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DeepRetention: A Deep Learning Approach for
Intron Retention Detection

Zhenpeng Wu�, Jiantao Zheng�, Jiashu Liu, Cuixiang Lin, and Hong-Dong Li�

Abstract: As the least understood mode of alternative splicing, Intron Retention (IR) is emerging as an interesting

area and has attracted more and more attention in the field of gene regulation and disease studies. Existing methods

detect IR exclusively based on one or a few predefined metrics describing local or summarized characteristics of

retained introns. These metrics are not able to describe the pattern of sequencing depth of intronic reads, which

is an intuitive and informative characteristic of retained introns. We hypothesize that incorporating the distribution

pattern of intronic reads will improve the accuracy of IR detection. Here we present DeepRetention, a novel approach

for IR detection by modeling the pattern of sequencing depth of introns. Due to the lack of a gold standard dataset

of IR, we first compare DeepRetention with two state-of-the-art methods, i.e. iREAD and IRFinder, on simulated

RNA-seq datasets with retained introns. The results show that DeepRetention outperforms these two methods. Next,

DeepRetention performs well when it is applied to third-generation long-read RNA-seq data, while IRFinder and

iREAD are not applicable to detecting IR from the third-generation sequencing data. Further, we show that IRs

predicted by DeepRetention are biologically meaningful on an RNA-seq dataset from Alzheimer’s Disease (AD)

samples. The differential IRs are found to be significantly associated with AD based on statistical evaluation of an

AD-specific functional gene network. The parent genes of differential IRs are enriched in AD-related functions. In

summary, DeepRetention detects IR from a new angle of view, providing a valuable tool for IR analysis.

Key words: Alternative Splicing (AS); Intron Retention (IR); intronic reads distribution pattern; RNA-seq

1 Introduction

Through Alternative Splicing (AS), a single gene
can produce a variety of splicing isoforms whose
sequences, structures, and functions are different[1]. AS
is a frequent phenomenon in eukaryotes, dramatically
increasing the biological diversity of transcripts and
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coding proteins[2, 3]. AS includes five major types of
modes: (1) exon skipping, (2) mutually exclusive exons,
(3) alternative 5’ splice sites, (4) alternative 3’ splice
sites, and (5) Intron Retention (IR)[4]. As the least
common type of AS, IR means that the intron is retained
in the mature mRNA rather than being spliced out as
usual[5].

Recently, an increasing number of studies have
shown that IR played a specific role in gene expression
regulation[6]. Braunschweig et al.[7] performed
comprehensive IR analysis on the high coverage
RNA-seq data of more than 40 different cells and tissue
types from humans and mice, and found that increased
IR down-regulated Ssrp1 mRNA expression during
neuronal differentiation. Using human and mouse
strand-specific CD4+ T cell data, Ni et al.[8] found that
12% (185/1583) of the genes were regulated by IR level
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and highly enriched in the proteasome pathway that
was critical for the proliferation of T cell and release of
cytokine.

Moreover, IR has been proved to be associated
with complex diseases[9, 10]. Using mass spectrometry
immunopeptidome analysis, Smart et al.[11] found
that retained intron neoepitopes were processed and
presented on the surface of cancer cell lines. Zhang
et al.[9] found that as prostate cancer progression, the
differential IR events between the patient and the control
samples were increasing, and IR was established as a
hallmark of prostate cancer stemness and aggressiveness.
In addition, we performed a genome-wide analysis of
IR by integrating genetic, transcriptomic, and proteomic
data from Alzheimer’s Disease (AD) samples[12]. We
identified the AD-specific intron expression quantitative
trait loci and found that the intron expression of innate
immune genes was significantly correlated with AD.

The rapid development of high-throughput sequencing
technology has laid the foundation for IR detection[13].
Evaluating IR in the transcriptome by computational
methods is currently an emerging research field.
However, the source of intronic reads is highly
heterogeneous, which hinders the detection of IR[14].
Existing IR detection methods, such as iREAD[15]

