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Radar Signal Recognition Based on
Dual-Channel Model With HOG

Feature Extraction
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Abstract—Objectives: To improve the recognition
accuracy of radar signals under a low signal-to-noise
ratio (SNR). Technology or Method: We propose a novel
radar signal recognition method based on a dual-channel
model with the histogram of oriented gradients (HOG)
feature extraction. Specifically, multisynchrosqueezing
transform (MSST) and Choi–Williams distribution (CWD)
transform are adopted individually to obtain the time–
frequency distribution images of radar signals, and HOG
feature extraction is performed on the preprocessed time–
frequency images of each channel, respectively. Then, the
features of the two channels are fused and dimensionally
reduced by the principal component analysis (PCA).
Finally, the compact feature parameters are fed to the
support vector machine (SVM) classifier to identify radar
signals. Clinical or Biological Impact: The experimental
results demonstrate that the proposed model achieves a
high recognition performance with a small computational
complexity, especially in low SNR. When the SNR is
−12 dB, the recognition accuracy can reach more than
92%, which is over 6% higher than that of single-channel
models and related convolutional neural network-based
models.

Index Terms—Choi–Williams distribution (CWD)
time–frequency analysis (TFA), histogram of oriented
gradient (HOG), low probability of intercept (LPI) radar
signal, multisynchrosqueezing transform (MSST), signal
recognition.

I. INTRODUCTION

ELECTRONIC reconnaissance provides a powerful
guarantee for defense and attack on the battlefield by

intercepting enemy electromagnetic signals and estimating
signal parameters [1], while the low probability of intercept
(LPI) radar signal recognition is a major concern in electronic
reconnaissance [2], [3]. Effective identification of LPI radar
signals can help us to gain initiative on the battlefield, and
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then influence further operational decisions [4]. Conventional
radar signal recognition mainly relies on pulse description
words, such as carrier frequency, pulse width, pulse ampli-
tude, arrival time, and arrival angle [5]. Such recognition
techniques based on intersignal parameters can achieve
satisfying results in the case of low signal flow density,
simple signal form, a small number of radiation sources,
and a simple electromagnetic environment. However, with
the advancement of radar technologies and the introduction
of LPI radars, the electronic countermeasure environment
becomes increasingly complex. LPI radars are characterized
by low interception, high detection, large time width, and
strong interference, which brings great challenges to radar
signal recognition.

In recent years, lots of work have focused on radar signal
recognition by analyzing the characteristics of radar signals
in the time domain, frequency domain, and time–frequency
domain [6]. For the time domain, Mingqiu et al. [7] used high-
order statistics and wavelet ridge to extract signal features for
recognition. Iglesias et al. [2] distinguished signal types by cal-
culating various signal characteristics, such as frequency peak
and variance based on instantaneous phase and normalized
instantaneous frequency of signals. Wang et al. [8] calculated
four features, including the variance and the entropy of the
autocorrelation functions, and the maximum values and the
entropy of the power spectrums, and used the directed graph
model to characterize the joint probability distribution of fea-
tures and categories. For the frequency domain, Wei et al. [9]
proposed a hybrid neural network model which includes shal-
low convolutional neural network (CNN), long- and short-term
memory (LSTM) network, and deep neural network (DNN)
to recognize six types of radar signals. This method does not
need to convert the signals into images, which can effectively
reduce the amount of computation, but it is less effective in
recognizing continuous wave (CW) signals and binary phase
shift keying (BPSK) signals, especially the CW signals. For the
time–frequency domain, some time–frequency analysis (TFA)
techniques are used to characterize signals in both time and
frequency domains. Qin et al. [10] converted time-domain
radar signals into time–frequency images (TFIs) and then used
a residual network to identify modulation types of signals. Its
overall recognition rate can reach more than 96% at −2-dB
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signal-to-noise ratio (SNR), but its performance degrades seri-
ously with the decrease in SNR. Liu et al. [11] extracted
features from the time–frequency domain and used an arti-
ficial bee colony algorithm-optimized support vector machine
(SVM) as a classifier. When the SNR is −4 dB, its overall
recognition rate can reach 92%. Yu and Tang [12] proposed
a recognition method based on contour extraction, in which
signal contour is used to replace the binary image and CNN
is employed for signal recognition. Due to the advantages
of small cross terms and strong anti-noise characteristics,
the Choi–Williams distribution (CWD) is used to extract the
time–frequency features of radar signals [10], [11], [12], [13].
But some signal details may be overlooked due to its low
time–frequency resolution, which will affect the accuracy of
recognition. To solve this problem, Oberlin et al. [14] proposed
a synchronous squeeze transform (SST) based on the short-
time Fourier transform (STFT) to “squeeze” signal frequency.
Compared with the CWD transform, the TFI of SST has a
higher resolution and can retain more details of signal features,
which is beneficial to signal recognition. However, when SST
processes complex time-variant signals, its time–frequency
aggregation reduces greatly, resulting in the blurring of time–
frequency features. As the signal nonstationarity increases, the
error of the instantaneous frequency estimation increases too.
Yu et al. [15] used multisynchrosqueezing transform (MSST)
to perform time–frequency transformation on signals, which
can alleviate the time–frequency feature ambiguity and energy
divergence problems of synchrosqueezing. However, MSST
is easily affected by noise under low SNR, which makes
the radar signal easily distorted and affects the accuracy of
identification.

