1.

Different from traditional node-based communities,
we use a set of edges to represent the community as

C D fei;j je 2 Eg. In the set of edges, each edge should
be linked to at least one other edge in this community.
That means no independent edge is allowed. In this
way, we can avoid a node in multiple communities at the
same time. This is because of the edge-based community
detection algorithm. The “overlapped nodes problem” is
thereby addressed.

In Fig. 1, we show the correlation of overlapped nodes
and node similarity. In node-based community detection
methods, the identification of communities is typically
based on the connectivity patterns among nodes in a
network. These methods aim to partition the network
into cohesive groups or communities, where nodes
within a community exhibit strong interconnectivity
while having fewer connections to nodes outside the
community.

One challenge that can arise in node-based
community detection is the problem of overlapped
nodes. Overlapped nodes refer to nodes that belong
to multiple communities simultaneously, blurring the
boundaries between communities. This means that these
nodes have significant connections to nodes in multiple
communities, making it difficult to assign them to a
single community without sacrificing the accuracy of the
community detection process.

The presence of overlapped nodes can introduce
complications and ambiguity in community detection
results. It can lead to difficulties in accurately
identifying and delineating the boundaries of the distinct
communities within the network. Overlapping nodes can
create overlaps between detected communities, causing
them to merge or appear less cohesive than they actually
are. This can impact the quality and meaningfulness
of the community structure revealed by the detection
method.

At first, we regard each edge as a community. After
that, the edges are enrolled into different communities.
The enrollment criteria are that edges share the same
nodes with the first edge. The similarity of an edge
pair .eij ; eik/ with a common node vi is to consider the

Fig. 1 Overlapped nodes and node similarity.
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similarity of vk and vj . In the paper, we consider a
concise but useful way, which is to evaluate the amounts
of neighbors of uk and uj . Based on this methodology,
we formulate the similarity of .eij ; eik/ as

S.eij ; eik/ D
jVC.k/ \ VC.j /j

jVC.k/ [ VC.j /j
(1)

where VC.k/ is the set of nodes Vk and all its adjacent
neighbours, while VC.j / is the set of nodes Vj and all
its adjacent neighbours.

Through calculating the edge pairs’ similarity, it is
able to detect the SHN community by clustering in
a hierarchical manner. First, all similarity values of
possible edge pairs are calculated. Then, the similarity
values are ordered descendingly. A tree graph structure
is then established to merge communities in an iterated
way. In the iteration process, if there exist edge pairs that
share the same similarity, they shall be merged in the
same round. The convergence of community merging is
controlled by a threshold. Otherwise, all the edges are
merged into one single community.

To better explain, the edge pair similarity can be
regarded as the strength of the merged community. This
also relates to the height of a branch of the tree graph
structure, as shown in Fig. 2. Therefore, to get reasonable
communities, the key is to identify the best position to
“cut” the tree, in particular, deriving the threshold of the
community merging process. To avoid empirical errors,
we establish an objective function called partitioning
function, based on the density of all possible edge pairs.

Let M be the number of edge pairs inside a smart
healthcare network, jC j be the number of communities
fC1; C2; : : : ; Ccg, mc and nc are the number of edge
pairs and nodes inside community Cc , the corresponding
normalization density is

Pc D
mc � .nc � 1/

nc.nc � 1/=2 � .nc � 1/
(2)

where nc � 1 is the minimum number of edge pairs
required to constitute a connected graph, and nc.nc �
1/=2 is the maximum number of possible edge pairs
among nc nodes. A special consideration is that Pc D 0

(a) (b)

Fig. 2 Edge-based community vs. node-based community.

if nc D 2. Thus, the partition density of the whole
network is formulated as the weighted sum of Pc ,

P D
1

M

X
c

mcPc D
2

M

X
c

h
mc�

mc � .nc � 1/

.nc � 2/.nc � 1/

i
(3)

From Eq. (3), each term in the summation has a
physical meaning within the community. Thus, the
distinguishability limitation problem of modularity can
be well mitigated. We can either directly optimize the
partition density. The primary advantageous feature of
this model is that we can flexibly partition the community
based on the requirements. Another advantage of
using edge pairs tree graph is to reveal the hierarchy
community structure feature by non-optimization cut-off
rule.

3.3 Mapping function derivation

To map the community density (trust) to a reasonable
privacy protection level, a mapping function is required.
The investigation shows that the Sigmoid function is a
good match in this scenario. As a function that is used to
evaluate the Quality of Service (QoS), we modify it to fit
the proposed model. Community density is used as the
input to generate personalized privacy protection levels,
namely, the value of �. The mapping function is referred
to as QoS-based mapping function in this context.

The partitioning mechanism described above is used
to generate several communities C D fC1; C2; : : : ; Ccg.
Then we calculate the density of each community and
further derive the personalized � values. Apparently, the
number and density of community may correspond to
various users in SHN. The � value should not linearly
increase with the density as well. Thus, the sigmoid
function works well in this scenario.

The reason why a sigmoid function is chosen is due to
its unique features. To begin with, when the community
density Pc is small (e.g., the most special case is a
community formed by another single user), the privacy
level should be high, and it increases slowly with the
increase of the density. After the community has a
certain scale Pc , the privacy level can be relaxed, and
the relaxing rate is relatively high. However, when the
community density Pc is large enough, the community
is trusted in a high possibility, and the privacy level
is relatively low. The impact of further relaxation is
marginal, and thereby the increased scope slows down.

The modified mapping function is defined as

�c D f .c/ D ! �
1

1C exp.��=Pc � ˛/
(4)
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where ! is the weight parameter to adjust the amplitude
of the maximum value, � is leveraged to decide the
steepness of the curve, and ˛ denotes the location of the
symmetric line.