and IRFinder[16], are exclusively based on one or a
few predefined metrics describing local or summarized
characteristics of intronic reads. IRs are detected based
on predefined thresholds of these metrics. The flatter
the distribution of intronic reads is, the higher the
authenticity of intron retention is. The flatness is not
equal to IR level, but flatness is one of the importance
features of retained introns. Therefore, iREAD quantifies
the intronic reads distribution flatness by calculating
the normalized entropy score, and then combines
with several other complementary metrics such as
the number of junction reads to evaluate IR. The
predefined thresholds for iREAD are as follows: #
total reads > 20, # junction reads > 1, FPKM > 3,
and NE-score > 0.9. IRFinder defines IRratio as
the proportion of intronic reads from intron-retaining
transcripts, which depends on the median depth of
introns. IRratio can reduce the effect of alternative
splicing exons on gene coverage, but may tend to
underestimate the retention level of long introns. The
predefined thresholds for IRFinder are as follows:
IRratio > 0.1, coverage > 0.7, SpliceExact > 5, intron
annotated with “clean” and “anti-near”, and intron with
the mark “–” or “NonUniformIntronCover”. Broseus and

Ritchie[17] developed a new version of IRFinder, called
S-IRFindeR, in which the intron abundance is adjusted
to the minimum coverage, providing a more rigorous
but reliable estimation of IRratio. The metrics of these
methods are not able to describe the pattern that how
intronic reads are distributed (the pattern of sequencing
depth), though the pattern is an intuitive and informative
characteristic for IR detection. However, the distribution
pattern of intronic reads has not been considered for IR
detection.

Here we propose DeepRetention, a deep learning
model that can capture the distribution patterns of
intronic reads and use it for IR detection. DeepRetention
extracts the fixed-length intron sequencing depth from
multiple sub-segments of the intron, and then uses one-
dimensional convolution filters to extract the pattern of
sequencing depth. Using simulated RNA-seq data, we
compare the performance of DeepRetention with state-
of-the-art methods. DeepRetention is further verified to
achieve high accuracy on the third-generation long-read
RNA-seq data. We explore the characteristics of retained
introns predicted by DeepRetention. Further, we show
that DeepRetention is capable of predicting biologically
meaningful IR events when applied to an RNA-seq
dataset of AD samples. We test whether the differential
IRs are significantly associated with AD based on
statistical analysis. Using functional enrichment analysis,
we illustrate that the parent genes of differential IRs are
enriched in AD-related functions.

This paper is composed of four sections, and the
contents of each section are discussed as follows:
Section 1 introduces the research background and
significance of IR, and the research status of IR
detection. Section 2 describes the core idea of our
DeepRetention model in detail, and then introduces
the data processing. In Section 3, we compare
DeepRetention with the existing methods, and explore
the characteristics of retained introns predicted by
DeepRetention. Section 4 summarizes the main contents
of this paper and puts forward the prospect for the follow-
up research.

2 Method and Material

2.1 DeepRetention

Existing methods detect IR exclusively based on one
or several predefined metrics that describe the local
or summarized characteristics of intronic reads. The
metrics of existing methods are not able to capture the
pattern of sequencing depth, which is an intuitive and
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informative characteristic for IR detection. Therefore,
in this work, we develop DeepRetention to predict IR
by modeling the pattern of sequencing depth in intron
regions. In addition, DeepRetention attempts to explore
sequence information related to IR as auxiliary features,
such as intron length. Therefore, DeepRetention takes
the profile of intron sequencing depth as the main input.
The intron sequence and intron length are also used as
input. Finally, DeepRetention outputs the probability of
introns being retained. Figure 1 illustrates the workflow
of DeepRetention. DeepRetention mainly includes three
parts: calculation of intron sequencing depth profiles,
feature extraction, and IR prediction.

(1) Calculation of intron sequencing depth profiles
DeepRetention considers the sequencing depth profile

as the pattern for IR detection. We uniformly divide the
intron into s.s 2 Œ2; 3; : : : ; 10�/ different sub-segments.
DeepRetention takes the raw sequencing depth of s
sub-segments as input. Specifically, DeepRetention uses
the sequencing depth of 40 bases[18] on each side of
the center point of the selected sub-segment as input.
Therefore, the sequencing depth profile is a vector, which
is composed of the read depth around each sub-segment
and the total length of the profile is

Ps
iD1.40C 40C 1/.

The raw sequencing depth profile is extracted from

RNA-seq data using “Samtools depth”[19]. The allowed
minimum value of the sub-segments is 2, because
the sequencing depth of 5’ and 3’ splice sites of the
intron must be used as input for DeepRetention, which
provides direct evidence to support intron retention[15].
The code is src/getReadCoverageSeq.py on GitHub
(https://github.com/genemine/DeepRetention), users can
retrain DeepRetention on their own RNA-seq data (see
Subsection 2.3, model development).