In order to comprehensively exploit the different advantages
of MSST and CWD and further improve the effectiveness of
feature extraction, we construct a dual-channel feature extrac-
tion model, in which MSST and CWD are utilized individually
to obtain different TFIs of radar signals, and the histogram
of oriented gradients (HOG) algorithm is introduced to per-
form feature extraction. The HOG features extracted from the
TFIs of the two channels are finally fused and dimension-
ally reduced for classification. The simulation experiments
were taken on nine types of typical radar signals, including
CW, different types of frequency modulation (FM), and phase
modulation (PM) with the SNR range from −14 to 10 dB.
The results show that the proposed approach achieves higher
recognition accuracy than each single-channel scheme, and the
advantage is more obvious under low SNR regions. The com-
parison with the other five models published in recent years
also proves the validity of our dual-channel model.

The main contributions of this article are summarized as
follows.

1) We present a radar signal recognition model based on
the feature extraction of dual-channel TFIs. It improves
the performance of radar signal recognition, especially
in the low SNR scenario.

2) We take advantage of CWD’s good anti-noise and
MSST’s high-resolution characteristics and extract more
detailed features, which are beneficial to low SNR radar
signal recognition.

TABLE I
MSST EXPRESSION

3) Our model uses a simple SVM classifier for classifi-
cation. The advantages of low computation complexity,
few training samples, and less training time make it
more suitable for engineering applications. Experiments
on multipath fading channel environments demonstrate
that our model has good stability and robustness.

The subsequent sections of this article are structured in the
following manner. In Section II, we discuss the radar signal
processing algorithms, including MSST transform and CWD
transform. Section III outlines the overall framework of the
proposed method and provides a detailed explanation of image
preprocessing, feature extraction, and feature dimensionality
reduction. Section IV presents the experimental results and
analysis. Finally, the conclusion is discussed in Section V.

II. TIME–FREQUENCY TRANSFORM

In this section, we provide a detailed explanation of the fun-
damental principles and procedures underlying the MSST and
CWD transforms, which serve as the basis for the subsequent
image preprocessing and feature extraction.