Moving on, after Eq. (2) is substituted into Eq. (4),
the sigmoid function is reshaped into
�c D f .c/ D

! �
1

1C exp
�
� � � nc.nc�1/=2�.nc�1/

mc�.nc�1/
� ˛

� (5)

3.4 Community density-based personalized
privacy protection in smart healthcare
networks

Users who share the same interest or experience similar
symptoms usually join the same community in an SHN.
Besides, there is high possibility for them to form similar
communities in other SHNs. Since the shared data
over SHNs are highly sensitive, it is strictly necessary
that other users can only access the processed data
constrained by certain privacy protection methods.

The shared data are usually with various auxiliary
information like location. As mentioned above, the
community with higher density receives more accurate
data, while the low-density community receives less
accurate data, which is shown in Fig. 3. Alice belongs to
two different communities. After executing Algorithm 1,
personalized privacy protection levels are derived
using Eq. (5). After that, the corresponding location
information is shared to two communities with different
accuracy based on different privacy protection levels.
However, the shared data in different communities may
be used to launch linkage attacks, and the linkage attack
is discussed in the following subsections.

Theoretically, users that are more trustworthy will

receive more accurate data. On the contract, users that
are less trustworthy will receive less accurate data. To
evaluate the trust among users, we use a simple and
straightforward index, which is community density.
Other indexes may be applicable in other scenarios. If
the density is large, then people share a higher level of
trust and vice versa. Then, a lower level of privacy
protection will be acted on the raw data and people
within this community can access reasonably accurate
data.

Based on the classic differential privacy, we formulate
the personalized differential privacy as follows.

Given � > 0, D to be the space of the sensitive data,
D0 to beD’s adjacent dataset and the difference between
them is one record, andA � D�D to denote an adjacent
relation. A mechanism is M! �.Y/ considered to be
�-differentially private if

Pr ŒM.D/ 2 ˝� D exp.�/ � Pr ŒM.D0/ 2 ˝� (6)

where Y is the noisy outcome, � is the privacy protection
level that varies with the community density, and ˝ is
the probability space.

The privacy protection level � is defined in Eq. (5).
Therefore, if we substitute it into Eq. (6), we have

Pr ŒM.D/ 2 ˝�

Pr ŒM.D0/ 2 ˝�
D

exp

 
! � exp

�
� � ni .ni�1/=2�.ni�1/

mi�.ni�1/
C ˛

�
1C .1 � ˛/ exp

�
� � � ni .ni�1/=2�.ni�1/

mi�.ni�1/

�!
(7)

where the conditions of Eq. (7) inherits from Eq. (6). In
the proposed personalized �-differential privacy model,
the privacy level � is personalized by the density Pc
through a sigmoid function.

In the personalized differential privacy model, � is an

Fig. 3 Personalized privacy protection instance.
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index to evaluate the privacy protection level and data
utility since it decides the volume of the randomized
noise. The overall privacy budget B is the total value
of all possible �. To measure the data utility, one of
the most popular matrices in this scenario, Root-Mean-
Square-Error (RMSE), is used to describe the balance
between privacy protection and data utility�,

RMSE D

vuut nX
iD1

nX
j¤i

Ejjyij � drawjj
2
2 (8)

where draw is the raw data of the noisy outcome.
From the perspective of the optimized trade-off

between privacy protection and data utility, given
overall privacy budget B and minimum data utility
min .RMSE/, we have

Optimize trade-off W max.�/;max.RMSE/;
s.t.,
�i D

!

1C exp
�
� � � ni .ni�1/=2�.ni�1/

mi�.ni�1/
� ˛

� ;
nX
i

�i > B;vuut nX
iD1

nX
j¤i

Ejjyij � drawjj
2
2 > min.RMSE/ (9)

3.5 Linkage attack model

In this subsection, we establish the adversary model and
attack model. To qualitatively evaluate the adversaries
and attacks, we model them using differential privacy
mathematical theories.

For adversaries, we practically assume that they have
a certain amount of background knowledge. The amount
of background knowledge can be adjusted. The linkage
attack is launched by such adversaries, who also has
the access to multiple data sources. In SHNs, one of the
most useful and easy-to-access background knowledge is
the user connections (a sub-graph in the system model).

In the existing research, the modeling of the
background knowledge of the adversary and linkage
attack is barely discussed. As discussed above, the
background knowledge can be regarded as raw data with
noise, which is the same as differentially private noise in
nature. Therefore, the linkage attack is the aggregation
of mutliple pieces of raw data with different noises. Built
upon this assumption, linkage attack is formulated as

� The data utility denotes how much useful information is left in the sanitized
data. It is an important parameter to measure the effectiveness of privacy
protection models.

Given multiple data resources fDi 2 Dji D 1; 2; : : : ;
ng, a linkage attack L.�/, and M being a randomized
algorithm that sanitizes the dataset where �i DM.Di /,
the linkage attack is successfully launched if
nX
i

M.Di / > L.�/ > maxfM.Di /ji D 1; 2; : : : ; ng

(10)
Under this assumption, the success criteria of a linkage

attack can be expressed as a release of differential
privacy protection level. Quantitatively, the value
of � will increase as the attack result. To maximize
the performance, we consider the worst-case linkage
attack and the corresponding countermeasure, noise-
decoupling mechanism is as follows.

3.6 Noise-decoupling mechanism

We start with two randomized algorithms, namely the
Laplace mechanism and the exponential mechanism.
Then, the noise-decoupling mechanism is given to
improve the performances of the two algorithms.
3.6.1 Laplace mechanism and exponential

mechanism
As mentioned above, �-differential privacy is a
probabilistic definition. It is necessary to design
some randomized mechanisms which are differentially
private. In this subsection, we will introduce two of
the randomized algorithms, which are the Laplace
mechanism and exponential mechanism.