(2) Feature extraction
DeepRetention requires three types of features for IR

detection, including the distribution pattern of intron
sequencing depth, intron sequence, and intron length.
First, three sets of one-dimensional Convolution Blocks
(CBs) are used to extract the vectorized representation
of the distribution pattern of sequencing depth. CB is
composed of two one-dimensional convolutional layers
and a pooling layer. The number of convolution filters
in CB gradually increases (4 ! 16 ! 64)[20], while
the size of the convolution filter gradually decreases
(16 ! 8 ! 1/. The convolution layer is filled with
the “same padding”[21] way to ensure the consistency of
dimensions. The pooling layer of the first two CBs is the
maximum pooling, and the last CB is the global average
pooling layer. The function of maximum pooling is
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Fig. 1 Workflow of DeepRetention. (a) Calculation of raw sequencing depth of introns to obtain the distribution pattern. (b)
Extraction of the distribution pattern of intron sequencing depth, intron sequence, and intron length features. (c) DeepRetention
integrates the above features, and outputs the probability of introns being retained.
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to extract the main features. The function of average
pooling is to combine the features extracted by each
convolution filter, and finally obtain the vectorized
representation of the read depth distribution of introns.
Second, the intron sequence is the nucleotide sequence
of introns extracted from genome annotation. Then,
doc2vec[22] is used to generate unified embedding
representations of intron sequences. Specific steps are
as follows: (1) The entire genome sequence is used for
doc2vec training. According to gene coordinates, the
gene sequence is extracted from the genome sequence.
A gene sequence represents a train sample and is
divided into k-mers (k D 3). For example, an AGCTA
sequence is processed into [AGC, GCT, CTA]. The
above-processed samples are used to train doc2vec
and the vector size of doc2vec is specified as a fixed
value (vector sizeD100) during training. (2) The trained
doc2vec is used to predict the sequence of each intron
and will generate embedding vectors with fixed-length of
100. According to intron coordinates, the corresponding
intron sequence is extracted from the genome sequence.
The intron sequence is divided into k-mers and k-mers
are input into doc2vec. The embedding vector of intron
sequence is fixed-length vector because the vector size of
doc2vec is specified as a fixed value during training. The
application code of doc2vec is src/getReadSeq.py, and
the training code is src/doc2vec.py on GitHub. Third,
intron length is calculated based on the independent
intron model, in which the coordinates of independent
intron do not overlap with exons.

(3) IR prediction
DeepRetention concatenates the above features and

passes them to two sets of DB, and finally outputs
the probability of introns being retained. Each DB
contains a fully connected layer, a Batch Normalization
(BN) layer, and a dropout layer. Among them, the
fully connected layer performs multiple sets of linear
combinations on the output of the previous layer. The BN
layer then standardizes them to promote the accelerated
convergence of DeepRetention. The dropout layer
randomly drops neurons with a given probability to

prevent DeepRetention from overfitting. The final
output layer is a fully connected layer with one neuron
and sigmoid activation function. Sigmoid outputs a
probability value ranging from 0 to 1, which represents
the probability of intron being retained.

The DeepRetention models are implemented using
Keras version 2.6.0. DeepRetention is freely available at
https://github.com/genemine/DeepRetention.

2.2 RNA-seq data and processing

2.2.1 Simulated RNA-seq data
We use simulated RNA-seq data for comparison. The
simulated RNA-seq data of 30 million paired reads
(SIMU30) are obtained from Ref. [15]. The simulated
data are generated by the BEER software[23] based on
the mouse genome. The summary information of the
dataset is shown in Table 1.
2.2.2 Real-world RNA-seq data
We obtained two real RNA-seq datasets for constructing
training datasets (GM12878S: human; APPPS1: mouse;
see Table 1). Due to the lack of a gold standard dataset
of IR, we construct training datasets based on the union
of the prediction results of iREAD (v0.8.9) and IRFinder
(v1.3.1). After obtaining the intron intersection, the final
label of each dataset is determined jointly by iREAD
and IRFinder. Considering that iREAD and IRFinder
are complementary in detecting IRs[15], if the sample
is labeled as positive by one of iREAD or IRFinder,
the intron is labeled as positive (retained introns). After
determining all the positive introns, we sample the same
number of negatives (spliced introns) as that of positives
to construct the final training dataset. We keep the
proportion balance of positive and negative samples
in the training dataset. Table 2 shows the number of
positive and negative samples in the training set.