A. MSST Time–Frequency Transform

MSST is a new TFA method that can effectively enhance
the resolution of the time–frequency distribution image by
performing multiple simultaneous compression on the time–
frequency spectrum obtained by STFT, and the iterative
operators in MSST can use to optimize the algorithm pro-
cess and reduce the computational burden. At the same time,
as a linear time–frequency tool, MSST does not have the
interference of cross terms. The expression of MSST is shown
in Table I [15], where Ts

[N](t, η) is N-order synchronous com-
pression, η is the output frequency, G(t, w) is the STFT of the
signal, ŵ(t, w) is the instantaneous frequency estimation, and
δ(t) is the impulse function. The first-order synchronous com-
pression expression, i.e., SST, is obtained by compressing the
STFT time–frequency distribution from the frequency direc-
tion. However, when SST compresses complex time-varying
signals, the instantaneous frequency estimation deviation of
the signal increases, and the time–frequency aggregation is
greatly reduced, which will result in TFI blurring. But MSST
can effectively handle strong modulation signals and strong
time-varying signals by iterative calculation. At the same time,
MSST also alleviates the problem of low time–frequency
energy concentration of SST. The synchronous compression
transformation is performed on Ts

[1](t, w) again to obtain the
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double synchronous compression transformation Ts
[2](t, w).

Ts
[N](t, w) is the output expression after N iterations.

B. CWD Time–Frequency Transform

CWD is a common Cohen class time–frequency distribu-
tion, which was proposed by Choi and Williams in 1989 [16].
By adding kernel function, time–frequency resolution and
cross-term interference can be better balanced. The CWD
time–frequency conversion formula is as follows [17]:

CWD(t, f ) =
∫∫

√

σ

4πτ 2
f (s, τ )s

(

u + τ

2

)

s∗(u − τ

2

)

e−j2π f τ dudτ (1)

f (s, τ ) = exp

[

−σ(s − t)2

4τ 2

]

(2)

the parameter σ represents the attenuation factor, f (s, τ ) rep-
resents the kernel function, s(u) represents the independent
variable, f represents the frequency, τ denotes autocorrelation,
and t represents time.

Fig. 1 shows the MSST and CWD TFIs of nine typical
radar signals. It can be seen that the MSST time–frequency
diagram has a high time–frequency resolution, and the CWD
time–frequency diagram has better signal location distribution
information.

III. RECOGNITION MODEL

Based on the time–frequency transformation in Section II,
we propose a radar signal recognition approach using a dual-
channel model with HOG feature extraction. First, we obtain
the TFIs of radar signals using MSST and CWD, respectively.
Second, HOG features are extracted from the preprocessed
TFIs from the two channels and then merged to obtain com-
bined HOG features. Afterward, we use principal component
analysis (PCA) to fuse and reduce the dimensionality of the
combined features. Finally, the SVM classifier is used to clas-
sify signals based on extracted features and achieve radar
signal identification. The flowchart of the system is shown
in Fig. 2.

The recognition algorithm can be broadly divided into three
key parts: 1) TFI preprocessing; 2) HOG feature extraction;
and 3) PCA dimensionality reduction and recognition, as illus-
trated in Fig. 2. In this section, we provide a detailed account
of these parts.

A. Time–Frequency Image Preprocessing

With the rapid development of electromagnetic equipment,
the electromagnetic signals on the battlefield have become
increasingly complex, and the signals generated by various
electromagnetic devices will cause noise interference to the
receiver. Although time–frequency conversion of radar sig-
nals can effectively reduce noise interference, there is still
a substantial amount of interference information in images.
Therefore, preprocessing of the TFI is necessary before fea-
ture extraction. We utilize grayscale, filtering, interpolation,

Fig. 1. TFIs. (a) MSST TFIs. (b) CWD TFIs.

and binarization to denoise TFIs. Fig. 3 shows the schematic
of the preprocessing process and the TFI transformation.

The preprocessing of the TFI can be described as follows.
1) Perform grayscale processing to obtain grayscale

images.
2) Subsequently, the Wiener filter is used to reduce the

noise interference in gray images.
3) Finally, bicubic interpolation and binarization [18] are

employed to decrease image noise and computational
complexity, and thus an image of 224 × 224 pixels is
obtained.