In numeral scenarios, the Laplace mechanism is
widely used to inject random noise under certain
control. The noise generation compiles with a Laplace
mechanism as

Lap
�ı
�

�
D e

�
�
jjdrawjj2��

ı

�
(11)

We regard ı as privacy level �. Although Gaussian
noise can also be utilized to achieve differential privacy,
it requires a slight relaxation of the definition of
differential privacy. Therefore, we employ Laplace noise
to deal with the numeral data published by users.

Besides the Laplace mechanism, we need to introduce
an exponential mechanism to the proposed model as well.
The reason is that the Laplace mechanism is limited in
the scenario of numeral data. However, the exponential
mechanism functions well to handle textual data.

Let K be the set of candidate items, ki 2 K be a
candidate item, f .D; k/ be the function that outputs
the number of oi inside D, a mechanism M �

f
.D/ is �-

differentially private if the probability of oi being the
output is proportion to e

�f.D;k/
2ı ,
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Pr ŒM �
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P
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(12)
In order to control the noise value, we introduce

another term, which is global sensitivity. Assume a
function f W D ! Kd , we have an input dataset, and the
output should be a d dimensional real-valued vector. For
any adjacent datasets D and D0, the global sensitivity is
defined as

Gf D max
D;D0
jjf .D/ � f .D0/jj (13)

The global sensitivity can be applied to both the
Laplace mechanism and exponential mechanism, and
helps to determine privacy and accuracy.

3.6.2 Decoupling the correlation among noises
For n-tuple real-valued data draw, we aim to propose a
private mechanism M to generate the approximation
yij , in which yij is sent from ui to uj . As shown
in Algorithm 2, two features are required for the
mechanism M. Firstly, the absolute error jyij � drawj

is supposed only to be determined by the density of the
community. The rest of the arguments should have no
impact on the absolute error. Secondly, the linkage of any
series of data resources will not reveal further sensitive
information about the individual. The workflow of the
proposed attack-proof personalized differential privacy
is shown by the pseudo-code in Algorithm 2.

Algorithm 2 Attack-proof personalized differential privacy
Input: Raw data D
Output: Sanitized dataset with personalized privacy protection

1: Derive communities and community densities Pc ;
2: Set up proper sigmoid function 1

exC1 ;
3: if ui belongs to a single community Cc then
4: Personalize privacy level �i based on Pc ;
5: else
6: Personalize privacy level �i based on min.Pc/;
7: end if
8: if data D is numeral then
9: Choose Laplace mechanism;

10: else
11: Choose exponential mechanism;
12: end if
13: Deploy noise decouple mechanism;
14: Deploy data utility optimization mechanism;
15: Release sanitized dataset to different communities C D
fC1; C2; : : : ; Ccg.

Algorithm 2 takes raw data D as input and aims
to generate a sanitized dataset, with personalized
privacy protection. It begins by deriving communities
and computing community densities Dc from the
raw data. A proper sigmoid function is set up to
calculate personalized privacy levels for individual
data points. Algorithm 2 then determines the privacy
level �i based on whether a data point ui belongs
to a single community or multiple communities. For
numerical data, the Laplace mechanism is chosen to
add privacy-preserving noise, while for non-numerical
data, the exponential mechanism is used. Algorithm 2
employs noise decoupling and data utility optimization
mechanisms to enhance privacy and maintain data
quality. Finally, the sanitized data is released to different
communities, C D C1; C2; : : : ; Cc , considering the
personalized privacy levels and community memberships
of the data points. The output is a privacy-protected and
community-tailored sanitized data set.

Algorithm 2 starts by deriving communities and
community densities from the raw data D. The
time complexity of this step depends on the specific
community detection method employed and can range
from O.e2) to O.e3), where e is the number of edges in
the raw dataset D. Community detection often involves
repetitive processes, navigating through graphs, or
utilizing optimization algorithms, all of which add to
the complexity of the undertaking.

Next, Algorithm 2 sets up a sigmoid function, which
has a constant time complexity of O.1/ as it involves
defining a mathematical function. Then it checks whether
a data point ei belongs to a single community or multiple
communities. This step has a constant time complexity
of O.1/ as it involves a simple conditional check.

Based on the membership status, Algorithm 2
personalizes the privacy level � for the data point. The
time complexity of this step depends on the computation
involved in assigning a personalized privacy level based
on the community densities Dc . It can range from O.1/

to O.jC j).
Algorithm 2 proceeds to choose either the Laplace or

exponential mechanism for privacy preservation. This
step has a constant time complexity of O.1/ as it
involves selecting between two predefined mechanisms.

Next, Algorithm 2 deploys the noise decouple
mechanism to protect privacy. The time complexity of
this step depends on the specific method used for noise
decoupling and can range fromO.e/ toO.e2). Complex
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computations or iterative processes may be involved in
this step.

Similarly, Algorithm 2 deploys the data utility
optimization mechanism, which aims to balance privacy
and data quality. The time complexity of this step
depends on the specific optimization methods used and
can range from O.e/ to O.e2), depending on the size of
the data and the complexity of the optimization process.

Finally, Algorithm 2 releases the sanitized and privacy-
protected data to different communities. This step has
a constant time complexity of O.1/, as it involves the
release of data to predefined communities.

In summary, the overall time complexity of the
algorithm depends on the specific methods used for
community detection, privacy level personalization,
noise decoupling, and data utility optimization. The time
complexity ranges from O.e2) to O.e3) for community
detection, and the other steps generally have time
complexities ranging from O.1/ to O.e2), depending
on the size of the data and the specific computations
involved in each step.