Then, we obtain third-generation long-read
RNA-seq data (GM12878T) for the validation of
DeepRetention[25]. It contains over 10 million reads and
is from the same cell line as GM12878S. The reads are
aligned to the human reference genome (GRCh38) using
Minimap2. We refer to the “naive” method introduced

Table 1 Summary information of datasets used in this paper.
Dataset Read length Sequencing depth Source

SIMU30 100 bp 30 X Reference [15]
GM12878S 76 bp 30 X GSM958728 in Gene Expression Omnibus (GEO)

BBUKY 101 bp 70 X Reference [24]
APPPS1 101 bp 100 X syn17008852 from Synapse

GM12878T Full-length transcripts 10 X Reference [25]

Note: bp denotes base pair.
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Table 2 Number of positive and negative samples in the
training set.

Dataset All Positive iREAD-positive IRFinder-positive

GM12878S 37 978 18 989 8299 13 374
APPPS1 370 856 185 428 40 245 161 237

in S-IRFindeR[17] to identify IR from GM12878T. The
number of long-reads spanning the intron is recorded
as overall read abundance. The number of long-reads
containing the intron is recorded as intronic read
abundance. The proportion of intronic read abundance
and overall read abundance is recorded as a ratio. In
the subsequent analysis, overall read abundance > 30,
intronic read abundance > 20, and ratio > 0.05 are
used to filter unreliable estimates of ratio[17]. Then, if
filtered introns are labeled IR by genome annotation,
these introns will be retained. Finally, we obtain 804
retained introns.

We store the processed dataset in Zenodo (https://
zenodo.org/record/6526078) for readers to download.

2.3 Model development

We construct two models based on the RNA-seq
data from two species (GM12878S: human; APPPS1:
mouse). The models are trained for 1000 epochs with a
batch size of 128. A binary cross-entropy loss between
the label and predicted output is minimized with Adam
optimizer during training. The initial learning rate of
Adam optimizer is set to 0.1; then it is reduced by a
factor of 0.5 if the val loss is not reduced in 5 epochs.
Moreover, we repeat the training procedure 10 times
and obtain 10 trained models, that is, 90% of data are
used for each training, and the other 10% of data are
used for validation. During testing, we evaluate the test
set using all 10 trained models and their Area Under
the Precision Recall Curve (AUPRC) and Area Under
the Receiver Operating Characteristic curve (AUROC)
scores are averaged as the final result. In detail, we
will calculate AUPRC and AUROC of each model, and
finally take the mean value of AUPRC and AUROC of
10 models.

3 Result

3.1 Influence of the number of intron sub-segments
on DeepRetention model

We study the effects of the number of intron
sub-segments on model performance. Each intron is
evenly divided into s sub-segments (s 2 Œ2; 3; : : : ; 10�/.
The intron sequencing depth of s sub-segments is

input into the model. The test results of DeepRetention
models with different s values are shown in Fig. 2. We
find that when s is less than 7, the model performance
increases with the increase of the s value. When s
is greater than 7, the performance of the model does
not change significantly. Therefore, we choose s D 7

as the optimal value, that is, we will take 7 different
sub-segments uniformly in the intron region as the input
of intron sequencing depth of the model.

3.2 Comparison between iREAD, IRFinder, and
DeepRetention on simulated datasets

We evaluate iREAD, IRFinder, and DeepRetention
on the simulated dataset. The three methods are
comprehensively compared based on two metrics,
including AUPRC and AUROC. Especially, we sort
iREAD and IRFinder by normalized entropy score and
IRratio, respectively. Table 3 shows an improvement of
DeepRetention compared to iREAD and IRFinder. This
is because DeepRetention detects IR by using the pattern

Fig. 2 DeepRetention model performance varies with the
number of intron sub-segments on the SIMU30 dataset.
When s = 2, it means that DeepRetention takes the sequencing
depth around the 5’ and 3’ splice sites of the intron. When
s>>> 3, the intron is evenly divided into s sub-segments, and
the sequencing depth around each sub-segment will be
input DeepRetention. Specifically, DeepRetention uses the
sequencing depth of 40 bases[18] on each side of the center
point of the selected sub-segment as input. Moreover, all
sequencing depth of each segment will be used and the total
length of sequencing depth is

PPPs
i=1 (40 + 40 + 1).