B. HOG Feature Extraction

The HOG operator describes the local texture features of
objects by calculating the gradient value and gradient direc-
tion of pixels in the image and constructs the histogram with
the obtained gradient value and gradient direction [19]. The
HOG feature parameters are composed of the amplitude val-
ues in the histogram. Since the gradient information in the
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Fig. 2. Overall flowchart of the system.

Fig. 3. Image preprocessing flowchart.

Fig. 4. HOG feature visualization.

image is mainly located in the edge area of the object, the
HOG operator can describe the contour of the signal in the
image by calculating the gradient information of the signal, as
shown in Fig. 4. Inspired by this idea, we apply HOG feature
extraction to realize edge and shape detection in the time–
frequency domain. Moreover, the time–frequency aggregation
of the signal is enhanced by the time–frequency transformation
in Section II-A and binarization described in Section III-A,
which makes the signal contour more obvious and facilitates
the extraction of effective gradient values as feature parame-
ters by the HOG operator. The specific derivation process is
as follows.

1) Gradient Calculation: Gradient mainly includes gradient
value and gradient direction. Gx(x, y) and Gy(x, y) in (3)
and (4) represent the components of gradient value on the
x-axis and y-axis, and (5) and (6) are the calculation process
of gradient magnitude and gradient direction. H(x, y) is the
pixel value

Gx(x, y) = H(x + 1, y) − H(x − 1, y) (3)

Gy(x, y) = H(x, y + 1) − H(x, y − 1) (4)

G(x, y) =
√

Gx(x, y)2 + Gy(x, y)2 (5)

Fig. 5. Gradient direction block.

Fig. 6. Orientation gradient histogram.

α(x, y) = tan−1
(

Gy(x, y)

Gx(x, y)

)

. (6)

2) Gradient Direction Histogram Construction: According to
Fig. 5, the gradient direction can be divided into nine angular
regions. Meanwhile, the abscissa of the histogram in Fig. 6
is set according to the angular region divided. Then, the gra-
dient value and gradient direction obtained from (5) and (6)
are mapped to nine angular regions. Taking Tables II and III
as examples, the gradient direction and gradient value in the
table are mapped to the histogram. The nine amplitudes of the
histogram are ultimately tallied as the 9-D feature vector of
the corresponding cell [20].

The image pixel size is 224 × 224 and the cell size is 4 × 4,
so there are 56 cells in each row of the image. The block is a
square composed of four cells. Feature extraction is performed
by moving the block on the image, and the moving step is 1,
then an image needs to be moved (224/4 − 1) × (224/4 − 1)
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TABLE II
GRADIENT DIRECTION

TABLE III
GRADIENT VALUE

times in total, i.e., it needs to be moved 55 × 55 times. So
we can get 4 × 9 × 55 × 55 = 108 900-D features from one
image.

C. PCA Dimension Reduction

In this article, we extract the HOG features from dual-
channel TFIs and then combine the two-channel features to
obtain 217 800-D features. However, the merged features con-
tain a significant amount of redundant information resulting
from its high dimensions, which will reduce the classification
speed and recognition accuracy. Therefore, the PCA algorithm
is employed to reduce the dimension of the merged features,
which can be formulated as

YPCA = WTZHOG (7)

where ZHOG represents the fused HOG feature vector, and
YPCA represents the feature vector after dimension reduction,
W is the covariance matrix. Through the application of PCA
dimensionality reduction, the HOG features are effectively
compressed from an initial 108 900 dimensions down to 3600
dimensions.

Based on the detailed descriptions of the three sections
above, we can summarize the recognition steps as follows.

1) Perform TFA and preprocessing on the time-domain sig-
nals to obtain binary images of MSST and CWD with
a size of 224 × 224.

2) Then, HOG feature extraction is conducted on the two
channels separately to obtain features with a dimension-
ality of 108 900 for each channel.