In Algorithm 2, to achieve the targets, we generate the
noises defined on a private stochastic process, which is
designed and discussed in detail as below.

Let �i , �iC1, �iC2 be three instances of privacy
protection level. Given �i < �iC1 < �iC2, the following
properties are required for the private stochastic process.
� The noise complies with Laplacian mechanism:
8� > 0; dŒPr

�
V� D v

�
� / e.��jjvjj2/;

� The noise generation process complies with the
private stochastic process: �i <�iC1<�iC2; V�i jV�iC1 ;
V�i?V�iC2 ;
� The transfer probability in the Markov process is
d
�

Pr .V�i D vi jV�iC1 D viC1/
�
/ ı.vi � viC1/C

.nC 1/�
1Cn2
i jjvi � viC1jj

1�n2
2

.2 /
n
2

�

Besseln
2�1

.�i jjvi � viC1jj2/� CO.�
2/;

s.t.,

� D
�i

�iC1
� 1 (14)

where Bessel . / is a Bessel function.

4 Blockchain-Enhanced Mechanism
Against Data Falsification

In this part, we present how the tailor-made blockchain
structure can guarantee the integrity of differentially
private health data and prevent data falsification
operations.

4.1 Consortium blockchain-based smart
healthcare network

The smart healthcare network has been modeled as a
graph structure as above. For each node in the graph,
it is also a node in the proposed consortium blockchain
system as well, as shown in Fig. 4, from which we
can tell there are different entities in SHNs, including
but not limited to patients, hospitals, health bureaus,
etc., different entities have different accesses. For
example, the health bureau has the most access due to
its supervision role, but it does not have the right to
revise the data stored on-chain. Hospitals have access
to the health history of patients and are allowed to
add new items to the history. Patients can only access
their own data with the rights of adding, deleting, or
revising[42]. Except for this, all parties conduct data
sharing which dynamically changes the access during
the operation of the system

As mentioned earlier, doctors and patients can
manage the data and thereby will generate blocks of
the consortium blockchain. Usually, the block will
include some sensitive information, like diagnosis notes,
identity information, time stamp, location, etc. The
privacy protection techniques of the data stored on
the consortium blockchain are a necessity and will be
discussed in the subsequent subsections.

To make it more secure and robust, the Proof-of-
Work (PoW) consensus algorithm is deployed. This
requires miners to mine for a nonce value and get the
block generation chance. The data are firstly broadcast
to all eligible parties and all parties start to calculate the

Fig. 4 Consortium blockchain based smart healthcare
network.
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nonce value. The party that first finds the nonce will
generate a candidate block, after which, the block is
broadcast to all eligible parties again. The parties who
receive a candidate block of this round stop mining and
validate the data in the block. If the data are authentic,
the block will be appended to the local chain. As a
consortium blockchain, the health bureaus will serve
as the leader of the chain to help with the consensus
process. We can always add more layers for more
functionalities. For example, an analytic layer could be
used for disease surveillance[20]. In such a consortium
of blockchain-based smart healthcare networks, several
privacy requirements are to be met, including data
integrity and interoperability, specifically for healthcare
research facilitation.

4.2 Blockchain brief overview

We show the basic PoW-based blockchain structure in
this subsection, which is the foundation of the proposed
structure.

In Fig. 5, a generalized structure of blockchain
systems for medical data sharing in smart healthcare
networks is presented. This structure demonstrates how
blocks are appended to each other, ensuring a sequential
order of transactions. Each block includes the hash value
of the previous block, creating a chain-like structure that
ensures the integrity and immutability of the data.

Within each block, transactions are stored in a Merkle
tree structure. The Merkle tree allows for efficient
summarization and verification of the transactions
contained within the block. By hashing the individual

transactions and then combining them in pairs until
a final hash value, known as the Merkle tree root,
is computed, the block can represent a condensed
representation of all the transactions it contains.

In this particular context, a transaction refers to a piece
of sanitized medical data that adhere to personalized
differential privacy. Sanitization techniques are applied
to the medical data to remove personally identifiable
information and ensure individual privacy. Personalized
differential privacy ensures that the level of privacy
protection is tailored to the specific requirements and
preferences of each patient or data subject.

By utilizing blockchain technology in the sharing of
medical data, the structure depicted in Fig. 5 offers
several benefits. It enhances data security, as the hash
values and the chaining mechanism make it extremely
difficult for unauthorized parties to tamper with or
modify the stored data. The Merkle tree structure
facilitates efficient and secure verification of the integrity
of transactions within a block. Additionally, the use of
personalized differential privacy techniques helps protect
the privacy of individuals while enabling the sharing and
analysis of aggregated and anonymized medical data.

Overall, the blockchain system presented in Fig. 5
provides a robust framework for secure and privacy-
preserving medical data sharing in smart healthcare
networks, ensuring data integrity, tamper resistance, and
individual privacy protection.

In Table 1, an instance of a generalized block header
is shown with two key components. The block header
usually contains a version of the block, parent block

Fig. 5 Blockchain architecture for sanitized sensitive medical data sharing.