Table 3 Comparison results of iREAD, IRFinder, and
DeepRetention on the simulated test dataset (SIMU30).

Method AUPRC AUROC
DeepRetention 0.9293 0.9278

iREAD 0.8766 0.9004
IRFinder 0.8919 0.9206
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of sequencing depth, which is similar to the visual result
in Integrative Genomics Viewer (IGV) (see Subsection
3.4, characteristics analysis of retained introns).

3.3 Contribution of input features

To explore the contribution of different types of input
features on the model performance, we only input
a single type of feature to DeepRetention at a time
(Table 4) and compare their corresponding performance.
Because the simulated data are generated randomly,
the sequence feature of retained introns cannot be
modeled. The genome of real dataset can be used to
characterize the sequence feature of retained introns.
However, the next-generation sequencing lacks a gold
standard dataset of IR. Therefore in this analysis, we
use the third-generation sequencing dataset GM12878T,
in which the retained introns are annotated by genome
annotation[17]. Moreover, IRFinder and iREAD cannot
detect IR from the third-generation sequencing dataset,
so GM12878T is only used to explore individual input
features. GM12878T has only 804 retained introns. To
prevent class-imbalanced caused by few positive samples
(retained introns), we randomly sample the same number
of negative samples (non-retained introns) as that of
positives. The sampling process is repeated 10 times to
construct 10 sets of class-balanced validation datasets.
The results of DeepRetention performance are shown
in the form of mean plus/minus Standard Deviation
(mean˙SD).

The results show that DeepRetention is able to achieve
high prediction accuracy and stability. DeepRetention
achieves a stable and high AUPRC of 0.9420˙0.0120
and AUROC of 0.9383˙0.0082 (Table 4). Among
the models with a single type of feature, the best
performance is achieved when intron sequencing depth
is used as the feature. The performance of the model
with intron sequence or intron length as input is not
significantly different, but much smaller than the model
with all features and the model with intron sequencing
depth only. This indicates that among the three input
features, intron sequencing depth contributes most to the

Table 4 Contribution analysis of a single type of feature
to IR predictive performance based on the third-generation
RNA-seq data.

Input feature AUPRC AUROC
All input features 0.9420˙0.0120 0.9383˙0.0082

Intron sequencing depth only 0.9342˙0.0144 0.9327˙0.0055
Intron sequence only 0.6074˙0.0094 0.6404˙0.0105

Intron length only 0.6523˙0.0115 0.6894˙0.0079

model performance, and intron sequence or intron length
also contributes to IR detection.

3.4 Characteristics analysis of retained introns

We explore the characteristics of retained introns. The
previous researches report that the retained introns have
significantly weaker splice site strength[7, 26]. The lower
the splicing strength is, the lower probability an intron
will be spliced by the splicing factor. Therefore, we
characterize the splice site strength of DeepRetention,
iREAD and IRFinder based on the genome of real
dataset. Overall, the results show that the splice site
strength of all three methods is comparable, and the p-
value of DeepRetention is more significant (Figures 3a
and 3b). We find that no matter which prediction method
is used, the splice site strength of retained introns is
significantly lower than that of non-retained introns (see
Figs. 3a and 3b; p-value < 0:05). For each method,
the splice site strength between two types of introns is
compared using the Mann-Whitney U test[28].

The retained introns have significantly higher
Guanine-Cytosine (GC) content than non-retained
introns[12], indicating that IR may be driven by the
potential DNA sequences[29]. Therefore, we characterize
the GC content of DeepRetention, iREAD, and IRFinder
based on the genome of real dataset. Overall, the
results show that the GC content of all three methods
is comparable, and the p-values of DeepRetention
and iREAD are more significant. Compared with non-
retained introns, the retained introns have significantly
higher GC content (see Fig. 3c; p-value < 1:0 � 10�6).
For each method, the GC content between two types of
introns is compared using the Mann-Whitney U test.