3) Finally, the features from the two channels are fused
and dimensionally reduced by PCA to obtain 3600-D
features for SVM model recognition.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

To verify that the above recognition system has a good
recognition rate and recognition speed, in this section, we carry
out simulation experiments from four aspects: 1) TFIs com-
parison; 2) algorithmic comparison; 3) ablation experiment;
and 4) robustness analysis. The computer hardware condi-
tions of the simulation experiment are: Intel Core i7-10875H,
GPU: NVIDIA GeForce RTX 1650, and the simulation tool is
MATLAB. We also simulated a complex channel experiment
for testing and recognized radar signals after Rayleigh fading
to verify the effectiveness of the algorithm.

TABLE IV
WAVEFORM PARAMETERS

A. Dataset Design

In this article, nine typical radar signals, including CW,
LFM, BPSK, QPSK, 2FSK, NLFM, LFM/BPSK, LFM/FSK,
and FSK/BPSK, are selected for experiments. The radar signal
parameters are set as Table IV.

The composite modulation parameter settings are consistent
with the above. The experiments are conducted in a Gaussian
white noise environment, the SNR of the signals is set from
−14 to 10 dB, and the step size is 2 dB. The sample number
of each signal is 600. The training set size is 400, and the test
set size is 200.

B. Time–Frequency Image Comparison

Fig. 7 shows four time–frequency transformations of the
BPSK signal: WVD, SST, CWD, and MSST. From Fig. 7, we
can see that CWD transform and MSST transform have the
best signal characteristics and resolution, respectively.

To further verify the performance of the four transfor-
mations, we carried out signal recognition experiments for
the four kinds of TFIs. The simulation parameters are set
according to Section IV-A. The experimental result in Fig. 8
shows that the recognition rate of the MSST transform and
CWD transform is higher than the other two time–frequency
transforms, as we expected.

C. Algorithm Comparison Experiment

1) Algorithm Recognition Accuracy Comparison: To verify
the high recognition rate by combining CWD and MSST, we
design three sets of comparative experiments.

Fig. 9 shows the comparison of the recognition accuracy
combining different TFIs. From the figure, we can conclude
that the dual channel of MSST and CWD has the best recogni-
tion rate. Since the CWD TFI and the MSST TFI are better at
distinguishing PM signals and FM signals, the combination of
these two TFIs can enhance the recognition of radar signals.
Besides, under the condition of low SNR, the recognition accu-
racy of the combination of CWD and WVD is higher than that
of the combination of MSST and WVD, but it is the opposite
when the SNR is more than −10 dB. The above conclusions
confirm the analysis in Section IV-D, i.e., the CWD TFI has
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Fig. 7. Four kinds of TFIs. (a) WVD images. (b) CWD images. (c) SST
images. (d) MSST images.

Fig. 8. Accuracy comparison of four TFIs.

good noise resistance under low SNR, while the MSST can
better represent the contour characteristics of the signal.

We also consider combining multiple (more than two) time–
frequency transformation methods, and the accuracy compar-
ison is shown in Fig. 10. It can be seen that the combination
of four time–frequency transformations (MSST, CWD, SST,
and WVD) brings the highest recognition accuracy, and the
combination of the three time–frequency transformations also
improves the accuracy under some SNRs. It demonstrates that

Fig. 9. Different dual-channel recognition accuracy diagram.

Fig. 10. Accuracy comparison of various time–frequency transform
combinations.

TABLE V
ALGORITHM TRAINING TIME

combining multiple time–frequency transformation methods
brings better recognition performance. However, combining
more time–frequency transformation methods typically results
in higher computational complexity. Table V shows the com-
putational cost of various time–frequency transformation com-
binations. It can be seen that the proposed method requires less
training time but achieves higher recognition accuracy. When
the SNR is −12 dB, the recognition accuracy of the proposed
method is higher than other three time–frequency transform
combinations.

Moreover, we also compare our model with two traditional
machine learning models (Meng et al. [21] and Li et al. [22]),
and three CNN-based models [23], [24], [25]. The experimen-
tal results are shown in Fig. 11.
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Fig. 11. Average recognition rates of the five algorithms are compared.