Table 1 Instance of block header in the blockchain system.
Element Example value

Block version 03000000
Parent block hash c5ee0a2b1480a2852a30d5ffe364d98e10d9334beb48ca0d000000000000000
Merkle tree root 8c2de567cad23df7992e030b44af454d70add80201edcd21cbb940ab88da45c

Timestamp 29d5a5a4
nBits 34cd1b29
Nonce fd8e2664
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hash, Merkle tree, timestamp, nBits, and Nonce (for
Proof-of-Work). The size of the block determines the
maximum number of transactions (shared data). The
shared data are usually protected and validated by
asymmetric cryptography in a trustworthy case. But if
there is an untrustworthy environment, other techniques
may be deployed, such as a digital signature. In the
block body, it contains sanitized heath data or any other
data types regarding the application scenarios.
� Version of block: The block version is a numeric

value that represents the version of the blockchain
protocol being used. It helps ensure compatibility
between different versions of the blockchain software.
The version number may be updated over time as new
features or improvements are introduced to the protocol.
� Parent block hash: The parent block hash is a

unique identifier for the previous block in the blockchain.
It is the hash value of the header of the previous block.
By including the parent block hash in the current block
header, the blockchain maintains a chronological order
and creates a chain of blocks. This chaining mechanism
ensures the immutability and integrity of the blockchain.
� Merkle tree: The Merkle tree root is a hash

value that represents a condensed summary of all
the transactions within the block. In a blockchain,
transactions are grouped together in a Merkle tree
structure. The Merkle tree allows for efficient
verification of the integrity of all the transactions in
the block. The root hash is calculated by hashing the
concatenated hash values of the individual transactions
in a specific order until a single hash value remains.
� Timestamp: The timestamp indicates the time

when the block was created or mined. It is typically
represented as a Unix timestamp, which is a numerical
value that represents the number of seconds elapsed since
January 1, 1970. The timestamp helps establish the order
of blocks in the blockchain and ensures that blocks are
added at regular intervals.
� nBits: The nBits value represents the target

difficulty for mining the block. Mining is the process of
finding a nonce value that, when combined with other
block data, produces a hash value below a certain target
difficulty. The nBits value encodes the target difficulty,
which determines the computational effort required to
mine a block. Miners adjust the nBits value periodically
to maintain a consistent block generation rate.
� Nonce: The nonce is a random value that miners

modify during the mining process in order to find a
suitable hash value that satisfies the target difficulty.

Miners repeatedly change the nonce and recompute the
block hash until they find a nonce that, when combined
with other block data, produces a hash value that is below
the target difficulty. The nonce is a crucial component of
the proof-of-work consensus algorithm, which ensures
that mining requires computational effort and contributes
to the security of the blockchain.

These elements, combined together, form the block
header. The block header is hashed to produce
the block’s unique identifier, which is used in the
blockchain’s consensus algorithm to validate and add
the block to the blockchain.

The connection among blocks ensures the integrity
and immutability of the blockchain. Any change to a
block’s data would alter its hash, making it inconsistent
with the stored parent block hash in the subsequent
block. This would break the chain and invalidate
the affected block, alerting the network to potential
tampering attempts. Therefore, altering the data in one
block would require recalculating the hash for that block
and all subsequent blocks, which becomes increasingly
computationally expensive and practically infeasible as
the blockchain grows longer.

This linking mechanism provides several important
benefits. Security: The chain of blocks ensures the
security of the blockchain by preventing unauthorized
modifications. Once a block is added to the blockchain,
it becomes extremely difficult to alter any past blocks
without the consensus of the majority of network
participants. Immutability: The chaining of blocks
creates an immutable record of transactions. Once
a block is added to the blockchain, its contents are
effectively set in stone. This feature is valuable in
applications where data integrity and auditability are
critical. Consensus: The connection between blocks
plays a crucial role in achieving consensus among
network participants. By following the longest valid
chain of blocks, participants can agree on the order
of transactions and determine the valid state of the
blockchain.

4.3 Importance of defense against data falsification

In all data-sharing scenarios or services, the data
falsification issue is an inescapable topic due to its
significant negative impact. For instance, one of the
primary attacks in this domain, poisoning attacks, is
usually launched by adversaries. To poison the raw
data, adversaries may inject or replace the data with
misleading features. This can bring catastrophe to smart
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healthcare applications since the data are directly related
to human health. To mitigate the risks, we explain the
devised approach in the following paragraphs.

On the tailor-made blockchain, the differentially
private data (raw data + differentially private noise) are
saved with certain access control. When an individual
queries the blockchain, the differentially private data will
directly used as the response to the querier. However,
since access control is deployed, an individual can only
access the data within the community but an individual
can belongs to multiple communities as described above.
Within a community, all members share a same privacy
protection level and can access the same data. Different
from traditional blockchain systems, it is partitioned into
many consortium sub-chains, with which community
members only need to maintain their corresponding sub-
chain. This brings more efficiency and flexibility for
smart healthcare network users.

Despite this, adversaries will still try to falsify the
differentially private data stored on the sub-chains. The
adversary may inject or revise the data to gain financial
benefits. However, all behaviors will be cross-validated
by community members of each sub-chain. In this
case, if there is a malicious operation on data, most
trustworthy members will choose not to act on it and
thereby the operation cannot be performed. The raw data
will remain unchanged in this case. At the same time,
smart healthcare data sharing will not be as frequent as
transaction systems, which will not bring in too much
computation burden or processing delay. The sub-chain
structure also can improve the efficiency.

5 Performance Evaluation

This section will illustrate the experimental settings and
results to validate the effectiveness of the proposed
solution. The proposed model is Community-based
Differential Privacy (C-DP), while the two benchmark
models are classic Differential Privacy (DP) and
Personalized Differential Privacy (P-DP). P-DP uses
the virtual online distance as the personalization
index. To evaluate the whole system, we evaluate privacy
protection performance, data utility degree, community
distribution similarity, and blockchain performance.