The retained introns may be regulated by RNA-
Binding Proteins (RBPs)[30]. We perform motif analysis
of human RBPs collected from Ref. [31] and the
RBPmap database[32]. After removing the redundancy,
we obtain 93 RBPs with known binding sites. We
calculate the RBP-binding score within retained introns
and non-retained introns using the same calculation
method as the previous study[9]. Using the Mann-
Whitney U test, we test whether the RBP-binding score
of retained introns is significantly different from that of
non-retained introns. The result shows that the RBP-
binding scores of all three methods are comparable
(see Fig. 3d), and the p-value of DeepRetention is
more significant. Interestingly, we find that the RBP-
binding score of retained introns is significantly lower
than that of non-retained introns (see Fig. 3d; p-value
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Fig. 3 Characteristics analysis of the retained introns obtained by different methods. (a) The boxplot shows the splicing
strength of 5’ splice sites of retained introns and non-retained introns on the APPPS1 dataset. (b) The boxplot shows the splicing
strength of 3’ splice sites of retained introns and non-retained introns on the APPPS1 dataset. The splicing strength is calculated
by MaxEntScan[27], which is based on the maximum entropy principle. (c) The boxplot shows the GC content of retained introns
and non-retained introns on the APPPS1 dataset. (d) The boxplot shows the RBP-binding score within retained introns and non-
retained introns on the GM12878S dataset. Since the collected RBPs are human RBPs, GM12878S is used for RBP-binding score
calculation. The calculation method of the RBP-binding score is the same as the previous study[9]. Using the Mann-Whitney
U test, the splicing strength, GC content, and RBP-binding score comparison between the retained and non-retained introns is
made. The APPPS1 dataset is predicted by the model trained on GM12878S dataset, and the GM12878S dataset is predicted by
the model trained on APPPS1 dataset.

< 1:0 � 10�6), which is not uncovered by previous
studies. This is consistent with our expectation, because
the retention and splicing process of introns involves
RBP, which belongs to one of the splicing factors
mentioned above.

Then, we visually verify the retained introns only
detected by our method (namely, DeepRetention-specific
IR). We use the IGV software (v2.11.4)[33, 34] to verify
DeepRetention-specific IR. As illustrations, we show
four retained introns in Fig. 4. In Fig. 4a, we show an
retained intron (chr11: 57, 499, 805—57, 505, 233 of the
gene Fam114a2) with a prediction score of 0.682. The
second example is a confidently retained intron (chr3:
153, 909, 598—153, 910, 260 of the gene Rabggtb) with
a prediction score of 0.905. In particular, the sequencing
depth of some positions of this intron exceeds 30. These

examples show that DeepRetention learned the pattern
of sequencing depth. Therefore, our method can detect
IR that cannot be detected by other methods.

3.5 Biological relevance of intron retention events
predicted by DeepRetention

We test whether DeepRetention is capable of predicting
biologically meaningful IR events. AD is a degenerative
brain disease[35, 36]. IR has been proved to be associated
with AD[12]. We obtain RNA-seq data in fusiform gyrus
of AD and control subjects[24], and these subjects derived
from the Brain Bank of the University of KentuckY
(BBUKY). We apply DeepRetention to detect IR on the
BBUKY dataset. In this section, we consider that the
intron is retained only if the prediction score is greater
than 0.8 (0.5 by default in the previous sections). We first
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Fig. 4 Illustration of examples of retained introns detected by DeepRetention on the APPPS1 dataset. These retained introns
are not detected by iREAD and IRFinder. (a) The retained intron (chr11: 57, 499, 805—57, 505, 233) of Fam114a2. (b) The
retained intron (chr3: 153, 909, 598—153, 910, 260) of Rabggtb. (c) The retained intron (chr8: 95, 457, 488—95, 460, 071) of
Csnk2a2. (d) The retained intron (chr1: 181, 101, 635—181, 105, 071) of Nvl. The short blue box represents the exon and the
blue line represents the intron.

perform differential expression analysis on the BBUKY
dataset using edgeR[37]. Because the input of edgeR
is read count data, we take the read count of introns
from iREAD outputs. We obtain 301 differential IRs
between AD and control subjects (false discovery rate
< 0:05 and fold change > 2). Then, we evaluate whether
these differential IRs have biological significance based
on two approaches, including statistical assessment
with functional gene network and functional enrichment
analysis.