With the decrease of the SNR, the radar signal is gradu-
ally covered by noise, resulting in a decrease in frequency
image quality. As shown in Fig. 11, the LBPV features used
in [21] cannot extract the texture features of the images well
at low SNR, which leads to a serious decrease in accuracy.
When the SNR is below −10 dB, the recognition accuracy
of the LBPV algorithm is less than 80%. However, the two-
channel model proposed in this article has better frequency
aggregation and more effective features can be extracted from
the images. Also, the features extracted by the HOG operator
can describe the signal more completely and have better noise
immunity. Therefore, when the SNR is −12 dB, the accuracy
reaches 92.5%, and the algorithm can still maintain a high
recognition rate even at a lower SNR. Literature [22] also used
two-channel TFIs, but there is no complementarity between the
two TFIs, and the quality of AF TFIs decreases sharply as the
SNR decreases, which leads to a serious decrease in recog-
nition accuracy at low SNR, while the feature dimensionality
extracted by GLGCM is less and cannot reflect the signal char-
acteristics well. The dual channel used in this article can better
distinguish the FM signal and the PM signal, and the feature
dimension extracted by the HOG operator is high, which can
reflect the characteristics of the signal more comprehensively.
At the same time, to reduce the dimensionality and redundant
features, we use PCA for dimensionality reduction.

Compared with [23] and [24], the recognition rate of this
article is slightly higher at low SNR. When the SNR is greater
than −12 dB, the recognition rate of this article is slightly
lower than [23] and [24], but from Fig. 12, we can know that
when the number of training set is small, the recognition accu-
racy of the CNN model will be lower than our method. When
the SNR is −8 dB, the recognition accuracy of the three mod-
els is close to 100%. Literature [25] has the lowest recognition
rate among these three CNN-based models. This is because it
has only two convolutional layers and the model structure is
simple. In the low SNR, the accuracy of the dual-channel algo-
rithm identification used in this article is much higher than that
of [25].

2) Comparison of Recognition Accuracy With Different Sizes
of the Training Set: Compared with deep learning, SVM has
the advantages of low complexity and fewer sample require-
ments. It can be seen from Fig. 12 that when the number
of samples is less than 1000, the SVM-based recognition

Fig. 12. Comparison of recognition accuracy with different sizes of the
training set.

accuracy of this article is much higher than the other two
CNN-based recognition methods, and SVM has obvious
advantages in small sample classification.

D. Ablation Experiment

Fig. 13 shows the confusion matrix for recognizing nine sig-
nals when the SNR is −14 dB. The numbers in the confusion
matrix represent the recognition rate, where the recognition
rate on the diagonal represents the correct recognition rate of
the nine signals, and the remaining recognition rates represent
the recognition accuracy of signals incorrectly recognized as
other signals. Through the confusion matrix, we can not only
determine the recognition accuracy of the signals but also iden-
tify which signals are more likely to be confused with each
other, which is beneficial for analyzing the characteristics of
the signals. From the confusion matrix in Fig. 13, we observe
that MSST time–frequency transform has a higher recog-
nition rate for phase-modulated signals, like QPSK, while
CWD time–frequency transform has a higher recognition rate
for frequency-modulated signals, such as 2FSK, FSK/LFM,
and FSK/BPSK. Because the MSST transform has a high
time–frequency aggregation degree and no cross terms, the
signal contour is obvious. Even in the hopping phase of
the phase-modulated signal, there is still a good frequency
aggregation degree, which is conducive for the HOG oper-
ator to extract the signal contour gradient as the feature
vector. But at low SNR, the instantaneous frequency is also
affected by noise, resulting in signal distortion in the TFI,
as shown in Fig. 14(a). The CWD transform has good noise
resistance, and the signal in the TFI is not easily distorted
under lower SNR, so the recognition rate of the frequency-
modulated signal is high. However, the CWD TFIs have signal
blurring and cross terms in phase hopping, which are eas-
ily confused with other phase-modulated signals, resulting in
a low recognition rate of phase-modulated signals, as shown
in Fig. 14(b).