We use two real-world datasets for the experiments,
which are Doximity dataset and HealthTap
dataset[43, 44]. Doximity dataset is collected from
its developer API following a uniform distribution[43].
Doximity is a popular health social network that offers

abundant functions, like befriending, news publishing,
data sharing, etc. The details of the obtained data are as
follows. Doximity is one of the very few popular social
networks for doctors that provides developer API, but it
does not allow broad querying of its database. Therefore,
we randomly obtained 2122 nodes and 14 389 edges
with an average degree of 4:39. The collected data
has been anonymized by Doximity, but the nodes and
edges relationship are stored for research purposes. In
addition, we also build an anonymous doctor social
graph via the API of HealthTap[44]. Health information
of the HealthTap is provided interactively by a network
of nearly over 150 000 licensed doctors. It also provides
the functionality of peer review, which includes doctors
rating each other and self-identifying specializations.
From the HealthTap, we obtain a total of 1325 nodes
consisting of a network of 5231 edges.

In this work, when we talk about DP, it is the
classic differential privacy that provides uniform privacy
protection to all users. In the case of P-DP, it
is personalized privacy that leverages virtual online
distance to personalize privacy levels. For C-DP, which
is the proposed model, it maps community density to
personalized privacy protection levels.

5.1 Community density similarity

In order to utilize community density as the index, we
firstly use evaluation results to demonstrate the similar
distribution of the two datasets. The outcome shows
that both the community number distribution and the
overlapped nodes distribution are quite close, which
verifies our idea of mapping density to privacy level.

In Fig. 6a, we compare the density with the node
number. The distributions are quite similar to each other.
Of all the records, there is a noisy point where node
number equals 1. When node number is 1, we can easily
tell that they have no mutual trust people in this smart
healthcare network. The amount of this node is normally
large, which captures the real-world features.

In Fig. 6b, we illustrate the distributions of overlapped
nodes. Both of the numbers are decreasing with the
number of overlapped communities increasing. They
share the same trends and similar numbers while the
maximum difference is no larger than 2. The x-axis
starts from 2 since one node in one community is not
defined as overlapping. In Fig. 6b, we have tried to
discuss one advanced feature with these two datasets,
which shows the total amount of each group regarding
the inclusion of overlapping nodes. Intuitively, any node
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Fig. 6 Community similarity distribution in the smart healthcare network.

can be assigned to many groups. Therefore, we show
that a negative correlation between these two parameters.
Besides, for the given datasets, we can observe that the
existence of the community is questionable when the
number of nodes is than more 6.

The comparison of density with the node number
(representing the number of nodes in a community) is
shown in Fig. 6. The distributions of density and node
number are quite similar, indicating that communities
in the smart healthcare network tend to have consistent
densities regardless of their size. However, there is a
notable noisy point where the node number equals 1.
This implies that there are instances where a community
consists of only one node, indicating a lack of mutual
trust connections within that community. The occurrence
of such single-node communities is relatively common,
which aligns with real-world characteristics of smart
healthcare networks.

The numbers of overlapped nodes decrease as the
number of overlapping communities increases. This
trend suggests that as nodes are assigned to more
communities, the likelihood of them belonging to
multiple communities decreases. The distributions of
the two numbers (overlapped nodes and the number
of overlapping communities) show similar patterns,
with a maximum difference of no more than 2. This
indicates a consistent relationship between the two
parameters. Additionally, the x-axis starts from 2 in
Fig. 6b because one node in one community is not
considered overlapping. The analysis also delves into an
advanced feature, discussing the total number of groups
considering the inclusion of overlapping nodes. It is
observed that there is a negative correlation between the
total number of groups and the presence of overlapping

nodes. This implies that when nodes are assigned
to multiple groups, the existence or validity of the
community structure becomes questionable, particularly
when the number of nodes in a community exceeds 6.

Overall, the analysis of the results highlights the
characteristics of the smart healthcare network. It shows
the distribution patterns of density, node numbers, and
overlapped nodes, shedding light on the structure and
trust relationships within the network. The presence of
single-node communities suggests a lack of connections
and trust, while the decreasing number of overlapped
nodes indicates less overlap as nodes are assigned to
more communities. These insights provide valuable
information for understanding the community structure
and dynamics within the smart healthcare network.

5.2 Evaluations on the security level of blockchain

In this section, we discuss how the aforementioned
attacks are resistant to a satisfyingly high degree by using
the modified blockchain structure. To better compare
the performance, we establish two personalized privacy
protection models, one with the blockchain while the
other without. The proposed blockchain structure is
based on a PoW consensus algorithm. Thus, a large
number of blocks means it is almost impossible to
launch attacks because it costs too much hash rate. In the
following context, we consider a start-up blockchain
with a limited amount of blocks. In this case, the
adversaries may have the incentive to mount relevant
attacks.

To compare the performances of the three models,
we establish a coordinate system where the semi-
logarithmic x-axis denotes the required hash rate and
the linear y-axis is the turbulence of data when the
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exponential base is 100. As shown in Fig. 7a, with
the increase of the hash rate of the adversary, the
turbulence grows correspondingly for all three cases. To
successfully launch attacks, the hash rate of adversaries
should pass a specific threshold. Usually, in PoW-
based consensus blockchain systems, the threshold
is believed to be 50%. If the adversary’s hash rate
exceeds more than half of the total hash rates, it results
in the successful execution of the attack and grants
the adversary control over the blockchain system. As
indicated in our simulation, there are only 10 blocks in
total. Apparently, in practice, there are hundreds of, or
even thousands of blocks, appending one after another,
and it needs unimaginable amount of computing power
to make the attacks happen.