In statistical assessment, we evaluate the parent genes
of differential IRs based on our previous work on
ADBrainNexus[38]. ADBrainNexus is a human AD-
specific brain functional gene network constructed
with AD genomic data. We used the collected 147

known AD-associated genes derived from multiple
databases[38]. The association between the parent genes
of differential IRs and the known AD-associated genes is
tested based on statistical analysis[38]. The result shows
that DeepRetention has significantly more interactions
with known AD-associated genes than randomly selected
genes (p-value < 1:0 � 10�6). The significant test
results is shown in Fig. 5a. In ADBrainNexus, we
calculate the number of interactions between the parent
genes of differential IRs and known AD-associated
genes, and calculate the number of interactions between
randomly selected k genes and known AD-associated
genes, denoted by tobserved and trandom, respectively.
By repeating the random sampling, we obtain 106 values
of trandom. We then calculate p-valueD Nsig /106

Fig. 5 The differential IR events predicted by DeepRetention are evaluated for biological significance. (a) The parent genes
of differential IRs on the BBUKY dataset show significant functional associations with known AD-associated genes in the
ADBrainNexus network (The p-values for both interaction genes and edges are less than 1.0 ��� 10���6). In the figure, the red
line represents the number of interactions between the parent genes of differential IRs and known AD-associated genes. The
yellow bar chart represents the number of interaction pairs between randomly selected genes and known AD-associated genes.
(b) The result of the GO enrichment on the BBUKY dataset. The parent genes of differential IRs predicted by DeepRetention
are used as the input for GO enrichment in the biological processes. The enrichment analysis is performed by Metascape using
the default parameters.
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where Nsig is the number of times that trandom value is
larger than tobserved .

The functions carried out by the retained introns can be
revealed by enrichment analysis[39]. We evaluate the parent
genes of differential IRs on the BBUKY dataset using
functional enrichment analysis. The enrichment analysis
in the biological processes is performed by Metascape[40]

using the default parameters. By enriching the parent
genes of differential IRs (Fig. 5b), Gene Ontology
(GO)[41] terms are related to AD functions, such as glial
cell differentiation (GO:0010001)[42–44], regulation of
neuronal synaptic plasticity (GO:0048168)[45–47], and
protein phosphorylation (GO:0006468)[48]. The previous
researches report that the AD mechanism of molecular
control is related to glial cell differentiation[42, 43].
The sustained rescue of cortical neurons by glial cell
differentiation suggests that glial cell-based repair plays
a beneficial role in AD[44]. The pathogenesis of AD is
related to regulation of neuronal synaptic plasticity[45, 46],
and the improvement of cognition function of AD
mice may be linked to an up-regulation of neuronal
synaptic plasticity[47]. Adusumalli et al.[48] revealed that
by affecting pathways involved in protein homeostasis
(e.g., protein phosphorylation), changes of IR pattern
may regulate the transition of physiological state from
health to AD.

In summary, the differential IRs are found to be
significantly associated with AD, and the parent genes
of differential IRs are enriched in AD-related functions.
Therefore, these results imply that DeepRetention
is capable of uncovering biologically meaningful IR
events.

4 Conclusion

In this paper, we propose DeepRetention, which detects
IR by modeling the pattern of sequencing depth profiles
of intronic regions. As illustrated in this work, the
incorporation of distribution patterns can improve the
accuracy of IR detection. IRFinder and iREAD cannot
detect IR from the third-generation sequencing dataset,
while DeepRetention achieves good performance when
applied to third-generation long-read RNA-seq data. We
explore the characteristics of retained introns predicted
by DeepRetention. Compared with non-retained introns,
the retained introns have significantly weaker splicing
strength and higher GC content, which is consistent with
the previous reports[7, 12, 26]. In addition, we find that the
RBP-binding score of retained introns is significantly

lower than that of non-retained introns, which is not
uncovered by previous studies. Further, we show that
DeepRetention is capable of uncovering biologically
meaningful IR events by applying it to detect IR on an
AD dataset. The differential IRs are functionally related
to AD in an AD-specific brain functional gene network.
The parent genes of differential IRs are enriched in AD-
related functions. In the future, we intend to generate a
gold standard dataset of IR to eliminate the limitation
that the training data of DeepRetention depends on other
IR detection methods. Moreover, the model structure of
DeepRetention will be updated. For example, the use of
attention mechanisms on the convolution module[49] or
the use of the more advanced convolution architecture
(such as Inception)[50] may be able to better capture the
sequencing depth distribution pattern of IR. In summary,
DeepRetention detects IR from a new angle of view
which provides a valuable tool for IR research.
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