To gain the benefits of MSST and CWD images, we com-
bine the features extracted from the two TFIs to form a dual-
channel confusion matrix shown in Fig. 13(c). From the figure,
we can see that the combined recognition accuracy is greatly
improved. The recognition rates of frequency-modulated
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(a)

(b)

(c)

Fig. 13. Confusion matrix comparison diagram. (a) Confusion matrix
for MSST. (b) Confusion matrix for CWD. (c) Confusion matrix for dual
channel.

signals and mixed modulation with frequency-modulated
signals are higher than 95%, and the recognition rates of
phase-modulation signals are also improved by about 15%.

As shown in Fig. 15, when the SNR is lower than −8 dB,
the accuracy of the dual-channel model is superior to the
single-channel TFI model. Especially when the SNR is
−14 dB, the accuracy of the dual-channel model is 13%
higher than the single-channel model. When the SNR is
higher than −8 dB, the recognition accuracy of the three
models approaches 100%. From the above analysis, it can
be concluded that the dual-channel TFI model has better
performance in the region of low SNR.

Fig. 14. Signal contour image. (a) MSST TFIs of 2FSK and BPSK.
(b) CWD TFIs of 2FSK and BPSK.

Fig. 15. Dual-channel comparison diagram.

TABLE VI
OVERALL RECOGNITION RATE OF THE TRAINING SET

AND TEST SET UNDER DIFFERENT SNRS

E. Robustness Experiment

To test the robustness of the proposed model, we test the
model with different SNRs. The measured data are shown in
Table VI.

As shown in Table VI, the recognition rate under differ-
ent SNRs or mixed SNRs is above 90%, which proves that
the model in this article has a good recognition rate and
robustness.

F. Multipath Fading Channels

In order to make the simulated radar signals closer to the
real electromagnetic scenario, we add multipath fading to sim-
ulate the real scenario. Fig. 16 simulates the process of radar
signal transmission in a realistic scenario. The data set con-
tains nine kinds of signals, and the waveform parameters and
channel conditions are summarized in Tables VII and VIII.
The parameters of the composite modulation signal are set
according to the single signal parameters [26].
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Fig. 16. Multipath fading model.

TABLE VII
WAVEFORM PARAMETERS UNDER MULTIPATH FADING CHANNELS

TABLE VIII
CHANNEL CONFIGURATION

Fig. 17. Complex channel accuracy.

From the graph in Fig. 17, it can be seen that it is difficult
to recognize radar signals in the complex channel because
the signal is severely damaged by path delay and path gain,
and a large amount of texture information on the TFI is lost.
At the same time, the Doppler frequency shift changes the
frequency and phase of the signal, making it more difficult
to distinguish the complex modulated signal from other sig-
nals. However, the method in this article can still maintain
more than 80% recognition accuracy when the SNR is higher

than 0 dB and can reach more than 90% when the SNR is
10 dB.

V. CONCLUSION

In this work, we propose a novel method for radar sig-
nal recognition using a dual-channel model and HOG fea-
ture extraction. This method combines the characteristics
of CWD’s good noise immunity and MSST’s high time–
frequency aggregation and can better distinguish frequency-
modulated signals from phase-modulated signals. Moreover,
the signal contour after multiple simultaneous compression
is more obvious, which is beneficial for the HOG operator
to extract edge gradient information as an effective feature.
The addition of the PCA dimensionality reduction method
reduces redundant features and computational complexity.
Finally, SVM is used for effective identification. According
to the experimental simulation results, this method has a good
recognition effect under low SNR, especially for FM signals
and PM signals. We can also find that the dual-channel model
combined with MSST and CWD achieves higher recognition
accuracy than single-channel models. The proposed method
effectively alleviates the difficulty of effective feature extrac-
tion under low SNR by extracting signal features of different
TFIs and provides a new scheme for radar signal recognition
in electronic reconnaissance.
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