In order to show how much hash rate is required for
launching the attack, we establish a coordinate system
where the semi-logarithmic y-axis denotes the required
hash rate and the linear x-axis is the number of blocks.
From Fig. 7b, it is intuitive that the required hash rate
grows in an exponential manner with the increase of

10
5

10
6

10
7

10
8

10
9

10
10

Hash rate of adversaries

60

80

100

120

140

160

180

T
u
rb

u
la

n
ce

 o
f 

da
ta

 w
h
en

 b
as

e 
=

 1
0
0

Proposed

Model with DP

Traditional model

(a) Comparison of models with and without blockchain

5 10 25 3015 20

Number of blocks

10
7

10
8

10
9

10
10

10
11

10
12

10
13

C
o
st

 o
f 

ha
sh

 ra
te

 o
f 

ad
v
er

sa
ri

es

(b) Successful attack requirements with respect to the number of blocks

Fig. 7 Performances comparison with blockchain.

block number (shows linearly because of the semi-
logarithmic y-axis). It is worth mentioning that the
hash rate demand breaks through 1013 when the block
number is 30. Usually, the high hash rate will demotivate
most adversaries. Although there are adversaries with
extremely high hash rates, they may not benefit from
attacking such a blockchain. Moreover, in PoW-based
consensus blockchains, the mining difficulty lifts with
rounds, and thereby the protection is enhanced with more
blocks appending to the blockchain.

The performance of three models is compared using
a coordinate system where the x-axis represents the
required hash rate (semi-logarithmic scale) and the y-
axis represents the turbulence of data when the base
is set to 100. The results depicted in Fig. 7a show
that as the hash rate of the adversary increases, the
turbulence of the data grows accordingly for all three
cases. This indicates that to successfully launch attacks,
the hash rate of the adversary must surpass a specific
threshold. In most PoW based consensus blockchain
systems, this threshold is commonly believed to be 50%.
This means that if the adversary’s hash rate exceeds
half of the total hash rates in the network, they can
successfully attack and take control of the blockchain
system. However, in the simulation presented, there are
only 10 blocks in total, which is significantly smaller
than the typical number of blocks in practical scenarios.
It is important to note that in real-world scenarios with
hundreds or even thousands of blocks appending one
after another, launching successful attacks would require
an unimaginable amount of computing power.

A coordinate system is established to demonstrate
the required hash rate for launching an attack. The y-
axis represents the required hash rate (semi-logarithmic
scale) and the x-axis represents the number of blocks.
From Fig. 7b, it is evident that the required hash
rate increases exponentially as the number of blocks
increases (appearing linearly due to the semi-logarithmic
y-axis). It is worth mentioning that the hash rate demand
surpasses 1013 when the number of blocks reaches 30.
Typically, a high hash rate requirement discourages
most adversaries. Even if there are adversaries with
extremely high hash rates, they may not find it beneficial
to attack such a blockchain. Additionally, in PoW-based
consensus blockchains, the mining difficulty increases
with each round, resulting in enhanced protection as
more blocks are appended to the blockchain.

Overall, the analysis of the results highlights the
relationship between the required hash rate, number
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of blocks, and the security of the blockchain system.
Increasing the hash rate of the adversary leads to
higher turbulence in the data and increases the risk of
successful attacks. However, the practical feasibility
of launching such attacks is severely constrained by
the vast computing power required, especially in
scenarios with a large number of blocks. The increasing
hash rate demands with the number of blocks also
act as a deterrent for adversaries, while the mining
difficulty mechanism in PoW-based blockchains adds an
additional layer of protection as more blocks are added.

5.3 Evaluations on the blockchain against
poisoning attacks

To validate the performance of poisoning attack proof,
we compare the three models, in particular, classic
differential privacy, personalized differential privacy,
and blockchain-assisted personalized differential privacy.
With 50 times experiments, the comparison of actual
results and poisoned results are evaluated by Average
Absolute Error (AAE). In each round, we practically
assume that an attacker poisons 20% of the whole dataset.
Besides, the user number is used as the x-axis. From
Fig. 8, if there are over 30 users in a community, the AAE
value of the blockchain-assisted model converges to 0.
This indicates the poisoning attack is totally mitigated.

This is because of a practical assumption of
blockchain, in particular, a sufficiently large community.
If an adversary hopes to poison the data on-chain,
he/she needs over 50% of the nodes to agree
on through consensus. In most public blockchains
running nowadays, there usually have a sufficiently
large community to maintain the chain, for example,
Ethereum. Usually, the assumption holds since the
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Fig. 8 Performance comparison with DP and blockchain.

majority of the members agree on the same benefits.
In the experiments, the nodes may become malicious
with a chance of 50% or 0% before or after receiving
any rewards. Then, we have the observation that the
poisoning attacks are mitigated after the user number in
a community passes 30.

5.4 Privacy protection measurement

The privacy protection level is the most important
index for privacy protection models. The most primary
characteristic of personalized privacy protection is
flexible and directional.

In Fig. 9a, we can conclude that for DP, the privacy
level maintains the same all the time. For P-DP, although
the privacy level fluctuates a little bit, it is not practical
because it takes all the users into consideration, including
people who are not direct trustees. In C-DP, we only
consider the users who are direct trustees. The direct
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Fig. 9 Privacy protection measurement from perspectives of
personalized privacy and overlapped nodes.
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friends are divided by the community density, and the
privacy level complies with sigmoid function trends.

In Fig. 9b, the overlapped nodes play an important
role as we have to decide the privacy level of overlapped
nodes when they are in different groups with various
densities. We provide the lowest level based on the
communities it involves. Therefore, we can observe a
fluctuation in the privacy protection level. If the node is
inside five communities, but all the communities have
a relatively low density, it may have a relatively high
privacy level and vice versa.

The results depicted in Fig. 9a demonstrate the
behavior of different privacy preservation approaches:
DP, P-DP, and C-DP. In the case of DP, the privacy
level remains the same throughout the entire duration.
This indicates a consistent and fixed level of privacy
protection, which may not be tailored to individual
users’ specific requirements. For P-DP, although the
privacy level fluctuates slightly, it takes into account
all users, including those who are not direct trustees.
This approach may not be practical as it lacks precision
in privacy level assignment. On the other hand, C-DP
focuses only on users who are direct trustees. The privacy
level is determined based on the community density,
and it follows the trends of a sigmoid function. This
approach provides a more tailored and fine-grained
privacy protection level, aligning with the characteristics
of the communities and ensuring more personalized
privacy preservation.

The analysis is centered around the role of overlapped
nodes and their impact on privacy levels when they
belong to different groups with varying densities.
Figure 9b presents the results. It is observed that the
privacy protection level exhibits fluctuations due to
the presence of overlapped nodes. The privacy level
determination takes into account the communities in
which the node is involved. If a node is part of
multiple communities but all those communities have
relatively low densities, it may have a higher privacy
level. Conversely, if the node is involved in several
communities with higher densities, it may have a lower
privacy level. This fluctuation reflects the consideration
of community characteristics and the varying influence
of overlapping memberships on privacy preservation.

Overall, the analysis of the results highlights
the differences and implications of various privacy
preservation approaches. DP provides a fixed level
of privacy, P-DP lacks precision, and C-DP offers

personalized privacy levels based on community
densities. Additionally, the presence of overlapped nodes
introduces variations in privacy levels depending on
the densities of the communities they belong to. These
insights emphasize the importance of tailoring privacy
preservation to individual users’ needs and considering
the dynamics of community structures in determining
privacy levels for optimal privacy protection.

5.5 Data utility comparison

Data utility directly affects the quality of service of users.
Therefore, we can not sacrifice too much data utility to
achieve additional privacy load. Personalized privacy
protection provides flexible data utility to different users,
which can provide high-quality service to specific users.

Figure 10a leverages a stairs chart to show the data
utility increases with the increase of the �, which is also
known as privacy level. In terms of the overlapped nodes
data utility in Fig. 10b, we can see that the fluctuating
trend is similar to the privacy protection level as well.
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Fig. 10 Data utility measurement from perspectives of
personalized privacy and overlapped nodes.
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Thus, the trade-off between privacy protection level and
data utility is nicely derived.

Figure 10a presents a stair chart illustrating the
relationship between data utility and the privacy level
(represented by �). The chart demonstrates that as the
privacy level (i.e., �) increases, the data utility also
increases. This indicates that a higher level of privacy
protection (achieved by increasing �) is associated with
a higher level of data utility. The stair-like pattern
suggests that there are distinct increments in data
utility as the privacy level is adjusted, rather than a
continuous and smooth progression. This implies that
privacy preservation mechanisms are capable of striking
a balance between protecting privacy and maintaining
useful data.

Figure 10b depicts the data utility of overlapped nodes.
The fluctuating trend observed in the data utility aligns
with the privacy protection level. This implies that as
the privacy level varies (e.g., influenced by community
densities or specific privacy mechanisms), the data utility
of overlapped nodes follows a similar fluctuating pattern.
The trade-off between privacy protection level and data
utility is clearly demonstrated, suggesting that increasing
privacy protection measures may come at the cost of
some loss in data utility. However, the fluctuating trend
indicates that there might be opportunities to optimize
the privacy-utility trade-off by fine-tuning the privacy
mechanisms or adjusting community characteristics.

Overall, the analysis of the results highlights the
relationship between privacy protection level, data utility,
and the influence of overlapped nodes. It reveals that
increasing the privacy level tends to improve data utility,
indicating that privacy preservation measures can be
designed to strike a balance between privacy protection
and maintaining valuable data. The fluctuating trend in
data utility and its similarity to the privacy protection
level emphasizes the trade-off between privacy and
utility, presenting opportunities for further optimization
in privacy mechanisms. These findings contribute to
understanding the interplay between privacy and data
utility in the context of the depicted scenarios.

5.6 Evaluation on the computation overhead of
optimization for trade-off

In Fig. 11, we have demonstrated the computation
overhead of the optimization for the trade-off. We
evaluated the change of computation overhead regarding
the number of communities inside a healthcare network.
Since there is a personalized mapping function, the
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Fig. 11 Evaluation on the computation overhead of
optimization for trade-off.

increment of a number of communities costs less and
less computation power. If the number of communities
is great enough, the computation overhead will converge
to a specific value, which testifies the scalability of the
proposed model in this big data era.

6 Conclusion

In this article, we start by describing the vulnerabilities
of SHNs, including privacy leakages concerns, trade-
off issues, as well as linkage and poisoning attacks.
To solve the problems, we devise a personalized
and trustworthy privacy protection model considering
the trust measured by community density. By clearly
defining the community, we then personalize the privacy
protection levels constrained by differential privacy. To
mitigate linkage attacks, a noise correlation uncoupling
mechanism is proposed. In this case, even conducting
linkage attacks, no more sensitive information can be
obtained, which wipes out the incentive of attackers.
Meanwhile, the integration of blockchain can defeat
data falsification attacks. We perform corresponding
experiments and the results confirm its effectiveness.

It is worth noting that in the proposed structure, the
community detection is an important procedure but
not easy to control the granularity. In addition, the
theoretical foundation of the optimized trade-off should
be further clarified.

Future work in progress includes establishing the
model using game theory, which can better describe
the confrontation of data holders and adversaries. This
will help with deriving a better balance between privacy
and data utility. Besides, the integration of federated
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learning to enhance privacy protection in this scenario is
ongoing.
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